diff options
Diffstat (limited to 'arch/ppc64/kernel/prom.c')
-rw-r--r-- | arch/ppc64/kernel/prom.c | 1956 |
1 files changed, 0 insertions, 1956 deletions
diff --git a/arch/ppc64/kernel/prom.c b/arch/ppc64/kernel/prom.c deleted file mode 100644 index 47cc26e78957..000000000000 --- a/arch/ppc64/kernel/prom.c +++ /dev/null | |||
@@ -1,1956 +0,0 @@ | |||
1 | /* | ||
2 | * | ||
3 | * | ||
4 | * Procedures for interfacing to Open Firmware. | ||
5 | * | ||
6 | * Paul Mackerras August 1996. | ||
7 | * Copyright (C) 1996 Paul Mackerras. | ||
8 | * | ||
9 | * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. | ||
10 | * {engebret|bergner}@us.ibm.com | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or | ||
13 | * modify it under the terms of the GNU General Public License | ||
14 | * as published by the Free Software Foundation; either version | ||
15 | * 2 of the License, or (at your option) any later version. | ||
16 | */ | ||
17 | |||
18 | #undef DEBUG | ||
19 | |||
20 | #include <stdarg.h> | ||
21 | #include <linux/config.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <linux/threads.h> | ||
26 | #include <linux/spinlock.h> | ||
27 | #include <linux/types.h> | ||
28 | #include <linux/pci.h> | ||
29 | #include <linux/stringify.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <linux/initrd.h> | ||
32 | #include <linux/bitops.h> | ||
33 | #include <linux/module.h> | ||
34 | #include <linux/module.h> | ||
35 | |||
36 | #include <asm/prom.h> | ||
37 | #include <asm/rtas.h> | ||
38 | #include <asm/lmb.h> | ||
39 | #include <asm/abs_addr.h> | ||
40 | #include <asm/page.h> | ||
41 | #include <asm/processor.h> | ||
42 | #include <asm/irq.h> | ||
43 | #include <asm/io.h> | ||
44 | #include <asm/smp.h> | ||
45 | #include <asm/system.h> | ||
46 | #include <asm/mmu.h> | ||
47 | #include <asm/pgtable.h> | ||
48 | #include <asm/pci.h> | ||
49 | #include <asm/iommu.h> | ||
50 | #include <asm/btext.h> | ||
51 | #include <asm/sections.h> | ||
52 | #include <asm/machdep.h> | ||
53 | #include <asm/pSeries_reconfig.h> | ||
54 | |||
55 | #ifdef DEBUG | ||
56 | #define DBG(fmt...) udbg_printf(fmt) | ||
57 | #else | ||
58 | #define DBG(fmt...) | ||
59 | #endif | ||
60 | |||
61 | struct pci_reg_property { | ||
62 | struct pci_address addr; | ||
63 | u32 size_hi; | ||
64 | u32 size_lo; | ||
65 | }; | ||
66 | |||
67 | struct isa_reg_property { | ||
68 | u32 space; | ||
69 | u32 address; | ||
70 | u32 size; | ||
71 | }; | ||
72 | |||
73 | |||
74 | typedef int interpret_func(struct device_node *, unsigned long *, | ||
75 | int, int, int); | ||
76 | |||
77 | extern struct rtas_t rtas; | ||
78 | extern struct lmb lmb; | ||
79 | extern unsigned long klimit; | ||
80 | extern unsigned long memory_limit; | ||
81 | |||
82 | static int __initdata dt_root_addr_cells; | ||
83 | static int __initdata dt_root_size_cells; | ||
84 | static int __initdata iommu_is_off; | ||
85 | int __initdata iommu_force_on; | ||
86 | unsigned long tce_alloc_start, tce_alloc_end; | ||
87 | |||
88 | typedef u32 cell_t; | ||
89 | |||
90 | #if 0 | ||
91 | static struct boot_param_header *initial_boot_params __initdata; | ||
92 | #else | ||
93 | struct boot_param_header *initial_boot_params; | ||
94 | #endif | ||
95 | |||
96 | static struct device_node *allnodes = NULL; | ||
97 | |||
98 | /* use when traversing tree through the allnext, child, sibling, | ||
99 | * or parent members of struct device_node. | ||
100 | */ | ||
101 | static DEFINE_RWLOCK(devtree_lock); | ||
102 | |||
103 | /* export that to outside world */ | ||
104 | struct device_node *of_chosen; | ||
105 | |||
106 | /* | ||
107 | * Wrapper for allocating memory for various data that needs to be | ||
108 | * attached to device nodes as they are processed at boot or when | ||
109 | * added to the device tree later (e.g. DLPAR). At boot there is | ||
110 | * already a region reserved so we just increment *mem_start by size; | ||
111 | * otherwise we call kmalloc. | ||
112 | */ | ||
113 | static void * prom_alloc(unsigned long size, unsigned long *mem_start) | ||
114 | { | ||
115 | unsigned long tmp; | ||
116 | |||
117 | if (!mem_start) | ||
118 | return kmalloc(size, GFP_KERNEL); | ||
119 | |||
120 | tmp = *mem_start; | ||
121 | *mem_start += size; | ||
122 | return (void *)tmp; | ||
123 | } | ||
124 | |||
125 | /* | ||
126 | * Find the device_node with a given phandle. | ||
127 | */ | ||
128 | static struct device_node * find_phandle(phandle ph) | ||
129 | { | ||
130 | struct device_node *np; | ||
131 | |||
132 | for (np = allnodes; np != 0; np = np->allnext) | ||
133 | if (np->linux_phandle == ph) | ||
134 | return np; | ||
135 | return NULL; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * Find the interrupt parent of a node. | ||
140 | */ | ||
141 | static struct device_node * __devinit intr_parent(struct device_node *p) | ||
142 | { | ||
143 | phandle *parp; | ||
144 | |||
145 | parp = (phandle *) get_property(p, "interrupt-parent", NULL); | ||
146 | if (parp == NULL) | ||
147 | return p->parent; | ||
148 | return find_phandle(*parp); | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * Find out the size of each entry of the interrupts property | ||
153 | * for a node. | ||
154 | */ | ||
155 | int __devinit prom_n_intr_cells(struct device_node *np) | ||
156 | { | ||
157 | struct device_node *p; | ||
158 | unsigned int *icp; | ||
159 | |||
160 | for (p = np; (p = intr_parent(p)) != NULL; ) { | ||
161 | icp = (unsigned int *) | ||
162 | get_property(p, "#interrupt-cells", NULL); | ||
163 | if (icp != NULL) | ||
164 | return *icp; | ||
165 | if (get_property(p, "interrupt-controller", NULL) != NULL | ||
166 | || get_property(p, "interrupt-map", NULL) != NULL) { | ||
167 | printk("oops, node %s doesn't have #interrupt-cells\n", | ||
168 | p->full_name); | ||
169 | return 1; | ||
170 | } | ||
171 | } | ||
172 | #ifdef DEBUG_IRQ | ||
173 | printk("prom_n_intr_cells failed for %s\n", np->full_name); | ||
174 | #endif | ||
175 | return 1; | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * Map an interrupt from a device up to the platform interrupt | ||
180 | * descriptor. | ||
181 | */ | ||
182 | static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler, | ||
183 | struct device_node *np, unsigned int *ints, | ||
184 | int nintrc) | ||
185 | { | ||
186 | struct device_node *p, *ipar; | ||
187 | unsigned int *imap, *imask, *ip; | ||
188 | int i, imaplen, match; | ||
189 | int newintrc = 0, newaddrc = 0; | ||
190 | unsigned int *reg; | ||
191 | int naddrc; | ||
192 | |||
193 | reg = (unsigned int *) get_property(np, "reg", NULL); | ||
194 | naddrc = prom_n_addr_cells(np); | ||
195 | p = intr_parent(np); | ||
196 | while (p != NULL) { | ||
197 | if (get_property(p, "interrupt-controller", NULL) != NULL) | ||
198 | /* this node is an interrupt controller, stop here */ | ||
199 | break; | ||
200 | imap = (unsigned int *) | ||
201 | get_property(p, "interrupt-map", &imaplen); | ||
202 | if (imap == NULL) { | ||
203 | p = intr_parent(p); | ||
204 | continue; | ||
205 | } | ||
206 | imask = (unsigned int *) | ||
207 | get_property(p, "interrupt-map-mask", NULL); | ||
208 | if (imask == NULL) { | ||
209 | printk("oops, %s has interrupt-map but no mask\n", | ||
210 | p->full_name); | ||
211 | return 0; | ||
212 | } | ||
213 | imaplen /= sizeof(unsigned int); | ||
214 | match = 0; | ||
215 | ipar = NULL; | ||
216 | while (imaplen > 0 && !match) { | ||
217 | /* check the child-interrupt field */ | ||
218 | match = 1; | ||
219 | for (i = 0; i < naddrc && match; ++i) | ||
220 | match = ((reg[i] ^ imap[i]) & imask[i]) == 0; | ||
221 | for (; i < naddrc + nintrc && match; ++i) | ||
222 | match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; | ||
223 | imap += naddrc + nintrc; | ||
224 | imaplen -= naddrc + nintrc; | ||
225 | /* grab the interrupt parent */ | ||
226 | ipar = find_phandle((phandle) *imap++); | ||
227 | --imaplen; | ||
228 | if (ipar == NULL) { | ||
229 | printk("oops, no int parent %x in map of %s\n", | ||
230 | imap[-1], p->full_name); | ||
231 | return 0; | ||
232 | } | ||
233 | /* find the parent's # addr and intr cells */ | ||
234 | ip = (unsigned int *) | ||
235 | get_property(ipar, "#interrupt-cells", NULL); | ||
236 | if (ip == NULL) { | ||
237 | printk("oops, no #interrupt-cells on %s\n", | ||
238 | ipar->full_name); | ||
239 | return 0; | ||
240 | } | ||
241 | newintrc = *ip; | ||
242 | ip = (unsigned int *) | ||
243 | get_property(ipar, "#address-cells", NULL); | ||
244 | newaddrc = (ip == NULL)? 0: *ip; | ||
245 | imap += newaddrc + newintrc; | ||
246 | imaplen -= newaddrc + newintrc; | ||
247 | } | ||
248 | if (imaplen < 0) { | ||
249 | printk("oops, error decoding int-map on %s, len=%d\n", | ||
250 | p->full_name, imaplen); | ||
251 | return 0; | ||
252 | } | ||
253 | if (!match) { | ||
254 | #ifdef DEBUG_IRQ | ||
255 | printk("oops, no match in %s int-map for %s\n", | ||
256 | p->full_name, np->full_name); | ||
257 | #endif | ||
258 | return 0; | ||
259 | } | ||
260 | p = ipar; | ||
261 | naddrc = newaddrc; | ||
262 | nintrc = newintrc; | ||
263 | ints = imap - nintrc; | ||
264 | reg = ints - naddrc; | ||
265 | } | ||
266 | if (p == NULL) { | ||
267 | #ifdef DEBUG_IRQ | ||
268 | printk("hmmm, int tree for %s doesn't have ctrler\n", | ||
269 | np->full_name); | ||
270 | #endif | ||
271 | return 0; | ||
272 | } | ||
273 | *irq = ints; | ||
274 | *ictrler = p; | ||
275 | return nintrc; | ||
276 | } | ||
277 | |||
278 | static int __devinit finish_node_interrupts(struct device_node *np, | ||
279 | unsigned long *mem_start, | ||
280 | int measure_only) | ||
281 | { | ||
282 | unsigned int *ints; | ||
283 | int intlen, intrcells, intrcount; | ||
284 | int i, j, n; | ||
285 | unsigned int *irq, virq; | ||
286 | struct device_node *ic; | ||
287 | |||
288 | ints = (unsigned int *) get_property(np, "interrupts", &intlen); | ||
289 | if (ints == NULL) | ||
290 | return 0; | ||
291 | intrcells = prom_n_intr_cells(np); | ||
292 | intlen /= intrcells * sizeof(unsigned int); | ||
293 | |||
294 | np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start); | ||
295 | if (!np->intrs) | ||
296 | return -ENOMEM; | ||
297 | |||
298 | if (measure_only) | ||
299 | return 0; | ||
300 | |||
301 | intrcount = 0; | ||
302 | for (i = 0; i < intlen; ++i, ints += intrcells) { | ||
303 | n = map_interrupt(&irq, &ic, np, ints, intrcells); | ||
304 | if (n <= 0) | ||
305 | continue; | ||
306 | |||
307 | /* don't map IRQ numbers under a cascaded 8259 controller */ | ||
308 | if (ic && device_is_compatible(ic, "chrp,iic")) { | ||
309 | np->intrs[intrcount].line = irq[0]; | ||
310 | } else { | ||
311 | virq = virt_irq_create_mapping(irq[0]); | ||
312 | if (virq == NO_IRQ) { | ||
313 | printk(KERN_CRIT "Could not allocate interrupt" | ||
314 | " number for %s\n", np->full_name); | ||
315 | continue; | ||
316 | } | ||
317 | np->intrs[intrcount].line = irq_offset_up(virq); | ||
318 | } | ||
319 | |||
320 | /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */ | ||
321 | if (_machine == PLATFORM_POWERMAC && ic && ic->parent) { | ||
322 | char *name = get_property(ic->parent, "name", NULL); | ||
323 | if (name && !strcmp(name, "u3")) | ||
324 | np->intrs[intrcount].line += 128; | ||
325 | else if (!(name && !strcmp(name, "mac-io"))) | ||
326 | /* ignore other cascaded controllers, such as | ||
327 | the k2-sata-root */ | ||
328 | break; | ||
329 | } | ||
330 | np->intrs[intrcount].sense = 1; | ||
331 | if (n > 1) | ||
332 | np->intrs[intrcount].sense = irq[1]; | ||
333 | if (n > 2) { | ||
334 | printk("hmmm, got %d intr cells for %s:", n, | ||
335 | np->full_name); | ||
336 | for (j = 0; j < n; ++j) | ||
337 | printk(" %d", irq[j]); | ||
338 | printk("\n"); | ||
339 | } | ||
340 | ++intrcount; | ||
341 | } | ||
342 | np->n_intrs = intrcount; | ||
343 | |||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | static int __devinit interpret_pci_props(struct device_node *np, | ||
348 | unsigned long *mem_start, | ||
349 | int naddrc, int nsizec, | ||
350 | int measure_only) | ||
351 | { | ||
352 | struct address_range *adr; | ||
353 | struct pci_reg_property *pci_addrs; | ||
354 | int i, l, n_addrs; | ||
355 | |||
356 | pci_addrs = (struct pci_reg_property *) | ||
357 | get_property(np, "assigned-addresses", &l); | ||
358 | if (!pci_addrs) | ||
359 | return 0; | ||
360 | |||
361 | n_addrs = l / sizeof(*pci_addrs); | ||
362 | |||
363 | adr = prom_alloc(n_addrs * sizeof(*adr), mem_start); | ||
364 | if (!adr) | ||
365 | return -ENOMEM; | ||
366 | |||
367 | if (measure_only) | ||
368 | return 0; | ||
369 | |||
370 | np->addrs = adr; | ||
371 | np->n_addrs = n_addrs; | ||
372 | |||
373 | for (i = 0; i < n_addrs; i++) { | ||
374 | adr[i].space = pci_addrs[i].addr.a_hi; | ||
375 | adr[i].address = pci_addrs[i].addr.a_lo | | ||
376 | ((u64)pci_addrs[i].addr.a_mid << 32); | ||
377 | adr[i].size = pci_addrs[i].size_lo; | ||
378 | } | ||
379 | |||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static int __init interpret_dbdma_props(struct device_node *np, | ||
384 | unsigned long *mem_start, | ||
385 | int naddrc, int nsizec, | ||
386 | int measure_only) | ||
387 | { | ||
388 | struct reg_property32 *rp; | ||
389 | struct address_range *adr; | ||
390 | unsigned long base_address; | ||
391 | int i, l; | ||
392 | struct device_node *db; | ||
393 | |||
394 | base_address = 0; | ||
395 | if (!measure_only) { | ||
396 | for (db = np->parent; db != NULL; db = db->parent) { | ||
397 | if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { | ||
398 | base_address = db->addrs[0].address; | ||
399 | break; | ||
400 | } | ||
401 | } | ||
402 | } | ||
403 | |||
404 | rp = (struct reg_property32 *) get_property(np, "reg", &l); | ||
405 | if (rp != 0 && l >= sizeof(struct reg_property32)) { | ||
406 | i = 0; | ||
407 | adr = (struct address_range *) (*mem_start); | ||
408 | while ((l -= sizeof(struct reg_property32)) >= 0) { | ||
409 | if (!measure_only) { | ||
410 | adr[i].space = 2; | ||
411 | adr[i].address = rp[i].address + base_address; | ||
412 | adr[i].size = rp[i].size; | ||
413 | } | ||
414 | ++i; | ||
415 | } | ||
416 | np->addrs = adr; | ||
417 | np->n_addrs = i; | ||
418 | (*mem_start) += i * sizeof(struct address_range); | ||
419 | } | ||
420 | |||
421 | return 0; | ||
422 | } | ||
423 | |||
424 | static int __init interpret_macio_props(struct device_node *np, | ||
425 | unsigned long *mem_start, | ||
426 | int naddrc, int nsizec, | ||
427 | int measure_only) | ||
428 | { | ||
429 | struct reg_property32 *rp; | ||
430 | struct address_range *adr; | ||
431 | unsigned long base_address; | ||
432 | int i, l; | ||
433 | struct device_node *db; | ||
434 | |||
435 | base_address = 0; | ||
436 | if (!measure_only) { | ||
437 | for (db = np->parent; db != NULL; db = db->parent) { | ||
438 | if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { | ||
439 | base_address = db->addrs[0].address; | ||
440 | break; | ||
441 | } | ||
442 | } | ||
443 | } | ||
444 | |||
445 | rp = (struct reg_property32 *) get_property(np, "reg", &l); | ||
446 | if (rp != 0 && l >= sizeof(struct reg_property32)) { | ||
447 | i = 0; | ||
448 | adr = (struct address_range *) (*mem_start); | ||
449 | while ((l -= sizeof(struct reg_property32)) >= 0) { | ||
450 | if (!measure_only) { | ||
451 | adr[i].space = 2; | ||
452 | adr[i].address = rp[i].address + base_address; | ||
453 | adr[i].size = rp[i].size; | ||
454 | } | ||
455 | ++i; | ||
456 | } | ||
457 | np->addrs = adr; | ||
458 | np->n_addrs = i; | ||
459 | (*mem_start) += i * sizeof(struct address_range); | ||
460 | } | ||
461 | |||
462 | return 0; | ||
463 | } | ||
464 | |||
465 | static int __init interpret_isa_props(struct device_node *np, | ||
466 | unsigned long *mem_start, | ||
467 | int naddrc, int nsizec, | ||
468 | int measure_only) | ||
469 | { | ||
470 | struct isa_reg_property *rp; | ||
471 | struct address_range *adr; | ||
472 | int i, l; | ||
473 | |||
474 | rp = (struct isa_reg_property *) get_property(np, "reg", &l); | ||
475 | if (rp != 0 && l >= sizeof(struct isa_reg_property)) { | ||
476 | i = 0; | ||
477 | adr = (struct address_range *) (*mem_start); | ||
478 | while ((l -= sizeof(struct isa_reg_property)) >= 0) { | ||
479 | if (!measure_only) { | ||
480 | adr[i].space = rp[i].space; | ||
481 | adr[i].address = rp[i].address; | ||
482 | adr[i].size = rp[i].size; | ||
483 | } | ||
484 | ++i; | ||
485 | } | ||
486 | np->addrs = adr; | ||
487 | np->n_addrs = i; | ||
488 | (*mem_start) += i * sizeof(struct address_range); | ||
489 | } | ||
490 | |||
491 | return 0; | ||
492 | } | ||
493 | |||
494 | static int __init interpret_root_props(struct device_node *np, | ||
495 | unsigned long *mem_start, | ||
496 | int naddrc, int nsizec, | ||
497 | int measure_only) | ||
498 | { | ||
499 | struct address_range *adr; | ||
500 | int i, l; | ||
501 | unsigned int *rp; | ||
502 | int rpsize = (naddrc + nsizec) * sizeof(unsigned int); | ||
503 | |||
504 | rp = (unsigned int *) get_property(np, "reg", &l); | ||
505 | if (rp != 0 && l >= rpsize) { | ||
506 | i = 0; | ||
507 | adr = (struct address_range *) (*mem_start); | ||
508 | while ((l -= rpsize) >= 0) { | ||
509 | if (!measure_only) { | ||
510 | adr[i].space = 0; | ||
511 | adr[i].address = rp[naddrc - 1]; | ||
512 | adr[i].size = rp[naddrc + nsizec - 1]; | ||
513 | } | ||
514 | ++i; | ||
515 | rp += naddrc + nsizec; | ||
516 | } | ||
517 | np->addrs = adr; | ||
518 | np->n_addrs = i; | ||
519 | (*mem_start) += i * sizeof(struct address_range); | ||
520 | } | ||
521 | |||
522 | return 0; | ||
523 | } | ||
524 | |||
525 | static int __devinit finish_node(struct device_node *np, | ||
526 | unsigned long *mem_start, | ||
527 | interpret_func *ifunc, | ||
528 | int naddrc, int nsizec, | ||
529 | int measure_only) | ||
530 | { | ||
531 | struct device_node *child; | ||
532 | int *ip, rc = 0; | ||
533 | |||
534 | /* get the device addresses and interrupts */ | ||
535 | if (ifunc != NULL) | ||
536 | rc = ifunc(np, mem_start, naddrc, nsizec, measure_only); | ||
537 | if (rc) | ||
538 | goto out; | ||
539 | |||
540 | rc = finish_node_interrupts(np, mem_start, measure_only); | ||
541 | if (rc) | ||
542 | goto out; | ||
543 | |||
544 | /* Look for #address-cells and #size-cells properties. */ | ||
545 | ip = (int *) get_property(np, "#address-cells", NULL); | ||
546 | if (ip != NULL) | ||
547 | naddrc = *ip; | ||
548 | ip = (int *) get_property(np, "#size-cells", NULL); | ||
549 | if (ip != NULL) | ||
550 | nsizec = *ip; | ||
551 | |||
552 | if (!strcmp(np->name, "device-tree") || np->parent == NULL) | ||
553 | ifunc = interpret_root_props; | ||
554 | else if (np->type == 0) | ||
555 | ifunc = NULL; | ||
556 | else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) | ||
557 | ifunc = interpret_pci_props; | ||
558 | else if (!strcmp(np->type, "dbdma")) | ||
559 | ifunc = interpret_dbdma_props; | ||
560 | else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) | ||
561 | ifunc = interpret_macio_props; | ||
562 | else if (!strcmp(np->type, "isa")) | ||
563 | ifunc = interpret_isa_props; | ||
564 | else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) | ||
565 | ifunc = interpret_root_props; | ||
566 | else if (!((ifunc == interpret_dbdma_props | ||
567 | || ifunc == interpret_macio_props) | ||
568 | && (!strcmp(np->type, "escc") | ||
569 | || !strcmp(np->type, "media-bay")))) | ||
570 | ifunc = NULL; | ||
571 | |||
572 | for (child = np->child; child != NULL; child = child->sibling) { | ||
573 | rc = finish_node(child, mem_start, ifunc, | ||
574 | naddrc, nsizec, measure_only); | ||
575 | if (rc) | ||
576 | goto out; | ||
577 | } | ||
578 | out: | ||
579 | return rc; | ||
580 | } | ||
581 | |||
582 | /** | ||
583 | * finish_device_tree is called once things are running normally | ||
584 | * (i.e. with text and data mapped to the address they were linked at). | ||
585 | * It traverses the device tree and fills in some of the additional, | ||
586 | * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt | ||
587 | * mapping is also initialized at this point. | ||
588 | */ | ||
589 | void __init finish_device_tree(void) | ||
590 | { | ||
591 | unsigned long start, end, size = 0; | ||
592 | |||
593 | DBG(" -> finish_device_tree\n"); | ||
594 | |||
595 | if (ppc64_interrupt_controller == IC_INVALID) { | ||
596 | DBG("failed to configure interrupt controller type\n"); | ||
597 | panic("failed to configure interrupt controller type\n"); | ||
598 | } | ||
599 | |||
600 | /* Initialize virtual IRQ map */ | ||
601 | virt_irq_init(); | ||
602 | |||
603 | /* | ||
604 | * Finish device-tree (pre-parsing some properties etc...) | ||
605 | * We do this in 2 passes. One with "measure_only" set, which | ||
606 | * will only measure the amount of memory needed, then we can | ||
607 | * allocate that memory, and call finish_node again. However, | ||
608 | * we must be careful as most routines will fail nowadays when | ||
609 | * prom_alloc() returns 0, so we must make sure our first pass | ||
610 | * doesn't start at 0. We pre-initialize size to 16 for that | ||
611 | * reason and then remove those additional 16 bytes | ||
612 | */ | ||
613 | size = 16; | ||
614 | finish_node(allnodes, &size, NULL, 0, 0, 1); | ||
615 | size -= 16; | ||
616 | end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128)); | ||
617 | finish_node(allnodes, &end, NULL, 0, 0, 0); | ||
618 | BUG_ON(end != start + size); | ||
619 | |||
620 | DBG(" <- finish_device_tree\n"); | ||
621 | } | ||
622 | |||
623 | #ifdef DEBUG | ||
624 | #define printk udbg_printf | ||
625 | #endif | ||
626 | |||
627 | static inline char *find_flat_dt_string(u32 offset) | ||
628 | { | ||
629 | return ((char *)initial_boot_params) + | ||
630 | initial_boot_params->off_dt_strings + offset; | ||
631 | } | ||
632 | |||
633 | /** | ||
634 | * This function is used to scan the flattened device-tree, it is | ||
635 | * used to extract the memory informations at boot before we can | ||
636 | * unflatten the tree | ||
637 | */ | ||
638 | int __init of_scan_flat_dt(int (*it)(unsigned long node, | ||
639 | const char *uname, int depth, | ||
640 | void *data), | ||
641 | void *data) | ||
642 | { | ||
643 | unsigned long p = ((unsigned long)initial_boot_params) + | ||
644 | initial_boot_params->off_dt_struct; | ||
645 | int rc = 0; | ||
646 | int depth = -1; | ||
647 | |||
648 | do { | ||
649 | u32 tag = *((u32 *)p); | ||
650 | char *pathp; | ||
651 | |||
652 | p += 4; | ||
653 | if (tag == OF_DT_END_NODE) { | ||
654 | depth --; | ||
655 | continue; | ||
656 | } | ||
657 | if (tag == OF_DT_NOP) | ||
658 | continue; | ||
659 | if (tag == OF_DT_END) | ||
660 | break; | ||
661 | if (tag == OF_DT_PROP) { | ||
662 | u32 sz = *((u32 *)p); | ||
663 | p += 8; | ||
664 | if (initial_boot_params->version < 0x10) | ||
665 | p = _ALIGN(p, sz >= 8 ? 8 : 4); | ||
666 | p += sz; | ||
667 | p = _ALIGN(p, 4); | ||
668 | continue; | ||
669 | } | ||
670 | if (tag != OF_DT_BEGIN_NODE) { | ||
671 | printk(KERN_WARNING "Invalid tag %x scanning flattened" | ||
672 | " device tree !\n", tag); | ||
673 | return -EINVAL; | ||
674 | } | ||
675 | depth++; | ||
676 | pathp = (char *)p; | ||
677 | p = _ALIGN(p + strlen(pathp) + 1, 4); | ||
678 | if ((*pathp) == '/') { | ||
679 | char *lp, *np; | ||
680 | for (lp = NULL, np = pathp; *np; np++) | ||
681 | if ((*np) == '/') | ||
682 | lp = np+1; | ||
683 | if (lp != NULL) | ||
684 | pathp = lp; | ||
685 | } | ||
686 | rc = it(p, pathp, depth, data); | ||
687 | if (rc != 0) | ||
688 | break; | ||
689 | } while(1); | ||
690 | |||
691 | return rc; | ||
692 | } | ||
693 | |||
694 | /** | ||
695 | * This function can be used within scan_flattened_dt callback to get | ||
696 | * access to properties | ||
697 | */ | ||
698 | void* __init of_get_flat_dt_prop(unsigned long node, const char *name, | ||
699 | unsigned long *size) | ||
700 | { | ||
701 | unsigned long p = node; | ||
702 | |||
703 | do { | ||
704 | u32 tag = *((u32 *)p); | ||
705 | u32 sz, noff; | ||
706 | const char *nstr; | ||
707 | |||
708 | p += 4; | ||
709 | if (tag == OF_DT_NOP) | ||
710 | continue; | ||
711 | if (tag != OF_DT_PROP) | ||
712 | return NULL; | ||
713 | |||
714 | sz = *((u32 *)p); | ||
715 | noff = *((u32 *)(p + 4)); | ||
716 | p += 8; | ||
717 | if (initial_boot_params->version < 0x10) | ||
718 | p = _ALIGN(p, sz >= 8 ? 8 : 4); | ||
719 | |||
720 | nstr = find_flat_dt_string(noff); | ||
721 | if (nstr == NULL) { | ||
722 | printk(KERN_WARNING "Can't find property index" | ||
723 | " name !\n"); | ||
724 | return NULL; | ||
725 | } | ||
726 | if (strcmp(name, nstr) == 0) { | ||
727 | if (size) | ||
728 | *size = sz; | ||
729 | return (void *)p; | ||
730 | } | ||
731 | p += sz; | ||
732 | p = _ALIGN(p, 4); | ||
733 | } while(1); | ||
734 | } | ||
735 | |||
736 | static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, | ||
737 | unsigned long align) | ||
738 | { | ||
739 | void *res; | ||
740 | |||
741 | *mem = _ALIGN(*mem, align); | ||
742 | res = (void *)*mem; | ||
743 | *mem += size; | ||
744 | |||
745 | return res; | ||
746 | } | ||
747 | |||
748 | static unsigned long __init unflatten_dt_node(unsigned long mem, | ||
749 | unsigned long *p, | ||
750 | struct device_node *dad, | ||
751 | struct device_node ***allnextpp, | ||
752 | unsigned long fpsize) | ||
753 | { | ||
754 | struct device_node *np; | ||
755 | struct property *pp, **prev_pp = NULL; | ||
756 | char *pathp; | ||
757 | u32 tag; | ||
758 | unsigned int l, allocl; | ||
759 | int has_name = 0; | ||
760 | int new_format = 0; | ||
761 | |||
762 | tag = *((u32 *)(*p)); | ||
763 | if (tag != OF_DT_BEGIN_NODE) { | ||
764 | printk("Weird tag at start of node: %x\n", tag); | ||
765 | return mem; | ||
766 | } | ||
767 | *p += 4; | ||
768 | pathp = (char *)*p; | ||
769 | l = allocl = strlen(pathp) + 1; | ||
770 | *p = _ALIGN(*p + l, 4); | ||
771 | |||
772 | /* version 0x10 has a more compact unit name here instead of the full | ||
773 | * path. we accumulate the full path size using "fpsize", we'll rebuild | ||
774 | * it later. We detect this because the first character of the name is | ||
775 | * not '/'. | ||
776 | */ | ||
777 | if ((*pathp) != '/') { | ||
778 | new_format = 1; | ||
779 | if (fpsize == 0) { | ||
780 | /* root node: special case. fpsize accounts for path | ||
781 | * plus terminating zero. root node only has '/', so | ||
782 | * fpsize should be 2, but we want to avoid the first | ||
783 | * level nodes to have two '/' so we use fpsize 1 here | ||
784 | */ | ||
785 | fpsize = 1; | ||
786 | allocl = 2; | ||
787 | } else { | ||
788 | /* account for '/' and path size minus terminal 0 | ||
789 | * already in 'l' | ||
790 | */ | ||
791 | fpsize += l; | ||
792 | allocl = fpsize; | ||
793 | } | ||
794 | } | ||
795 | |||
796 | |||
797 | np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, | ||
798 | __alignof__(struct device_node)); | ||
799 | if (allnextpp) { | ||
800 | memset(np, 0, sizeof(*np)); | ||
801 | np->full_name = ((char*)np) + sizeof(struct device_node); | ||
802 | if (new_format) { | ||
803 | char *p = np->full_name; | ||
804 | /* rebuild full path for new format */ | ||
805 | if (dad && dad->parent) { | ||
806 | strcpy(p, dad->full_name); | ||
807 | #ifdef DEBUG | ||
808 | if ((strlen(p) + l + 1) != allocl) { | ||
809 | DBG("%s: p: %d, l: %d, a: %d\n", | ||
810 | pathp, strlen(p), l, allocl); | ||
811 | } | ||
812 | #endif | ||
813 | p += strlen(p); | ||
814 | } | ||
815 | *(p++) = '/'; | ||
816 | memcpy(p, pathp, l); | ||
817 | } else | ||
818 | memcpy(np->full_name, pathp, l); | ||
819 | prev_pp = &np->properties; | ||
820 | **allnextpp = np; | ||
821 | *allnextpp = &np->allnext; | ||
822 | if (dad != NULL) { | ||
823 | np->parent = dad; | ||
824 | /* we temporarily use the next field as `last_child'*/ | ||
825 | if (dad->next == 0) | ||
826 | dad->child = np; | ||
827 | else | ||
828 | dad->next->sibling = np; | ||
829 | dad->next = np; | ||
830 | } | ||
831 | kref_init(&np->kref); | ||
832 | } | ||
833 | while(1) { | ||
834 | u32 sz, noff; | ||
835 | char *pname; | ||
836 | |||
837 | tag = *((u32 *)(*p)); | ||
838 | if (tag == OF_DT_NOP) { | ||
839 | *p += 4; | ||
840 | continue; | ||
841 | } | ||
842 | if (tag != OF_DT_PROP) | ||
843 | break; | ||
844 | *p += 4; | ||
845 | sz = *((u32 *)(*p)); | ||
846 | noff = *((u32 *)((*p) + 4)); | ||
847 | *p += 8; | ||
848 | if (initial_boot_params->version < 0x10) | ||
849 | *p = _ALIGN(*p, sz >= 8 ? 8 : 4); | ||
850 | |||
851 | pname = find_flat_dt_string(noff); | ||
852 | if (pname == NULL) { | ||
853 | printk("Can't find property name in list !\n"); | ||
854 | break; | ||
855 | } | ||
856 | if (strcmp(pname, "name") == 0) | ||
857 | has_name = 1; | ||
858 | l = strlen(pname) + 1; | ||
859 | pp = unflatten_dt_alloc(&mem, sizeof(struct property), | ||
860 | __alignof__(struct property)); | ||
861 | if (allnextpp) { | ||
862 | if (strcmp(pname, "linux,phandle") == 0) { | ||
863 | np->node = *((u32 *)*p); | ||
864 | if (np->linux_phandle == 0) | ||
865 | np->linux_phandle = np->node; | ||
866 | } | ||
867 | if (strcmp(pname, "ibm,phandle") == 0) | ||
868 | np->linux_phandle = *((u32 *)*p); | ||
869 | pp->name = pname; | ||
870 | pp->length = sz; | ||
871 | pp->value = (void *)*p; | ||
872 | *prev_pp = pp; | ||
873 | prev_pp = &pp->next; | ||
874 | } | ||
875 | *p = _ALIGN((*p) + sz, 4); | ||
876 | } | ||
877 | /* with version 0x10 we may not have the name property, recreate | ||
878 | * it here from the unit name if absent | ||
879 | */ | ||
880 | if (!has_name) { | ||
881 | char *p = pathp, *ps = pathp, *pa = NULL; | ||
882 | int sz; | ||
883 | |||
884 | while (*p) { | ||
885 | if ((*p) == '@') | ||
886 | pa = p; | ||
887 | if ((*p) == '/') | ||
888 | ps = p + 1; | ||
889 | p++; | ||
890 | } | ||
891 | if (pa < ps) | ||
892 | pa = p; | ||
893 | sz = (pa - ps) + 1; | ||
894 | pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, | ||
895 | __alignof__(struct property)); | ||
896 | if (allnextpp) { | ||
897 | pp->name = "name"; | ||
898 | pp->length = sz; | ||
899 | pp->value = (unsigned char *)(pp + 1); | ||
900 | *prev_pp = pp; | ||
901 | prev_pp = &pp->next; | ||
902 | memcpy(pp->value, ps, sz - 1); | ||
903 | ((char *)pp->value)[sz - 1] = 0; | ||
904 | DBG("fixed up name for %s -> %s\n", pathp, pp->value); | ||
905 | } | ||
906 | } | ||
907 | if (allnextpp) { | ||
908 | *prev_pp = NULL; | ||
909 | np->name = get_property(np, "name", NULL); | ||
910 | np->type = get_property(np, "device_type", NULL); | ||
911 | |||
912 | if (!np->name) | ||
913 | np->name = "<NULL>"; | ||
914 | if (!np->type) | ||
915 | np->type = "<NULL>"; | ||
916 | } | ||
917 | while (tag == OF_DT_BEGIN_NODE) { | ||
918 | mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize); | ||
919 | tag = *((u32 *)(*p)); | ||
920 | } | ||
921 | if (tag != OF_DT_END_NODE) { | ||
922 | printk("Weird tag at end of node: %x\n", tag); | ||
923 | return mem; | ||
924 | } | ||
925 | *p += 4; | ||
926 | return mem; | ||
927 | } | ||
928 | |||
929 | |||
930 | /** | ||
931 | * unflattens the device-tree passed by the firmware, creating the | ||
932 | * tree of struct device_node. It also fills the "name" and "type" | ||
933 | * pointers of the nodes so the normal device-tree walking functions | ||
934 | * can be used (this used to be done by finish_device_tree) | ||
935 | */ | ||
936 | void __init unflatten_device_tree(void) | ||
937 | { | ||
938 | unsigned long start, mem, size; | ||
939 | struct device_node **allnextp = &allnodes; | ||
940 | char *p = NULL; | ||
941 | int l = 0; | ||
942 | |||
943 | DBG(" -> unflatten_device_tree()\n"); | ||
944 | |||
945 | /* First pass, scan for size */ | ||
946 | start = ((unsigned long)initial_boot_params) + | ||
947 | initial_boot_params->off_dt_struct; | ||
948 | size = unflatten_dt_node(0, &start, NULL, NULL, 0); | ||
949 | size = (size | 3) + 1; | ||
950 | |||
951 | DBG(" size is %lx, allocating...\n", size); | ||
952 | |||
953 | /* Allocate memory for the expanded device tree */ | ||
954 | mem = lmb_alloc(size + 4, __alignof__(struct device_node)); | ||
955 | if (!mem) { | ||
956 | DBG("Couldn't allocate memory with lmb_alloc()!\n"); | ||
957 | panic("Couldn't allocate memory with lmb_alloc()!\n"); | ||
958 | } | ||
959 | mem = (unsigned long)abs_to_virt(mem); | ||
960 | |||
961 | ((u32 *)mem)[size / 4] = 0xdeadbeef; | ||
962 | |||
963 | DBG(" unflattening...\n", mem); | ||
964 | |||
965 | /* Second pass, do actual unflattening */ | ||
966 | start = ((unsigned long)initial_boot_params) + | ||
967 | initial_boot_params->off_dt_struct; | ||
968 | unflatten_dt_node(mem, &start, NULL, &allnextp, 0); | ||
969 | if (*((u32 *)start) != OF_DT_END) | ||
970 | printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start)); | ||
971 | if (((u32 *)mem)[size / 4] != 0xdeadbeef) | ||
972 | printk(KERN_WARNING "End of tree marker overwritten: %08x\n", | ||
973 | ((u32 *)mem)[size / 4] ); | ||
974 | *allnextp = NULL; | ||
975 | |||
976 | /* Get pointer to OF "/chosen" node for use everywhere */ | ||
977 | of_chosen = of_find_node_by_path("/chosen"); | ||
978 | |||
979 | /* Retreive command line */ | ||
980 | if (of_chosen != NULL) { | ||
981 | p = (char *)get_property(of_chosen, "bootargs", &l); | ||
982 | if (p != NULL && l > 0) | ||
983 | strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE)); | ||
984 | } | ||
985 | #ifdef CONFIG_CMDLINE | ||
986 | if (l == 0 || (l == 1 && (*p) == 0)) | ||
987 | strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); | ||
988 | #endif /* CONFIG_CMDLINE */ | ||
989 | |||
990 | DBG("Command line is: %s\n", cmd_line); | ||
991 | |||
992 | DBG(" <- unflatten_device_tree()\n"); | ||
993 | } | ||
994 | |||
995 | |||
996 | static int __init early_init_dt_scan_cpus(unsigned long node, | ||
997 | const char *uname, int depth, void *data) | ||
998 | { | ||
999 | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | ||
1000 | u32 *prop; | ||
1001 | unsigned long size; | ||
1002 | |||
1003 | /* We are scanning "cpu" nodes only */ | ||
1004 | if (type == NULL || strcmp(type, "cpu") != 0) | ||
1005 | return 0; | ||
1006 | |||
1007 | if (initial_boot_params && initial_boot_params->version >= 2) { | ||
1008 | /* version 2 of the kexec param format adds the phys cpuid | ||
1009 | * of booted proc. | ||
1010 | */ | ||
1011 | boot_cpuid_phys = initial_boot_params->boot_cpuid_phys; | ||
1012 | boot_cpuid = 0; | ||
1013 | } else { | ||
1014 | /* Check if it's the boot-cpu, set it's hw index in paca now */ | ||
1015 | if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL) | ||
1016 | != NULL) { | ||
1017 | u32 *prop = of_get_flat_dt_prop(node, "reg", NULL); | ||
1018 | set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop); | ||
1019 | boot_cpuid_phys = get_hard_smp_processor_id(0); | ||
1020 | } | ||
1021 | } | ||
1022 | |||
1023 | #ifdef CONFIG_ALTIVEC | ||
1024 | /* Check if we have a VMX and eventually update CPU features */ | ||
1025 | prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL); | ||
1026 | if (prop && (*prop) > 0) { | ||
1027 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; | ||
1028 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; | ||
1029 | } | ||
1030 | |||
1031 | /* Same goes for Apple's "altivec" property */ | ||
1032 | prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL); | ||
1033 | if (prop) { | ||
1034 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; | ||
1035 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; | ||
1036 | } | ||
1037 | #endif /* CONFIG_ALTIVEC */ | ||
1038 | |||
1039 | /* | ||
1040 | * Check for an SMT capable CPU and set the CPU feature. We do | ||
1041 | * this by looking at the size of the ibm,ppc-interrupt-server#s | ||
1042 | * property | ||
1043 | */ | ||
1044 | prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", | ||
1045 | &size); | ||
1046 | cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; | ||
1047 | if (prop && ((size / sizeof(u32)) > 1)) | ||
1048 | cur_cpu_spec->cpu_features |= CPU_FTR_SMT; | ||
1049 | |||
1050 | return 0; | ||
1051 | } | ||
1052 | |||
1053 | static int __init early_init_dt_scan_chosen(unsigned long node, | ||
1054 | const char *uname, int depth, void *data) | ||
1055 | { | ||
1056 | u32 *prop; | ||
1057 | u64 *prop64; | ||
1058 | |||
1059 | DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname); | ||
1060 | |||
1061 | if (depth != 1 || strcmp(uname, "chosen") != 0) | ||
1062 | return 0; | ||
1063 | |||
1064 | /* get platform type */ | ||
1065 | prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL); | ||
1066 | if (prop == NULL) | ||
1067 | return 0; | ||
1068 | _machine = *prop; | ||
1069 | |||
1070 | /* check if iommu is forced on or off */ | ||
1071 | if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) | ||
1072 | iommu_is_off = 1; | ||
1073 | if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) | ||
1074 | iommu_force_on = 1; | ||
1075 | |||
1076 | prop64 = (u64*)of_get_flat_dt_prop(node, "linux,memory-limit", NULL); | ||
1077 | if (prop64) | ||
1078 | memory_limit = *prop64; | ||
1079 | |||
1080 | prop64 = (u64*)of_get_flat_dt_prop(node, "linux,tce-alloc-start",NULL); | ||
1081 | if (prop64) | ||
1082 | tce_alloc_start = *prop64; | ||
1083 | |||
1084 | prop64 = (u64*)of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); | ||
1085 | if (prop64) | ||
1086 | tce_alloc_end = *prop64; | ||
1087 | |||
1088 | #ifdef CONFIG_PPC_RTAS | ||
1089 | /* To help early debugging via the front panel, we retreive a minimal | ||
1090 | * set of RTAS infos now if available | ||
1091 | */ | ||
1092 | { | ||
1093 | u64 *basep, *entryp; | ||
1094 | |||
1095 | basep = (u64*)of_get_flat_dt_prop(node, | ||
1096 | "linux,rtas-base", NULL); | ||
1097 | entryp = (u64*)of_get_flat_dt_prop(node, | ||
1098 | "linux,rtas-entry", NULL); | ||
1099 | prop = (u32*)of_get_flat_dt_prop(node, | ||
1100 | "linux,rtas-size", NULL); | ||
1101 | if (basep && entryp && prop) { | ||
1102 | rtas.base = *basep; | ||
1103 | rtas.entry = *entryp; | ||
1104 | rtas.size = *prop; | ||
1105 | } | ||
1106 | } | ||
1107 | #endif /* CONFIG_PPC_RTAS */ | ||
1108 | |||
1109 | /* break now */ | ||
1110 | return 1; | ||
1111 | } | ||
1112 | |||
1113 | static int __init early_init_dt_scan_root(unsigned long node, | ||
1114 | const char *uname, int depth, void *data) | ||
1115 | { | ||
1116 | u32 *prop; | ||
1117 | |||
1118 | if (depth != 0) | ||
1119 | return 0; | ||
1120 | |||
1121 | prop = (u32 *)of_get_flat_dt_prop(node, "#size-cells", NULL); | ||
1122 | dt_root_size_cells = (prop == NULL) ? 1 : *prop; | ||
1123 | DBG("dt_root_size_cells = %x\n", dt_root_size_cells); | ||
1124 | |||
1125 | prop = (u32 *)of_get_flat_dt_prop(node, "#address-cells", NULL); | ||
1126 | dt_root_addr_cells = (prop == NULL) ? 2 : *prop; | ||
1127 | DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells); | ||
1128 | |||
1129 | /* break now */ | ||
1130 | return 1; | ||
1131 | } | ||
1132 | |||
1133 | static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp) | ||
1134 | { | ||
1135 | cell_t *p = *cellp; | ||
1136 | unsigned long r = 0; | ||
1137 | |||
1138 | /* Ignore more than 2 cells */ | ||
1139 | while (s > 2) { | ||
1140 | p++; | ||
1141 | s--; | ||
1142 | } | ||
1143 | while (s) { | ||
1144 | r <<= 32; | ||
1145 | r |= *(p++); | ||
1146 | s--; | ||
1147 | } | ||
1148 | |||
1149 | *cellp = p; | ||
1150 | return r; | ||
1151 | } | ||
1152 | |||
1153 | |||
1154 | static int __init early_init_dt_scan_memory(unsigned long node, | ||
1155 | const char *uname, int depth, void *data) | ||
1156 | { | ||
1157 | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | ||
1158 | cell_t *reg, *endp; | ||
1159 | unsigned long l; | ||
1160 | |||
1161 | /* We are scanning "memory" nodes only */ | ||
1162 | if (type == NULL || strcmp(type, "memory") != 0) | ||
1163 | return 0; | ||
1164 | |||
1165 | reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l); | ||
1166 | if (reg == NULL) | ||
1167 | return 0; | ||
1168 | |||
1169 | endp = reg + (l / sizeof(cell_t)); | ||
1170 | |||
1171 | DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n", | ||
1172 | uname, l, reg[0], reg[1], reg[2], reg[3]); | ||
1173 | |||
1174 | while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { | ||
1175 | unsigned long base, size; | ||
1176 | |||
1177 | base = dt_mem_next_cell(dt_root_addr_cells, ®); | ||
1178 | size = dt_mem_next_cell(dt_root_size_cells, ®); | ||
1179 | |||
1180 | if (size == 0) | ||
1181 | continue; | ||
1182 | DBG(" - %lx , %lx\n", base, size); | ||
1183 | if (iommu_is_off) { | ||
1184 | if (base >= 0x80000000ul) | ||
1185 | continue; | ||
1186 | if ((base + size) > 0x80000000ul) | ||
1187 | size = 0x80000000ul - base; | ||
1188 | } | ||
1189 | lmb_add(base, size); | ||
1190 | } | ||
1191 | return 0; | ||
1192 | } | ||
1193 | |||
1194 | static void __init early_reserve_mem(void) | ||
1195 | { | ||
1196 | u64 base, size; | ||
1197 | u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) + | ||
1198 | initial_boot_params->off_mem_rsvmap); | ||
1199 | while (1) { | ||
1200 | base = *(reserve_map++); | ||
1201 | size = *(reserve_map++); | ||
1202 | if (size == 0) | ||
1203 | break; | ||
1204 | DBG("reserving: %lx -> %lx\n", base, size); | ||
1205 | lmb_reserve(base, size); | ||
1206 | } | ||
1207 | |||
1208 | #if 0 | ||
1209 | DBG("memory reserved, lmbs :\n"); | ||
1210 | lmb_dump_all(); | ||
1211 | #endif | ||
1212 | } | ||
1213 | |||
1214 | void __init early_init_devtree(void *params) | ||
1215 | { | ||
1216 | DBG(" -> early_init_devtree()\n"); | ||
1217 | |||
1218 | /* Setup flat device-tree pointer */ | ||
1219 | initial_boot_params = params; | ||
1220 | |||
1221 | /* Retreive various informations from the /chosen node of the | ||
1222 | * device-tree, including the platform type, initrd location and | ||
1223 | * size, TCE reserve, and more ... | ||
1224 | */ | ||
1225 | of_scan_flat_dt(early_init_dt_scan_chosen, NULL); | ||
1226 | |||
1227 | /* Scan memory nodes and rebuild LMBs */ | ||
1228 | lmb_init(); | ||
1229 | of_scan_flat_dt(early_init_dt_scan_root, NULL); | ||
1230 | of_scan_flat_dt(early_init_dt_scan_memory, NULL); | ||
1231 | lmb_enforce_memory_limit(memory_limit); | ||
1232 | lmb_analyze(); | ||
1233 | lmb_reserve(0, __pa(klimit)); | ||
1234 | |||
1235 | /* Reserve LMB regions used by kernel, initrd, dt, etc... */ | ||
1236 | early_reserve_mem(); | ||
1237 | |||
1238 | DBG("Scanning CPUs ...\n"); | ||
1239 | |||
1240 | /* Retreive hash table size from flattened tree plus other | ||
1241 | * CPU related informations (altivec support, boot CPU ID, ...) | ||
1242 | */ | ||
1243 | of_scan_flat_dt(early_init_dt_scan_cpus, NULL); | ||
1244 | |||
1245 | DBG(" <- early_init_devtree()\n"); | ||
1246 | } | ||
1247 | |||
1248 | #undef printk | ||
1249 | |||
1250 | int | ||
1251 | prom_n_addr_cells(struct device_node* np) | ||
1252 | { | ||
1253 | int* ip; | ||
1254 | do { | ||
1255 | if (np->parent) | ||
1256 | np = np->parent; | ||
1257 | ip = (int *) get_property(np, "#address-cells", NULL); | ||
1258 | if (ip != NULL) | ||
1259 | return *ip; | ||
1260 | } while (np->parent); | ||
1261 | /* No #address-cells property for the root node, default to 1 */ | ||
1262 | return 1; | ||
1263 | } | ||
1264 | EXPORT_SYMBOL_GPL(prom_n_addr_cells); | ||
1265 | |||
1266 | int | ||
1267 | prom_n_size_cells(struct device_node* np) | ||
1268 | { | ||
1269 | int* ip; | ||
1270 | do { | ||
1271 | if (np->parent) | ||
1272 | np = np->parent; | ||
1273 | ip = (int *) get_property(np, "#size-cells", NULL); | ||
1274 | if (ip != NULL) | ||
1275 | return *ip; | ||
1276 | } while (np->parent); | ||
1277 | /* No #size-cells property for the root node, default to 1 */ | ||
1278 | return 1; | ||
1279 | } | ||
1280 | EXPORT_SYMBOL_GPL(prom_n_size_cells); | ||
1281 | |||
1282 | /** | ||
1283 | * Work out the sense (active-low level / active-high edge) | ||
1284 | * of each interrupt from the device tree. | ||
1285 | */ | ||
1286 | void __init prom_get_irq_senses(unsigned char *senses, int off, int max) | ||
1287 | { | ||
1288 | struct device_node *np; | ||
1289 | int i, j; | ||
1290 | |||
1291 | /* default to level-triggered */ | ||
1292 | memset(senses, 1, max - off); | ||
1293 | |||
1294 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1295 | for (j = 0; j < np->n_intrs; j++) { | ||
1296 | i = np->intrs[j].line; | ||
1297 | if (i >= off && i < max) | ||
1298 | senses[i-off] = np->intrs[j].sense ? | ||
1299 | IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE : | ||
1300 | IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE; | ||
1301 | } | ||
1302 | } | ||
1303 | } | ||
1304 | |||
1305 | /** | ||
1306 | * Construct and return a list of the device_nodes with a given name. | ||
1307 | */ | ||
1308 | struct device_node * | ||
1309 | find_devices(const char *name) | ||
1310 | { | ||
1311 | struct device_node *head, **prevp, *np; | ||
1312 | |||
1313 | prevp = &head; | ||
1314 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1315 | if (np->name != 0 && strcasecmp(np->name, name) == 0) { | ||
1316 | *prevp = np; | ||
1317 | prevp = &np->next; | ||
1318 | } | ||
1319 | } | ||
1320 | *prevp = NULL; | ||
1321 | return head; | ||
1322 | } | ||
1323 | EXPORT_SYMBOL(find_devices); | ||
1324 | |||
1325 | /** | ||
1326 | * Construct and return a list of the device_nodes with a given type. | ||
1327 | */ | ||
1328 | struct device_node * | ||
1329 | find_type_devices(const char *type) | ||
1330 | { | ||
1331 | struct device_node *head, **prevp, *np; | ||
1332 | |||
1333 | prevp = &head; | ||
1334 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1335 | if (np->type != 0 && strcasecmp(np->type, type) == 0) { | ||
1336 | *prevp = np; | ||
1337 | prevp = &np->next; | ||
1338 | } | ||
1339 | } | ||
1340 | *prevp = NULL; | ||
1341 | return head; | ||
1342 | } | ||
1343 | EXPORT_SYMBOL(find_type_devices); | ||
1344 | |||
1345 | /** | ||
1346 | * Returns all nodes linked together | ||
1347 | */ | ||
1348 | struct device_node * | ||
1349 | find_all_nodes(void) | ||
1350 | { | ||
1351 | struct device_node *head, **prevp, *np; | ||
1352 | |||
1353 | prevp = &head; | ||
1354 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1355 | *prevp = np; | ||
1356 | prevp = &np->next; | ||
1357 | } | ||
1358 | *prevp = NULL; | ||
1359 | return head; | ||
1360 | } | ||
1361 | EXPORT_SYMBOL(find_all_nodes); | ||
1362 | |||
1363 | /** Checks if the given "compat" string matches one of the strings in | ||
1364 | * the device's "compatible" property | ||
1365 | */ | ||
1366 | int | ||
1367 | device_is_compatible(struct device_node *device, const char *compat) | ||
1368 | { | ||
1369 | const char* cp; | ||
1370 | int cplen, l; | ||
1371 | |||
1372 | cp = (char *) get_property(device, "compatible", &cplen); | ||
1373 | if (cp == NULL) | ||
1374 | return 0; | ||
1375 | while (cplen > 0) { | ||
1376 | if (strncasecmp(cp, compat, strlen(compat)) == 0) | ||
1377 | return 1; | ||
1378 | l = strlen(cp) + 1; | ||
1379 | cp += l; | ||
1380 | cplen -= l; | ||
1381 | } | ||
1382 | |||
1383 | return 0; | ||
1384 | } | ||
1385 | EXPORT_SYMBOL(device_is_compatible); | ||
1386 | |||
1387 | |||
1388 | /** | ||
1389 | * Indicates whether the root node has a given value in its | ||
1390 | * compatible property. | ||
1391 | */ | ||
1392 | int | ||
1393 | machine_is_compatible(const char *compat) | ||
1394 | { | ||
1395 | struct device_node *root; | ||
1396 | int rc = 0; | ||
1397 | |||
1398 | root = of_find_node_by_path("/"); | ||
1399 | if (root) { | ||
1400 | rc = device_is_compatible(root, compat); | ||
1401 | of_node_put(root); | ||
1402 | } | ||
1403 | return rc; | ||
1404 | } | ||
1405 | EXPORT_SYMBOL(machine_is_compatible); | ||
1406 | |||
1407 | /** | ||
1408 | * Construct and return a list of the device_nodes with a given type | ||
1409 | * and compatible property. | ||
1410 | */ | ||
1411 | struct device_node * | ||
1412 | find_compatible_devices(const char *type, const char *compat) | ||
1413 | { | ||
1414 | struct device_node *head, **prevp, *np; | ||
1415 | |||
1416 | prevp = &head; | ||
1417 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1418 | if (type != NULL | ||
1419 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) | ||
1420 | continue; | ||
1421 | if (device_is_compatible(np, compat)) { | ||
1422 | *prevp = np; | ||
1423 | prevp = &np->next; | ||
1424 | } | ||
1425 | } | ||
1426 | *prevp = NULL; | ||
1427 | return head; | ||
1428 | } | ||
1429 | EXPORT_SYMBOL(find_compatible_devices); | ||
1430 | |||
1431 | /** | ||
1432 | * Find the device_node with a given full_name. | ||
1433 | */ | ||
1434 | struct device_node * | ||
1435 | find_path_device(const char *path) | ||
1436 | { | ||
1437 | struct device_node *np; | ||
1438 | |||
1439 | for (np = allnodes; np != 0; np = np->allnext) | ||
1440 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) | ||
1441 | return np; | ||
1442 | return NULL; | ||
1443 | } | ||
1444 | EXPORT_SYMBOL(find_path_device); | ||
1445 | |||
1446 | /******* | ||
1447 | * | ||
1448 | * New implementation of the OF "find" APIs, return a refcounted | ||
1449 | * object, call of_node_put() when done. The device tree and list | ||
1450 | * are protected by a rw_lock. | ||
1451 | * | ||
1452 | * Note that property management will need some locking as well, | ||
1453 | * this isn't dealt with yet. | ||
1454 | * | ||
1455 | *******/ | ||
1456 | |||
1457 | /** | ||
1458 | * of_find_node_by_name - Find a node by its "name" property | ||
1459 | * @from: The node to start searching from or NULL, the node | ||
1460 | * you pass will not be searched, only the next one | ||
1461 | * will; typically, you pass what the previous call | ||
1462 | * returned. of_node_put() will be called on it | ||
1463 | * @name: The name string to match against | ||
1464 | * | ||
1465 | * Returns a node pointer with refcount incremented, use | ||
1466 | * of_node_put() on it when done. | ||
1467 | */ | ||
1468 | struct device_node *of_find_node_by_name(struct device_node *from, | ||
1469 | const char *name) | ||
1470 | { | ||
1471 | struct device_node *np; | ||
1472 | |||
1473 | read_lock(&devtree_lock); | ||
1474 | np = from ? from->allnext : allnodes; | ||
1475 | for (; np != 0; np = np->allnext) | ||
1476 | if (np->name != 0 && strcasecmp(np->name, name) == 0 | ||
1477 | && of_node_get(np)) | ||
1478 | break; | ||
1479 | if (from) | ||
1480 | of_node_put(from); | ||
1481 | read_unlock(&devtree_lock); | ||
1482 | return np; | ||
1483 | } | ||
1484 | EXPORT_SYMBOL(of_find_node_by_name); | ||
1485 | |||
1486 | /** | ||
1487 | * of_find_node_by_type - Find a node by its "device_type" property | ||
1488 | * @from: The node to start searching from or NULL, the node | ||
1489 | * you pass will not be searched, only the next one | ||
1490 | * will; typically, you pass what the previous call | ||
1491 | * returned. of_node_put() will be called on it | ||
1492 | * @name: The type string to match against | ||
1493 | * | ||
1494 | * Returns a node pointer with refcount incremented, use | ||
1495 | * of_node_put() on it when done. | ||
1496 | */ | ||
1497 | struct device_node *of_find_node_by_type(struct device_node *from, | ||
1498 | const char *type) | ||
1499 | { | ||
1500 | struct device_node *np; | ||
1501 | |||
1502 | read_lock(&devtree_lock); | ||
1503 | np = from ? from->allnext : allnodes; | ||
1504 | for (; np != 0; np = np->allnext) | ||
1505 | if (np->type != 0 && strcasecmp(np->type, type) == 0 | ||
1506 | && of_node_get(np)) | ||
1507 | break; | ||
1508 | if (from) | ||
1509 | of_node_put(from); | ||
1510 | read_unlock(&devtree_lock); | ||
1511 | return np; | ||
1512 | } | ||
1513 | EXPORT_SYMBOL(of_find_node_by_type); | ||
1514 | |||
1515 | /** | ||
1516 | * of_find_compatible_node - Find a node based on type and one of the | ||
1517 | * tokens in its "compatible" property | ||
1518 | * @from: The node to start searching from or NULL, the node | ||
1519 | * you pass will not be searched, only the next one | ||
1520 | * will; typically, you pass what the previous call | ||
1521 | * returned. of_node_put() will be called on it | ||
1522 | * @type: The type string to match "device_type" or NULL to ignore | ||
1523 | * @compatible: The string to match to one of the tokens in the device | ||
1524 | * "compatible" list. | ||
1525 | * | ||
1526 | * Returns a node pointer with refcount incremented, use | ||
1527 | * of_node_put() on it when done. | ||
1528 | */ | ||
1529 | struct device_node *of_find_compatible_node(struct device_node *from, | ||
1530 | const char *type, const char *compatible) | ||
1531 | { | ||
1532 | struct device_node *np; | ||
1533 | |||
1534 | read_lock(&devtree_lock); | ||
1535 | np = from ? from->allnext : allnodes; | ||
1536 | for (; np != 0; np = np->allnext) { | ||
1537 | if (type != NULL | ||
1538 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) | ||
1539 | continue; | ||
1540 | if (device_is_compatible(np, compatible) && of_node_get(np)) | ||
1541 | break; | ||
1542 | } | ||
1543 | if (from) | ||
1544 | of_node_put(from); | ||
1545 | read_unlock(&devtree_lock); | ||
1546 | return np; | ||
1547 | } | ||
1548 | EXPORT_SYMBOL(of_find_compatible_node); | ||
1549 | |||
1550 | /** | ||
1551 | * of_find_node_by_path - Find a node matching a full OF path | ||
1552 | * @path: The full path to match | ||
1553 | * | ||
1554 | * Returns a node pointer with refcount incremented, use | ||
1555 | * of_node_put() on it when done. | ||
1556 | */ | ||
1557 | struct device_node *of_find_node_by_path(const char *path) | ||
1558 | { | ||
1559 | struct device_node *np = allnodes; | ||
1560 | |||
1561 | read_lock(&devtree_lock); | ||
1562 | for (; np != 0; np = np->allnext) { | ||
1563 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0 | ||
1564 | && of_node_get(np)) | ||
1565 | break; | ||
1566 | } | ||
1567 | read_unlock(&devtree_lock); | ||
1568 | return np; | ||
1569 | } | ||
1570 | EXPORT_SYMBOL(of_find_node_by_path); | ||
1571 | |||
1572 | /** | ||
1573 | * of_find_node_by_phandle - Find a node given a phandle | ||
1574 | * @handle: phandle of the node to find | ||
1575 | * | ||
1576 | * Returns a node pointer with refcount incremented, use | ||
1577 | * of_node_put() on it when done. | ||
1578 | */ | ||
1579 | struct device_node *of_find_node_by_phandle(phandle handle) | ||
1580 | { | ||
1581 | struct device_node *np; | ||
1582 | |||
1583 | read_lock(&devtree_lock); | ||
1584 | for (np = allnodes; np != 0; np = np->allnext) | ||
1585 | if (np->linux_phandle == handle) | ||
1586 | break; | ||
1587 | if (np) | ||
1588 | of_node_get(np); | ||
1589 | read_unlock(&devtree_lock); | ||
1590 | return np; | ||
1591 | } | ||
1592 | EXPORT_SYMBOL(of_find_node_by_phandle); | ||
1593 | |||
1594 | /** | ||
1595 | * of_find_all_nodes - Get next node in global list | ||
1596 | * @prev: Previous node or NULL to start iteration | ||
1597 | * of_node_put() will be called on it | ||
1598 | * | ||
1599 | * Returns a node pointer with refcount incremented, use | ||
1600 | * of_node_put() on it when done. | ||
1601 | */ | ||
1602 | struct device_node *of_find_all_nodes(struct device_node *prev) | ||
1603 | { | ||
1604 | struct device_node *np; | ||
1605 | |||
1606 | read_lock(&devtree_lock); | ||
1607 | np = prev ? prev->allnext : allnodes; | ||
1608 | for (; np != 0; np = np->allnext) | ||
1609 | if (of_node_get(np)) | ||
1610 | break; | ||
1611 | if (prev) | ||
1612 | of_node_put(prev); | ||
1613 | read_unlock(&devtree_lock); | ||
1614 | return np; | ||
1615 | } | ||
1616 | EXPORT_SYMBOL(of_find_all_nodes); | ||
1617 | |||
1618 | /** | ||
1619 | * of_get_parent - Get a node's parent if any | ||
1620 | * @node: Node to get parent | ||
1621 | * | ||
1622 | * Returns a node pointer with refcount incremented, use | ||
1623 | * of_node_put() on it when done. | ||
1624 | */ | ||
1625 | struct device_node *of_get_parent(const struct device_node *node) | ||
1626 | { | ||
1627 | struct device_node *np; | ||
1628 | |||
1629 | if (!node) | ||
1630 | return NULL; | ||
1631 | |||
1632 | read_lock(&devtree_lock); | ||
1633 | np = of_node_get(node->parent); | ||
1634 | read_unlock(&devtree_lock); | ||
1635 | return np; | ||
1636 | } | ||
1637 | EXPORT_SYMBOL(of_get_parent); | ||
1638 | |||
1639 | /** | ||
1640 | * of_get_next_child - Iterate a node childs | ||
1641 | * @node: parent node | ||
1642 | * @prev: previous child of the parent node, or NULL to get first | ||
1643 | * | ||
1644 | * Returns a node pointer with refcount incremented, use | ||
1645 | * of_node_put() on it when done. | ||
1646 | */ | ||
1647 | struct device_node *of_get_next_child(const struct device_node *node, | ||
1648 | struct device_node *prev) | ||
1649 | { | ||
1650 | struct device_node *next; | ||
1651 | |||
1652 | read_lock(&devtree_lock); | ||
1653 | next = prev ? prev->sibling : node->child; | ||
1654 | for (; next != 0; next = next->sibling) | ||
1655 | if (of_node_get(next)) | ||
1656 | break; | ||
1657 | if (prev) | ||
1658 | of_node_put(prev); | ||
1659 | read_unlock(&devtree_lock); | ||
1660 | return next; | ||
1661 | } | ||
1662 | EXPORT_SYMBOL(of_get_next_child); | ||
1663 | |||
1664 | /** | ||
1665 | * of_node_get - Increment refcount of a node | ||
1666 | * @node: Node to inc refcount, NULL is supported to | ||
1667 | * simplify writing of callers | ||
1668 | * | ||
1669 | * Returns node. | ||
1670 | */ | ||
1671 | struct device_node *of_node_get(struct device_node *node) | ||
1672 | { | ||
1673 | if (node) | ||
1674 | kref_get(&node->kref); | ||
1675 | return node; | ||
1676 | } | ||
1677 | EXPORT_SYMBOL(of_node_get); | ||
1678 | |||
1679 | static inline struct device_node * kref_to_device_node(struct kref *kref) | ||
1680 | { | ||
1681 | return container_of(kref, struct device_node, kref); | ||
1682 | } | ||
1683 | |||
1684 | /** | ||
1685 | * of_node_release - release a dynamically allocated node | ||
1686 | * @kref: kref element of the node to be released | ||
1687 | * | ||
1688 | * In of_node_put() this function is passed to kref_put() | ||
1689 | * as the destructor. | ||
1690 | */ | ||
1691 | static void of_node_release(struct kref *kref) | ||
1692 | { | ||
1693 | struct device_node *node = kref_to_device_node(kref); | ||
1694 | struct property *prop = node->properties; | ||
1695 | |||
1696 | if (!OF_IS_DYNAMIC(node)) | ||
1697 | return; | ||
1698 | while (prop) { | ||
1699 | struct property *next = prop->next; | ||
1700 | kfree(prop->name); | ||
1701 | kfree(prop->value); | ||
1702 | kfree(prop); | ||
1703 | prop = next; | ||
1704 | } | ||
1705 | kfree(node->intrs); | ||
1706 | kfree(node->addrs); | ||
1707 | kfree(node->full_name); | ||
1708 | kfree(node->data); | ||
1709 | kfree(node); | ||
1710 | } | ||
1711 | |||
1712 | /** | ||
1713 | * of_node_put - Decrement refcount of a node | ||
1714 | * @node: Node to dec refcount, NULL is supported to | ||
1715 | * simplify writing of callers | ||
1716 | * | ||
1717 | */ | ||
1718 | void of_node_put(struct device_node *node) | ||
1719 | { | ||
1720 | if (node) | ||
1721 | kref_put(&node->kref, of_node_release); | ||
1722 | } | ||
1723 | EXPORT_SYMBOL(of_node_put); | ||
1724 | |||
1725 | /* | ||
1726 | * Fix up the uninitialized fields in a new device node: | ||
1727 | * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields | ||
1728 | * | ||
1729 | * A lot of boot-time code is duplicated here, because functions such | ||
1730 | * as finish_node_interrupts, interpret_pci_props, etc. cannot use the | ||
1731 | * slab allocator. | ||
1732 | * | ||
1733 | * This should probably be split up into smaller chunks. | ||
1734 | */ | ||
1735 | |||
1736 | static int of_finish_dynamic_node(struct device_node *node, | ||
1737 | unsigned long *unused1, int unused2, | ||
1738 | int unused3, int unused4) | ||
1739 | { | ||
1740 | struct device_node *parent = of_get_parent(node); | ||
1741 | int err = 0; | ||
1742 | phandle *ibm_phandle; | ||
1743 | |||
1744 | node->name = get_property(node, "name", NULL); | ||
1745 | node->type = get_property(node, "device_type", NULL); | ||
1746 | |||
1747 | if (!parent) { | ||
1748 | err = -ENODEV; | ||
1749 | goto out; | ||
1750 | } | ||
1751 | |||
1752 | /* We don't support that function on PowerMac, at least | ||
1753 | * not yet | ||
1754 | */ | ||
1755 | if (_machine == PLATFORM_POWERMAC) | ||
1756 | return -ENODEV; | ||
1757 | |||
1758 | /* fix up new node's linux_phandle field */ | ||
1759 | if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL))) | ||
1760 | node->linux_phandle = *ibm_phandle; | ||
1761 | |||
1762 | out: | ||
1763 | of_node_put(parent); | ||
1764 | return err; | ||
1765 | } | ||
1766 | |||
1767 | /* | ||
1768 | * Plug a device node into the tree and global list. | ||
1769 | */ | ||
1770 | void of_attach_node(struct device_node *np) | ||
1771 | { | ||
1772 | write_lock(&devtree_lock); | ||
1773 | np->sibling = np->parent->child; | ||
1774 | np->allnext = allnodes; | ||
1775 | np->parent->child = np; | ||
1776 | allnodes = np; | ||
1777 | write_unlock(&devtree_lock); | ||
1778 | } | ||
1779 | |||
1780 | /* | ||
1781 | * "Unplug" a node from the device tree. The caller must hold | ||
1782 | * a reference to the node. The memory associated with the node | ||
1783 | * is not freed until its refcount goes to zero. | ||
1784 | */ | ||
1785 | void of_detach_node(const struct device_node *np) | ||
1786 | { | ||
1787 | struct device_node *parent; | ||
1788 | |||
1789 | write_lock(&devtree_lock); | ||
1790 | |||
1791 | parent = np->parent; | ||
1792 | |||
1793 | if (allnodes == np) | ||
1794 | allnodes = np->allnext; | ||
1795 | else { | ||
1796 | struct device_node *prev; | ||
1797 | for (prev = allnodes; | ||
1798 | prev->allnext != np; | ||
1799 | prev = prev->allnext) | ||
1800 | ; | ||
1801 | prev->allnext = np->allnext; | ||
1802 | } | ||
1803 | |||
1804 | if (parent->child == np) | ||
1805 | parent->child = np->sibling; | ||
1806 | else { | ||
1807 | struct device_node *prevsib; | ||
1808 | for (prevsib = np->parent->child; | ||
1809 | prevsib->sibling != np; | ||
1810 | prevsib = prevsib->sibling) | ||
1811 | ; | ||
1812 | prevsib->sibling = np->sibling; | ||
1813 | } | ||
1814 | |||
1815 | write_unlock(&devtree_lock); | ||
1816 | } | ||
1817 | |||
1818 | static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) | ||
1819 | { | ||
1820 | int err; | ||
1821 | |||
1822 | switch (action) { | ||
1823 | case PSERIES_RECONFIG_ADD: | ||
1824 | err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0); | ||
1825 | if (err < 0) { | ||
1826 | printk(KERN_ERR "finish_node returned %d\n", err); | ||
1827 | err = NOTIFY_BAD; | ||
1828 | } | ||
1829 | break; | ||
1830 | default: | ||
1831 | err = NOTIFY_DONE; | ||
1832 | break; | ||
1833 | } | ||
1834 | return err; | ||
1835 | } | ||
1836 | |||
1837 | static struct notifier_block prom_reconfig_nb = { | ||
1838 | .notifier_call = prom_reconfig_notifier, | ||
1839 | .priority = 10, /* This one needs to run first */ | ||
1840 | }; | ||
1841 | |||
1842 | static int __init prom_reconfig_setup(void) | ||
1843 | { | ||
1844 | return pSeries_reconfig_notifier_register(&prom_reconfig_nb); | ||
1845 | } | ||
1846 | __initcall(prom_reconfig_setup); | ||
1847 | |||
1848 | /* | ||
1849 | * Find a property with a given name for a given node | ||
1850 | * and return the value. | ||
1851 | */ | ||
1852 | unsigned char * | ||
1853 | get_property(struct device_node *np, const char *name, int *lenp) | ||
1854 | { | ||
1855 | struct property *pp; | ||
1856 | |||
1857 | for (pp = np->properties; pp != 0; pp = pp->next) | ||
1858 | if (strcmp(pp->name, name) == 0) { | ||
1859 | if (lenp != 0) | ||
1860 | *lenp = pp->length; | ||
1861 | return pp->value; | ||
1862 | } | ||
1863 | return NULL; | ||
1864 | } | ||
1865 | EXPORT_SYMBOL(get_property); | ||
1866 | |||
1867 | /* | ||
1868 | * Add a property to a node. | ||
1869 | */ | ||
1870 | int | ||
1871 | prom_add_property(struct device_node* np, struct property* prop) | ||
1872 | { | ||
1873 | struct property **next; | ||
1874 | |||
1875 | prop->next = NULL; | ||
1876 | write_lock(&devtree_lock); | ||
1877 | next = &np->properties; | ||
1878 | while (*next) { | ||
1879 | if (strcmp(prop->name, (*next)->name) == 0) { | ||
1880 | /* duplicate ! don't insert it */ | ||
1881 | write_unlock(&devtree_lock); | ||
1882 | return -1; | ||
1883 | } | ||
1884 | next = &(*next)->next; | ||
1885 | } | ||
1886 | *next = prop; | ||
1887 | write_unlock(&devtree_lock); | ||
1888 | |||
1889 | /* try to add to proc as well if it was initialized */ | ||
1890 | if (np->pde) | ||
1891 | proc_device_tree_add_prop(np->pde, prop); | ||
1892 | |||
1893 | return 0; | ||
1894 | } | ||
1895 | |||
1896 | #if 0 | ||
1897 | void | ||
1898 | print_properties(struct device_node *np) | ||
1899 | { | ||
1900 | struct property *pp; | ||
1901 | char *cp; | ||
1902 | int i, n; | ||
1903 | |||
1904 | for (pp = np->properties; pp != 0; pp = pp->next) { | ||
1905 | printk(KERN_INFO "%s", pp->name); | ||
1906 | for (i = strlen(pp->name); i < 16; ++i) | ||
1907 | printk(" "); | ||
1908 | cp = (char *) pp->value; | ||
1909 | for (i = pp->length; i > 0; --i, ++cp) | ||
1910 | if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) | ||
1911 | || (i == 1 && *cp != 0)) | ||
1912 | break; | ||
1913 | if (i == 0 && pp->length > 1) { | ||
1914 | /* looks like a string */ | ||
1915 | printk(" %s\n", (char *) pp->value); | ||
1916 | } else { | ||
1917 | /* dump it in hex */ | ||
1918 | n = pp->length; | ||
1919 | if (n > 64) | ||
1920 | n = 64; | ||
1921 | if (pp->length % 4 == 0) { | ||
1922 | unsigned int *p = (unsigned int *) pp->value; | ||
1923 | |||
1924 | n /= 4; | ||
1925 | for (i = 0; i < n; ++i) { | ||
1926 | if (i != 0 && (i % 4) == 0) | ||
1927 | printk("\n "); | ||
1928 | printk(" %08x", *p++); | ||
1929 | } | ||
1930 | } else { | ||
1931 | unsigned char *bp = pp->value; | ||
1932 | |||
1933 | for (i = 0; i < n; ++i) { | ||
1934 | if (i != 0 && (i % 16) == 0) | ||
1935 | printk("\n "); | ||
1936 | printk(" %02x", *bp++); | ||
1937 | } | ||
1938 | } | ||
1939 | printk("\n"); | ||
1940 | if (pp->length > 64) | ||
1941 | printk(" ... (length = %d)\n", | ||
1942 | pp->length); | ||
1943 | } | ||
1944 | } | ||
1945 | } | ||
1946 | #endif | ||
1947 | |||
1948 | |||
1949 | |||
1950 | |||
1951 | |||
1952 | |||
1953 | |||
1954 | |||
1955 | |||
1956 | |||