diff options
Diffstat (limited to 'arch/ppc64/kernel/ras.c')
-rw-r--r-- | arch/ppc64/kernel/ras.c | 353 |
1 files changed, 0 insertions, 353 deletions
diff --git a/arch/ppc64/kernel/ras.c b/arch/ppc64/kernel/ras.c deleted file mode 100644 index 41b97dc9cc0a..000000000000 --- a/arch/ppc64/kernel/ras.c +++ /dev/null | |||
@@ -1,353 +0,0 @@ | |||
1 | /* | ||
2 | * ras.c | ||
3 | * Copyright (C) 2001 Dave Engebretsen IBM Corporation | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | */ | ||
19 | |||
20 | /* Change Activity: | ||
21 | * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support. | ||
22 | * End Change Activity | ||
23 | */ | ||
24 | |||
25 | #include <linux/errno.h> | ||
26 | #include <linux/threads.h> | ||
27 | #include <linux/kernel_stat.h> | ||
28 | #include <linux/signal.h> | ||
29 | #include <linux/sched.h> | ||
30 | #include <linux/ioport.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/timex.h> | ||
33 | #include <linux/init.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/pci.h> | ||
36 | #include <linux/delay.h> | ||
37 | #include <linux/irq.h> | ||
38 | #include <linux/random.h> | ||
39 | #include <linux/sysrq.h> | ||
40 | #include <linux/bitops.h> | ||
41 | |||
42 | #include <asm/uaccess.h> | ||
43 | #include <asm/system.h> | ||
44 | #include <asm/io.h> | ||
45 | #include <asm/pgtable.h> | ||
46 | #include <asm/irq.h> | ||
47 | #include <asm/cache.h> | ||
48 | #include <asm/prom.h> | ||
49 | #include <asm/ptrace.h> | ||
50 | #include <asm/machdep.h> | ||
51 | #include <asm/rtas.h> | ||
52 | #include <asm/ppcdebug.h> | ||
53 | |||
54 | static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; | ||
55 | static DEFINE_SPINLOCK(ras_log_buf_lock); | ||
56 | |||
57 | char mce_data_buf[RTAS_ERROR_LOG_MAX] | ||
58 | ; | ||
59 | /* This is true if we are using the firmware NMI handler (typically LPAR) */ | ||
60 | extern int fwnmi_active; | ||
61 | |||
62 | static int ras_get_sensor_state_token; | ||
63 | static int ras_check_exception_token; | ||
64 | |||
65 | #define EPOW_SENSOR_TOKEN 9 | ||
66 | #define EPOW_SENSOR_INDEX 0 | ||
67 | #define RAS_VECTOR_OFFSET 0x500 | ||
68 | |||
69 | static irqreturn_t ras_epow_interrupt(int irq, void *dev_id, | ||
70 | struct pt_regs * regs); | ||
71 | static irqreturn_t ras_error_interrupt(int irq, void *dev_id, | ||
72 | struct pt_regs * regs); | ||
73 | |||
74 | /* #define DEBUG */ | ||
75 | |||
76 | static void request_ras_irqs(struct device_node *np, char *propname, | ||
77 | irqreturn_t (*handler)(int, void *, struct pt_regs *), | ||
78 | const char *name) | ||
79 | { | ||
80 | unsigned int *ireg, len, i; | ||
81 | int virq, n_intr; | ||
82 | |||
83 | ireg = (unsigned int *)get_property(np, propname, &len); | ||
84 | if (ireg == NULL) | ||
85 | return; | ||
86 | n_intr = prom_n_intr_cells(np); | ||
87 | len /= n_intr * sizeof(*ireg); | ||
88 | |||
89 | for (i = 0; i < len; i++) { | ||
90 | virq = virt_irq_create_mapping(*ireg); | ||
91 | if (virq == NO_IRQ) { | ||
92 | printk(KERN_ERR "Unable to allocate interrupt " | ||
93 | "number for %s\n", np->full_name); | ||
94 | return; | ||
95 | } | ||
96 | if (request_irq(irq_offset_up(virq), handler, 0, name, NULL)) { | ||
97 | printk(KERN_ERR "Unable to request interrupt %d for " | ||
98 | "%s\n", irq_offset_up(virq), np->full_name); | ||
99 | return; | ||
100 | } | ||
101 | ireg += n_intr; | ||
102 | } | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * Initialize handlers for the set of interrupts caused by hardware errors | ||
107 | * and power system events. | ||
108 | */ | ||
109 | static int __init init_ras_IRQ(void) | ||
110 | { | ||
111 | struct device_node *np; | ||
112 | |||
113 | ras_get_sensor_state_token = rtas_token("get-sensor-state"); | ||
114 | ras_check_exception_token = rtas_token("check-exception"); | ||
115 | |||
116 | /* Internal Errors */ | ||
117 | np = of_find_node_by_path("/event-sources/internal-errors"); | ||
118 | if (np != NULL) { | ||
119 | request_ras_irqs(np, "open-pic-interrupt", ras_error_interrupt, | ||
120 | "RAS_ERROR"); | ||
121 | request_ras_irqs(np, "interrupts", ras_error_interrupt, | ||
122 | "RAS_ERROR"); | ||
123 | of_node_put(np); | ||
124 | } | ||
125 | |||
126 | /* EPOW Events */ | ||
127 | np = of_find_node_by_path("/event-sources/epow-events"); | ||
128 | if (np != NULL) { | ||
129 | request_ras_irqs(np, "open-pic-interrupt", ras_epow_interrupt, | ||
130 | "RAS_EPOW"); | ||
131 | request_ras_irqs(np, "interrupts", ras_epow_interrupt, | ||
132 | "RAS_EPOW"); | ||
133 | of_node_put(np); | ||
134 | } | ||
135 | |||
136 | return 1; | ||
137 | } | ||
138 | __initcall(init_ras_IRQ); | ||
139 | |||
140 | /* | ||
141 | * Handle power subsystem events (EPOW). | ||
142 | * | ||
143 | * Presently we just log the event has occurred. This should be fixed | ||
144 | * to examine the type of power failure and take appropriate action where | ||
145 | * the time horizon permits something useful to be done. | ||
146 | */ | ||
147 | static irqreturn_t | ||
148 | ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs) | ||
149 | { | ||
150 | int status = 0xdeadbeef; | ||
151 | int state = 0; | ||
152 | int critical; | ||
153 | |||
154 | status = rtas_call(ras_get_sensor_state_token, 2, 2, &state, | ||
155 | EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX); | ||
156 | |||
157 | if (state > 3) | ||
158 | critical = 1; /* Time Critical */ | ||
159 | else | ||
160 | critical = 0; | ||
161 | |||
162 | spin_lock(&ras_log_buf_lock); | ||
163 | |||
164 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | ||
165 | RAS_VECTOR_OFFSET, | ||
166 | virt_irq_to_real(irq_offset_down(irq)), | ||
167 | RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS, | ||
168 | critical, __pa(&ras_log_buf), | ||
169 | rtas_get_error_log_max()); | ||
170 | |||
171 | udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n", | ||
172 | *((unsigned long *)&ras_log_buf), status, state); | ||
173 | printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n", | ||
174 | *((unsigned long *)&ras_log_buf), status, state); | ||
175 | |||
176 | /* format and print the extended information */ | ||
177 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); | ||
178 | |||
179 | spin_unlock(&ras_log_buf_lock); | ||
180 | return IRQ_HANDLED; | ||
181 | } | ||
182 | |||
183 | /* | ||
184 | * Handle hardware error interrupts. | ||
185 | * | ||
186 | * RTAS check-exception is called to collect data on the exception. If | ||
187 | * the error is deemed recoverable, we log a warning and return. | ||
188 | * For nonrecoverable errors, an error is logged and we stop all processing | ||
189 | * as quickly as possible in order to prevent propagation of the failure. | ||
190 | */ | ||
191 | static irqreturn_t | ||
192 | ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs) | ||
193 | { | ||
194 | struct rtas_error_log *rtas_elog; | ||
195 | int status = 0xdeadbeef; | ||
196 | int fatal; | ||
197 | |||
198 | spin_lock(&ras_log_buf_lock); | ||
199 | |||
200 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | ||
201 | RAS_VECTOR_OFFSET, | ||
202 | virt_irq_to_real(irq_offset_down(irq)), | ||
203 | RTAS_INTERNAL_ERROR, 1 /*Time Critical */, | ||
204 | __pa(&ras_log_buf), | ||
205 | rtas_get_error_log_max()); | ||
206 | |||
207 | rtas_elog = (struct rtas_error_log *)ras_log_buf; | ||
208 | |||
209 | if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC)) | ||
210 | fatal = 1; | ||
211 | else | ||
212 | fatal = 0; | ||
213 | |||
214 | /* format and print the extended information */ | ||
215 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); | ||
216 | |||
217 | if (fatal) { | ||
218 | udbg_printf("Fatal HW Error <0x%lx 0x%x>\n", | ||
219 | *((unsigned long *)&ras_log_buf), status); | ||
220 | printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n", | ||
221 | *((unsigned long *)&ras_log_buf), status); | ||
222 | |||
223 | #ifndef DEBUG | ||
224 | /* Don't actually power off when debugging so we can test | ||
225 | * without actually failing while injecting errors. | ||
226 | * Error data will not be logged to syslog. | ||
227 | */ | ||
228 | ppc_md.power_off(); | ||
229 | #endif | ||
230 | } else { | ||
231 | udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n", | ||
232 | *((unsigned long *)&ras_log_buf), status); | ||
233 | printk(KERN_WARNING | ||
234 | "Warning: Recoverable hardware error <0x%lx 0x%x>\n", | ||
235 | *((unsigned long *)&ras_log_buf), status); | ||
236 | } | ||
237 | |||
238 | spin_unlock(&ras_log_buf_lock); | ||
239 | return IRQ_HANDLED; | ||
240 | } | ||
241 | |||
242 | /* Get the error information for errors coming through the | ||
243 | * FWNMI vectors. The pt_regs' r3 will be updated to reflect | ||
244 | * the actual r3 if possible, and a ptr to the error log entry | ||
245 | * will be returned if found. | ||
246 | * | ||
247 | * The mce_data_buf does not have any locks or protection around it, | ||
248 | * if a second machine check comes in, or a system reset is done | ||
249 | * before we have logged the error, then we will get corruption in the | ||
250 | * error log. This is preferable over holding off on calling | ||
251 | * ibm,nmi-interlock which would result in us checkstopping if a | ||
252 | * second machine check did come in. | ||
253 | */ | ||
254 | static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) | ||
255 | { | ||
256 | unsigned long errdata = regs->gpr[3]; | ||
257 | struct rtas_error_log *errhdr = NULL; | ||
258 | unsigned long *savep; | ||
259 | |||
260 | if ((errdata >= 0x7000 && errdata < 0x7fff0) || | ||
261 | (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) { | ||
262 | savep = __va(errdata); | ||
263 | regs->gpr[3] = savep[0]; /* restore original r3 */ | ||
264 | memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX); | ||
265 | memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX); | ||
266 | errhdr = (struct rtas_error_log *)mce_data_buf; | ||
267 | } else { | ||
268 | printk("FWNMI: corrupt r3\n"); | ||
269 | } | ||
270 | return errhdr; | ||
271 | } | ||
272 | |||
273 | /* Call this when done with the data returned by FWNMI_get_errinfo. | ||
274 | * It will release the saved data area for other CPUs in the | ||
275 | * partition to receive FWNMI errors. | ||
276 | */ | ||
277 | static void fwnmi_release_errinfo(void) | ||
278 | { | ||
279 | int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); | ||
280 | if (ret != 0) | ||
281 | printk("FWNMI: nmi-interlock failed: %d\n", ret); | ||
282 | } | ||
283 | |||
284 | void pSeries_system_reset_exception(struct pt_regs *regs) | ||
285 | { | ||
286 | if (fwnmi_active) { | ||
287 | struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); | ||
288 | if (errhdr) { | ||
289 | /* XXX Should look at FWNMI information */ | ||
290 | } | ||
291 | fwnmi_release_errinfo(); | ||
292 | } | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * See if we can recover from a machine check exception. | ||
297 | * This is only called on power4 (or above) and only via | ||
298 | * the Firmware Non-Maskable Interrupts (fwnmi) handler | ||
299 | * which provides the error analysis for us. | ||
300 | * | ||
301 | * Return 1 if corrected (or delivered a signal). | ||
302 | * Return 0 if there is nothing we can do. | ||
303 | */ | ||
304 | static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err) | ||
305 | { | ||
306 | int nonfatal = 0; | ||
307 | |||
308 | if (err->disposition == RTAS_DISP_FULLY_RECOVERED) { | ||
309 | /* Platform corrected itself */ | ||
310 | nonfatal = 1; | ||
311 | } else if ((regs->msr & MSR_RI) && | ||
312 | user_mode(regs) && | ||
313 | err->severity == RTAS_SEVERITY_ERROR_SYNC && | ||
314 | err->disposition == RTAS_DISP_NOT_RECOVERED && | ||
315 | err->target == RTAS_TARGET_MEMORY && | ||
316 | err->type == RTAS_TYPE_ECC_UNCORR && | ||
317 | !(current->pid == 0 || current->pid == 1)) { | ||
318 | /* Kill off a user process with an ECC error */ | ||
319 | printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n", | ||
320 | current->pid); | ||
321 | /* XXX something better for ECC error? */ | ||
322 | _exception(SIGBUS, regs, BUS_ADRERR, regs->nip); | ||
323 | nonfatal = 1; | ||
324 | } | ||
325 | |||
326 | log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal); | ||
327 | |||
328 | return nonfatal; | ||
329 | } | ||
330 | |||
331 | /* | ||
332 | * Handle a machine check. | ||
333 | * | ||
334 | * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) | ||
335 | * should be present. If so the handler which called us tells us if the | ||
336 | * error was recovered (never true if RI=0). | ||
337 | * | ||
338 | * On hardware prior to Power 4 these exceptions were asynchronous which | ||
339 | * means we can't tell exactly where it occurred and so we can't recover. | ||
340 | */ | ||
341 | int pSeries_machine_check_exception(struct pt_regs *regs) | ||
342 | { | ||
343 | struct rtas_error_log *errp; | ||
344 | |||
345 | if (fwnmi_active) { | ||
346 | errp = fwnmi_get_errinfo(regs); | ||
347 | fwnmi_release_errinfo(); | ||
348 | if (errp && recover_mce(regs, errp)) | ||
349 | return 1; | ||
350 | } | ||
351 | |||
352 | return 0; | ||
353 | } | ||