diff options
Diffstat (limited to 'arch/ppc/8xx_io/commproc.c')
-rw-r--r-- | arch/ppc/8xx_io/commproc.c | 432 |
1 files changed, 0 insertions, 432 deletions
diff --git a/arch/ppc/8xx_io/commproc.c b/arch/ppc/8xx_io/commproc.c deleted file mode 100644 index 752443df5ecf..000000000000 --- a/arch/ppc/8xx_io/commproc.c +++ /dev/null | |||
@@ -1,432 +0,0 @@ | |||
1 | /* | ||
2 | * General Purpose functions for the global management of the | ||
3 | * Communication Processor Module. | ||
4 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | ||
5 | * | ||
6 | * In addition to the individual control of the communication | ||
7 | * channels, there are a few functions that globally affect the | ||
8 | * communication processor. | ||
9 | * | ||
10 | * Buffer descriptors must be allocated from the dual ported memory | ||
11 | * space. The allocator for that is here. When the communication | ||
12 | * process is reset, we reclaim the memory available. There is | ||
13 | * currently no deallocator for this memory. | ||
14 | * The amount of space available is platform dependent. On the | ||
15 | * MBX, the EPPC software loads additional microcode into the | ||
16 | * communication processor, and uses some of the DP ram for this | ||
17 | * purpose. Current, the first 512 bytes and the last 256 bytes of | ||
18 | * memory are used. Right now I am conservative and only use the | ||
19 | * memory that can never be used for microcode. If there are | ||
20 | * applications that require more DP ram, we can expand the boundaries | ||
21 | * but then we have to be careful of any downloaded microcode. | ||
22 | */ | ||
23 | #include <linux/errno.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/kernel.h> | ||
26 | #include <linux/dma-mapping.h> | ||
27 | #include <linux/param.h> | ||
28 | #include <linux/string.h> | ||
29 | #include <linux/mm.h> | ||
30 | #include <linux/interrupt.h> | ||
31 | #include <linux/irq.h> | ||
32 | #include <linux/module.h> | ||
33 | #include <asm/mpc8xx.h> | ||
34 | #include <asm/page.h> | ||
35 | #include <asm/pgtable.h> | ||
36 | #include <asm/8xx_immap.h> | ||
37 | #include <asm/cpm1.h> | ||
38 | #include <asm/io.h> | ||
39 | #include <asm/tlbflush.h> | ||
40 | #include <asm/rheap.h> | ||
41 | |||
42 | #define immr_map(member) \ | ||
43 | ({ \ | ||
44 | u32 offset = offsetof(immap_t, member); \ | ||
45 | void *addr = ioremap (IMAP_ADDR + offset, \ | ||
46 | FIELD_SIZEOF(immap_t, member)); \ | ||
47 | addr; \ | ||
48 | }) | ||
49 | |||
50 | #define immr_map_size(member, size) \ | ||
51 | ({ \ | ||
52 | u32 offset = offsetof(immap_t, member); \ | ||
53 | void *addr = ioremap (IMAP_ADDR + offset, size); \ | ||
54 | addr; \ | ||
55 | }) | ||
56 | |||
57 | static void m8xx_cpm_dpinit(void); | ||
58 | cpm8xx_t *cpmp; /* Pointer to comm processor space */ | ||
59 | |||
60 | /* CPM interrupt vector functions. | ||
61 | */ | ||
62 | struct cpm_action { | ||
63 | void (*handler)(void *); | ||
64 | void *dev_id; | ||
65 | }; | ||
66 | static struct cpm_action cpm_vecs[CPMVEC_NR]; | ||
67 | static irqreturn_t cpm_interrupt(int irq, void * dev); | ||
68 | static irqreturn_t cpm_error_interrupt(int irq, void *dev); | ||
69 | /* Define a table of names to identify CPM interrupt handlers in | ||
70 | * /proc/interrupts. | ||
71 | */ | ||
72 | const char *cpm_int_name[] = | ||
73 | { "error", "PC4", "PC5", "SMC2", | ||
74 | "SMC1", "SPI", "PC6", "Timer 4", | ||
75 | "", "PC7", "PC8", "PC9", | ||
76 | "Timer 3", "", "PC10", "PC11", | ||
77 | "I2C", "RISC Timer", "Timer 2", "", | ||
78 | "IDMA2", "IDMA1", "SDMA error", "PC12", | ||
79 | "PC13", "Timer 1", "PC14", "SCC4", | ||
80 | "SCC3", "SCC2", "SCC1", "PC15" | ||
81 | }; | ||
82 | |||
83 | static void | ||
84 | cpm_mask_irq(unsigned int irq) | ||
85 | { | ||
86 | int cpm_vec = irq - CPM_IRQ_OFFSET; | ||
87 | |||
88 | clrbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec)); | ||
89 | } | ||
90 | |||
91 | static void | ||
92 | cpm_unmask_irq(unsigned int irq) | ||
93 | { | ||
94 | int cpm_vec = irq - CPM_IRQ_OFFSET; | ||
95 | |||
96 | setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec)); | ||
97 | } | ||
98 | |||
99 | static void | ||
100 | cpm_ack(unsigned int irq) | ||
101 | { | ||
102 | /* We do not need to do anything here. */ | ||
103 | } | ||
104 | |||
105 | static void | ||
106 | cpm_eoi(unsigned int irq) | ||
107 | { | ||
108 | int cpm_vec = irq - CPM_IRQ_OFFSET; | ||
109 | |||
110 | out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr, (1 << cpm_vec)); | ||
111 | } | ||
112 | |||
113 | struct hw_interrupt_type cpm_pic = { | ||
114 | .typename = " CPM ", | ||
115 | .enable = cpm_unmask_irq, | ||
116 | .disable = cpm_mask_irq, | ||
117 | .ack = cpm_ack, | ||
118 | .end = cpm_eoi, | ||
119 | }; | ||
120 | |||
121 | void | ||
122 | m8xx_cpm_reset(void) | ||
123 | { | ||
124 | volatile immap_t *imp; | ||
125 | volatile cpm8xx_t *commproc; | ||
126 | |||
127 | imp = (immap_t *)IMAP_ADDR; | ||
128 | commproc = (cpm8xx_t *)&imp->im_cpm; | ||
129 | |||
130 | #ifdef CONFIG_UCODE_PATCH | ||
131 | /* Perform a reset. | ||
132 | */ | ||
133 | commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); | ||
134 | |||
135 | /* Wait for it. | ||
136 | */ | ||
137 | while (commproc->cp_cpcr & CPM_CR_FLG); | ||
138 | |||
139 | cpm_load_patch(imp); | ||
140 | #endif | ||
141 | |||
142 | /* Set SDMA Bus Request priority 5. | ||
143 | * On 860T, this also enables FEC priority 6. I am not sure | ||
144 | * this is what we really want for some applications, but the | ||
145 | * manual recommends it. | ||
146 | * Bit 25, FAM can also be set to use FEC aggressive mode (860T). | ||
147 | */ | ||
148 | out_be32(&imp->im_siu_conf.sc_sdcr, 1), | ||
149 | |||
150 | /* Reclaim the DP memory for our use. */ | ||
151 | m8xx_cpm_dpinit(); | ||
152 | |||
153 | /* Tell everyone where the comm processor resides. | ||
154 | */ | ||
155 | cpmp = (cpm8xx_t *)commproc; | ||
156 | } | ||
157 | |||
158 | /* This is called during init_IRQ. We used to do it above, but this | ||
159 | * was too early since init_IRQ was not yet called. | ||
160 | */ | ||
161 | static struct irqaction cpm_error_irqaction = { | ||
162 | .handler = cpm_error_interrupt, | ||
163 | .mask = CPU_MASK_NONE, | ||
164 | }; | ||
165 | static struct irqaction cpm_interrupt_irqaction = { | ||
166 | .handler = cpm_interrupt, | ||
167 | .mask = CPU_MASK_NONE, | ||
168 | .name = "CPM cascade", | ||
169 | }; | ||
170 | |||
171 | void | ||
172 | cpm_interrupt_init(void) | ||
173 | { | ||
174 | int i; | ||
175 | |||
176 | /* Initialize the CPM interrupt controller. | ||
177 | */ | ||
178 | out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr, | ||
179 | (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | | ||
180 | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK); | ||
181 | out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, 0); | ||
182 | |||
183 | /* install the CPM interrupt controller routines for the CPM | ||
184 | * interrupt vectors | ||
185 | */ | ||
186 | for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ ) | ||
187 | irq_desc[i].chip = &cpm_pic; | ||
188 | |||
189 | /* Set our interrupt handler with the core CPU. */ | ||
190 | if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction)) | ||
191 | panic("Could not allocate CPM IRQ!"); | ||
192 | |||
193 | /* Install our own error handler. */ | ||
194 | cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR]; | ||
195 | if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction)) | ||
196 | panic("Could not allocate CPM error IRQ!"); | ||
197 | |||
198 | setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr, CICR_IEN); | ||
199 | } | ||
200 | |||
201 | /* | ||
202 | * Get the CPM interrupt vector. | ||
203 | */ | ||
204 | int | ||
205 | cpm_get_irq(void) | ||
206 | { | ||
207 | int cpm_vec; | ||
208 | |||
209 | /* Get the vector by setting the ACK bit and then reading | ||
210 | * the register. | ||
211 | */ | ||
212 | out_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr, 1); | ||
213 | cpm_vec = in_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr); | ||
214 | cpm_vec >>= 11; | ||
215 | |||
216 | return cpm_vec; | ||
217 | } | ||
218 | |||
219 | /* CPM interrupt controller cascade interrupt. | ||
220 | */ | ||
221 | static irqreturn_t | ||
222 | cpm_interrupt(int irq, void * dev) | ||
223 | { | ||
224 | /* This interrupt handler never actually gets called. It is | ||
225 | * installed only to unmask the CPM cascade interrupt in the SIU | ||
226 | * and to make the CPM cascade interrupt visible in /proc/interrupts. | ||
227 | */ | ||
228 | return IRQ_HANDLED; | ||
229 | } | ||
230 | |||
231 | /* The CPM can generate the error interrupt when there is a race condition | ||
232 | * between generating and masking interrupts. All we have to do is ACK it | ||
233 | * and return. This is a no-op function so we don't need any special | ||
234 | * tests in the interrupt handler. | ||
235 | */ | ||
236 | static irqreturn_t | ||
237 | cpm_error_interrupt(int irq, void *dev) | ||
238 | { | ||
239 | return IRQ_HANDLED; | ||
240 | } | ||
241 | |||
242 | /* A helper function to translate the handler prototype required by | ||
243 | * request_irq() to the handler prototype required by cpm_install_handler(). | ||
244 | */ | ||
245 | static irqreturn_t | ||
246 | cpm_handler_helper(int irq, void *dev_id) | ||
247 | { | ||
248 | int cpm_vec = irq - CPM_IRQ_OFFSET; | ||
249 | |||
250 | (*cpm_vecs[cpm_vec].handler)(dev_id); | ||
251 | |||
252 | return IRQ_HANDLED; | ||
253 | } | ||
254 | |||
255 | /* Install a CPM interrupt handler. | ||
256 | * This routine accepts a CPM interrupt vector in the range 0 to 31. | ||
257 | * This routine is retained for backward compatibility. Rather than using | ||
258 | * this routine to install a CPM interrupt handler, you can now use | ||
259 | * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to | ||
260 | * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47). | ||
261 | * | ||
262 | * Notice that the prototype of the interrupt handler function must be | ||
263 | * different depending on whether you install the handler with | ||
264 | * request_irq() or cpm_install_handler(). | ||
265 | */ | ||
266 | void | ||
267 | cpm_install_handler(int cpm_vec, void (*handler)(void *), void *dev_id) | ||
268 | { | ||
269 | int err; | ||
270 | |||
271 | /* If null handler, assume we are trying to free the IRQ. | ||
272 | */ | ||
273 | if (!handler) { | ||
274 | free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id); | ||
275 | return; | ||
276 | } | ||
277 | |||
278 | if (cpm_vecs[cpm_vec].handler != 0) | ||
279 | printk(KERN_INFO "CPM interrupt %x replacing %x\n", | ||
280 | (uint)handler, (uint)cpm_vecs[cpm_vec].handler); | ||
281 | cpm_vecs[cpm_vec].handler = handler; | ||
282 | cpm_vecs[cpm_vec].dev_id = dev_id; | ||
283 | |||
284 | if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper, | ||
285 | 0, cpm_int_name[cpm_vec], dev_id))) | ||
286 | printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n", | ||
287 | err, cpm_vec); | ||
288 | } | ||
289 | |||
290 | /* Free a CPM interrupt handler. | ||
291 | * This routine accepts a CPM interrupt vector in the range 0 to 31. | ||
292 | * This routine is retained for backward compatibility. | ||
293 | */ | ||
294 | void | ||
295 | cpm_free_handler(int cpm_vec) | ||
296 | { | ||
297 | request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0, | ||
298 | cpm_vecs[cpm_vec].dev_id); | ||
299 | |||
300 | cpm_vecs[cpm_vec].handler = NULL; | ||
301 | cpm_vecs[cpm_vec].dev_id = NULL; | ||
302 | } | ||
303 | |||
304 | /* Set a baud rate generator. This needs lots of work. There are | ||
305 | * four BRGs, any of which can be wired to any channel. | ||
306 | * The internal baud rate clock is the system clock divided by 16. | ||
307 | * This assumes the baudrate is 16x oversampled by the uart. | ||
308 | */ | ||
309 | #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq) | ||
310 | #define BRG_UART_CLK (BRG_INT_CLK/16) | ||
311 | #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) | ||
312 | |||
313 | void | ||
314 | cpm_setbrg(uint brg, uint rate) | ||
315 | { | ||
316 | volatile uint *bp; | ||
317 | |||
318 | /* This is good enough to get SMCs running..... | ||
319 | */ | ||
320 | bp = (uint *)&cpmp->cp_brgc1; | ||
321 | bp += brg; | ||
322 | /* The BRG has a 12-bit counter. For really slow baud rates (or | ||
323 | * really fast processors), we may have to further divide by 16. | ||
324 | */ | ||
325 | if (((BRG_UART_CLK / rate) - 1) < 4096) | ||
326 | *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; | ||
327 | else | ||
328 | *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | | ||
329 | CPM_BRG_EN | CPM_BRG_DIV16; | ||
330 | } | ||
331 | |||
332 | /* | ||
333 | * dpalloc / dpfree bits. | ||
334 | */ | ||
335 | static spinlock_t cpm_dpmem_lock; | ||
336 | /* | ||
337 | * 16 blocks should be enough to satisfy all requests | ||
338 | * until the memory subsystem goes up... | ||
339 | */ | ||
340 | static rh_block_t cpm_boot_dpmem_rh_block[16]; | ||
341 | static rh_info_t cpm_dpmem_info; | ||
342 | |||
343 | #define CPM_DPMEM_ALIGNMENT 8 | ||
344 | static u8* dpram_vbase; | ||
345 | static uint dpram_pbase; | ||
346 | |||
347 | void m8xx_cpm_dpinit(void) | ||
348 | { | ||
349 | spin_lock_init(&cpm_dpmem_lock); | ||
350 | |||
351 | dpram_vbase = immr_map_size(im_cpm.cp_dpmem, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE); | ||
352 | dpram_pbase = (uint)&((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem; | ||
353 | |||
354 | /* Initialize the info header */ | ||
355 | rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, | ||
356 | sizeof(cpm_boot_dpmem_rh_block) / | ||
357 | sizeof(cpm_boot_dpmem_rh_block[0]), | ||
358 | cpm_boot_dpmem_rh_block); | ||
359 | |||
360 | /* | ||
361 | * Attach the usable dpmem area. | ||
362 | * XXX: This is actually crap. CPM_DATAONLY_BASE and | ||
363 | * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies | ||
364 | * with the processor and the microcode patches applied / activated. | ||
365 | * But the following should be at least safe. | ||
366 | */ | ||
367 | rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); | ||
368 | } | ||
369 | |||
370 | /* | ||
371 | * Allocate the requested size worth of DP memory. | ||
372 | * This function returns an offset into the DPRAM area. | ||
373 | * Use cpm_dpram_addr() to get the virtual address of the area. | ||
374 | */ | ||
375 | unsigned long cpm_dpalloc(uint size, uint align) | ||
376 | { | ||
377 | unsigned long start; | ||
378 | unsigned long flags; | ||
379 | |||
380 | spin_lock_irqsave(&cpm_dpmem_lock, flags); | ||
381 | cpm_dpmem_info.alignment = align; | ||
382 | start = rh_alloc(&cpm_dpmem_info, size, "commproc"); | ||
383 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); | ||
384 | |||
385 | return start; | ||
386 | } | ||
387 | EXPORT_SYMBOL(cpm_dpalloc); | ||
388 | |||
389 | int cpm_dpfree(unsigned long offset) | ||
390 | { | ||
391 | int ret; | ||
392 | unsigned long flags; | ||
393 | |||
394 | spin_lock_irqsave(&cpm_dpmem_lock, flags); | ||
395 | ret = rh_free(&cpm_dpmem_info, offset); | ||
396 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); | ||
397 | |||
398 | return ret; | ||
399 | } | ||
400 | EXPORT_SYMBOL(cpm_dpfree); | ||
401 | |||
402 | unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align) | ||
403 | { | ||
404 | unsigned long start; | ||
405 | unsigned long flags; | ||
406 | |||
407 | spin_lock_irqsave(&cpm_dpmem_lock, flags); | ||
408 | cpm_dpmem_info.alignment = align; | ||
409 | start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc"); | ||
410 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); | ||
411 | |||
412 | return start; | ||
413 | } | ||
414 | EXPORT_SYMBOL(cpm_dpalloc_fixed); | ||
415 | |||
416 | void cpm_dpdump(void) | ||
417 | { | ||
418 | rh_dump(&cpm_dpmem_info); | ||
419 | } | ||
420 | EXPORT_SYMBOL(cpm_dpdump); | ||
421 | |||
422 | void *cpm_dpram_addr(unsigned long offset) | ||
423 | { | ||
424 | return (void *)(dpram_vbase + offset); | ||
425 | } | ||
426 | EXPORT_SYMBOL(cpm_dpram_addr); | ||
427 | |||
428 | uint cpm_dpram_phys(u8* addr) | ||
429 | { | ||
430 | return (dpram_pbase + (uint)(addr - dpram_vbase)); | ||
431 | } | ||
432 | EXPORT_SYMBOL(cpm_dpram_phys); | ||