aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ppc64/kernel/prom.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ppc64/kernel/prom.c')
-rw-r--r--arch/ppc64/kernel/prom.c1820
1 files changed, 1820 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/prom.c b/arch/ppc64/kernel/prom.c
new file mode 100644
index 000000000000..01739d5c47c7
--- /dev/null
+++ b/arch/ppc64/kernel/prom.c
@@ -0,0 +1,1820 @@
1/*
2 *
3 *
4 * Procedures for interfacing to Open Firmware.
5 *
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <stdarg.h>
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/version.h>
26#include <linux/threads.h>
27#include <linux/spinlock.h>
28#include <linux/types.h>
29#include <linux/pci.h>
30#include <linux/stringify.h>
31#include <linux/delay.h>
32#include <linux/initrd.h>
33#include <linux/bitops.h>
34#include <linux/module.h>
35
36#include <asm/prom.h>
37#include <asm/rtas.h>
38#include <asm/lmb.h>
39#include <asm/abs_addr.h>
40#include <asm/page.h>
41#include <asm/processor.h>
42#include <asm/irq.h>
43#include <asm/io.h>
44#include <asm/smp.h>
45#include <asm/system.h>
46#include <asm/mmu.h>
47#include <asm/pgtable.h>
48#include <asm/pci.h>
49#include <asm/iommu.h>
50#include <asm/bootinfo.h>
51#include <asm/ppcdebug.h>
52#include <asm/btext.h>
53#include <asm/sections.h>
54#include <asm/machdep.h>
55#include <asm/pSeries_reconfig.h>
56
57#ifdef DEBUG
58#define DBG(fmt...) udbg_printf(fmt)
59#else
60#define DBG(fmt...)
61#endif
62
63struct pci_reg_property {
64 struct pci_address addr;
65 u32 size_hi;
66 u32 size_lo;
67};
68
69struct isa_reg_property {
70 u32 space;
71 u32 address;
72 u32 size;
73};
74
75
76typedef int interpret_func(struct device_node *, unsigned long *,
77 int, int, int);
78
79extern struct rtas_t rtas;
80extern struct lmb lmb;
81extern unsigned long klimit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85static int __initdata iommu_is_off;
86int __initdata iommu_force_on;
87typedef u32 cell_t;
88
89#if 0
90static struct boot_param_header *initial_boot_params __initdata;
91#else
92struct boot_param_header *initial_boot_params;
93#endif
94
95static struct device_node *allnodes = NULL;
96
97/* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
99 */
100static DEFINE_RWLOCK(devtree_lock);
101
102/* export that to outside world */
103struct device_node *of_chosen;
104
105/*
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
111 */
112static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113{
114 unsigned long tmp;
115
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
118
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
122}
123
124/*
125 * Find the device_node with a given phandle.
126 */
127static struct device_node * find_phandle(phandle ph)
128{
129 struct device_node *np;
130
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
135}
136
137/*
138 * Find the interrupt parent of a node.
139 */
140static struct device_node * __devinit intr_parent(struct device_node *p)
141{
142 phandle *parp;
143
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 return find_phandle(*parp);
148}
149
150/*
151 * Find out the size of each entry of the interrupts property
152 * for a node.
153 */
154int __devinit prom_n_intr_cells(struct device_node *np)
155{
156 struct device_node *p;
157 unsigned int *icp;
158
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
162 if (icp != NULL)
163 return *icp;
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
167 p->full_name);
168 return 1;
169 }
170 }
171#ifdef DEBUG_IRQ
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
173#endif
174 return 1;
175}
176
177/*
178 * Map an interrupt from a device up to the platform interrupt
179 * descriptor.
180 */
181static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
183 int nintrc)
184{
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
189 unsigned int *reg;
190 int naddrc;
191
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
194 p = intr_parent(np);
195 while (p != NULL) {
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
198 break;
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
201 if (imap == NULL) {
202 p = intr_parent(p);
203 continue;
204 }
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
207 if (imask == NULL) {
208 printk("oops, %s has interrupt-map but no mask\n",
209 p->full_name);
210 return 0;
211 }
212 imaplen /= sizeof(unsigned int);
213 match = 0;
214 ipar = NULL;
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
217 match = 1;
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
226 --imaplen;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
277static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
279 int measure_only)
280{
281 unsigned int *ints;
282 int intlen, intrcells, intrcount;
283 int i, j, n;
284 unsigned int *irq, virq;
285 struct device_node *ic;
286
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
288 if (ints == NULL)
289 return 0;
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
292
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
294 if (!np->intrs)
295 return -ENOMEM;
296
297 if (measure_only)
298 return 0;
299
300 intrcount = 0;
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
303 if (n <= 0)
304 continue;
305
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
309 } else {
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
314 continue;
315 }
316 np->intrs[intrcount].line = irq_offset_up(virq);
317 }
318
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
324 }
325 np->intrs[intrcount].sense = 1;
326 if (n > 1)
327 np->intrs[intrcount].sense = irq[1];
328 if (n > 2) {
329 printk("hmmm, got %d intr cells for %s:", n,
330 np->full_name);
331 for (j = 0; j < n; ++j)
332 printk(" %d", irq[j]);
333 printk("\n");
334 }
335 ++intrcount;
336 }
337 np->n_intrs = intrcount;
338
339 return 0;
340}
341
342static int __devinit interpret_pci_props(struct device_node *np,
343 unsigned long *mem_start,
344 int naddrc, int nsizec,
345 int measure_only)
346{
347 struct address_range *adr;
348 struct pci_reg_property *pci_addrs;
349 int i, l, n_addrs;
350
351 pci_addrs = (struct pci_reg_property *)
352 get_property(np, "assigned-addresses", &l);
353 if (!pci_addrs)
354 return 0;
355
356 n_addrs = l / sizeof(*pci_addrs);
357
358 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
359 if (!adr)
360 return -ENOMEM;
361
362 if (measure_only)
363 return 0;
364
365 np->addrs = adr;
366 np->n_addrs = n_addrs;
367
368 for (i = 0; i < n_addrs; i++) {
369 adr[i].space = pci_addrs[i].addr.a_hi;
370 adr[i].address = pci_addrs[i].addr.a_lo |
371 ((u64)pci_addrs[i].addr.a_mid << 32);
372 adr[i].size = pci_addrs[i].size_lo;
373 }
374
375 return 0;
376}
377
378static int __init interpret_dbdma_props(struct device_node *np,
379 unsigned long *mem_start,
380 int naddrc, int nsizec,
381 int measure_only)
382{
383 struct reg_property32 *rp;
384 struct address_range *adr;
385 unsigned long base_address;
386 int i, l;
387 struct device_node *db;
388
389 base_address = 0;
390 if (!measure_only) {
391 for (db = np->parent; db != NULL; db = db->parent) {
392 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
393 base_address = db->addrs[0].address;
394 break;
395 }
396 }
397 }
398
399 rp = (struct reg_property32 *) get_property(np, "reg", &l);
400 if (rp != 0 && l >= sizeof(struct reg_property32)) {
401 i = 0;
402 adr = (struct address_range *) (*mem_start);
403 while ((l -= sizeof(struct reg_property32)) >= 0) {
404 if (!measure_only) {
405 adr[i].space = 2;
406 adr[i].address = rp[i].address + base_address;
407 adr[i].size = rp[i].size;
408 }
409 ++i;
410 }
411 np->addrs = adr;
412 np->n_addrs = i;
413 (*mem_start) += i * sizeof(struct address_range);
414 }
415
416 return 0;
417}
418
419static int __init interpret_macio_props(struct device_node *np,
420 unsigned long *mem_start,
421 int naddrc, int nsizec,
422 int measure_only)
423{
424 struct reg_property32 *rp;
425 struct address_range *adr;
426 unsigned long base_address;
427 int i, l;
428 struct device_node *db;
429
430 base_address = 0;
431 if (!measure_only) {
432 for (db = np->parent; db != NULL; db = db->parent) {
433 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
434 base_address = db->addrs[0].address;
435 break;
436 }
437 }
438 }
439
440 rp = (struct reg_property32 *) get_property(np, "reg", &l);
441 if (rp != 0 && l >= sizeof(struct reg_property32)) {
442 i = 0;
443 adr = (struct address_range *) (*mem_start);
444 while ((l -= sizeof(struct reg_property32)) >= 0) {
445 if (!measure_only) {
446 adr[i].space = 2;
447 adr[i].address = rp[i].address + base_address;
448 adr[i].size = rp[i].size;
449 }
450 ++i;
451 }
452 np->addrs = adr;
453 np->n_addrs = i;
454 (*mem_start) += i * sizeof(struct address_range);
455 }
456
457 return 0;
458}
459
460static int __init interpret_isa_props(struct device_node *np,
461 unsigned long *mem_start,
462 int naddrc, int nsizec,
463 int measure_only)
464{
465 struct isa_reg_property *rp;
466 struct address_range *adr;
467 int i, l;
468
469 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
470 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
471 i = 0;
472 adr = (struct address_range *) (*mem_start);
473 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
474 if (!measure_only) {
475 adr[i].space = rp[i].space;
476 adr[i].address = rp[i].address;
477 adr[i].size = rp[i].size;
478 }
479 ++i;
480 }
481 np->addrs = adr;
482 np->n_addrs = i;
483 (*mem_start) += i * sizeof(struct address_range);
484 }
485
486 return 0;
487}
488
489static int __init interpret_root_props(struct device_node *np,
490 unsigned long *mem_start,
491 int naddrc, int nsizec,
492 int measure_only)
493{
494 struct address_range *adr;
495 int i, l;
496 unsigned int *rp;
497 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
498
499 rp = (unsigned int *) get_property(np, "reg", &l);
500 if (rp != 0 && l >= rpsize) {
501 i = 0;
502 adr = (struct address_range *) (*mem_start);
503 while ((l -= rpsize) >= 0) {
504 if (!measure_only) {
505 adr[i].space = 0;
506 adr[i].address = rp[naddrc - 1];
507 adr[i].size = rp[naddrc + nsizec - 1];
508 }
509 ++i;
510 rp += naddrc + nsizec;
511 }
512 np->addrs = adr;
513 np->n_addrs = i;
514 (*mem_start) += i * sizeof(struct address_range);
515 }
516
517 return 0;
518}
519
520static int __devinit finish_node(struct device_node *np,
521 unsigned long *mem_start,
522 interpret_func *ifunc,
523 int naddrc, int nsizec,
524 int measure_only)
525{
526 struct device_node *child;
527 int *ip, rc = 0;
528
529 /* get the device addresses and interrupts */
530 if (ifunc != NULL)
531 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
532 if (rc)
533 goto out;
534
535 rc = finish_node_interrupts(np, mem_start, measure_only);
536 if (rc)
537 goto out;
538
539 /* Look for #address-cells and #size-cells properties. */
540 ip = (int *) get_property(np, "#address-cells", NULL);
541 if (ip != NULL)
542 naddrc = *ip;
543 ip = (int *) get_property(np, "#size-cells", NULL);
544 if (ip != NULL)
545 nsizec = *ip;
546
547 /* the f50 sets the name to 'display' and 'compatible' to what we
548 * expect for the name -- Cort
549 */
550 if (!strcmp(np->name, "display"))
551 np->name = get_property(np, "compatible", NULL);
552
553 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
554 ifunc = interpret_root_props;
555 else if (np->type == 0)
556 ifunc = NULL;
557 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
558 ifunc = interpret_pci_props;
559 else if (!strcmp(np->type, "dbdma"))
560 ifunc = interpret_dbdma_props;
561 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
562 ifunc = interpret_macio_props;
563 else if (!strcmp(np->type, "isa"))
564 ifunc = interpret_isa_props;
565 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
566 ifunc = interpret_root_props;
567 else if (!((ifunc == interpret_dbdma_props
568 || ifunc == interpret_macio_props)
569 && (!strcmp(np->type, "escc")
570 || !strcmp(np->type, "media-bay"))))
571 ifunc = NULL;
572
573 for (child = np->child; child != NULL; child = child->sibling) {
574 rc = finish_node(child, mem_start, ifunc,
575 naddrc, nsizec, measure_only);
576 if (rc)
577 goto out;
578 }
579out:
580 return rc;
581}
582
583/**
584 * finish_device_tree is called once things are running normally
585 * (i.e. with text and data mapped to the address they were linked at).
586 * It traverses the device tree and fills in some of the additional,
587 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
588 * mapping is also initialized at this point.
589 */
590void __init finish_device_tree(void)
591{
592 unsigned long start, end, size = 0;
593
594 DBG(" -> finish_device_tree\n");
595
596 if (ppc64_interrupt_controller == IC_INVALID) {
597 DBG("failed to configure interrupt controller type\n");
598 panic("failed to configure interrupt controller type\n");
599 }
600
601 /* Initialize virtual IRQ map */
602 virt_irq_init();
603
604 /*
605 * Finish device-tree (pre-parsing some properties etc...)
606 * We do this in 2 passes. One with "measure_only" set, which
607 * will only measure the amount of memory needed, then we can
608 * allocate that memory, and call finish_node again. However,
609 * we must be careful as most routines will fail nowadays when
610 * prom_alloc() returns 0, so we must make sure our first pass
611 * doesn't start at 0. We pre-initialize size to 16 for that
612 * reason and then remove those additional 16 bytes
613 */
614 size = 16;
615 finish_node(allnodes, &size, NULL, 0, 0, 1);
616 size -= 16;
617 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
618 finish_node(allnodes, &end, NULL, 0, 0, 0);
619 BUG_ON(end != start + size);
620
621 DBG(" <- finish_device_tree\n");
622}
623
624#ifdef DEBUG
625#define printk udbg_printf
626#endif
627
628static inline char *find_flat_dt_string(u32 offset)
629{
630 return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings
631 + offset;
632}
633
634/**
635 * This function is used to scan the flattened device-tree, it is
636 * used to extract the memory informations at boot before we can
637 * unflatten the tree
638 */
639static int __init scan_flat_dt(int (*it)(unsigned long node,
640 const char *full_path, void *data),
641 void *data)
642{
643 unsigned long p = ((unsigned long)initial_boot_params) +
644 initial_boot_params->off_dt_struct;
645 int rc = 0;
646
647 do {
648 u32 tag = *((u32 *)p);
649 char *pathp;
650
651 p += 4;
652 if (tag == OF_DT_END_NODE)
653 continue;
654 if (tag == OF_DT_END)
655 break;
656 if (tag == OF_DT_PROP) {
657 u32 sz = *((u32 *)p);
658 p += 8;
659 p = _ALIGN(p, sz >= 8 ? 8 : 4);
660 p += sz;
661 p = _ALIGN(p, 4);
662 continue;
663 }
664 if (tag != OF_DT_BEGIN_NODE) {
665 printk(KERN_WARNING "Invalid tag %x scanning flattened"
666 " device tree !\n", tag);
667 return -EINVAL;
668 }
669 pathp = (char *)p;
670 p = _ALIGN(p + strlen(pathp) + 1, 4);
671 rc = it(p, pathp, data);
672 if (rc != 0)
673 break;
674 } while(1);
675
676 return rc;
677}
678
679/**
680 * This function can be used within scan_flattened_dt callback to get
681 * access to properties
682 */
683static void* __init get_flat_dt_prop(unsigned long node, const char *name,
684 unsigned long *size)
685{
686 unsigned long p = node;
687
688 do {
689 u32 tag = *((u32 *)p);
690 u32 sz, noff;
691 const char *nstr;
692
693 p += 4;
694 if (tag != OF_DT_PROP)
695 return NULL;
696
697 sz = *((u32 *)p);
698 noff = *((u32 *)(p + 4));
699 p += 8;
700 p = _ALIGN(p, sz >= 8 ? 8 : 4);
701
702 nstr = find_flat_dt_string(noff);
703 if (nstr == NULL) {
704 printk(KERN_WARNING "Can't find property index name !\n");
705 return NULL;
706 }
707 if (strcmp(name, nstr) == 0) {
708 if (size)
709 *size = sz;
710 return (void *)p;
711 }
712 p += sz;
713 p = _ALIGN(p, 4);
714 } while(1);
715}
716
717static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
718 unsigned long align)
719{
720 void *res;
721
722 *mem = _ALIGN(*mem, align);
723 res = (void *)*mem;
724 *mem += size;
725
726 return res;
727}
728
729static unsigned long __init unflatten_dt_node(unsigned long mem,
730 unsigned long *p,
731 struct device_node *dad,
732 struct device_node ***allnextpp)
733{
734 struct device_node *np;
735 struct property *pp, **prev_pp = NULL;
736 char *pathp;
737 u32 tag;
738 unsigned int l;
739
740 tag = *((u32 *)(*p));
741 if (tag != OF_DT_BEGIN_NODE) {
742 printk("Weird tag at start of node: %x\n", tag);
743 return mem;
744 }
745 *p += 4;
746 pathp = (char *)*p;
747 l = strlen(pathp) + 1;
748 *p = _ALIGN(*p + l, 4);
749
750 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l,
751 __alignof__(struct device_node));
752 if (allnextpp) {
753 memset(np, 0, sizeof(*np));
754 np->full_name = ((char*)np) + sizeof(struct device_node);
755 memcpy(np->full_name, pathp, l);
756 prev_pp = &np->properties;
757 **allnextpp = np;
758 *allnextpp = &np->allnext;
759 if (dad != NULL) {
760 np->parent = dad;
761 /* we temporarily use the `next' field as `last_child'. */
762 if (dad->next == 0)
763 dad->child = np;
764 else
765 dad->next->sibling = np;
766 dad->next = np;
767 }
768 kref_init(&np->kref);
769 }
770 while(1) {
771 u32 sz, noff;
772 char *pname;
773
774 tag = *((u32 *)(*p));
775 if (tag != OF_DT_PROP)
776 break;
777 *p += 4;
778 sz = *((u32 *)(*p));
779 noff = *((u32 *)((*p) + 4));
780 *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4);
781
782 pname = find_flat_dt_string(noff);
783 if (pname == NULL) {
784 printk("Can't find property name in list !\n");
785 break;
786 }
787 l = strlen(pname) + 1;
788 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
789 __alignof__(struct property));
790 if (allnextpp) {
791 if (strcmp(pname, "linux,phandle") == 0) {
792 np->node = *((u32 *)*p);
793 if (np->linux_phandle == 0)
794 np->linux_phandle = np->node;
795 }
796 if (strcmp(pname, "ibm,phandle") == 0)
797 np->linux_phandle = *((u32 *)*p);
798 pp->name = pname;
799 pp->length = sz;
800 pp->value = (void *)*p;
801 *prev_pp = pp;
802 prev_pp = &pp->next;
803 }
804 *p = _ALIGN((*p) + sz, 4);
805 }
806 if (allnextpp) {
807 *prev_pp = NULL;
808 np->name = get_property(np, "name", NULL);
809 np->type = get_property(np, "device_type", NULL);
810
811 if (!np->name)
812 np->name = "<NULL>";
813 if (!np->type)
814 np->type = "<NULL>";
815 }
816 while (tag == OF_DT_BEGIN_NODE) {
817 mem = unflatten_dt_node(mem, p, np, allnextpp);
818 tag = *((u32 *)(*p));
819 }
820 if (tag != OF_DT_END_NODE) {
821 printk("Weird tag at start of node: %x\n", tag);
822 return mem;
823 }
824 *p += 4;
825 return mem;
826}
827
828
829/**
830 * unflattens the device-tree passed by the firmware, creating the
831 * tree of struct device_node. It also fills the "name" and "type"
832 * pointers of the nodes so the normal device-tree walking functions
833 * can be used (this used to be done by finish_device_tree)
834 */
835void __init unflatten_device_tree(void)
836{
837 unsigned long start, mem, size;
838 struct device_node **allnextp = &allnodes;
839 char *p;
840 int l = 0;
841
842 DBG(" -> unflatten_device_tree()\n");
843
844 /* First pass, scan for size */
845 start = ((unsigned long)initial_boot_params) +
846 initial_boot_params->off_dt_struct;
847 size = unflatten_dt_node(0, &start, NULL, NULL);
848
849 DBG(" size is %lx, allocating...\n", size);
850
851 /* Allocate memory for the expanded device tree */
852 mem = (unsigned long)abs_to_virt(lmb_alloc(size,
853 __alignof__(struct device_node)));
854 DBG(" unflattening...\n", mem);
855
856 /* Second pass, do actual unflattening */
857 start = ((unsigned long)initial_boot_params) +
858 initial_boot_params->off_dt_struct;
859 unflatten_dt_node(mem, &start, NULL, &allnextp);
860 if (*((u32 *)start) != OF_DT_END)
861 printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start));
862 *allnextp = NULL;
863
864 /* Get pointer to OF "/chosen" node for use everywhere */
865 of_chosen = of_find_node_by_path("/chosen");
866
867 /* Retreive command line */
868 if (of_chosen != NULL) {
869 p = (char *)get_property(of_chosen, "bootargs", &l);
870 if (p != NULL && l > 0)
871 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
872 }
873#ifdef CONFIG_CMDLINE
874 if (l == 0 || (l == 1 && (*p) == 0))
875 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
876#endif /* CONFIG_CMDLINE */
877
878 DBG("Command line is: %s\n", cmd_line);
879
880 DBG(" <- unflatten_device_tree()\n");
881}
882
883
884static int __init early_init_dt_scan_cpus(unsigned long node,
885 const char *full_path, void *data)
886{
887 char *type = get_flat_dt_prop(node, "device_type", NULL);
888
889 /* We are scanning "cpu" nodes only */
890 if (type == NULL || strcmp(type, "cpu") != 0)
891 return 0;
892
893 /* On LPAR, look for the first ibm,pft-size property for the hash table size
894 */
895 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
896 u32 *pft_size;
897 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
898 if (pft_size != NULL) {
899 /* pft_size[0] is the NUMA CEC cookie */
900 ppc64_pft_size = pft_size[1];
901 }
902 }
903
904 if (initial_boot_params && initial_boot_params->version >= 2) {
905 /* version 2 of the kexec param format adds the phys cpuid
906 * of booted proc.
907 */
908 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
909 boot_cpuid = 0;
910 } else {
911 /* Check if it's the boot-cpu, set it's hw index in paca now */
912 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
913 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
914 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
915 boot_cpuid_phys = get_hard_smp_processor_id(0);
916 }
917 }
918
919 return 0;
920}
921
922static int __init early_init_dt_scan_chosen(unsigned long node,
923 const char *full_path, void *data)
924{
925 u32 *prop;
926 u64 *prop64;
927 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
928
929 if (strcmp(full_path, "/chosen") != 0)
930 return 0;
931
932 /* get platform type */
933 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
934 if (prop == NULL)
935 return 0;
936 systemcfg->platform = *prop;
937
938 /* check if iommu is forced on or off */
939 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
940 iommu_is_off = 1;
941 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
942 iommu_force_on = 1;
943
944 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
945 if (prop64)
946 memory_limit = *prop64;
947
948 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
949 if (prop64)
950 tce_alloc_start = *prop64;
951
952 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
953 if (prop64)
954 tce_alloc_end = *prop64;
955
956#ifdef CONFIG_PPC_RTAS
957 /* To help early debugging via the front panel, we retreive a minimal
958 * set of RTAS infos now if available
959 */
960 {
961 u64 *basep, *entryp;
962
963 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
964 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
965 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
966 if (basep && entryp && prop) {
967 rtas.base = *basep;
968 rtas.entry = *entryp;
969 rtas.size = *prop;
970 }
971 }
972#endif /* CONFIG_PPC_RTAS */
973
974 /* break now */
975 return 1;
976}
977
978static int __init early_init_dt_scan_root(unsigned long node,
979 const char *full_path, void *data)
980{
981 u32 *prop;
982
983 if (strcmp(full_path, "/") != 0)
984 return 0;
985
986 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
987 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
988
989 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
990 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
991
992 /* break now */
993 return 1;
994}
995
996static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
997{
998 cell_t *p = *cellp;
999 unsigned long r = 0;
1000
1001 /* Ignore more than 2 cells */
1002 while (s > 2) {
1003 p++;
1004 s--;
1005 }
1006 while (s) {
1007 r <<= 32;
1008 r |= *(p++);
1009 s--;
1010 }
1011
1012 *cellp = p;
1013 return r;
1014}
1015
1016
1017static int __init early_init_dt_scan_memory(unsigned long node,
1018 const char *full_path, void *data)
1019{
1020 char *type = get_flat_dt_prop(node, "device_type", NULL);
1021 cell_t *reg, *endp;
1022 unsigned long l;
1023
1024 /* We are scanning "memory" nodes only */
1025 if (type == NULL || strcmp(type, "memory") != 0)
1026 return 0;
1027
1028 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1029 if (reg == NULL)
1030 return 0;
1031
1032 endp = reg + (l / sizeof(cell_t));
1033
1034 DBG("memory scan node %s ...\n", full_path);
1035 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1036 unsigned long base, size;
1037
1038 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1039 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1040
1041 if (size == 0)
1042 continue;
1043 DBG(" - %lx , %lx\n", base, size);
1044 if (iommu_is_off) {
1045 if (base >= 0x80000000ul)
1046 continue;
1047 if ((base + size) > 0x80000000ul)
1048 size = 0x80000000ul - base;
1049 }
1050 lmb_add(base, size);
1051 }
1052 return 0;
1053}
1054
1055static void __init early_reserve_mem(void)
1056{
1057 u64 base, size;
1058 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1059 initial_boot_params->off_mem_rsvmap);
1060 while (1) {
1061 base = *(reserve_map++);
1062 size = *(reserve_map++);
1063 if (size == 0)
1064 break;
1065 DBG("reserving: %lx -> %lx\n", base, size);
1066 lmb_reserve(base, size);
1067 }
1068
1069#if 0
1070 DBG("memory reserved, lmbs :\n");
1071 lmb_dump_all();
1072#endif
1073}
1074
1075void __init early_init_devtree(void *params)
1076{
1077 DBG(" -> early_init_devtree()\n");
1078
1079 /* Setup flat device-tree pointer */
1080 initial_boot_params = params;
1081
1082 /* By default, hash size is not set */
1083 ppc64_pft_size = 0;
1084
1085 /* Retreive various informations from the /chosen node of the
1086 * device-tree, including the platform type, initrd location and
1087 * size, TCE reserve, and more ...
1088 */
1089 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1090
1091 /* Scan memory nodes and rebuild LMBs */
1092 lmb_init();
1093 scan_flat_dt(early_init_dt_scan_root, NULL);
1094 scan_flat_dt(early_init_dt_scan_memory, NULL);
1095 lmb_enforce_memory_limit();
1096 lmb_analyze();
1097 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1098 lmb_reserve(0, __pa(klimit));
1099
1100 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1101
1102 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1103 early_reserve_mem();
1104
1105 DBG("Scanning CPUs ...\n");
1106
1107 /* Retreive hash table size from flattened tree */
1108 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1109
1110 /* If hash size wasn't obtained above, we calculate it now based on
1111 * the total RAM size
1112 */
1113 if (ppc64_pft_size == 0) {
1114 unsigned long rnd_mem_size, pteg_count;
1115
1116 /* round mem_size up to next power of 2 */
1117 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1118 if (rnd_mem_size < systemcfg->physicalMemorySize)
1119 rnd_mem_size <<= 1;
1120
1121 /* # pages / 2 */
1122 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1123
1124 ppc64_pft_size = __ilog2(pteg_count << 7);
1125 }
1126
1127 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1128 DBG(" <- early_init_devtree()\n");
1129}
1130
1131#undef printk
1132
1133int
1134prom_n_addr_cells(struct device_node* np)
1135{
1136 int* ip;
1137 do {
1138 if (np->parent)
1139 np = np->parent;
1140 ip = (int *) get_property(np, "#address-cells", NULL);
1141 if (ip != NULL)
1142 return *ip;
1143 } while (np->parent);
1144 /* No #address-cells property for the root node, default to 1 */
1145 return 1;
1146}
1147
1148int
1149prom_n_size_cells(struct device_node* np)
1150{
1151 int* ip;
1152 do {
1153 if (np->parent)
1154 np = np->parent;
1155 ip = (int *) get_property(np, "#size-cells", NULL);
1156 if (ip != NULL)
1157 return *ip;
1158 } while (np->parent);
1159 /* No #size-cells property for the root node, default to 1 */
1160 return 1;
1161}
1162
1163/**
1164 * Work out the sense (active-low level / active-high edge)
1165 * of each interrupt from the device tree.
1166 */
1167void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1168{
1169 struct device_node *np;
1170 int i, j;
1171
1172 /* default to level-triggered */
1173 memset(senses, 1, max - off);
1174
1175 for (np = allnodes; np != 0; np = np->allnext) {
1176 for (j = 0; j < np->n_intrs; j++) {
1177 i = np->intrs[j].line;
1178 if (i >= off && i < max)
1179 senses[i-off] = np->intrs[j].sense ?
1180 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1181 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1182 }
1183 }
1184}
1185
1186/**
1187 * Construct and return a list of the device_nodes with a given name.
1188 */
1189struct device_node *
1190find_devices(const char *name)
1191{
1192 struct device_node *head, **prevp, *np;
1193
1194 prevp = &head;
1195 for (np = allnodes; np != 0; np = np->allnext) {
1196 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1197 *prevp = np;
1198 prevp = &np->next;
1199 }
1200 }
1201 *prevp = NULL;
1202 return head;
1203}
1204EXPORT_SYMBOL(find_devices);
1205
1206/**
1207 * Construct and return a list of the device_nodes with a given type.
1208 */
1209struct device_node *
1210find_type_devices(const char *type)
1211{
1212 struct device_node *head, **prevp, *np;
1213
1214 prevp = &head;
1215 for (np = allnodes; np != 0; np = np->allnext) {
1216 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1217 *prevp = np;
1218 prevp = &np->next;
1219 }
1220 }
1221 *prevp = NULL;
1222 return head;
1223}
1224EXPORT_SYMBOL(find_type_devices);
1225
1226/**
1227 * Returns all nodes linked together
1228 */
1229struct device_node *
1230find_all_nodes(void)
1231{
1232 struct device_node *head, **prevp, *np;
1233
1234 prevp = &head;
1235 for (np = allnodes; np != 0; np = np->allnext) {
1236 *prevp = np;
1237 prevp = &np->next;
1238 }
1239 *prevp = NULL;
1240 return head;
1241}
1242EXPORT_SYMBOL(find_all_nodes);
1243
1244/** Checks if the given "compat" string matches one of the strings in
1245 * the device's "compatible" property
1246 */
1247int
1248device_is_compatible(struct device_node *device, const char *compat)
1249{
1250 const char* cp;
1251 int cplen, l;
1252
1253 cp = (char *) get_property(device, "compatible", &cplen);
1254 if (cp == NULL)
1255 return 0;
1256 while (cplen > 0) {
1257 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1258 return 1;
1259 l = strlen(cp) + 1;
1260 cp += l;
1261 cplen -= l;
1262 }
1263
1264 return 0;
1265}
1266EXPORT_SYMBOL(device_is_compatible);
1267
1268
1269/**
1270 * Indicates whether the root node has a given value in its
1271 * compatible property.
1272 */
1273int
1274machine_is_compatible(const char *compat)
1275{
1276 struct device_node *root;
1277 int rc = 0;
1278
1279 root = of_find_node_by_path("/");
1280 if (root) {
1281 rc = device_is_compatible(root, compat);
1282 of_node_put(root);
1283 }
1284 return rc;
1285}
1286EXPORT_SYMBOL(machine_is_compatible);
1287
1288/**
1289 * Construct and return a list of the device_nodes with a given type
1290 * and compatible property.
1291 */
1292struct device_node *
1293find_compatible_devices(const char *type, const char *compat)
1294{
1295 struct device_node *head, **prevp, *np;
1296
1297 prevp = &head;
1298 for (np = allnodes; np != 0; np = np->allnext) {
1299 if (type != NULL
1300 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1301 continue;
1302 if (device_is_compatible(np, compat)) {
1303 *prevp = np;
1304 prevp = &np->next;
1305 }
1306 }
1307 *prevp = NULL;
1308 return head;
1309}
1310EXPORT_SYMBOL(find_compatible_devices);
1311
1312/**
1313 * Find the device_node with a given full_name.
1314 */
1315struct device_node *
1316find_path_device(const char *path)
1317{
1318 struct device_node *np;
1319
1320 for (np = allnodes; np != 0; np = np->allnext)
1321 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1322 return np;
1323 return NULL;
1324}
1325EXPORT_SYMBOL(find_path_device);
1326
1327/*******
1328 *
1329 * New implementation of the OF "find" APIs, return a refcounted
1330 * object, call of_node_put() when done. The device tree and list
1331 * are protected by a rw_lock.
1332 *
1333 * Note that property management will need some locking as well,
1334 * this isn't dealt with yet.
1335 *
1336 *******/
1337
1338/**
1339 * of_find_node_by_name - Find a node by its "name" property
1340 * @from: The node to start searching from or NULL, the node
1341 * you pass will not be searched, only the next one
1342 * will; typically, you pass what the previous call
1343 * returned. of_node_put() will be called on it
1344 * @name: The name string to match against
1345 *
1346 * Returns a node pointer with refcount incremented, use
1347 * of_node_put() on it when done.
1348 */
1349struct device_node *of_find_node_by_name(struct device_node *from,
1350 const char *name)
1351{
1352 struct device_node *np;
1353
1354 read_lock(&devtree_lock);
1355 np = from ? from->allnext : allnodes;
1356 for (; np != 0; np = np->allnext)
1357 if (np->name != 0 && strcasecmp(np->name, name) == 0
1358 && of_node_get(np))
1359 break;
1360 if (from)
1361 of_node_put(from);
1362 read_unlock(&devtree_lock);
1363 return np;
1364}
1365EXPORT_SYMBOL(of_find_node_by_name);
1366
1367/**
1368 * of_find_node_by_type - Find a node by its "device_type" property
1369 * @from: The node to start searching from or NULL, the node
1370 * you pass will not be searched, only the next one
1371 * will; typically, you pass what the previous call
1372 * returned. of_node_put() will be called on it
1373 * @name: The type string to match against
1374 *
1375 * Returns a node pointer with refcount incremented, use
1376 * of_node_put() on it when done.
1377 */
1378struct device_node *of_find_node_by_type(struct device_node *from,
1379 const char *type)
1380{
1381 struct device_node *np;
1382
1383 read_lock(&devtree_lock);
1384 np = from ? from->allnext : allnodes;
1385 for (; np != 0; np = np->allnext)
1386 if (np->type != 0 && strcasecmp(np->type, type) == 0
1387 && of_node_get(np))
1388 break;
1389 if (from)
1390 of_node_put(from);
1391 read_unlock(&devtree_lock);
1392 return np;
1393}
1394EXPORT_SYMBOL(of_find_node_by_type);
1395
1396/**
1397 * of_find_compatible_node - Find a node based on type and one of the
1398 * tokens in its "compatible" property
1399 * @from: The node to start searching from or NULL, the node
1400 * you pass will not be searched, only the next one
1401 * will; typically, you pass what the previous call
1402 * returned. of_node_put() will be called on it
1403 * @type: The type string to match "device_type" or NULL to ignore
1404 * @compatible: The string to match to one of the tokens in the device
1405 * "compatible" list.
1406 *
1407 * Returns a node pointer with refcount incremented, use
1408 * of_node_put() on it when done.
1409 */
1410struct device_node *of_find_compatible_node(struct device_node *from,
1411 const char *type, const char *compatible)
1412{
1413 struct device_node *np;
1414
1415 read_lock(&devtree_lock);
1416 np = from ? from->allnext : allnodes;
1417 for (; np != 0; np = np->allnext) {
1418 if (type != NULL
1419 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1420 continue;
1421 if (device_is_compatible(np, compatible) && of_node_get(np))
1422 break;
1423 }
1424 if (from)
1425 of_node_put(from);
1426 read_unlock(&devtree_lock);
1427 return np;
1428}
1429EXPORT_SYMBOL(of_find_compatible_node);
1430
1431/**
1432 * of_find_node_by_path - Find a node matching a full OF path
1433 * @path: The full path to match
1434 *
1435 * Returns a node pointer with refcount incremented, use
1436 * of_node_put() on it when done.
1437 */
1438struct device_node *of_find_node_by_path(const char *path)
1439{
1440 struct device_node *np = allnodes;
1441
1442 read_lock(&devtree_lock);
1443 for (; np != 0; np = np->allnext)
1444 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1445 && of_node_get(np))
1446 break;
1447 read_unlock(&devtree_lock);
1448 return np;
1449}
1450EXPORT_SYMBOL(of_find_node_by_path);
1451
1452/**
1453 * of_find_node_by_phandle - Find a node given a phandle
1454 * @handle: phandle of the node to find
1455 *
1456 * Returns a node pointer with refcount incremented, use
1457 * of_node_put() on it when done.
1458 */
1459struct device_node *of_find_node_by_phandle(phandle handle)
1460{
1461 struct device_node *np;
1462
1463 read_lock(&devtree_lock);
1464 for (np = allnodes; np != 0; np = np->allnext)
1465 if (np->linux_phandle == handle)
1466 break;
1467 if (np)
1468 of_node_get(np);
1469 read_unlock(&devtree_lock);
1470 return np;
1471}
1472EXPORT_SYMBOL(of_find_node_by_phandle);
1473
1474/**
1475 * of_find_all_nodes - Get next node in global list
1476 * @prev: Previous node or NULL to start iteration
1477 * of_node_put() will be called on it
1478 *
1479 * Returns a node pointer with refcount incremented, use
1480 * of_node_put() on it when done.
1481 */
1482struct device_node *of_find_all_nodes(struct device_node *prev)
1483{
1484 struct device_node *np;
1485
1486 read_lock(&devtree_lock);
1487 np = prev ? prev->allnext : allnodes;
1488 for (; np != 0; np = np->allnext)
1489 if (of_node_get(np))
1490 break;
1491 if (prev)
1492 of_node_put(prev);
1493 read_unlock(&devtree_lock);
1494 return np;
1495}
1496EXPORT_SYMBOL(of_find_all_nodes);
1497
1498/**
1499 * of_get_parent - Get a node's parent if any
1500 * @node: Node to get parent
1501 *
1502 * Returns a node pointer with refcount incremented, use
1503 * of_node_put() on it when done.
1504 */
1505struct device_node *of_get_parent(const struct device_node *node)
1506{
1507 struct device_node *np;
1508
1509 if (!node)
1510 return NULL;
1511
1512 read_lock(&devtree_lock);
1513 np = of_node_get(node->parent);
1514 read_unlock(&devtree_lock);
1515 return np;
1516}
1517EXPORT_SYMBOL(of_get_parent);
1518
1519/**
1520 * of_get_next_child - Iterate a node childs
1521 * @node: parent node
1522 * @prev: previous child of the parent node, or NULL to get first
1523 *
1524 * Returns a node pointer with refcount incremented, use
1525 * of_node_put() on it when done.
1526 */
1527struct device_node *of_get_next_child(const struct device_node *node,
1528 struct device_node *prev)
1529{
1530 struct device_node *next;
1531
1532 read_lock(&devtree_lock);
1533 next = prev ? prev->sibling : node->child;
1534 for (; next != 0; next = next->sibling)
1535 if (of_node_get(next))
1536 break;
1537 if (prev)
1538 of_node_put(prev);
1539 read_unlock(&devtree_lock);
1540 return next;
1541}
1542EXPORT_SYMBOL(of_get_next_child);
1543
1544/**
1545 * of_node_get - Increment refcount of a node
1546 * @node: Node to inc refcount, NULL is supported to
1547 * simplify writing of callers
1548 *
1549 * Returns node.
1550 */
1551struct device_node *of_node_get(struct device_node *node)
1552{
1553 if (node)
1554 kref_get(&node->kref);
1555 return node;
1556}
1557EXPORT_SYMBOL(of_node_get);
1558
1559static inline struct device_node * kref_to_device_node(struct kref *kref)
1560{
1561 return container_of(kref, struct device_node, kref);
1562}
1563
1564/**
1565 * of_node_release - release a dynamically allocated node
1566 * @kref: kref element of the node to be released
1567 *
1568 * In of_node_put() this function is passed to kref_put()
1569 * as the destructor.
1570 */
1571static void of_node_release(struct kref *kref)
1572{
1573 struct device_node *node = kref_to_device_node(kref);
1574 struct property *prop = node->properties;
1575
1576 if (!OF_IS_DYNAMIC(node))
1577 return;
1578 while (prop) {
1579 struct property *next = prop->next;
1580 kfree(prop->name);
1581 kfree(prop->value);
1582 kfree(prop);
1583 prop = next;
1584 }
1585 kfree(node->intrs);
1586 kfree(node->addrs);
1587 kfree(node->full_name);
1588 kfree(node);
1589}
1590
1591/**
1592 * of_node_put - Decrement refcount of a node
1593 * @node: Node to dec refcount, NULL is supported to
1594 * simplify writing of callers
1595 *
1596 */
1597void of_node_put(struct device_node *node)
1598{
1599 if (node)
1600 kref_put(&node->kref, of_node_release);
1601}
1602EXPORT_SYMBOL(of_node_put);
1603
1604/*
1605 * Fix up the uninitialized fields in a new device node:
1606 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1607 *
1608 * A lot of boot-time code is duplicated here, because functions such
1609 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1610 * slab allocator.
1611 *
1612 * This should probably be split up into smaller chunks.
1613 */
1614
1615static int of_finish_dynamic_node(struct device_node *node,
1616 unsigned long *unused1, int unused2,
1617 int unused3, int unused4)
1618{
1619 struct device_node *parent = of_get_parent(node);
1620 int err = 0;
1621 phandle *ibm_phandle;
1622
1623 node->name = get_property(node, "name", NULL);
1624 node->type = get_property(node, "device_type", NULL);
1625
1626 if (!parent) {
1627 err = -ENODEV;
1628 goto out;
1629 }
1630
1631 /* We don't support that function on PowerMac, at least
1632 * not yet
1633 */
1634 if (systemcfg->platform == PLATFORM_POWERMAC)
1635 return -ENODEV;
1636
1637 /* fix up new node's linux_phandle field */
1638 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1639 node->linux_phandle = *ibm_phandle;
1640
1641out:
1642 of_node_put(parent);
1643 return err;
1644}
1645
1646/*
1647 * Plug a device node into the tree and global list.
1648 */
1649void of_attach_node(struct device_node *np)
1650{
1651 write_lock(&devtree_lock);
1652 np->sibling = np->parent->child;
1653 np->allnext = allnodes;
1654 np->parent->child = np;
1655 allnodes = np;
1656 write_unlock(&devtree_lock);
1657}
1658
1659/*
1660 * "Unplug" a node from the device tree. The caller must hold
1661 * a reference to the node. The memory associated with the node
1662 * is not freed until its refcount goes to zero.
1663 */
1664void of_detach_node(const struct device_node *np)
1665{
1666 struct device_node *parent;
1667
1668 write_lock(&devtree_lock);
1669
1670 parent = np->parent;
1671
1672 if (allnodes == np)
1673 allnodes = np->allnext;
1674 else {
1675 struct device_node *prev;
1676 for (prev = allnodes;
1677 prev->allnext != np;
1678 prev = prev->allnext)
1679 ;
1680 prev->allnext = np->allnext;
1681 }
1682
1683 if (parent->child == np)
1684 parent->child = np->sibling;
1685 else {
1686 struct device_node *prevsib;
1687 for (prevsib = np->parent->child;
1688 prevsib->sibling != np;
1689 prevsib = prevsib->sibling)
1690 ;
1691 prevsib->sibling = np->sibling;
1692 }
1693
1694 write_unlock(&devtree_lock);
1695}
1696
1697static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1698{
1699 int err;
1700
1701 switch (action) {
1702 case PSERIES_RECONFIG_ADD:
1703 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1704 if (err < 0) {
1705 printk(KERN_ERR "finish_node returned %d\n", err);
1706 err = NOTIFY_BAD;
1707 }
1708 break;
1709 default:
1710 err = NOTIFY_DONE;
1711 break;
1712 }
1713 return err;
1714}
1715
1716static struct notifier_block prom_reconfig_nb = {
1717 .notifier_call = prom_reconfig_notifier,
1718 .priority = 10, /* This one needs to run first */
1719};
1720
1721static int __init prom_reconfig_setup(void)
1722{
1723 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1724}
1725__initcall(prom_reconfig_setup);
1726
1727/*
1728 * Find a property with a given name for a given node
1729 * and return the value.
1730 */
1731unsigned char *
1732get_property(struct device_node *np, const char *name, int *lenp)
1733{
1734 struct property *pp;
1735
1736 for (pp = np->properties; pp != 0; pp = pp->next)
1737 if (strcmp(pp->name, name) == 0) {
1738 if (lenp != 0)
1739 *lenp = pp->length;
1740 return pp->value;
1741 }
1742 return NULL;
1743}
1744EXPORT_SYMBOL(get_property);
1745
1746/*
1747 * Add a property to a node
1748 */
1749void
1750prom_add_property(struct device_node* np, struct property* prop)
1751{
1752 struct property **next = &np->properties;
1753
1754 prop->next = NULL;
1755 while (*next)
1756 next = &(*next)->next;
1757 *next = prop;
1758}
1759
1760#if 0
1761void
1762print_properties(struct device_node *np)
1763{
1764 struct property *pp;
1765 char *cp;
1766 int i, n;
1767
1768 for (pp = np->properties; pp != 0; pp = pp->next) {
1769 printk(KERN_INFO "%s", pp->name);
1770 for (i = strlen(pp->name); i < 16; ++i)
1771 printk(" ");
1772 cp = (char *) pp->value;
1773 for (i = pp->length; i > 0; --i, ++cp)
1774 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1775 || (i == 1 && *cp != 0))
1776 break;
1777 if (i == 0 && pp->length > 1) {
1778 /* looks like a string */
1779 printk(" %s\n", (char *) pp->value);
1780 } else {
1781 /* dump it in hex */
1782 n = pp->length;
1783 if (n > 64)
1784 n = 64;
1785 if (pp->length % 4 == 0) {
1786 unsigned int *p = (unsigned int *) pp->value;
1787
1788 n /= 4;
1789 for (i = 0; i < n; ++i) {
1790 if (i != 0 && (i % 4) == 0)
1791 printk("\n ");
1792 printk(" %08x", *p++);
1793 }
1794 } else {
1795 unsigned char *bp = pp->value;
1796
1797 for (i = 0; i < n; ++i) {
1798 if (i != 0 && (i % 16) == 0)
1799 printk("\n ");
1800 printk(" %02x", *bp++);
1801 }
1802 }
1803 printk("\n");
1804 if (pp->length > 64)
1805 printk(" ... (length = %d)\n",
1806 pp->length);
1807 }
1808 }
1809}
1810#endif
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820