diff options
Diffstat (limited to 'arch/s390/lib/div64.c')
| -rw-r--r-- | arch/s390/lib/div64.c | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/arch/s390/lib/div64.c b/arch/s390/lib/div64.c new file mode 100644 index 000000000000..0481f3424a13 --- /dev/null +++ b/arch/s390/lib/div64.c | |||
| @@ -0,0 +1,151 @@ | |||
| 1 | /* | ||
| 2 | * arch/s390/lib/div64.c | ||
| 3 | * | ||
| 4 | * __div64_32 implementation for 31 bit. | ||
| 5 | * | ||
| 6 | * Copyright (C) IBM Corp. 2006 | ||
| 7 | * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), | ||
| 8 | */ | ||
| 9 | |||
| 10 | #include <linux/types.h> | ||
| 11 | #include <linux/module.h> | ||
| 12 | |||
| 13 | #ifdef CONFIG_MARCH_G5 | ||
| 14 | |||
| 15 | /* | ||
| 16 | * Function to divide an unsigned 64 bit integer by an unsigned | ||
| 17 | * 31 bit integer using signed 64/32 bit division. | ||
| 18 | */ | ||
| 19 | static uint32_t __div64_31(uint64_t *n, uint32_t base) | ||
| 20 | { | ||
| 21 | register uint32_t reg2 asm("2"); | ||
| 22 | register uint32_t reg3 asm("3"); | ||
| 23 | uint32_t *words = (uint32_t *) n; | ||
| 24 | uint32_t tmp; | ||
| 25 | |||
| 26 | /* Special case base==1, remainder = 0, quotient = n */ | ||
| 27 | if (base == 1) | ||
| 28 | return 0; | ||
| 29 | /* | ||
| 30 | * Special case base==0 will cause a fixed point divide exception | ||
| 31 | * on the dr instruction and may not happen anyway. For the | ||
| 32 | * following calculation we can assume base > 1. The first | ||
| 33 | * signed 64 / 32 bit division with an upper half of 0 will | ||
| 34 | * give the correct upper half of the 64 bit quotient. | ||
| 35 | */ | ||
| 36 | reg2 = 0UL; | ||
| 37 | reg3 = words[0]; | ||
| 38 | asm volatile( | ||
| 39 | " dr %0,%2\n" | ||
| 40 | : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" ); | ||
| 41 | words[0] = reg3; | ||
| 42 | reg3 = words[1]; | ||
| 43 | /* | ||
| 44 | * To get the lower half of the 64 bit quotient and the 32 bit | ||
| 45 | * remainder we have to use a little trick. Since we only have | ||
| 46 | * a signed division the quotient can get too big. To avoid this | ||
| 47 | * the 64 bit dividend is halved, then the signed division will | ||
| 48 | * work. Afterwards the quotient and the remainder are doubled. | ||
| 49 | * If the last bit of the dividend has been one the remainder | ||
| 50 | * is increased by one then checked against the base. If the | ||
| 51 | * remainder has overflown subtract base and increase the | ||
| 52 | * quotient. Simple, no ? | ||
| 53 | */ | ||
| 54 | asm volatile( | ||
| 55 | " nr %2,%1\n" | ||
| 56 | " srdl %0,1\n" | ||
| 57 | " dr %0,%3\n" | ||
| 58 | " alr %0,%0\n" | ||
| 59 | " alr %1,%1\n" | ||
| 60 | " alr %0,%2\n" | ||
| 61 | " clr %0,%3\n" | ||
| 62 | " jl 0f\n" | ||
| 63 | " slr %0,%3\n" | ||
| 64 | " alr %1,%2\n" | ||
| 65 | "0:\n" | ||
| 66 | : "+d" (reg2), "+d" (reg3), "=d" (tmp) | ||
| 67 | : "d" (base), "2" (1UL) : "cc" ); | ||
| 68 | words[1] = reg3; | ||
| 69 | return reg2; | ||
| 70 | } | ||
| 71 | |||
| 72 | /* | ||
| 73 | * Function to divide an unsigned 64 bit integer by an unsigned | ||
| 74 | * 32 bit integer using the unsigned 64/31 bit division. | ||
| 75 | */ | ||
| 76 | uint32_t __div64_32(uint64_t *n, uint32_t base) | ||
| 77 | { | ||
| 78 | uint32_t r; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * If the most significant bit of base is set, divide n by | ||
| 82 | * (base/2). That allows to use 64/31 bit division and gives a | ||
| 83 | * good approximation of the result: n = (base/2)*q + r. The | ||
| 84 | * result needs to be corrected with two simple transformations. | ||
| 85 | * If base is already < 2^31-1 __div64_31 can be used directly. | ||
| 86 | */ | ||
| 87 | r = __div64_31(n, ((signed) base < 0) ? (base/2) : base); | ||
| 88 | if ((signed) base < 0) { | ||
| 89 | uint64_t q = *n; | ||
| 90 | /* | ||
| 91 | * First transformation: | ||
| 92 | * n = (base/2)*q + r | ||
| 93 | * = ((base/2)*2)*(q/2) + ((q&1) ? (base/2) : 0) + r | ||
| 94 | * Since r < (base/2), r + (base/2) < base. | ||
| 95 | * With q1 = (q/2) and r1 = r + ((q&1) ? (base/2) : 0) | ||
| 96 | * n = ((base/2)*2)*q1 + r1 with r1 < base. | ||
| 97 | */ | ||
| 98 | if (q & 1) | ||
| 99 | r += base/2; | ||
| 100 | q >>= 1; | ||
| 101 | /* | ||
| 102 | * Second transformation. ((base/2)*2) could have lost the | ||
| 103 | * last bit. | ||
| 104 | * n = ((base/2)*2)*q1 + r1 | ||
| 105 | * = base*q1 - ((base&1) ? q1 : 0) + r1 | ||
| 106 | */ | ||
| 107 | if (base & 1) { | ||
| 108 | int64_t rx = r - q; | ||
| 109 | /* | ||
| 110 | * base is >= 2^31. The worst case for the while | ||
| 111 | * loop is n=2^64-1 base=2^31+1. That gives a | ||
| 112 | * maximum for q=(2^64-1)/2^31 = 0x1ffffffff. Since | ||
| 113 | * base >= 2^31 the loop is finished after a maximum | ||
| 114 | * of three iterations. | ||
| 115 | */ | ||
| 116 | while (rx < 0) { | ||
| 117 | rx += base; | ||
| 118 | q--; | ||
| 119 | } | ||
| 120 | r = rx; | ||
| 121 | } | ||
| 122 | *n = q; | ||
| 123 | } | ||
| 124 | return r; | ||
| 125 | } | ||
| 126 | |||
| 127 | #else /* MARCH_G5 */ | ||
| 128 | |||
| 129 | uint32_t __div64_32(uint64_t *n, uint32_t base) | ||
| 130 | { | ||
| 131 | register uint32_t reg2 asm("2"); | ||
| 132 | register uint32_t reg3 asm("3"); | ||
| 133 | uint32_t *words = (uint32_t *) n; | ||
| 134 | |||
| 135 | reg2 = 0UL; | ||
| 136 | reg3 = words[0]; | ||
| 137 | asm volatile( | ||
| 138 | " dlr %0,%2\n" | ||
| 139 | : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" ); | ||
| 140 | words[0] = reg3; | ||
| 141 | reg3 = words[1]; | ||
| 142 | asm volatile( | ||
| 143 | " dlr %0,%2\n" | ||
| 144 | : "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" ); | ||
| 145 | words[1] = reg3; | ||
| 146 | return reg2; | ||
| 147 | } | ||
| 148 | |||
| 149 | #endif /* MARCH_G5 */ | ||
| 150 | |||
| 151 | EXPORT_SYMBOL(__div64_32); | ||
