diff options
Diffstat (limited to 'arch/ppc/kernel/time.c')
-rw-r--r-- | arch/ppc/kernel/time.c | 447 |
1 files changed, 447 insertions, 0 deletions
diff --git a/arch/ppc/kernel/time.c b/arch/ppc/kernel/time.c new file mode 100644 index 000000000000..50724139402c --- /dev/null +++ b/arch/ppc/kernel/time.c | |||
@@ -0,0 +1,447 @@ | |||
1 | /* | ||
2 | * Common time routines among all ppc machines. | ||
3 | * | ||
4 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | ||
5 | * Paul Mackerras' version and mine for PReP and Pmac. | ||
6 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | ||
7 | * | ||
8 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | ||
9 | * to make clock more stable (2.4.0-test5). The only thing | ||
10 | * that this code assumes is that the timebases have been synchronized | ||
11 | * by firmware on SMP and are never stopped (never do sleep | ||
12 | * on SMP then, nap and doze are OK). | ||
13 | * | ||
14 | * TODO (not necessarily in this file): | ||
15 | * - improve precision and reproducibility of timebase frequency | ||
16 | * measurement at boot time. | ||
17 | * - get rid of xtime_lock for gettimeofday (generic kernel problem | ||
18 | * to be implemented on all architectures for SMP scalability and | ||
19 | * eventually implementing gettimeofday without entering the kernel). | ||
20 | * - put all time/clock related variables in a single structure | ||
21 | * to minimize number of cache lines touched by gettimeofday() | ||
22 | * - for astronomical applications: add a new function to get | ||
23 | * non ambiguous timestamps even around leap seconds. This needs | ||
24 | * a new timestamp format and a good name. | ||
25 | * | ||
26 | * | ||
27 | * The following comment is partially obsolete (at least the long wait | ||
28 | * is no more a valid reason): | ||
29 | * Since the MPC8xx has a programmable interrupt timer, I decided to | ||
30 | * use that rather than the decrementer. Two reasons: 1.) the clock | ||
31 | * frequency is low, causing 2.) a long wait in the timer interrupt | ||
32 | * while ((d = get_dec()) == dval) | ||
33 | * loop. The MPC8xx can be driven from a variety of input clocks, | ||
34 | * so a number of assumptions have been made here because the kernel | ||
35 | * parameter HZ is a constant. We assume (correctly, today :-) that | ||
36 | * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal. | ||
37 | * This is then divided by 4, providing a 8192 Hz clock into the PIT. | ||
38 | * Since it is not possible to get a nice 100 Hz clock out of this, without | ||
39 | * creating a software PLL, I have set HZ to 128. -- Dan | ||
40 | * | ||
41 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
42 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
43 | */ | ||
44 | |||
45 | #include <linux/config.h> | ||
46 | #include <linux/errno.h> | ||
47 | #include <linux/sched.h> | ||
48 | #include <linux/kernel.h> | ||
49 | #include <linux/param.h> | ||
50 | #include <linux/string.h> | ||
51 | #include <linux/mm.h> | ||
52 | #include <linux/module.h> | ||
53 | #include <linux/interrupt.h> | ||
54 | #include <linux/timex.h> | ||
55 | #include <linux/kernel_stat.h> | ||
56 | #include <linux/mc146818rtc.h> | ||
57 | #include <linux/time.h> | ||
58 | #include <linux/init.h> | ||
59 | #include <linux/profile.h> | ||
60 | |||
61 | #include <asm/segment.h> | ||
62 | #include <asm/io.h> | ||
63 | #include <asm/nvram.h> | ||
64 | #include <asm/cache.h> | ||
65 | #include <asm/8xx_immap.h> | ||
66 | #include <asm/machdep.h> | ||
67 | |||
68 | #include <asm/time.h> | ||
69 | |||
70 | /* XXX false sharing with below? */ | ||
71 | u64 jiffies_64 = INITIAL_JIFFIES; | ||
72 | |||
73 | EXPORT_SYMBOL(jiffies_64); | ||
74 | |||
75 | unsigned long disarm_decr[NR_CPUS]; | ||
76 | |||
77 | extern struct timezone sys_tz; | ||
78 | |||
79 | /* keep track of when we need to update the rtc */ | ||
80 | time_t last_rtc_update; | ||
81 | |||
82 | /* The decrementer counts down by 128 every 128ns on a 601. */ | ||
83 | #define DECREMENTER_COUNT_601 (1000000000 / HZ) | ||
84 | |||
85 | unsigned tb_ticks_per_jiffy; | ||
86 | unsigned tb_to_us; | ||
87 | unsigned tb_last_stamp; | ||
88 | unsigned long tb_to_ns_scale; | ||
89 | |||
90 | extern unsigned long wall_jiffies; | ||
91 | |||
92 | static long time_offset; | ||
93 | |||
94 | DEFINE_SPINLOCK(rtc_lock); | ||
95 | |||
96 | EXPORT_SYMBOL(rtc_lock); | ||
97 | |||
98 | /* Timer interrupt helper function */ | ||
99 | static inline int tb_delta(unsigned *jiffy_stamp) { | ||
100 | int delta; | ||
101 | if (__USE_RTC()) { | ||
102 | delta = get_rtcl(); | ||
103 | if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000; | ||
104 | delta -= *jiffy_stamp; | ||
105 | } else { | ||
106 | delta = get_tbl() - *jiffy_stamp; | ||
107 | } | ||
108 | return delta; | ||
109 | } | ||
110 | |||
111 | #ifdef CONFIG_SMP | ||
112 | unsigned long profile_pc(struct pt_regs *regs) | ||
113 | { | ||
114 | unsigned long pc = instruction_pointer(regs); | ||
115 | |||
116 | if (in_lock_functions(pc)) | ||
117 | return regs->link; | ||
118 | |||
119 | return pc; | ||
120 | } | ||
121 | EXPORT_SYMBOL(profile_pc); | ||
122 | #endif | ||
123 | |||
124 | /* | ||
125 | * timer_interrupt - gets called when the decrementer overflows, | ||
126 | * with interrupts disabled. | ||
127 | * We set it up to overflow again in 1/HZ seconds. | ||
128 | */ | ||
129 | void timer_interrupt(struct pt_regs * regs) | ||
130 | { | ||
131 | int next_dec; | ||
132 | unsigned long cpu = smp_processor_id(); | ||
133 | unsigned jiffy_stamp = last_jiffy_stamp(cpu); | ||
134 | extern void do_IRQ(struct pt_regs *); | ||
135 | |||
136 | if (atomic_read(&ppc_n_lost_interrupts) != 0) | ||
137 | do_IRQ(regs); | ||
138 | |||
139 | irq_enter(); | ||
140 | |||
141 | while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) { | ||
142 | jiffy_stamp += tb_ticks_per_jiffy; | ||
143 | |||
144 | profile_tick(CPU_PROFILING, regs); | ||
145 | update_process_times(user_mode(regs)); | ||
146 | |||
147 | if (smp_processor_id()) | ||
148 | continue; | ||
149 | |||
150 | /* We are in an interrupt, no need to save/restore flags */ | ||
151 | write_seqlock(&xtime_lock); | ||
152 | tb_last_stamp = jiffy_stamp; | ||
153 | do_timer(regs); | ||
154 | |||
155 | /* | ||
156 | * update the rtc when needed, this should be performed on the | ||
157 | * right fraction of a second. Half or full second ? | ||
158 | * Full second works on mk48t59 clocks, others need testing. | ||
159 | * Note that this update is basically only used through | ||
160 | * the adjtimex system calls. Setting the HW clock in | ||
161 | * any other way is a /dev/rtc and userland business. | ||
162 | * This is still wrong by -0.5/+1.5 jiffies because of the | ||
163 | * timer interrupt resolution and possible delay, but here we | ||
164 | * hit a quantization limit which can only be solved by higher | ||
165 | * resolution timers and decoupling time management from timer | ||
166 | * interrupts. This is also wrong on the clocks | ||
167 | * which require being written at the half second boundary. | ||
168 | * We should have an rtc call that only sets the minutes and | ||
169 | * seconds like on Intel to avoid problems with non UTC clocks. | ||
170 | */ | ||
171 | if ( ppc_md.set_rtc_time && (time_status & STA_UNSYNC) == 0 && | ||
172 | xtime.tv_sec - last_rtc_update >= 659 && | ||
173 | abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ && | ||
174 | jiffies - wall_jiffies == 1) { | ||
175 | if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0) | ||
176 | last_rtc_update = xtime.tv_sec+1; | ||
177 | else | ||
178 | /* Try again one minute later */ | ||
179 | last_rtc_update += 60; | ||
180 | } | ||
181 | write_sequnlock(&xtime_lock); | ||
182 | } | ||
183 | if ( !disarm_decr[smp_processor_id()] ) | ||
184 | set_dec(next_dec); | ||
185 | last_jiffy_stamp(cpu) = jiffy_stamp; | ||
186 | |||
187 | if (ppc_md.heartbeat && !ppc_md.heartbeat_count--) | ||
188 | ppc_md.heartbeat(); | ||
189 | |||
190 | irq_exit(); | ||
191 | } | ||
192 | |||
193 | /* | ||
194 | * This version of gettimeofday has microsecond resolution. | ||
195 | */ | ||
196 | void do_gettimeofday(struct timeval *tv) | ||
197 | { | ||
198 | unsigned long flags; | ||
199 | unsigned long seq; | ||
200 | unsigned delta, lost_ticks, usec, sec; | ||
201 | |||
202 | do { | ||
203 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | ||
204 | sec = xtime.tv_sec; | ||
205 | usec = (xtime.tv_nsec / 1000); | ||
206 | delta = tb_ticks_since(tb_last_stamp); | ||
207 | #ifdef CONFIG_SMP | ||
208 | /* As long as timebases are not in sync, gettimeofday can only | ||
209 | * have jiffy resolution on SMP. | ||
210 | */ | ||
211 | if (!smp_tb_synchronized) | ||
212 | delta = 0; | ||
213 | #endif /* CONFIG_SMP */ | ||
214 | lost_ticks = jiffies - wall_jiffies; | ||
215 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | ||
216 | |||
217 | usec += mulhwu(tb_to_us, tb_ticks_per_jiffy * lost_ticks + delta); | ||
218 | while (usec >= 1000000) { | ||
219 | sec++; | ||
220 | usec -= 1000000; | ||
221 | } | ||
222 | tv->tv_sec = sec; | ||
223 | tv->tv_usec = usec; | ||
224 | } | ||
225 | |||
226 | EXPORT_SYMBOL(do_gettimeofday); | ||
227 | |||
228 | int do_settimeofday(struct timespec *tv) | ||
229 | { | ||
230 | time_t wtm_sec, new_sec = tv->tv_sec; | ||
231 | long wtm_nsec, new_nsec = tv->tv_nsec; | ||
232 | unsigned long flags; | ||
233 | int tb_delta; | ||
234 | |||
235 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
236 | return -EINVAL; | ||
237 | |||
238 | write_seqlock_irqsave(&xtime_lock, flags); | ||
239 | /* Updating the RTC is not the job of this code. If the time is | ||
240 | * stepped under NTP, the RTC will be update after STA_UNSYNC | ||
241 | * is cleared. Tool like clock/hwclock either copy the RTC | ||
242 | * to the system time, in which case there is no point in writing | ||
243 | * to the RTC again, or write to the RTC but then they don't call | ||
244 | * settimeofday to perform this operation. Note also that | ||
245 | * we don't touch the decrementer since: | ||
246 | * a) it would lose timer interrupt synchronization on SMP | ||
247 | * (if it is working one day) | ||
248 | * b) it could make one jiffy spuriously shorter or longer | ||
249 | * which would introduce another source of uncertainty potentially | ||
250 | * harmful to relatively short timers. | ||
251 | */ | ||
252 | |||
253 | /* This works perfectly on SMP only if the tb are in sync but | ||
254 | * guarantees an error < 1 jiffy even if they are off by eons, | ||
255 | * still reasonable when gettimeofday resolution is 1 jiffy. | ||
256 | */ | ||
257 | tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id())); | ||
258 | tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | ||
259 | |||
260 | new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); | ||
261 | |||
262 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | ||
263 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | ||
264 | |||
265 | set_normalized_timespec(&xtime, new_sec, new_nsec); | ||
266 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
267 | |||
268 | /* In case of a large backwards jump in time with NTP, we want the | ||
269 | * clock to be updated as soon as the PLL is again in lock. | ||
270 | */ | ||
271 | last_rtc_update = new_sec - 658; | ||
272 | |||
273 | time_adjust = 0; /* stop active adjtime() */ | ||
274 | time_status |= STA_UNSYNC; | ||
275 | time_state = TIME_ERROR; /* p. 24, (a) */ | ||
276 | time_maxerror = NTP_PHASE_LIMIT; | ||
277 | time_esterror = NTP_PHASE_LIMIT; | ||
278 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
279 | clock_was_set(); | ||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | EXPORT_SYMBOL(do_settimeofday); | ||
284 | |||
285 | /* This function is only called on the boot processor */ | ||
286 | void __init time_init(void) | ||
287 | { | ||
288 | time_t sec, old_sec; | ||
289 | unsigned old_stamp, stamp, elapsed; | ||
290 | |||
291 | if (ppc_md.time_init != NULL) | ||
292 | time_offset = ppc_md.time_init(); | ||
293 | |||
294 | if (__USE_RTC()) { | ||
295 | /* 601 processor: dec counts down by 128 every 128ns */ | ||
296 | tb_ticks_per_jiffy = DECREMENTER_COUNT_601; | ||
297 | /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */ | ||
298 | tb_to_us = 0x418937; | ||
299 | } else { | ||
300 | ppc_md.calibrate_decr(); | ||
301 | tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10); | ||
302 | } | ||
303 | |||
304 | /* Now that the decrementer is calibrated, it can be used in case the | ||
305 | * clock is stuck, but the fact that we have to handle the 601 | ||
306 | * makes things more complex. Repeatedly read the RTC until the | ||
307 | * next second boundary to try to achieve some precision. If there | ||
308 | * is no RTC, we still need to set tb_last_stamp and | ||
309 | * last_jiffy_stamp(cpu 0) to the current stamp. | ||
310 | */ | ||
311 | stamp = get_native_tbl(); | ||
312 | if (ppc_md.get_rtc_time) { | ||
313 | sec = ppc_md.get_rtc_time(); | ||
314 | elapsed = 0; | ||
315 | do { | ||
316 | old_stamp = stamp; | ||
317 | old_sec = sec; | ||
318 | stamp = get_native_tbl(); | ||
319 | if (__USE_RTC() && stamp < old_stamp) | ||
320 | old_stamp -= 1000000000; | ||
321 | elapsed += stamp - old_stamp; | ||
322 | sec = ppc_md.get_rtc_time(); | ||
323 | } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy); | ||
324 | if (sec==old_sec) | ||
325 | printk("Warning: real time clock seems stuck!\n"); | ||
326 | xtime.tv_sec = sec; | ||
327 | xtime.tv_nsec = 0; | ||
328 | /* No update now, we just read the time from the RTC ! */ | ||
329 | last_rtc_update = xtime.tv_sec; | ||
330 | } | ||
331 | last_jiffy_stamp(0) = tb_last_stamp = stamp; | ||
332 | |||
333 | /* Not exact, but the timer interrupt takes care of this */ | ||
334 | set_dec(tb_ticks_per_jiffy); | ||
335 | |||
336 | /* If platform provided a timezone (pmac), we correct the time */ | ||
337 | if (time_offset) { | ||
338 | sys_tz.tz_minuteswest = -time_offset / 60; | ||
339 | sys_tz.tz_dsttime = 0; | ||
340 | xtime.tv_sec -= time_offset; | ||
341 | } | ||
342 | set_normalized_timespec(&wall_to_monotonic, | ||
343 | -xtime.tv_sec, -xtime.tv_nsec); | ||
344 | } | ||
345 | |||
346 | #define FEBRUARY 2 | ||
347 | #define STARTOFTIME 1970 | ||
348 | #define SECDAY 86400L | ||
349 | #define SECYR (SECDAY * 365) | ||
350 | |||
351 | /* | ||
352 | * Note: this is wrong for 2100, but our signed 32-bit time_t will | ||
353 | * have overflowed long before that, so who cares. -- paulus | ||
354 | */ | ||
355 | #define leapyear(year) ((year) % 4 == 0) | ||
356 | #define days_in_year(a) (leapyear(a) ? 366 : 365) | ||
357 | #define days_in_month(a) (month_days[(a) - 1]) | ||
358 | |||
359 | static int month_days[12] = { | ||
360 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | ||
361 | }; | ||
362 | |||
363 | void to_tm(int tim, struct rtc_time * tm) | ||
364 | { | ||
365 | register int i; | ||
366 | register long hms, day, gday; | ||
367 | |||
368 | gday = day = tim / SECDAY; | ||
369 | hms = tim % SECDAY; | ||
370 | |||
371 | /* Hours, minutes, seconds are easy */ | ||
372 | tm->tm_hour = hms / 3600; | ||
373 | tm->tm_min = (hms % 3600) / 60; | ||
374 | tm->tm_sec = (hms % 3600) % 60; | ||
375 | |||
376 | /* Number of years in days */ | ||
377 | for (i = STARTOFTIME; day >= days_in_year(i); i++) | ||
378 | day -= days_in_year(i); | ||
379 | tm->tm_year = i; | ||
380 | |||
381 | /* Number of months in days left */ | ||
382 | if (leapyear(tm->tm_year)) | ||
383 | days_in_month(FEBRUARY) = 29; | ||
384 | for (i = 1; day >= days_in_month(i); i++) | ||
385 | day -= days_in_month(i); | ||
386 | days_in_month(FEBRUARY) = 28; | ||
387 | tm->tm_mon = i; | ||
388 | |||
389 | /* Days are what is left over (+1) from all that. */ | ||
390 | tm->tm_mday = day + 1; | ||
391 | |||
392 | /* | ||
393 | * Determine the day of week. Jan. 1, 1970 was a Thursday. | ||
394 | */ | ||
395 | tm->tm_wday = (gday + 4) % 7; | ||
396 | } | ||
397 | |||
398 | /* Auxiliary function to compute scaling factors */ | ||
399 | /* Actually the choice of a timebase running at 1/4 the of the bus | ||
400 | * frequency giving resolution of a few tens of nanoseconds is quite nice. | ||
401 | * It makes this computation very precise (27-28 bits typically) which | ||
402 | * is optimistic considering the stability of most processor clock | ||
403 | * oscillators and the precision with which the timebase frequency | ||
404 | * is measured but does not harm. | ||
405 | */ | ||
406 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) { | ||
407 | unsigned mlt=0, tmp, err; | ||
408 | /* No concern for performance, it's done once: use a stupid | ||
409 | * but safe and compact method to find the multiplier. | ||
410 | */ | ||
411 | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | ||
412 | if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp; | ||
413 | } | ||
414 | /* We might still be off by 1 for the best approximation. | ||
415 | * A side effect of this is that if outscale is too large | ||
416 | * the returned value will be zero. | ||
417 | * Many corner cases have been checked and seem to work, | ||
418 | * some might have been forgotten in the test however. | ||
419 | */ | ||
420 | err = inscale*(mlt+1); | ||
421 | if (err <= inscale/2) mlt++; | ||
422 | return mlt; | ||
423 | } | ||
424 | |||
425 | unsigned long long sched_clock(void) | ||
426 | { | ||
427 | unsigned long lo, hi, hi2; | ||
428 | unsigned long long tb; | ||
429 | |||
430 | if (!__USE_RTC()) { | ||
431 | do { | ||
432 | hi = get_tbu(); | ||
433 | lo = get_tbl(); | ||
434 | hi2 = get_tbu(); | ||
435 | } while (hi2 != hi); | ||
436 | tb = ((unsigned long long) hi << 32) | lo; | ||
437 | tb = (tb * tb_to_ns_scale) >> 10; | ||
438 | } else { | ||
439 | do { | ||
440 | hi = get_rtcu(); | ||
441 | lo = get_rtcl(); | ||
442 | hi2 = get_rtcu(); | ||
443 | } while (hi2 != hi); | ||
444 | tb = ((unsigned long long) hi) * 1000000000 + lo; | ||
445 | } | ||
446 | return tb; | ||
447 | } | ||