diff options
Diffstat (limited to 'arch/sh/kernel/time.c')
-rw-r--r-- | arch/sh/kernel/time.c | 657 |
1 files changed, 657 insertions, 0 deletions
diff --git a/arch/sh/kernel/time.c b/arch/sh/kernel/time.c new file mode 100644 index 000000000000..df7a9b9d4cbf --- /dev/null +++ b/arch/sh/kernel/time.c | |||
@@ -0,0 +1,657 @@ | |||
1 | /* | ||
2 | * arch/sh/kernel/time.c | ||
3 | * | ||
4 | * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka | ||
5 | * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> | ||
6 | * Copyright (C) 2002, 2003, 2004 Paul Mundt | ||
7 | * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org> | ||
8 | * | ||
9 | * Some code taken from i386 version. | ||
10 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds | ||
11 | */ | ||
12 | |||
13 | #include <linux/config.h> | ||
14 | #include <linux/errno.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/param.h> | ||
19 | #include <linux/string.h> | ||
20 | #include <linux/mm.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/time.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <linux/smp.h> | ||
26 | #include <linux/profile.h> | ||
27 | |||
28 | #include <asm/processor.h> | ||
29 | #include <asm/uaccess.h> | ||
30 | #include <asm/io.h> | ||
31 | #include <asm/irq.h> | ||
32 | #include <asm/delay.h> | ||
33 | #include <asm/machvec.h> | ||
34 | #include <asm/rtc.h> | ||
35 | #include <asm/freq.h> | ||
36 | #include <asm/cpu/timer.h> | ||
37 | #ifdef CONFIG_SH_KGDB | ||
38 | #include <asm/kgdb.h> | ||
39 | #endif | ||
40 | |||
41 | #include <linux/timex.h> | ||
42 | #include <linux/irq.h> | ||
43 | |||
44 | #define TMU_TOCR_INIT 0x00 | ||
45 | #define TMU0_TCR_INIT 0x0020 | ||
46 | #define TMU_TSTR_INIT 1 | ||
47 | |||
48 | #define TMU0_TCR_CALIB 0x0000 | ||
49 | |||
50 | #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 | ||
51 | #define CLOCKGEN_MEMCLKCR 0xbb040038 | ||
52 | #define MEMCLKCR_RATIO_MASK 0x7 | ||
53 | #endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */ | ||
54 | |||
55 | extern unsigned long wall_jiffies; | ||
56 | #define TICK_SIZE (tick_nsec / 1000) | ||
57 | DEFINE_SPINLOCK(tmu0_lock); | ||
58 | |||
59 | u64 jiffies_64 = INITIAL_JIFFIES; | ||
60 | |||
61 | EXPORT_SYMBOL(jiffies_64); | ||
62 | |||
63 | /* XXX: Can we initialize this in a routine somewhere? Dreamcast doesn't want | ||
64 | * these routines anywhere... */ | ||
65 | #ifdef CONFIG_SH_RTC | ||
66 | void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday; | ||
67 | int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday; | ||
68 | #else | ||
69 | void (*rtc_get_time)(struct timespec *); | ||
70 | int (*rtc_set_time)(const time_t); | ||
71 | #endif | ||
72 | |||
73 | #if defined(CONFIG_CPU_SUBTYPE_SH7300) | ||
74 | static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 }; | ||
75 | #endif | ||
76 | #if defined(CONFIG_CPU_SH3) | ||
77 | static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 }; | ||
78 | static int stc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 }; | ||
79 | #define bfc_divisors stc_multipliers | ||
80 | #define bfc_values stc_values | ||
81 | static int ifc_divisors[] = { 1, 2, 3, 4, 1, 1, 1, 1 }; | ||
82 | static int ifc_values[] = { 0, 1, 4, 2, 0, 0, 0, 0 }; | ||
83 | static int pfc_divisors[] = { 1, 2, 3, 4, 6, 1, 1, 1 }; | ||
84 | static int pfc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 }; | ||
85 | #elif defined(CONFIG_CPU_SH4) | ||
86 | #if defined(CONFIG_CPU_SUBTYPE_SH73180) | ||
87 | static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 }; | ||
88 | static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; | ||
89 | #define bfc_divisors ifc_divisors /* Same */ | ||
90 | #define bfc_values ifc_values | ||
91 | #define pfc_divisors ifc_divisors /* Same */ | ||
92 | #define pfc_values ifc_values | ||
93 | #else | ||
94 | static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 }; | ||
95 | static int ifc_values[] = { 0, 1, 2, 3, 0, 4, 0, 5 }; | ||
96 | #define bfc_divisors ifc_divisors /* Same */ | ||
97 | #define bfc_values ifc_values | ||
98 | static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 }; | ||
99 | static int pfc_values[] = { 0, 0, 1, 2, 0, 3, 0, 4 }; | ||
100 | #endif | ||
101 | #else | ||
102 | #error "Unknown ifc/bfc/pfc/stc values for this processor" | ||
103 | #endif | ||
104 | |||
105 | /* | ||
106 | * Scheduler clock - returns current time in nanosec units. | ||
107 | */ | ||
108 | unsigned long long sched_clock(void) | ||
109 | { | ||
110 | return (unsigned long long)jiffies * (1000000000 / HZ); | ||
111 | } | ||
112 | |||
113 | static unsigned long do_gettimeoffset(void) | ||
114 | { | ||
115 | int count; | ||
116 | unsigned long flags; | ||
117 | |||
118 | static int count_p = 0x7fffffff; /* for the first call after boot */ | ||
119 | static unsigned long jiffies_p = 0; | ||
120 | |||
121 | /* | ||
122 | * cache volatile jiffies temporarily; we have IRQs turned off. | ||
123 | */ | ||
124 | unsigned long jiffies_t; | ||
125 | |||
126 | spin_lock_irqsave(&tmu0_lock, flags); | ||
127 | /* timer count may underflow right here */ | ||
128 | count = ctrl_inl(TMU0_TCNT); /* read the latched count */ | ||
129 | |||
130 | jiffies_t = jiffies; | ||
131 | |||
132 | /* | ||
133 | * avoiding timer inconsistencies (they are rare, but they happen)... | ||
134 | * there is one kind of problem that must be avoided here: | ||
135 | * 1. the timer counter underflows | ||
136 | */ | ||
137 | |||
138 | if( jiffies_t == jiffies_p ) { | ||
139 | if( count > count_p ) { | ||
140 | /* the nutcase */ | ||
141 | |||
142 | if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */ | ||
143 | /* | ||
144 | * We cannot detect lost timer interrupts ... | ||
145 | * well, that's why we call them lost, don't we? :) | ||
146 | * [hmm, on the Pentium and Alpha we can ... sort of] | ||
147 | */ | ||
148 | count -= LATCH; | ||
149 | } else { | ||
150 | printk("do_slow_gettimeoffset(): hardware timer problem?\n"); | ||
151 | } | ||
152 | } | ||
153 | } else | ||
154 | jiffies_p = jiffies_t; | ||
155 | |||
156 | count_p = count; | ||
157 | spin_unlock_irqrestore(&tmu0_lock, flags); | ||
158 | |||
159 | count = ((LATCH-1) - count) * TICK_SIZE; | ||
160 | count = (count + LATCH/2) / LATCH; | ||
161 | |||
162 | return count; | ||
163 | } | ||
164 | |||
165 | void do_gettimeofday(struct timeval *tv) | ||
166 | { | ||
167 | unsigned long seq; | ||
168 | unsigned long usec, sec; | ||
169 | unsigned long lost; | ||
170 | |||
171 | do { | ||
172 | seq = read_seqbegin(&xtime_lock); | ||
173 | usec = do_gettimeoffset(); | ||
174 | |||
175 | lost = jiffies - wall_jiffies; | ||
176 | if (lost) | ||
177 | usec += lost * (1000000 / HZ); | ||
178 | |||
179 | sec = xtime.tv_sec; | ||
180 | usec += xtime.tv_nsec / 1000; | ||
181 | } while (read_seqretry(&xtime_lock, seq)); | ||
182 | |||
183 | while (usec >= 1000000) { | ||
184 | usec -= 1000000; | ||
185 | sec++; | ||
186 | } | ||
187 | |||
188 | tv->tv_sec = sec; | ||
189 | tv->tv_usec = usec; | ||
190 | } | ||
191 | |||
192 | EXPORT_SYMBOL(do_gettimeofday); | ||
193 | |||
194 | int do_settimeofday(struct timespec *tv) | ||
195 | { | ||
196 | time_t wtm_sec, sec = tv->tv_sec; | ||
197 | long wtm_nsec, nsec = tv->tv_nsec; | ||
198 | |||
199 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
200 | return -EINVAL; | ||
201 | |||
202 | write_seqlock_irq(&xtime_lock); | ||
203 | /* | ||
204 | * This is revolting. We need to set "xtime" correctly. However, the | ||
205 | * value in this location is the value at the most recent update of | ||
206 | * wall time. Discover what correction gettimeofday() would have | ||
207 | * made, and then undo it! | ||
208 | */ | ||
209 | nsec -= 1000 * (do_gettimeoffset() + | ||
210 | (jiffies - wall_jiffies) * (1000000 / HZ)); | ||
211 | |||
212 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | ||
213 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | ||
214 | |||
215 | set_normalized_timespec(&xtime, sec, nsec); | ||
216 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
217 | |||
218 | time_adjust = 0; /* stop active adjtime() */ | ||
219 | time_status |= STA_UNSYNC; | ||
220 | time_maxerror = NTP_PHASE_LIMIT; | ||
221 | time_esterror = NTP_PHASE_LIMIT; | ||
222 | write_sequnlock_irq(&xtime_lock); | ||
223 | clock_was_set(); | ||
224 | |||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | EXPORT_SYMBOL(do_settimeofday); | ||
229 | |||
230 | /* last time the RTC clock got updated */ | ||
231 | static long last_rtc_update; | ||
232 | |||
233 | /* | ||
234 | * timer_interrupt() needs to keep up the real-time clock, | ||
235 | * as well as call the "do_timer()" routine every clocktick | ||
236 | */ | ||
237 | static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
238 | { | ||
239 | do_timer(regs); | ||
240 | #ifndef CONFIG_SMP | ||
241 | update_process_times(user_mode(regs)); | ||
242 | #endif | ||
243 | profile_tick(CPU_PROFILING, regs); | ||
244 | |||
245 | #ifdef CONFIG_HEARTBEAT | ||
246 | if (sh_mv.mv_heartbeat != NULL) | ||
247 | sh_mv.mv_heartbeat(); | ||
248 | #endif | ||
249 | |||
250 | /* | ||
251 | * If we have an externally synchronized Linux clock, then update | ||
252 | * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | ||
253 | * called as close as possible to 500 ms before the new second starts. | ||
254 | */ | ||
255 | if ((time_status & STA_UNSYNC) == 0 && | ||
256 | xtime.tv_sec > last_rtc_update + 660 && | ||
257 | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | ||
258 | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | ||
259 | if (rtc_set_time(xtime.tv_sec) == 0) | ||
260 | last_rtc_update = xtime.tv_sec; | ||
261 | else | ||
262 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ | ||
263 | } | ||
264 | } | ||
265 | |||
266 | /* | ||
267 | * This is the same as the above, except we _also_ save the current | ||
268 | * Time Stamp Counter value at the time of the timer interrupt, so that | ||
269 | * we later on can estimate the time of day more exactly. | ||
270 | */ | ||
271 | static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
272 | { | ||
273 | unsigned long timer_status; | ||
274 | |||
275 | /* Clear UNF bit */ | ||
276 | timer_status = ctrl_inw(TMU0_TCR); | ||
277 | timer_status &= ~0x100; | ||
278 | ctrl_outw(timer_status, TMU0_TCR); | ||
279 | |||
280 | /* | ||
281 | * Here we are in the timer irq handler. We just have irqs locally | ||
282 | * disabled but we don't know if the timer_bh is running on the other | ||
283 | * CPU. We need to avoid to SMP race with it. NOTE: we don' t need | ||
284 | * the irq version of write_lock because as just said we have irq | ||
285 | * locally disabled. -arca | ||
286 | */ | ||
287 | write_seqlock(&xtime_lock); | ||
288 | do_timer_interrupt(irq, NULL, regs); | ||
289 | write_sequnlock(&xtime_lock); | ||
290 | |||
291 | return IRQ_HANDLED; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * Hah! We'll see if this works (switching from usecs to nsecs). | ||
296 | */ | ||
297 | static unsigned int __init get_timer_frequency(void) | ||
298 | { | ||
299 | u32 freq; | ||
300 | struct timespec ts1, ts2; | ||
301 | unsigned long diff_nsec; | ||
302 | unsigned long factor; | ||
303 | |||
304 | /* Setup the timer: We don't want to generate interrupts, just | ||
305 | * have it count down at its natural rate. | ||
306 | */ | ||
307 | ctrl_outb(0, TMU_TSTR); | ||
308 | #if !defined(CONFIG_CPU_SUBTYPE_SH7300) | ||
309 | ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); | ||
310 | #endif | ||
311 | ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR); | ||
312 | ctrl_outl(0xffffffff, TMU0_TCOR); | ||
313 | ctrl_outl(0xffffffff, TMU0_TCNT); | ||
314 | |||
315 | rtc_get_time(&ts2); | ||
316 | |||
317 | do { | ||
318 | rtc_get_time(&ts1); | ||
319 | } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec); | ||
320 | |||
321 | /* actually start the timer */ | ||
322 | ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); | ||
323 | |||
324 | do { | ||
325 | rtc_get_time(&ts2); | ||
326 | } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec); | ||
327 | |||
328 | freq = 0xffffffff - ctrl_inl(TMU0_TCNT); | ||
329 | if (ts2.tv_nsec < ts1.tv_nsec) { | ||
330 | ts2.tv_nsec += 1000000000; | ||
331 | ts2.tv_sec--; | ||
332 | } | ||
333 | |||
334 | diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec); | ||
335 | |||
336 | /* this should work well if the RTC has a precision of n Hz, where | ||
337 | * n is an integer. I don't think we have to worry about the other | ||
338 | * cases. */ | ||
339 | factor = (1000000000 + diff_nsec/2) / diff_nsec; | ||
340 | |||
341 | if (factor * diff_nsec > 1100000000 || | ||
342 | factor * diff_nsec < 900000000) | ||
343 | panic("weird RTC (diff_nsec %ld)", diff_nsec); | ||
344 | |||
345 | return freq * factor; | ||
346 | } | ||
347 | |||
348 | void (*board_time_init)(void); | ||
349 | void (*board_timer_setup)(struct irqaction *irq); | ||
350 | |||
351 | static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ; | ||
352 | |||
353 | static int __init sh_pclk_setup(char *str) | ||
354 | { | ||
355 | unsigned int freq; | ||
356 | |||
357 | if (get_option(&str, &freq)) | ||
358 | sh_pclk_freq = freq; | ||
359 | |||
360 | return 1; | ||
361 | } | ||
362 | __setup("sh_pclk=", sh_pclk_setup); | ||
363 | |||
364 | static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL}; | ||
365 | |||
366 | void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc) | ||
367 | { | ||
368 | unsigned int frqcr = ctrl_inw(FRQCR); | ||
369 | |||
370 | #if defined(CONFIG_CPU_SH3) | ||
371 | #if defined(CONFIG_CPU_SUBTYPE_SH7300) | ||
372 | *ifc = md_table[((frqcr & 0x0070) >> 4)]; | ||
373 | *bfc = md_table[((frqcr & 0x0700) >> 8)]; | ||
374 | *pfc = md_table[frqcr & 0x0007]; | ||
375 | #elif defined(CONFIG_CPU_SUBTYPE_SH7705) | ||
376 | *bfc = stc_multipliers[(frqcr & 0x0300) >> 8]; | ||
377 | *ifc = ifc_divisors[(frqcr & 0x0030) >> 4]; | ||
378 | *pfc = pfc_divisors[frqcr & 0x0003]; | ||
379 | #else | ||
380 | unsigned int tmp; | ||
381 | |||
382 | tmp = (frqcr & 0x8000) >> 13; | ||
383 | tmp |= (frqcr & 0x0030) >> 4; | ||
384 | *bfc = stc_multipliers[tmp]; | ||
385 | tmp = (frqcr & 0x4000) >> 12; | ||
386 | tmp |= (frqcr & 0x000c) >> 2; | ||
387 | *ifc = ifc_divisors[tmp]; | ||
388 | tmp = (frqcr & 0x2000) >> 11; | ||
389 | tmp |= frqcr & 0x0003; | ||
390 | *pfc = pfc_divisors[tmp]; | ||
391 | #endif | ||
392 | #elif defined(CONFIG_CPU_SH4) | ||
393 | #if defined(CONFIG_CPU_SUBTYPE_SH73180) | ||
394 | *ifc = ifc_divisors[(frqcr>> 20) & 0x0007]; | ||
395 | *bfc = bfc_divisors[(frqcr>> 12) & 0x0007]; | ||
396 | *pfc = pfc_divisors[frqcr & 0x0007]; | ||
397 | #else | ||
398 | *ifc = ifc_divisors[(frqcr >> 6) & 0x0007]; | ||
399 | *bfc = bfc_divisors[(frqcr >> 3) & 0x0007]; | ||
400 | *pfc = pfc_divisors[frqcr & 0x0007]; | ||
401 | #endif | ||
402 | #endif | ||
403 | } | ||
404 | |||
405 | /* | ||
406 | * This bit of ugliness builds up accessor routines to get at both | ||
407 | * the divisors and the physical values. | ||
408 | */ | ||
409 | #define _FREQ_TABLE(x) \ | ||
410 | unsigned int get_##x##_divisor(unsigned int value) \ | ||
411 | { return x##_divisors[value]; } \ | ||
412 | \ | ||
413 | unsigned int get_##x##_value(unsigned int divisor) \ | ||
414 | { return x##_values[(divisor - 1)]; } | ||
415 | |||
416 | _FREQ_TABLE(ifc); | ||
417 | _FREQ_TABLE(bfc); | ||
418 | _FREQ_TABLE(pfc); | ||
419 | |||
420 | #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 | ||
421 | |||
422 | /* | ||
423 | * The ST40 divisors are totally different so we set the cpu data | ||
424 | * clocks using a different algorithm | ||
425 | * | ||
426 | * I've just plugged this from the 2.4 code | ||
427 | * - Alex Bennee <kernel-hacker@bennee.com> | ||
428 | */ | ||
429 | #define CCN_PVR_CHIP_SHIFT 24 | ||
430 | #define CCN_PVR_CHIP_MASK 0xff | ||
431 | #define CCN_PVR_CHIP_ST40STB1 0x4 | ||
432 | |||
433 | |||
434 | struct frqcr_data { | ||
435 | unsigned short frqcr; | ||
436 | |||
437 | struct { | ||
438 | unsigned char multiplier; | ||
439 | unsigned char divisor; | ||
440 | } factor[3]; | ||
441 | }; | ||
442 | |||
443 | static struct frqcr_data st40_frqcr_table[] = { | ||
444 | { 0x000, {{1,1}, {1,1}, {1,2}}}, | ||
445 | { 0x002, {{1,1}, {1,1}, {1,4}}}, | ||
446 | { 0x004, {{1,1}, {1,1}, {1,8}}}, | ||
447 | { 0x008, {{1,1}, {1,2}, {1,2}}}, | ||
448 | { 0x00A, {{1,1}, {1,2}, {1,4}}}, | ||
449 | { 0x00C, {{1,1}, {1,2}, {1,8}}}, | ||
450 | { 0x011, {{1,1}, {2,3}, {1,6}}}, | ||
451 | { 0x013, {{1,1}, {2,3}, {1,3}}}, | ||
452 | { 0x01A, {{1,1}, {1,2}, {1,4}}}, | ||
453 | { 0x01C, {{1,1}, {1,2}, {1,8}}}, | ||
454 | { 0x023, {{1,1}, {2,3}, {1,3}}}, | ||
455 | { 0x02C, {{1,1}, {1,2}, {1,8}}}, | ||
456 | { 0x048, {{1,2}, {1,2}, {1,4}}}, | ||
457 | { 0x04A, {{1,2}, {1,2}, {1,6}}}, | ||
458 | { 0x04C, {{1,2}, {1,2}, {1,8}}}, | ||
459 | { 0x05A, {{1,2}, {1,3}, {1,6}}}, | ||
460 | { 0x05C, {{1,2}, {1,3}, {1,6}}}, | ||
461 | { 0x063, {{1,2}, {1,4}, {1,4}}}, | ||
462 | { 0x06C, {{1,2}, {1,4}, {1,8}}}, | ||
463 | { 0x091, {{1,3}, {1,3}, {1,6}}}, | ||
464 | { 0x093, {{1,3}, {1,3}, {1,6}}}, | ||
465 | { 0x0A3, {{1,3}, {1,6}, {1,6}}}, | ||
466 | { 0x0DA, {{1,4}, {1,4}, {1,8}}}, | ||
467 | { 0x0DC, {{1,4}, {1,4}, {1,8}}}, | ||
468 | { 0x0EC, {{1,4}, {1,8}, {1,8}}}, | ||
469 | { 0x123, {{1,4}, {1,4}, {1,8}}}, | ||
470 | { 0x16C, {{1,4}, {1,8}, {1,8}}}, | ||
471 | }; | ||
472 | |||
473 | struct memclk_data { | ||
474 | unsigned char multiplier; | ||
475 | unsigned char divisor; | ||
476 | }; | ||
477 | |||
478 | static struct memclk_data st40_memclk_table[8] = { | ||
479 | {1,1}, // 000 | ||
480 | {1,2}, // 001 | ||
481 | {1,3}, // 010 | ||
482 | {2,3}, // 011 | ||
483 | {1,4}, // 100 | ||
484 | {1,6}, // 101 | ||
485 | {1,8}, // 110 | ||
486 | {1,8} // 111 | ||
487 | }; | ||
488 | |||
489 | static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr) | ||
490 | { | ||
491 | unsigned int cpu_clock, master_clock, bus_clock, memory_clock; | ||
492 | struct frqcr_data *d; | ||
493 | int a; | ||
494 | unsigned long memclkcr; | ||
495 | struct memclk_data *e; | ||
496 | |||
497 | for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) { | ||
498 | d = &st40_frqcr_table[a]; | ||
499 | |||
500 | if (d->frqcr == (frqcr & 0x1ff)) | ||
501 | break; | ||
502 | } | ||
503 | |||
504 | if (a == ARRAY_SIZE(st40_frqcr_table)) { | ||
505 | d = st40_frqcr_table; | ||
506 | |||
507 | printk("ERROR: Unrecognised FRQCR value (0x%x), " | ||
508 | "using default multipliers\n", frqcr); | ||
509 | } | ||
510 | |||
511 | memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR); | ||
512 | e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK]; | ||
513 | |||
514 | printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d " | ||
515 | "Mem: %d/%d Periph: %d/%d\n", | ||
516 | d->factor[0].multiplier, d->factor[0].divisor, | ||
517 | d->factor[1].multiplier, d->factor[1].divisor, | ||
518 | e->multiplier, e->divisor, | ||
519 | d->factor[2].multiplier, d->factor[2].divisor); | ||
520 | |||
521 | master_clock = module_clock * d->factor[2].divisor | ||
522 | / d->factor[2].multiplier; | ||
523 | bus_clock = master_clock * d->factor[1].multiplier | ||
524 | / d->factor[1].divisor; | ||
525 | memory_clock = master_clock * e->multiplier | ||
526 | / e->divisor; | ||
527 | cpu_clock = master_clock * d->factor[0].multiplier | ||
528 | / d->factor[0].divisor; | ||
529 | |||
530 | current_cpu_data.cpu_clock = cpu_clock; | ||
531 | current_cpu_data.master_clock = master_clock; | ||
532 | current_cpu_data.bus_clock = bus_clock; | ||
533 | current_cpu_data.memory_clock = memory_clock; | ||
534 | current_cpu_data.module_clock = module_clock; | ||
535 | } | ||
536 | #endif | ||
537 | |||
538 | void __init time_init(void) | ||
539 | { | ||
540 | unsigned int timer_freq = 0; | ||
541 | unsigned int ifc, pfc, bfc; | ||
542 | unsigned long interval; | ||
543 | #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 | ||
544 | unsigned long pvr; | ||
545 | unsigned short frqcr; | ||
546 | #endif | ||
547 | |||
548 | if (board_time_init) | ||
549 | board_time_init(); | ||
550 | |||
551 | /* | ||
552 | * If we don't have an RTC (such as with the SH7300), don't attempt to | ||
553 | * probe the timer frequency. Rely on an either hardcoded peripheral | ||
554 | * clock value, or on the sh_pclk command line option. Note that we | ||
555 | * still need to have CONFIG_SH_PCLK_FREQ set in order for things like | ||
556 | * CLOCK_TICK_RATE to be sane. | ||
557 | */ | ||
558 | current_cpu_data.module_clock = sh_pclk_freq; | ||
559 | |||
560 | #ifdef CONFIG_SH_PCLK_CALC | ||
561 | /* XXX: Switch this over to a more generic test. */ | ||
562 | { | ||
563 | unsigned int freq; | ||
564 | |||
565 | /* | ||
566 | * If we've specified a peripheral clock frequency, and we have | ||
567 | * an RTC, compare it against the autodetected value. Complain | ||
568 | * if there's a mismatch. | ||
569 | */ | ||
570 | timer_freq = get_timer_frequency(); | ||
571 | freq = timer_freq * 4; | ||
572 | |||
573 | if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) { | ||
574 | printk(KERN_NOTICE "Calculated peripheral clock value " | ||
575 | "%d differs from sh_pclk value %d, fixing..\n", | ||
576 | freq, sh_pclk_freq); | ||
577 | current_cpu_data.module_clock = freq; | ||
578 | } | ||
579 | } | ||
580 | #endif | ||
581 | |||
582 | #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 | ||
583 | /* XXX: Update ST40 code to use board_time_init() */ | ||
584 | pvr = ctrl_inl(CCN_PVR); | ||
585 | frqcr = ctrl_inw(FRQCR); | ||
586 | printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr); | ||
587 | |||
588 | if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1) | ||
589 | st40_specific_time_init(current_cpu_data.module_clock, frqcr); | ||
590 | else | ||
591 | #endif | ||
592 | get_current_frequency_divisors(&ifc, &bfc, &pfc); | ||
593 | |||
594 | if (rtc_get_time) { | ||
595 | rtc_get_time(&xtime); | ||
596 | } else { | ||
597 | xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0); | ||
598 | xtime.tv_nsec = 0; | ||
599 | } | ||
600 | |||
601 | set_normalized_timespec(&wall_to_monotonic, | ||
602 | -xtime.tv_sec, -xtime.tv_nsec); | ||
603 | |||
604 | if (board_timer_setup) { | ||
605 | board_timer_setup(&irq0); | ||
606 | } else { | ||
607 | setup_irq(TIMER_IRQ, &irq0); | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * for ST40 chips the current_cpu_data should already be set | ||
612 | * so not having valid pfc/bfc/ifc shouldn't be a problem | ||
613 | */ | ||
614 | if (!current_cpu_data.master_clock) | ||
615 | current_cpu_data.master_clock = current_cpu_data.module_clock * pfc; | ||
616 | if (!current_cpu_data.bus_clock) | ||
617 | current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc; | ||
618 | if (!current_cpu_data.cpu_clock) | ||
619 | current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc; | ||
620 | |||
621 | printk("CPU clock: %d.%02dMHz\n", | ||
622 | (current_cpu_data.cpu_clock / 1000000), | ||
623 | (current_cpu_data.cpu_clock % 1000000)/10000); | ||
624 | printk("Bus clock: %d.%02dMHz\n", | ||
625 | (current_cpu_data.bus_clock / 1000000), | ||
626 | (current_cpu_data.bus_clock % 1000000)/10000); | ||
627 | #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 | ||
628 | printk("Memory clock: %d.%02dMHz\n", | ||
629 | (current_cpu_data.memory_clock / 1000000), | ||
630 | (current_cpu_data.memory_clock % 1000000)/10000); | ||
631 | #endif | ||
632 | printk("Module clock: %d.%02dMHz\n", | ||
633 | (current_cpu_data.module_clock / 1000000), | ||
634 | (current_cpu_data.module_clock % 1000000)/10000); | ||
635 | |||
636 | interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ; | ||
637 | |||
638 | printk("Interval = %ld\n", interval); | ||
639 | |||
640 | /* Start TMU0 */ | ||
641 | ctrl_outb(0, TMU_TSTR); | ||
642 | #if !defined(CONFIG_CPU_SUBTYPE_SH7300) | ||
643 | ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); | ||
644 | #endif | ||
645 | ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); | ||
646 | ctrl_outl(interval, TMU0_TCOR); | ||
647 | ctrl_outl(interval, TMU0_TCNT); | ||
648 | ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); | ||
649 | |||
650 | #if defined(CONFIG_SH_KGDB) | ||
651 | /* | ||
652 | * Set up kgdb as requested. We do it here because the serial | ||
653 | * init uses the timer vars we just set up for figuring baud. | ||
654 | */ | ||
655 | kgdb_init(); | ||
656 | #endif | ||
657 | } | ||