diff options
Diffstat (limited to 'arch/ppc64/kernel/ras.c')
-rw-r--r-- | arch/ppc64/kernel/ras.c | 356 |
1 files changed, 356 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/ras.c b/arch/ppc64/kernel/ras.c new file mode 100644 index 000000000000..1c4c796b212b --- /dev/null +++ b/arch/ppc64/kernel/ras.c | |||
@@ -0,0 +1,356 @@ | |||
1 | /* | ||
2 | * ras.c | ||
3 | * Copyright (C) 2001 Dave Engebretsen IBM Corporation | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | */ | ||
19 | |||
20 | /* Change Activity: | ||
21 | * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support. | ||
22 | * End Change Activity | ||
23 | */ | ||
24 | |||
25 | #include <linux/errno.h> | ||
26 | #include <linux/threads.h> | ||
27 | #include <linux/kernel_stat.h> | ||
28 | #include <linux/signal.h> | ||
29 | #include <linux/sched.h> | ||
30 | #include <linux/ioport.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/timex.h> | ||
33 | #include <linux/init.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/pci.h> | ||
36 | #include <linux/delay.h> | ||
37 | #include <linux/irq.h> | ||
38 | #include <linux/random.h> | ||
39 | #include <linux/sysrq.h> | ||
40 | #include <linux/bitops.h> | ||
41 | |||
42 | #include <asm/uaccess.h> | ||
43 | #include <asm/system.h> | ||
44 | #include <asm/io.h> | ||
45 | #include <asm/pgtable.h> | ||
46 | #include <asm/irq.h> | ||
47 | #include <asm/cache.h> | ||
48 | #include <asm/prom.h> | ||
49 | #include <asm/ptrace.h> | ||
50 | #include <asm/iSeries/LparData.h> | ||
51 | #include <asm/machdep.h> | ||
52 | #include <asm/rtas.h> | ||
53 | #include <asm/ppcdebug.h> | ||
54 | |||
55 | static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; | ||
56 | static DEFINE_SPINLOCK(ras_log_buf_lock); | ||
57 | |||
58 | char mce_data_buf[RTAS_ERROR_LOG_MAX] | ||
59 | ; | ||
60 | /* This is true if we are using the firmware NMI handler (typically LPAR) */ | ||
61 | extern int fwnmi_active; | ||
62 | |||
63 | extern void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr); | ||
64 | |||
65 | static int ras_get_sensor_state_token; | ||
66 | static int ras_check_exception_token; | ||
67 | |||
68 | #define EPOW_SENSOR_TOKEN 9 | ||
69 | #define EPOW_SENSOR_INDEX 0 | ||
70 | #define RAS_VECTOR_OFFSET 0x500 | ||
71 | |||
72 | static irqreturn_t ras_epow_interrupt(int irq, void *dev_id, | ||
73 | struct pt_regs * regs); | ||
74 | static irqreturn_t ras_error_interrupt(int irq, void *dev_id, | ||
75 | struct pt_regs * regs); | ||
76 | |||
77 | /* #define DEBUG */ | ||
78 | |||
79 | static void request_ras_irqs(struct device_node *np, char *propname, | ||
80 | irqreturn_t (*handler)(int, void *, struct pt_regs *), | ||
81 | const char *name) | ||
82 | { | ||
83 | unsigned int *ireg, len, i; | ||
84 | int virq, n_intr; | ||
85 | |||
86 | ireg = (unsigned int *)get_property(np, propname, &len); | ||
87 | if (ireg == NULL) | ||
88 | return; | ||
89 | n_intr = prom_n_intr_cells(np); | ||
90 | len /= n_intr * sizeof(*ireg); | ||
91 | |||
92 | for (i = 0; i < len; i++) { | ||
93 | virq = virt_irq_create_mapping(*ireg); | ||
94 | if (virq == NO_IRQ) { | ||
95 | printk(KERN_ERR "Unable to allocate interrupt " | ||
96 | "number for %s\n", np->full_name); | ||
97 | return; | ||
98 | } | ||
99 | if (request_irq(irq_offset_up(virq), handler, 0, name, NULL)) { | ||
100 | printk(KERN_ERR "Unable to request interrupt %d for " | ||
101 | "%s\n", irq_offset_up(virq), np->full_name); | ||
102 | return; | ||
103 | } | ||
104 | ireg += n_intr; | ||
105 | } | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Initialize handlers for the set of interrupts caused by hardware errors | ||
110 | * and power system events. | ||
111 | */ | ||
112 | static int __init init_ras_IRQ(void) | ||
113 | { | ||
114 | struct device_node *np; | ||
115 | |||
116 | ras_get_sensor_state_token = rtas_token("get-sensor-state"); | ||
117 | ras_check_exception_token = rtas_token("check-exception"); | ||
118 | |||
119 | /* Internal Errors */ | ||
120 | np = of_find_node_by_path("/event-sources/internal-errors"); | ||
121 | if (np != NULL) { | ||
122 | request_ras_irqs(np, "open-pic-interrupt", ras_error_interrupt, | ||
123 | "RAS_ERROR"); | ||
124 | request_ras_irqs(np, "interrupts", ras_error_interrupt, | ||
125 | "RAS_ERROR"); | ||
126 | of_node_put(np); | ||
127 | } | ||
128 | |||
129 | /* EPOW Events */ | ||
130 | np = of_find_node_by_path("/event-sources/epow-events"); | ||
131 | if (np != NULL) { | ||
132 | request_ras_irqs(np, "open-pic-interrupt", ras_epow_interrupt, | ||
133 | "RAS_EPOW"); | ||
134 | request_ras_irqs(np, "interrupts", ras_epow_interrupt, | ||
135 | "RAS_EPOW"); | ||
136 | of_node_put(np); | ||
137 | } | ||
138 | |||
139 | return 1; | ||
140 | } | ||
141 | __initcall(init_ras_IRQ); | ||
142 | |||
143 | /* | ||
144 | * Handle power subsystem events (EPOW). | ||
145 | * | ||
146 | * Presently we just log the event has occurred. This should be fixed | ||
147 | * to examine the type of power failure and take appropriate action where | ||
148 | * the time horizon permits something useful to be done. | ||
149 | */ | ||
150 | static irqreturn_t | ||
151 | ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs) | ||
152 | { | ||
153 | int status = 0xdeadbeef; | ||
154 | int state = 0; | ||
155 | int critical; | ||
156 | |||
157 | status = rtas_call(ras_get_sensor_state_token, 2, 2, &state, | ||
158 | EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX); | ||
159 | |||
160 | if (state > 3) | ||
161 | critical = 1; /* Time Critical */ | ||
162 | else | ||
163 | critical = 0; | ||
164 | |||
165 | spin_lock(&ras_log_buf_lock); | ||
166 | |||
167 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | ||
168 | RAS_VECTOR_OFFSET, | ||
169 | virt_irq_to_real(irq_offset_down(irq)), | ||
170 | RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS, | ||
171 | critical, __pa(&ras_log_buf), | ||
172 | rtas_get_error_log_max()); | ||
173 | |||
174 | udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n", | ||
175 | *((unsigned long *)&ras_log_buf), status, state); | ||
176 | printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n", | ||
177 | *((unsigned long *)&ras_log_buf), status, state); | ||
178 | |||
179 | /* format and print the extended information */ | ||
180 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); | ||
181 | |||
182 | spin_unlock(&ras_log_buf_lock); | ||
183 | return IRQ_HANDLED; | ||
184 | } | ||
185 | |||
186 | /* | ||
187 | * Handle hardware error interrupts. | ||
188 | * | ||
189 | * RTAS check-exception is called to collect data on the exception. If | ||
190 | * the error is deemed recoverable, we log a warning and return. | ||
191 | * For nonrecoverable errors, an error is logged and we stop all processing | ||
192 | * as quickly as possible in order to prevent propagation of the failure. | ||
193 | */ | ||
194 | static irqreturn_t | ||
195 | ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs) | ||
196 | { | ||
197 | struct rtas_error_log *rtas_elog; | ||
198 | int status = 0xdeadbeef; | ||
199 | int fatal; | ||
200 | |||
201 | spin_lock(&ras_log_buf_lock); | ||
202 | |||
203 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | ||
204 | RAS_VECTOR_OFFSET, | ||
205 | virt_irq_to_real(irq_offset_down(irq)), | ||
206 | RTAS_INTERNAL_ERROR, 1 /*Time Critical */, | ||
207 | __pa(&ras_log_buf), | ||
208 | rtas_get_error_log_max()); | ||
209 | |||
210 | rtas_elog = (struct rtas_error_log *)ras_log_buf; | ||
211 | |||
212 | if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC)) | ||
213 | fatal = 1; | ||
214 | else | ||
215 | fatal = 0; | ||
216 | |||
217 | /* format and print the extended information */ | ||
218 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); | ||
219 | |||
220 | if (fatal) { | ||
221 | udbg_printf("Fatal HW Error <0x%lx 0x%x>\n", | ||
222 | *((unsigned long *)&ras_log_buf), status); | ||
223 | printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n", | ||
224 | *((unsigned long *)&ras_log_buf), status); | ||
225 | |||
226 | #ifndef DEBUG | ||
227 | /* Don't actually power off when debugging so we can test | ||
228 | * without actually failing while injecting errors. | ||
229 | * Error data will not be logged to syslog. | ||
230 | */ | ||
231 | ppc_md.power_off(); | ||
232 | #endif | ||
233 | } else { | ||
234 | udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n", | ||
235 | *((unsigned long *)&ras_log_buf), status); | ||
236 | printk(KERN_WARNING | ||
237 | "Warning: Recoverable hardware error <0x%lx 0x%x>\n", | ||
238 | *((unsigned long *)&ras_log_buf), status); | ||
239 | } | ||
240 | |||
241 | spin_unlock(&ras_log_buf_lock); | ||
242 | return IRQ_HANDLED; | ||
243 | } | ||
244 | |||
245 | /* Get the error information for errors coming through the | ||
246 | * FWNMI vectors. The pt_regs' r3 will be updated to reflect | ||
247 | * the actual r3 if possible, and a ptr to the error log entry | ||
248 | * will be returned if found. | ||
249 | * | ||
250 | * The mce_data_buf does not have any locks or protection around it, | ||
251 | * if a second machine check comes in, or a system reset is done | ||
252 | * before we have logged the error, then we will get corruption in the | ||
253 | * error log. This is preferable over holding off on calling | ||
254 | * ibm,nmi-interlock which would result in us checkstopping if a | ||
255 | * second machine check did come in. | ||
256 | */ | ||
257 | static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) | ||
258 | { | ||
259 | unsigned long errdata = regs->gpr[3]; | ||
260 | struct rtas_error_log *errhdr = NULL; | ||
261 | unsigned long *savep; | ||
262 | |||
263 | if ((errdata >= 0x7000 && errdata < 0x7fff0) || | ||
264 | (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) { | ||
265 | savep = __va(errdata); | ||
266 | regs->gpr[3] = savep[0]; /* restore original r3 */ | ||
267 | memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX); | ||
268 | memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX); | ||
269 | errhdr = (struct rtas_error_log *)mce_data_buf; | ||
270 | } else { | ||
271 | printk("FWNMI: corrupt r3\n"); | ||
272 | } | ||
273 | return errhdr; | ||
274 | } | ||
275 | |||
276 | /* Call this when done with the data returned by FWNMI_get_errinfo. | ||
277 | * It will release the saved data area for other CPUs in the | ||
278 | * partition to receive FWNMI errors. | ||
279 | */ | ||
280 | static void fwnmi_release_errinfo(void) | ||
281 | { | ||
282 | int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); | ||
283 | if (ret != 0) | ||
284 | printk("FWNMI: nmi-interlock failed: %d\n", ret); | ||
285 | } | ||
286 | |||
287 | void pSeries_system_reset_exception(struct pt_regs *regs) | ||
288 | { | ||
289 | if (fwnmi_active) { | ||
290 | struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); | ||
291 | if (errhdr) { | ||
292 | /* XXX Should look at FWNMI information */ | ||
293 | } | ||
294 | fwnmi_release_errinfo(); | ||
295 | } | ||
296 | } | ||
297 | |||
298 | /* | ||
299 | * See if we can recover from a machine check exception. | ||
300 | * This is only called on power4 (or above) and only via | ||
301 | * the Firmware Non-Maskable Interrupts (fwnmi) handler | ||
302 | * which provides the error analysis for us. | ||
303 | * | ||
304 | * Return 1 if corrected (or delivered a signal). | ||
305 | * Return 0 if there is nothing we can do. | ||
306 | */ | ||
307 | static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err) | ||
308 | { | ||
309 | int nonfatal = 0; | ||
310 | |||
311 | if (err->disposition == RTAS_DISP_FULLY_RECOVERED) { | ||
312 | /* Platform corrected itself */ | ||
313 | nonfatal = 1; | ||
314 | } else if ((regs->msr & MSR_RI) && | ||
315 | user_mode(regs) && | ||
316 | err->severity == RTAS_SEVERITY_ERROR_SYNC && | ||
317 | err->disposition == RTAS_DISP_NOT_RECOVERED && | ||
318 | err->target == RTAS_TARGET_MEMORY && | ||
319 | err->type == RTAS_TYPE_ECC_UNCORR && | ||
320 | !(current->pid == 0 || current->pid == 1)) { | ||
321 | /* Kill off a user process with an ECC error */ | ||
322 | printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n", | ||
323 | current->pid); | ||
324 | /* XXX something better for ECC error? */ | ||
325 | _exception(SIGBUS, regs, BUS_ADRERR, regs->nip); | ||
326 | nonfatal = 1; | ||
327 | } | ||
328 | |||
329 | log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal); | ||
330 | |||
331 | return nonfatal; | ||
332 | } | ||
333 | |||
334 | /* | ||
335 | * Handle a machine check. | ||
336 | * | ||
337 | * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) | ||
338 | * should be present. If so the handler which called us tells us if the | ||
339 | * error was recovered (never true if RI=0). | ||
340 | * | ||
341 | * On hardware prior to Power 4 these exceptions were asynchronous which | ||
342 | * means we can't tell exactly where it occurred and so we can't recover. | ||
343 | */ | ||
344 | int pSeries_machine_check_exception(struct pt_regs *regs) | ||
345 | { | ||
346 | struct rtas_error_log *errp; | ||
347 | |||
348 | if (fwnmi_active) { | ||
349 | errp = fwnmi_get_errinfo(regs); | ||
350 | fwnmi_release_errinfo(); | ||
351 | if (errp && recover_mce(regs, errp)) | ||
352 | return 1; | ||
353 | } | ||
354 | |||
355 | return 0; | ||
356 | } | ||