diff options
Diffstat (limited to 'arch/sh/kernel/kprobes.c')
| -rw-r--r-- | arch/sh/kernel/kprobes.c | 584 |
1 files changed, 584 insertions, 0 deletions
diff --git a/arch/sh/kernel/kprobes.c b/arch/sh/kernel/kprobes.c new file mode 100644 index 000000000000..c96850b061fb --- /dev/null +++ b/arch/sh/kernel/kprobes.c | |||
| @@ -0,0 +1,584 @@ | |||
| 1 | /* | ||
| 2 | * Kernel probes (kprobes) for SuperH | ||
| 3 | * | ||
| 4 | * Copyright (C) 2007 Chris Smith <chris.smith@st.com> | ||
| 5 | * Copyright (C) 2006 Lineo Solutions, Inc. | ||
| 6 | * | ||
| 7 | * This file is subject to the terms and conditions of the GNU General Public | ||
| 8 | * License. See the file "COPYING" in the main directory of this archive | ||
| 9 | * for more details. | ||
| 10 | */ | ||
| 11 | #include <linux/kprobes.h> | ||
| 12 | #include <linux/module.h> | ||
| 13 | #include <linux/ptrace.h> | ||
| 14 | #include <linux/preempt.h> | ||
| 15 | #include <linux/kdebug.h> | ||
| 16 | #include <asm/cacheflush.h> | ||
| 17 | #include <asm/uaccess.h> | ||
| 18 | |||
| 19 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | ||
| 20 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | ||
| 21 | |||
| 22 | static struct kprobe saved_current_opcode; | ||
| 23 | static struct kprobe saved_next_opcode; | ||
| 24 | static struct kprobe saved_next_opcode2; | ||
| 25 | |||
| 26 | #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) | ||
| 27 | #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) | ||
| 28 | #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) | ||
| 29 | #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) | ||
| 30 | #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) | ||
| 31 | #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) | ||
| 32 | |||
| 33 | #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) | ||
| 34 | #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) | ||
| 35 | |||
| 36 | #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) | ||
| 37 | #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) | ||
| 38 | |||
| 39 | #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) | ||
| 40 | #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) | ||
| 41 | |||
| 42 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | ||
| 43 | { | ||
| 44 | kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); | ||
| 45 | |||
| 46 | if (OPCODE_RTE(opcode)) | ||
| 47 | return -EFAULT; /* Bad breakpoint */ | ||
| 48 | |||
| 49 | p->opcode = opcode; | ||
| 50 | |||
| 51 | return 0; | ||
| 52 | } | ||
| 53 | |||
| 54 | void __kprobes arch_copy_kprobe(struct kprobe *p) | ||
| 55 | { | ||
| 56 | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | ||
| 57 | p->opcode = *p->addr; | ||
| 58 | } | ||
| 59 | |||
| 60 | void __kprobes arch_arm_kprobe(struct kprobe *p) | ||
| 61 | { | ||
| 62 | *p->addr = BREAKPOINT_INSTRUCTION; | ||
| 63 | flush_icache_range((unsigned long)p->addr, | ||
| 64 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | ||
| 65 | } | ||
| 66 | |||
| 67 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | ||
| 68 | { | ||
| 69 | *p->addr = p->opcode; | ||
| 70 | flush_icache_range((unsigned long)p->addr, | ||
| 71 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | ||
| 72 | } | ||
| 73 | |||
| 74 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | ||
| 75 | { | ||
| 76 | if (*p->addr == BREAKPOINT_INSTRUCTION) | ||
| 77 | return 1; | ||
| 78 | |||
| 79 | return 0; | ||
| 80 | } | ||
| 81 | |||
| 82 | /** | ||
| 83 | * If an illegal slot instruction exception occurs for an address | ||
| 84 | * containing a kprobe, remove the probe. | ||
| 85 | * | ||
| 86 | * Returns 0 if the exception was handled successfully, 1 otherwise. | ||
| 87 | */ | ||
| 88 | int __kprobes kprobe_handle_illslot(unsigned long pc) | ||
| 89 | { | ||
| 90 | struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); | ||
| 91 | |||
| 92 | if (p != NULL) { | ||
| 93 | printk("Warning: removing kprobe from delay slot: 0x%.8x\n", | ||
| 94 | (unsigned int)pc + 2); | ||
| 95 | unregister_kprobe(p); | ||
| 96 | return 0; | ||
| 97 | } | ||
| 98 | |||
| 99 | return 1; | ||
| 100 | } | ||
| 101 | |||
| 102 | void __kprobes arch_remove_kprobe(struct kprobe *p) | ||
| 103 | { | ||
| 104 | if (saved_next_opcode.addr != 0x0) { | ||
| 105 | arch_disarm_kprobe(p); | ||
| 106 | arch_disarm_kprobe(&saved_next_opcode); | ||
| 107 | saved_next_opcode.addr = 0x0; | ||
| 108 | saved_next_opcode.opcode = 0x0; | ||
| 109 | |||
| 110 | if (saved_next_opcode2.addr != 0x0) { | ||
| 111 | arch_disarm_kprobe(&saved_next_opcode2); | ||
| 112 | saved_next_opcode2.addr = 0x0; | ||
| 113 | saved_next_opcode2.opcode = 0x0; | ||
| 114 | } | ||
| 115 | } | ||
| 116 | } | ||
| 117 | |||
| 118 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
| 119 | { | ||
| 120 | kcb->prev_kprobe.kp = kprobe_running(); | ||
| 121 | kcb->prev_kprobe.status = kcb->kprobe_status; | ||
| 122 | } | ||
| 123 | |||
| 124 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
| 125 | { | ||
| 126 | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | ||
| 127 | kcb->kprobe_status = kcb->prev_kprobe.status; | ||
| 128 | } | ||
| 129 | |||
| 130 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | ||
| 131 | struct kprobe_ctlblk *kcb) | ||
| 132 | { | ||
| 133 | __get_cpu_var(current_kprobe) = p; | ||
| 134 | } | ||
| 135 | |||
| 136 | /* | ||
| 137 | * Singlestep is implemented by disabling the current kprobe and setting one | ||
| 138 | * on the next instruction, following branches. Two probes are set if the | ||
| 139 | * branch is conditional. | ||
| 140 | */ | ||
| 141 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | ||
| 142 | { | ||
| 143 | kprobe_opcode_t *addr = NULL; | ||
| 144 | saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc); | ||
| 145 | addr = saved_current_opcode.addr; | ||
| 146 | |||
| 147 | if (p != NULL) { | ||
| 148 | arch_disarm_kprobe(p); | ||
| 149 | |||
| 150 | if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { | ||
| 151 | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | ||
| 152 | saved_next_opcode.addr = | ||
| 153 | (kprobe_opcode_t *) regs->regs[reg_nr]; | ||
| 154 | } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { | ||
| 155 | unsigned long disp = (p->opcode & 0x0FFF); | ||
| 156 | saved_next_opcode.addr = | ||
| 157 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
| 158 | |||
| 159 | } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { | ||
| 160 | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | ||
| 161 | saved_next_opcode.addr = | ||
| 162 | (kprobe_opcode_t *) (regs->pc + 4 + | ||
| 163 | regs->regs[reg_nr]); | ||
| 164 | |||
| 165 | } else if (OPCODE_RTS(p->opcode)) { | ||
| 166 | saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr; | ||
| 167 | |||
| 168 | } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { | ||
| 169 | unsigned long disp = (p->opcode & 0x00FF); | ||
| 170 | /* case 1 */ | ||
| 171 | saved_next_opcode.addr = p->addr + 1; | ||
| 172 | /* case 2 */ | ||
| 173 | saved_next_opcode2.addr = | ||
| 174 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
| 175 | saved_next_opcode2.opcode = *(saved_next_opcode2.addr); | ||
| 176 | arch_arm_kprobe(&saved_next_opcode2); | ||
| 177 | |||
| 178 | } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { | ||
| 179 | unsigned long disp = (p->opcode & 0x00FF); | ||
| 180 | /* case 1 */ | ||
| 181 | saved_next_opcode.addr = p->addr + 2; | ||
| 182 | /* case 2 */ | ||
| 183 | saved_next_opcode2.addr = | ||
| 184 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
| 185 | saved_next_opcode2.opcode = *(saved_next_opcode2.addr); | ||
| 186 | arch_arm_kprobe(&saved_next_opcode2); | ||
| 187 | |||
| 188 | } else { | ||
| 189 | saved_next_opcode.addr = p->addr + 1; | ||
| 190 | } | ||
| 191 | |||
| 192 | saved_next_opcode.opcode = *(saved_next_opcode.addr); | ||
| 193 | arch_arm_kprobe(&saved_next_opcode); | ||
| 194 | } | ||
| 195 | } | ||
| 196 | |||
| 197 | /* Called with kretprobe_lock held */ | ||
| 198 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | ||
| 199 | struct pt_regs *regs) | ||
| 200 | { | ||
| 201 | ri->ret_addr = (kprobe_opcode_t *) regs->pr; | ||
| 202 | |||
| 203 | /* Replace the return addr with trampoline addr */ | ||
| 204 | regs->pr = (unsigned long)kretprobe_trampoline; | ||
| 205 | } | ||
| 206 | |||
| 207 | static int __kprobes kprobe_handler(struct pt_regs *regs) | ||
| 208 | { | ||
| 209 | struct kprobe *p; | ||
| 210 | int ret = 0; | ||
| 211 | kprobe_opcode_t *addr = NULL; | ||
| 212 | struct kprobe_ctlblk *kcb; | ||
| 213 | |||
| 214 | /* | ||
| 215 | * We don't want to be preempted for the entire | ||
| 216 | * duration of kprobe processing | ||
| 217 | */ | ||
| 218 | preempt_disable(); | ||
| 219 | kcb = get_kprobe_ctlblk(); | ||
| 220 | |||
| 221 | addr = (kprobe_opcode_t *) (regs->pc); | ||
| 222 | |||
| 223 | /* Check we're not actually recursing */ | ||
| 224 | if (kprobe_running()) { | ||
| 225 | p = get_kprobe(addr); | ||
| 226 | if (p) { | ||
| 227 | if (kcb->kprobe_status == KPROBE_HIT_SS && | ||
| 228 | *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | ||
| 229 | goto no_kprobe; | ||
| 230 | } | ||
| 231 | /* We have reentered the kprobe_handler(), since | ||
| 232 | * another probe was hit while within the handler. | ||
| 233 | * We here save the original kprobes variables and | ||
| 234 | * just single step on the instruction of the new probe | ||
| 235 | * without calling any user handlers. | ||
| 236 | */ | ||
| 237 | save_previous_kprobe(kcb); | ||
| 238 | set_current_kprobe(p, regs, kcb); | ||
| 239 | kprobes_inc_nmissed_count(p); | ||
| 240 | prepare_singlestep(p, regs); | ||
| 241 | kcb->kprobe_status = KPROBE_REENTER; | ||
| 242 | return 1; | ||
| 243 | } else { | ||
| 244 | p = __get_cpu_var(current_kprobe); | ||
| 245 | if (p->break_handler && p->break_handler(p, regs)) { | ||
| 246 | goto ss_probe; | ||
| 247 | } | ||
| 248 | } | ||
| 249 | goto no_kprobe; | ||
| 250 | } | ||
| 251 | |||
| 252 | p = get_kprobe(addr); | ||
| 253 | if (!p) { | ||
| 254 | /* Not one of ours: let kernel handle it */ | ||
| 255 | if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) { | ||
| 256 | /* | ||
| 257 | * The breakpoint instruction was removed right | ||
| 258 | * after we hit it. Another cpu has removed | ||
| 259 | * either a probepoint or a debugger breakpoint | ||
| 260 | * at this address. In either case, no further | ||
| 261 | * handling of this interrupt is appropriate. | ||
| 262 | */ | ||
| 263 | ret = 1; | ||
| 264 | } | ||
| 265 | |||
| 266 | goto no_kprobe; | ||
| 267 | } | ||
| 268 | |||
| 269 | set_current_kprobe(p, regs, kcb); | ||
| 270 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | ||
| 271 | |||
| 272 | if (p->pre_handler && p->pre_handler(p, regs)) | ||
| 273 | /* handler has already set things up, so skip ss setup */ | ||
| 274 | return 1; | ||
| 275 | |||
| 276 | ss_probe: | ||
| 277 | prepare_singlestep(p, regs); | ||
| 278 | kcb->kprobe_status = KPROBE_HIT_SS; | ||
| 279 | return 1; | ||
| 280 | |||
| 281 | no_kprobe: | ||
| 282 | preempt_enable_no_resched(); | ||
| 283 | return ret; | ||
| 284 | } | ||
| 285 | |||
| 286 | /* | ||
| 287 | * For function-return probes, init_kprobes() establishes a probepoint | ||
| 288 | * here. When a retprobed function returns, this probe is hit and | ||
| 289 | * trampoline_probe_handler() runs, calling the kretprobe's handler. | ||
| 290 | */ | ||
| 291 | static void __used kretprobe_trampoline_holder(void) | ||
| 292 | { | ||
| 293 | asm volatile (".globl kretprobe_trampoline\n" | ||
| 294 | "kretprobe_trampoline:\n\t" | ||
| 295 | "nop\n"); | ||
| 296 | } | ||
| 297 | |||
| 298 | /* | ||
| 299 | * Called when we hit the probe point at kretprobe_trampoline | ||
| 300 | */ | ||
| 301 | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | ||
| 302 | { | ||
| 303 | struct kretprobe_instance *ri = NULL; | ||
| 304 | struct hlist_head *head, empty_rp; | ||
| 305 | struct hlist_node *node, *tmp; | ||
| 306 | unsigned long flags, orig_ret_address = 0; | ||
| 307 | unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | ||
| 308 | |||
| 309 | INIT_HLIST_HEAD(&empty_rp); | ||
| 310 | kretprobe_hash_lock(current, &head, &flags); | ||
| 311 | |||
| 312 | /* | ||
| 313 | * It is possible to have multiple instances associated with a given | ||
| 314 | * task either because an multiple functions in the call path | ||
| 315 | * have a return probe installed on them, and/or more then one return | ||
| 316 | * return probe was registered for a target function. | ||
| 317 | * | ||
| 318 | * We can handle this because: | ||
| 319 | * - instances are always inserted at the head of the list | ||
| 320 | * - when multiple return probes are registered for the same | ||
| 321 | * function, the first instance's ret_addr will point to the | ||
| 322 | * real return address, and all the rest will point to | ||
| 323 | * kretprobe_trampoline | ||
| 324 | */ | ||
| 325 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | ||
| 326 | if (ri->task != current) | ||
| 327 | /* another task is sharing our hash bucket */ | ||
| 328 | continue; | ||
| 329 | |||
| 330 | if (ri->rp && ri->rp->handler) { | ||
| 331 | __get_cpu_var(current_kprobe) = &ri->rp->kp; | ||
| 332 | ri->rp->handler(ri, regs); | ||
| 333 | __get_cpu_var(current_kprobe) = NULL; | ||
| 334 | } | ||
| 335 | |||
| 336 | orig_ret_address = (unsigned long)ri->ret_addr; | ||
| 337 | recycle_rp_inst(ri, &empty_rp); | ||
| 338 | |||
| 339 | if (orig_ret_address != trampoline_address) | ||
| 340 | /* | ||
| 341 | * This is the real return address. Any other | ||
| 342 | * instances associated with this task are for | ||
| 343 | * other calls deeper on the call stack | ||
| 344 | */ | ||
| 345 | break; | ||
| 346 | } | ||
| 347 | |||
| 348 | kretprobe_assert(ri, orig_ret_address, trampoline_address); | ||
| 349 | |||
| 350 | regs->pc = orig_ret_address; | ||
| 351 | kretprobe_hash_unlock(current, &flags); | ||
| 352 | |||
| 353 | preempt_enable_no_resched(); | ||
| 354 | |||
| 355 | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | ||
| 356 | hlist_del(&ri->hlist); | ||
| 357 | kfree(ri); | ||
| 358 | } | ||
| 359 | |||
| 360 | return orig_ret_address; | ||
| 361 | } | ||
| 362 | |||
| 363 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | ||
| 364 | { | ||
| 365 | struct kprobe *cur = kprobe_running(); | ||
| 366 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
| 367 | kprobe_opcode_t *addr = NULL; | ||
| 368 | struct kprobe *p = NULL; | ||
| 369 | |||
| 370 | if (!cur) | ||
| 371 | return 0; | ||
| 372 | |||
| 373 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | ||
| 374 | kcb->kprobe_status = KPROBE_HIT_SSDONE; | ||
| 375 | cur->post_handler(cur, regs, 0); | ||
| 376 | } | ||
| 377 | |||
| 378 | if (saved_next_opcode.addr != 0x0) { | ||
| 379 | arch_disarm_kprobe(&saved_next_opcode); | ||
| 380 | saved_next_opcode.addr = 0x0; | ||
| 381 | saved_next_opcode.opcode = 0x0; | ||
| 382 | |||
| 383 | addr = saved_current_opcode.addr; | ||
| 384 | saved_current_opcode.addr = 0x0; | ||
| 385 | |||
| 386 | p = get_kprobe(addr); | ||
| 387 | arch_arm_kprobe(p); | ||
| 388 | |||
| 389 | if (saved_next_opcode2.addr != 0x0) { | ||
| 390 | arch_disarm_kprobe(&saved_next_opcode2); | ||
| 391 | saved_next_opcode2.addr = 0x0; | ||
| 392 | saved_next_opcode2.opcode = 0x0; | ||
| 393 | } | ||
| 394 | } | ||
| 395 | |||
| 396 | /* Restore back the original saved kprobes variables and continue. */ | ||
| 397 | if (kcb->kprobe_status == KPROBE_REENTER) { | ||
| 398 | restore_previous_kprobe(kcb); | ||
| 399 | goto out; | ||
| 400 | } | ||
| 401 | |||
| 402 | reset_current_kprobe(); | ||
| 403 | |||
| 404 | out: | ||
| 405 | preempt_enable_no_resched(); | ||
| 406 | |||
| 407 | return 1; | ||
| 408 | } | ||
| 409 | |||
| 410 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | ||
| 411 | { | ||
| 412 | struct kprobe *cur = kprobe_running(); | ||
| 413 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
| 414 | const struct exception_table_entry *entry; | ||
| 415 | |||
| 416 | switch (kcb->kprobe_status) { | ||
| 417 | case KPROBE_HIT_SS: | ||
| 418 | case KPROBE_REENTER: | ||
| 419 | /* | ||
| 420 | * We are here because the instruction being single | ||
| 421 | * stepped caused a page fault. We reset the current | ||
| 422 | * kprobe, point the pc back to the probe address | ||
| 423 | * and allow the page fault handler to continue as a | ||
| 424 | * normal page fault. | ||
| 425 | */ | ||
| 426 | regs->pc = (unsigned long)cur->addr; | ||
| 427 | if (kcb->kprobe_status == KPROBE_REENTER) | ||
| 428 | restore_previous_kprobe(kcb); | ||
| 429 | else | ||
| 430 | reset_current_kprobe(); | ||
| 431 | preempt_enable_no_resched(); | ||
| 432 | break; | ||
| 433 | case KPROBE_HIT_ACTIVE: | ||
| 434 | case KPROBE_HIT_SSDONE: | ||
| 435 | /* | ||
| 436 | * We increment the nmissed count for accounting, | ||
| 437 | * we can also use npre/npostfault count for accounting | ||
| 438 | * these specific fault cases. | ||
| 439 | */ | ||
| 440 | kprobes_inc_nmissed_count(cur); | ||
| 441 | |||
| 442 | /* | ||
| 443 | * We come here because instructions in the pre/post | ||
| 444 | * handler caused the page_fault, this could happen | ||
| 445 | * if handler tries to access user space by | ||
| 446 | * copy_from_user(), get_user() etc. Let the | ||
| 447 | * user-specified handler try to fix it first. | ||
| 448 | */ | ||
| 449 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | ||
| 450 | return 1; | ||
| 451 | |||
| 452 | /* | ||
| 453 | * In case the user-specified fault handler returned | ||
| 454 | * zero, try to fix up. | ||
| 455 | */ | ||
| 456 | if ((entry = search_exception_tables(regs->pc)) != NULL) { | ||
| 457 | regs->pc = entry->fixup; | ||
| 458 | return 1; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * fixup_exception() could not handle it, | ||
| 463 | * Let do_page_fault() fix it. | ||
| 464 | */ | ||
| 465 | break; | ||
| 466 | default: | ||
| 467 | break; | ||
| 468 | } | ||
| 469 | |||
| 470 | return 0; | ||
| 471 | } | ||
| 472 | |||
| 473 | /* | ||
| 474 | * Wrapper routine to for handling exceptions. | ||
| 475 | */ | ||
| 476 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | ||
| 477 | unsigned long val, void *data) | ||
| 478 | { | ||
| 479 | struct kprobe *p = NULL; | ||
| 480 | struct die_args *args = (struct die_args *)data; | ||
| 481 | int ret = NOTIFY_DONE; | ||
| 482 | kprobe_opcode_t *addr = NULL; | ||
| 483 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
| 484 | |||
| 485 | addr = (kprobe_opcode_t *) (args->regs->pc); | ||
| 486 | if (val == DIE_TRAP) { | ||
| 487 | if (!kprobe_running()) { | ||
| 488 | if (kprobe_handler(args->regs)) { | ||
| 489 | ret = NOTIFY_STOP; | ||
| 490 | } else { | ||
| 491 | /* Not a kprobe trap */ | ||
| 492 | ret = NOTIFY_DONE; | ||
| 493 | } | ||
| 494 | } else { | ||
| 495 | p = get_kprobe(addr); | ||
| 496 | if ((kcb->kprobe_status == KPROBE_HIT_SS) || | ||
| 497 | (kcb->kprobe_status == KPROBE_REENTER)) { | ||
| 498 | if (post_kprobe_handler(args->regs)) | ||
| 499 | ret = NOTIFY_STOP; | ||
| 500 | } else { | ||
| 501 | if (kprobe_handler(args->regs)) { | ||
| 502 | ret = NOTIFY_STOP; | ||
| 503 | } else { | ||
| 504 | p = __get_cpu_var(current_kprobe); | ||
| 505 | if (p->break_handler && | ||
| 506 | p->break_handler(p, args->regs)) | ||
| 507 | ret = NOTIFY_STOP; | ||
| 508 | } | ||
| 509 | } | ||
| 510 | } | ||
| 511 | } | ||
| 512 | |||
| 513 | return ret; | ||
| 514 | } | ||
| 515 | |||
| 516 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
| 517 | { | ||
| 518 | struct jprobe *jp = container_of(p, struct jprobe, kp); | ||
| 519 | unsigned long addr; | ||
| 520 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
| 521 | |||
| 522 | kcb->jprobe_saved_regs = *regs; | ||
| 523 | kcb->jprobe_saved_r15 = regs->regs[15]; | ||
| 524 | addr = kcb->jprobe_saved_r15; | ||
| 525 | |||
| 526 | /* | ||
| 527 | * TBD: As Linus pointed out, gcc assumes that the callee | ||
| 528 | * owns the argument space and could overwrite it, e.g. | ||
| 529 | * tailcall optimization. So, to be absolutely safe | ||
| 530 | * we also save and restore enough stack bytes to cover | ||
| 531 | * the argument area. | ||
| 532 | */ | ||
| 533 | memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, | ||
| 534 | MIN_STACK_SIZE(addr)); | ||
| 535 | |||
| 536 | regs->pc = (unsigned long)(jp->entry); | ||
| 537 | |||
| 538 | return 1; | ||
| 539 | } | ||
| 540 | |||
| 541 | void __kprobes jprobe_return(void) | ||
| 542 | { | ||
| 543 | asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t"); | ||
| 544 | } | ||
| 545 | |||
| 546 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | ||
| 547 | { | ||
| 548 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
| 549 | unsigned long stack_addr = kcb->jprobe_saved_r15; | ||
| 550 | u8 *addr = (u8 *)regs->pc; | ||
| 551 | |||
| 552 | if ((addr >= (u8 *)jprobe_return) && | ||
| 553 | (addr <= (u8 *)jprobe_return_end)) { | ||
| 554 | *regs = kcb->jprobe_saved_regs; | ||
| 555 | |||
| 556 | memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack, | ||
| 557 | MIN_STACK_SIZE(stack_addr)); | ||
| 558 | |||
| 559 | kcb->kprobe_status = KPROBE_HIT_SS; | ||
| 560 | preempt_enable_no_resched(); | ||
| 561 | return 1; | ||
| 562 | } | ||
| 563 | |||
| 564 | return 0; | ||
| 565 | } | ||
| 566 | |||
| 567 | static struct kprobe trampoline_p = { | ||
| 568 | .addr = (kprobe_opcode_t *)&kretprobe_trampoline, | ||
| 569 | .pre_handler = trampoline_probe_handler | ||
| 570 | }; | ||
| 571 | |||
| 572 | int __init arch_init_kprobes(void) | ||
| 573 | { | ||
| 574 | saved_next_opcode.addr = 0x0; | ||
| 575 | saved_next_opcode.opcode = 0x0; | ||
| 576 | |||
| 577 | saved_current_opcode.addr = 0x0; | ||
| 578 | saved_current_opcode.opcode = 0x0; | ||
| 579 | |||
| 580 | saved_next_opcode2.addr = 0x0; | ||
| 581 | saved_next_opcode2.opcode = 0x0; | ||
| 582 | |||
| 583 | return register_kprobe(&trampoline_p); | ||
| 584 | } | ||
