aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ppc/8260_io
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ppc/8260_io')
-rw-r--r--arch/ppc/8260_io/Kconfig65
-rw-r--r--arch/ppc/8260_io/Makefile6
-rw-r--r--arch/ppc/8260_io/enet.c865
-rw-r--r--arch/ppc/8260_io/fcc_enet.c2379
4 files changed, 0 insertions, 3315 deletions
diff --git a/arch/ppc/8260_io/Kconfig b/arch/ppc/8260_io/Kconfig
deleted file mode 100644
index ea9651e2dd6a..000000000000
--- a/arch/ppc/8260_io/Kconfig
+++ /dev/null
@@ -1,65 +0,0 @@
1#
2# CPM2 Communication options
3#
4
5menu "CPM2 Options"
6 depends on CPM2
7
8config SCC_ENET
9 bool "CPM SCC Ethernet"
10 depends on NET_ETHERNET
11
12#
13# CONFIG_FEC_ENET is only used to get netdevices to call our init
14# function. Any combination of FCC1,2,3 are supported.
15#
16config FEC_ENET
17 bool "FCC Ethernet"
18 depends on NET_ETHERNET
19
20config FCC1_ENET
21 bool "Ethernet on FCC1"
22 depends on FEC_ENET
23 help
24 Use CPM2 fast Ethernet controller 1 to drive Ethernet (default).
25
26config FCC2_ENET
27 bool "Ethernet on FCC2"
28 depends on FEC_ENET
29 help
30 Use CPM2 fast Ethernet controller 2 to drive Ethernet.
31
32config FCC3_ENET
33 bool "Ethernet on FCC3"
34 depends on FEC_ENET
35 help
36 Use CPM2 fast Ethernet controller 3 to drive Ethernet.
37
38config USE_MDIO
39 bool "Use MDIO for PHY configuration"
40 depends on FEC_ENET
41
42choice
43 prompt "Type of PHY"
44 depends on 8260 && USE_MDIO
45 default FCC_GENERIC_PHY
46
47config FCC_LXT970
48 bool "LXT970"
49
50config FCC_LXT971
51 bool "LXT971"
52
53config FCC_QS6612
54 bool "QS6612"
55
56config FCC_DM9131
57 bool "DM9131"
58
59config FCC_DM9161
60 bool "DM9161"
61
62config FCC_GENERIC_PHY
63 bool "Generic"
64endchoice
65endmenu
diff --git a/arch/ppc/8260_io/Makefile b/arch/ppc/8260_io/Makefile
deleted file mode 100644
index 971f292c5d48..000000000000
--- a/arch/ppc/8260_io/Makefile
+++ /dev/null
@@ -1,6 +0,0 @@
1#
2# Makefile for the linux ppc-specific parts of comm processor (v2)
3#
4
5obj-$(CONFIG_FEC_ENET) += fcc_enet.o
6obj-$(CONFIG_SCC_ENET) += enet.o
diff --git a/arch/ppc/8260_io/enet.c b/arch/ppc/8260_io/enet.c
deleted file mode 100644
index ec1defea9c1e..000000000000
--- a/arch/ppc/8260_io/enet.c
+++ /dev/null
@@ -1,865 +0,0 @@
1/*
2 * Ethernet driver for Motorola MPC8260.
3 * Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
4 * Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com)
5 * 2.3.99 Updates
6 *
7 * I copied this from the 8xx CPM Ethernet driver, so follow the
8 * credits back through that.
9 *
10 * This version of the driver is somewhat selectable for the different
11 * processor/board combinations. It works for the boards I know about
12 * now, and should be easily modified to include others. Some of the
13 * configuration information is contained in <asm/cpm1.h> and the
14 * remainder is here.
15 *
16 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
17 * buffers are in the host memory.
18 *
19 * Right now, I am very watseful with the buffers. I allocate memory
20 * pages and then divide them into 2K frame buffers. This way I know I
21 * have buffers large enough to hold one frame within one buffer descriptor.
22 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
23 * will be much more memory efficient and will easily handle lots of
24 * small packets.
25 *
26 */
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/string.h>
30#include <linux/ptrace.h>
31#include <linux/errno.h>
32#include <linux/ioport.h>
33#include <linux/slab.h>
34#include <linux/interrupt.h>
35#include <linux/init.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/skbuff.h>
40#include <linux/spinlock.h>
41#include <linux/bitops.h>
42
43#include <asm/immap_cpm2.h>
44#include <asm/pgtable.h>
45#include <asm/mpc8260.h>
46#include <asm/uaccess.h>
47#include <asm/cpm2.h>
48#include <asm/irq.h>
49
50/*
51 * Theory of Operation
52 *
53 * The MPC8260 CPM performs the Ethernet processing on an SCC. It can use
54 * an aribtrary number of buffers on byte boundaries, but must have at
55 * least two receive buffers to prevent constant overrun conditions.
56 *
57 * The buffer descriptors are allocated from the CPM dual port memory
58 * with the data buffers allocated from host memory, just like all other
59 * serial communication protocols. The host memory buffers are allocated
60 * from the free page pool, and then divided into smaller receive and
61 * transmit buffers. The size of the buffers should be a power of two,
62 * since that nicely divides the page. This creates a ring buffer
63 * structure similar to the LANCE and other controllers.
64 *
65 * Like the LANCE driver:
66 * The driver runs as two independent, single-threaded flows of control. One
67 * is the send-packet routine, which enforces single-threaded use by the
68 * cep->tx_busy flag. The other thread is the interrupt handler, which is
69 * single threaded by the hardware and other software.
70 */
71
72/* The transmitter timeout
73 */
74#define TX_TIMEOUT (2*HZ)
75
76/* The number of Tx and Rx buffers. These are allocated from the page
77 * pool. The code may assume these are power of two, so it is best
78 * to keep them that size.
79 * We don't need to allocate pages for the transmitter. We just use
80 * the skbuffer directly.
81 */
82#define CPM_ENET_RX_PAGES 4
83#define CPM_ENET_RX_FRSIZE 2048
84#define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
85#define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
86#define TX_RING_SIZE 8 /* Must be power of two */
87#define TX_RING_MOD_MASK 7 /* for this to work */
88
89/* The CPM stores dest/src/type, data, and checksum for receive packets.
90 */
91#define PKT_MAXBUF_SIZE 1518
92#define PKT_MINBUF_SIZE 64
93#define PKT_MAXBLR_SIZE 1520
94
95/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
96 * tx_bd_base always point to the base of the buffer descriptors. The
97 * cur_rx and cur_tx point to the currently available buffer.
98 * The dirty_tx tracks the current buffer that is being sent by the
99 * controller. The cur_tx and dirty_tx are equal under both completely
100 * empty and completely full conditions. The empty/ready indicator in
101 * the buffer descriptor determines the actual condition.
102 */
103struct scc_enet_private {
104 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
105 struct sk_buff* tx_skbuff[TX_RING_SIZE];
106 ushort skb_cur;
107 ushort skb_dirty;
108
109 /* CPM dual port RAM relative addresses.
110 */
111 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
112 cbd_t *tx_bd_base;
113 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
114 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
115 scc_t *sccp;
116 struct net_device_stats stats;
117 uint tx_full;
118 spinlock_t lock;
119};
120
121static int scc_enet_open(struct net_device *dev);
122static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
123static int scc_enet_rx(struct net_device *dev);
124static irqreturn_t scc_enet_interrupt(int irq, void *dev_id);
125static int scc_enet_close(struct net_device *dev);
126static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
127static void set_multicast_list(struct net_device *dev);
128
129/* These will be configurable for the SCC choice.
130*/
131#define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK
132#define CPM_ENET_PAGE CPM_CR_SCC1_PAGE
133#define PROFF_ENET PROFF_SCC1
134#define SCC_ENET 0
135#define SIU_INT_ENET SIU_INT_SCC1
136
137/* These are both board and SCC dependent....
138*/
139#define PD_ENET_RXD ((uint)0x00000001)
140#define PD_ENET_TXD ((uint)0x00000002)
141#define PD_ENET_TENA ((uint)0x00000004)
142#define PC_ENET_RENA ((uint)0x00020000)
143#define PC_ENET_CLSN ((uint)0x00000004)
144#define PC_ENET_TXCLK ((uint)0x00000800)
145#define PC_ENET_RXCLK ((uint)0x00000400)
146#define CMX_CLK_ROUTE ((uint)0x25000000)
147#define CMX_CLK_MASK ((uint)0xff000000)
148
149/* Specific to a board.
150*/
151#define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000)
152#define PC_EST8260_ENET_SQE ((uint)0x40000000)
153#define PC_EST8260_ENET_NOTFD ((uint)0x20000000)
154
155static int
156scc_enet_open(struct net_device *dev)
157{
158
159 /* I should reset the ring buffers here, but I don't yet know
160 * a simple way to do that.
161 */
162 netif_start_queue(dev);
163 return 0; /* Always succeed */
164}
165
166static int
167scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
168{
169 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
170 volatile cbd_t *bdp;
171
172
173 /* Fill in a Tx ring entry */
174 bdp = cep->cur_tx;
175
176#ifndef final_version
177 if (bdp->cbd_sc & BD_ENET_TX_READY) {
178 /* Ooops. All transmit buffers are full. Bail out.
179 * This should not happen, since cep->tx_full should be set.
180 */
181 printk("%s: tx queue full!.\n", dev->name);
182 return 1;
183 }
184#endif
185
186 /* Clear all of the status flags.
187 */
188 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
189
190 /* If the frame is short, tell CPM to pad it.
191 */
192 if (skb->len <= ETH_ZLEN)
193 bdp->cbd_sc |= BD_ENET_TX_PAD;
194 else
195 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
196
197 /* Set buffer length and buffer pointer.
198 */
199 bdp->cbd_datlen = skb->len;
200 bdp->cbd_bufaddr = __pa(skb->data);
201
202 /* Save skb pointer.
203 */
204 cep->tx_skbuff[cep->skb_cur] = skb;
205
206 cep->stats.tx_bytes += skb->len;
207 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
208
209 spin_lock_irq(&cep->lock);
210
211 /* Send it on its way. Tell CPM its ready, interrupt when done,
212 * its the last BD of the frame, and to put the CRC on the end.
213 */
214 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
215
216 dev->trans_start = jiffies;
217
218 /* If this was the last BD in the ring, start at the beginning again.
219 */
220 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
221 bdp = cep->tx_bd_base;
222 else
223 bdp++;
224
225 if (bdp->cbd_sc & BD_ENET_TX_READY) {
226 netif_stop_queue(dev);
227 cep->tx_full = 1;
228 }
229
230 cep->cur_tx = (cbd_t *)bdp;
231
232 spin_unlock_irq(&cep->lock);
233
234 return 0;
235}
236
237static void
238scc_enet_timeout(struct net_device *dev)
239{
240 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
241
242 printk("%s: transmit timed out.\n", dev->name);
243 cep->stats.tx_errors++;
244#ifndef final_version
245 {
246 int i;
247 cbd_t *bdp;
248 printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
249 cep->cur_tx, cep->tx_full ? " (full)" : "",
250 cep->cur_rx);
251 bdp = cep->tx_bd_base;
252 printk(" Tx @base %p :\n", bdp);
253 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
254 printk("%04x %04x %08x\n",
255 bdp->cbd_sc,
256 bdp->cbd_datlen,
257 bdp->cbd_bufaddr);
258 bdp = cep->rx_bd_base;
259 printk(" Rx @base %p :\n", bdp);
260 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
261 printk("%04x %04x %08x\n",
262 bdp->cbd_sc,
263 bdp->cbd_datlen,
264 bdp->cbd_bufaddr);
265 }
266#endif
267 if (!cep->tx_full)
268 netif_wake_queue(dev);
269}
270
271/* The interrupt handler.
272 * This is called from the CPM handler, not the MPC core interrupt.
273 */
274static irqreturn_t
275scc_enet_interrupt(int irq, void *dev_id)
276{
277 struct net_device *dev = dev_id;
278 volatile struct scc_enet_private *cep;
279 volatile cbd_t *bdp;
280 ushort int_events;
281 int must_restart;
282
283 cep = dev->priv;
284
285 /* Get the interrupt events that caused us to be here.
286 */
287 int_events = cep->sccp->scc_scce;
288 cep->sccp->scc_scce = int_events;
289 must_restart = 0;
290
291 /* Handle receive event in its own function.
292 */
293 if (int_events & SCCE_ENET_RXF)
294 scc_enet_rx(dev_id);
295
296 /* Check for a transmit error. The manual is a little unclear
297 * about this, so the debug code until I get it figured out. It
298 * appears that if TXE is set, then TXB is not set. However,
299 * if carrier sense is lost during frame transmission, the TXE
300 * bit is set, "and continues the buffer transmission normally."
301 * I don't know if "normally" implies TXB is set when the buffer
302 * descriptor is closed.....trial and error :-).
303 */
304
305 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
306 */
307 if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
308 spin_lock(&cep->lock);
309 bdp = cep->dirty_tx;
310 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
311 if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
312 break;
313
314 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
315 cep->stats.tx_heartbeat_errors++;
316 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
317 cep->stats.tx_window_errors++;
318 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
319 cep->stats.tx_aborted_errors++;
320 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
321 cep->stats.tx_fifo_errors++;
322 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
323 cep->stats.tx_carrier_errors++;
324
325
326 /* No heartbeat or Lost carrier are not really bad errors.
327 * The others require a restart transmit command.
328 */
329 if (bdp->cbd_sc &
330 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
331 must_restart = 1;
332 cep->stats.tx_errors++;
333 }
334
335 cep->stats.tx_packets++;
336
337 /* Deferred means some collisions occurred during transmit,
338 * but we eventually sent the packet OK.
339 */
340 if (bdp->cbd_sc & BD_ENET_TX_DEF)
341 cep->stats.collisions++;
342
343 /* Free the sk buffer associated with this last transmit.
344 */
345 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
346 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
347
348 /* Update pointer to next buffer descriptor to be transmitted.
349 */
350 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
351 bdp = cep->tx_bd_base;
352 else
353 bdp++;
354
355 /* I don't know if we can be held off from processing these
356 * interrupts for more than one frame time. I really hope
357 * not. In such a case, we would now want to check the
358 * currently available BD (cur_tx) and determine if any
359 * buffers between the dirty_tx and cur_tx have also been
360 * sent. We would want to process anything in between that
361 * does not have BD_ENET_TX_READY set.
362 */
363
364 /* Since we have freed up a buffer, the ring is no longer
365 * full.
366 */
367 if (cep->tx_full) {
368 cep->tx_full = 0;
369 if (netif_queue_stopped(dev)) {
370 netif_wake_queue(dev);
371 }
372 }
373
374 cep->dirty_tx = (cbd_t *)bdp;
375 }
376
377 if (must_restart) {
378 volatile cpm_cpm2_t *cp;
379
380 /* Some transmit errors cause the transmitter to shut
381 * down. We now issue a restart transmit. Since the
382 * errors close the BD and update the pointers, the restart
383 * _should_ pick up without having to reset any of our
384 * pointers either.
385 */
386
387 cp = cpmp;
388 cp->cp_cpcr =
389 mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
390 CPM_CR_RESTART_TX) | CPM_CR_FLG;
391 while (cp->cp_cpcr & CPM_CR_FLG);
392 }
393 spin_unlock(&cep->lock);
394 }
395
396 /* Check for receive busy, i.e. packets coming but no place to
397 * put them. This "can't happen" because the receive interrupt
398 * is tossing previous frames.
399 */
400 if (int_events & SCCE_ENET_BSY) {
401 cep->stats.rx_dropped++;
402 printk("SCC ENET: BSY can't happen.\n");
403 }
404
405 return IRQ_HANDLED;
406}
407
408/* During a receive, the cur_rx points to the current incoming buffer.
409 * When we update through the ring, if the next incoming buffer has
410 * not been given to the system, we just set the empty indicator,
411 * effectively tossing the packet.
412 */
413static int
414scc_enet_rx(struct net_device *dev)
415{
416 struct scc_enet_private *cep;
417 volatile cbd_t *bdp;
418 struct sk_buff *skb;
419 ushort pkt_len;
420
421 cep = dev->priv;
422
423 /* First, grab all of the stats for the incoming packet.
424 * These get messed up if we get called due to a busy condition.
425 */
426 bdp = cep->cur_rx;
427
428for (;;) {
429 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
430 break;
431
432#ifndef final_version
433 /* Since we have allocated space to hold a complete frame, both
434 * the first and last indicators should be set.
435 */
436 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
437 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
438 printk("CPM ENET: rcv is not first+last\n");
439#endif
440
441 /* Frame too long or too short.
442 */
443 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
444 cep->stats.rx_length_errors++;
445 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
446 cep->stats.rx_frame_errors++;
447 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
448 cep->stats.rx_crc_errors++;
449 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
450 cep->stats.rx_crc_errors++;
451
452 /* Report late collisions as a frame error.
453 * On this error, the BD is closed, but we don't know what we
454 * have in the buffer. So, just drop this frame on the floor.
455 */
456 if (bdp->cbd_sc & BD_ENET_RX_CL) {
457 cep->stats.rx_frame_errors++;
458 }
459 else {
460
461 /* Process the incoming frame.
462 */
463 cep->stats.rx_packets++;
464 pkt_len = bdp->cbd_datlen;
465 cep->stats.rx_bytes += pkt_len;
466
467 /* This does 16 byte alignment, much more than we need.
468 * The packet length includes FCS, but we don't want to
469 * include that when passing upstream as it messes up
470 * bridging applications.
471 */
472 skb = dev_alloc_skb(pkt_len-4);
473
474 if (skb == NULL) {
475 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
476 cep->stats.rx_dropped++;
477 }
478 else {
479 skb_put(skb,pkt_len-4); /* Make room */
480 skb_copy_to_linear_data(skb,
481 (unsigned char *)__va(bdp->cbd_bufaddr),
482 pkt_len-4);
483 skb->protocol=eth_type_trans(skb,dev);
484 netif_rx(skb);
485 }
486 }
487
488 /* Clear the status flags for this buffer.
489 */
490 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
491
492 /* Mark the buffer empty.
493 */
494 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
495
496 /* Update BD pointer to next entry.
497 */
498 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
499 bdp = cep->rx_bd_base;
500 else
501 bdp++;
502
503 }
504 cep->cur_rx = (cbd_t *)bdp;
505
506 return 0;
507}
508
509static int
510scc_enet_close(struct net_device *dev)
511{
512 /* Don't know what to do yet.
513 */
514 netif_stop_queue(dev);
515
516 return 0;
517}
518
519static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
520{
521 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
522
523 return &cep->stats;
524}
525
526/* Set or clear the multicast filter for this adaptor.
527 * Skeleton taken from sunlance driver.
528 * The CPM Ethernet implementation allows Multicast as well as individual
529 * MAC address filtering. Some of the drivers check to make sure it is
530 * a group multicast address, and discard those that are not. I guess I
531 * will do the same for now, but just remove the test if you want
532 * individual filtering as well (do the upper net layers want or support
533 * this kind of feature?).
534 */
535
536static void set_multicast_list(struct net_device *dev)
537{
538 struct scc_enet_private *cep;
539 struct dev_mc_list *dmi;
540 u_char *mcptr, *tdptr;
541 volatile scc_enet_t *ep;
542 int i, j;
543 cep = (struct scc_enet_private *)dev->priv;
544
545 /* Get pointer to SCC area in parameter RAM.
546 */
547 ep = (scc_enet_t *)dev->base_addr;
548
549 if (dev->flags&IFF_PROMISC) {
550
551 /* Log any net taps. */
552 printk("%s: Promiscuous mode enabled.\n", dev->name);
553 cep->sccp->scc_psmr |= SCC_PSMR_PRO;
554 } else {
555
556 cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
557
558 if (dev->flags & IFF_ALLMULTI) {
559 /* Catch all multicast addresses, so set the
560 * filter to all 1's.
561 */
562 ep->sen_gaddr1 = 0xffff;
563 ep->sen_gaddr2 = 0xffff;
564 ep->sen_gaddr3 = 0xffff;
565 ep->sen_gaddr4 = 0xffff;
566 }
567 else {
568 /* Clear filter and add the addresses in the list.
569 */
570 ep->sen_gaddr1 = 0;
571 ep->sen_gaddr2 = 0;
572 ep->sen_gaddr3 = 0;
573 ep->sen_gaddr4 = 0;
574
575 dmi = dev->mc_list;
576
577 for (i=0; i<dev->mc_count; i++) {
578
579 /* Only support group multicast for now.
580 */
581 if (!(dmi->dmi_addr[0] & 1))
582 continue;
583
584 /* The address in dmi_addr is LSB first,
585 * and taddr is MSB first. We have to
586 * copy bytes MSB first from dmi_addr.
587 */
588 mcptr = (u_char *)dmi->dmi_addr + 5;
589 tdptr = (u_char *)&ep->sen_taddrh;
590 for (j=0; j<6; j++)
591 *tdptr++ = *mcptr--;
592
593 /* Ask CPM to run CRC and set bit in
594 * filter mask.
595 */
596 cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE,
597 CPM_ENET_BLOCK, 0,
598 CPM_CR_SET_GADDR) | CPM_CR_FLG;
599 /* this delay is necessary here -- Cort */
600 udelay(10);
601 while (cpmp->cp_cpcr & CPM_CR_FLG);
602 }
603 }
604 }
605}
606
607/* Initialize the CPM Ethernet on SCC.
608 */
609static int __init scc_enet_init(void)
610{
611 struct net_device *dev;
612 struct scc_enet_private *cep;
613 int i, j, err;
614 uint dp_offset;
615 unsigned char *eap;
616 unsigned long mem_addr;
617 bd_t *bd;
618 volatile cbd_t *bdp;
619 volatile cpm_cpm2_t *cp;
620 volatile scc_t *sccp;
621 volatile scc_enet_t *ep;
622 volatile cpm2_map_t *immap;
623 volatile iop_cpm2_t *io;
624
625 cp = cpmp; /* Get pointer to Communication Processor */
626
627 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
628 io = &immap->im_ioport;
629
630 bd = (bd_t *)__res;
631
632 /* Create an Ethernet device instance.
633 */
634 dev = alloc_etherdev(sizeof(*cep));
635 if (!dev)
636 return -ENOMEM;
637
638 cep = dev->priv;
639 spin_lock_init(&cep->lock);
640
641 /* Get pointer to SCC area in parameter RAM.
642 */
643 ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]);
644
645 /* And another to the SCC register area.
646 */
647 sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]);
648 cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
649
650 /* Disable receive and transmit in case someone left it running.
651 */
652 sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
653
654 /* Configure port C and D pins for SCC Ethernet. This
655 * won't work for all SCC possibilities....it will be
656 * board/port specific.
657 */
658 io->iop_pparc |=
659 (PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
660 io->iop_pdirc &=
661 ~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
662 io->iop_psorc &=
663 ~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK);
664 io->iop_psorc |= PC_ENET_CLSN;
665
666 io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA);
667 io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA);
668 io->iop_pdird &= ~PD_ENET_RXD;
669 io->iop_psord |= PD_ENET_TXD;
670 io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA);
671
672 /* Configure Serial Interface clock routing.
673 * First, clear all SCC bits to zero, then set the ones we want.
674 */
675 immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK;
676 immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE;
677
678 /* Allocate space for the buffer descriptors in the DP ram.
679 * These are relative offsets in the DP ram address space.
680 * Initialize base addresses for the buffer descriptors.
681 */
682 dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
683 ep->sen_genscc.scc_rbase = dp_offset;
684 cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
685
686 dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
687 ep->sen_genscc.scc_tbase = dp_offset;
688 cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
689
690 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
691 cep->cur_rx = cep->rx_bd_base;
692
693 ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
694 ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
695
696 /* Set maximum bytes per receive buffer.
697 * This appears to be an Ethernet frame size, not the buffer
698 * fragment size. It must be a multiple of four.
699 */
700 ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
701
702 /* Set CRC preset and mask.
703 */
704 ep->sen_cpres = 0xffffffff;
705 ep->sen_cmask = 0xdebb20e3;
706
707 ep->sen_crcec = 0; /* CRC Error counter */
708 ep->sen_alec = 0; /* alignment error counter */
709 ep->sen_disfc = 0; /* discard frame counter */
710
711 ep->sen_pads = 0x8888; /* Tx short frame pad character */
712 ep->sen_retlim = 15; /* Retry limit threshold */
713
714 ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
715 ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
716
717 ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
718 ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
719
720 /* Clear hash tables.
721 */
722 ep->sen_gaddr1 = 0;
723 ep->sen_gaddr2 = 0;
724 ep->sen_gaddr3 = 0;
725 ep->sen_gaddr4 = 0;
726 ep->sen_iaddr1 = 0;
727 ep->sen_iaddr2 = 0;
728 ep->sen_iaddr3 = 0;
729 ep->sen_iaddr4 = 0;
730
731 /* Set Ethernet station address.
732 *
733 * This is supplied in the board information structure, so we
734 * copy that into the controller.
735 */
736 eap = (unsigned char *)&(ep->sen_paddrh);
737 for (i=5; i>=0; i--)
738 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
739
740 ep->sen_pper = 0; /* 'cause the book says so */
741 ep->sen_taddrl = 0; /* temp address (LSB) */
742 ep->sen_taddrm = 0;
743 ep->sen_taddrh = 0; /* temp address (MSB) */
744
745 /* Now allocate the host memory pages and initialize the
746 * buffer descriptors.
747 */
748 bdp = cep->tx_bd_base;
749 for (i=0; i<TX_RING_SIZE; i++) {
750
751 /* Initialize the BD for every fragment in the page.
752 */
753 bdp->cbd_sc = 0;
754 bdp->cbd_bufaddr = 0;
755 bdp++;
756 }
757
758 /* Set the last buffer to wrap.
759 */
760 bdp--;
761 bdp->cbd_sc |= BD_SC_WRAP;
762
763 bdp = cep->rx_bd_base;
764 for (i=0; i<CPM_ENET_RX_PAGES; i++) {
765
766 /* Allocate a page.
767 */
768 mem_addr = __get_free_page(GFP_KERNEL);
769 /* BUG: no check for failure */
770
771 /* Initialize the BD for every fragment in the page.
772 */
773 for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
774 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
775 bdp->cbd_bufaddr = __pa(mem_addr);
776 mem_addr += CPM_ENET_RX_FRSIZE;
777 bdp++;
778 }
779 }
780
781 /* Set the last buffer to wrap.
782 */
783 bdp--;
784 bdp->cbd_sc |= BD_SC_WRAP;
785
786 /* Let's re-initialize the channel now. We have to do it later
787 * than the manual describes because we have just now finished
788 * the BD initialization.
789 */
790 cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
791 CPM_CR_INIT_TRX) | CPM_CR_FLG;
792 while (cp->cp_cpcr & CPM_CR_FLG);
793
794 cep->skb_cur = cep->skb_dirty = 0;
795
796 sccp->scc_scce = 0xffff; /* Clear any pending events */
797
798 /* Enable interrupts for transmit error, complete frame
799 * received, and any transmit buffer we have also set the
800 * interrupt flag.
801 */
802 sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
803
804 /* Install our interrupt handler.
805 */
806 request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev);
807 /* BUG: no check for failure */
808
809 /* Set GSMR_H to enable all normal operating modes.
810 * Set GSMR_L to enable Ethernet to MC68160.
811 */
812 sccp->scc_gsmrh = 0;
813 sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
814
815 /* Set sync/delimiters.
816 */
817 sccp->scc_dsr = 0xd555;
818
819 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
820 * start frame search 22 bit times after RENA.
821 */
822 sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
823
824 /* It is now OK to enable the Ethernet transmitter.
825 * Unfortunately, there are board implementation differences here.
826 */
827 io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK |
828 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
829 io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK |
830 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
831 io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK |
832 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
833 io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE);
834 io->iop_pdatc |= PC_EST8260_ENET_NOTFD;
835
836 dev->base_addr = (unsigned long)ep;
837
838 /* The CPM Ethernet specific entries in the device structure. */
839 dev->open = scc_enet_open;
840 dev->hard_start_xmit = scc_enet_start_xmit;
841 dev->tx_timeout = scc_enet_timeout;
842 dev->watchdog_timeo = TX_TIMEOUT;
843 dev->stop = scc_enet_close;
844 dev->get_stats = scc_enet_get_stats;
845 dev->set_multicast_list = set_multicast_list;
846
847 /* And last, enable the transmit and receive processing.
848 */
849 sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
850
851 err = register_netdev(dev);
852 if (err) {
853 free_netdev(dev);
854 return err;
855 }
856
857 printk("%s: SCC ENET Version 0.1, ", dev->name);
858 for (i=0; i<5; i++)
859 printk("%02x:", dev->dev_addr[i]);
860 printk("%02x\n", dev->dev_addr[5]);
861
862 return 0;
863}
864
865module_init(scc_enet_init);
diff --git a/arch/ppc/8260_io/fcc_enet.c b/arch/ppc/8260_io/fcc_enet.c
deleted file mode 100644
index d38b57e24cee..000000000000
--- a/arch/ppc/8260_io/fcc_enet.c
+++ /dev/null
@@ -1,2379 +0,0 @@
1/*
2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
10 *
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
18 *
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/init.h>
33#include <linux/delay.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/skbuff.h>
37#include <linux/spinlock.h>
38#include <linux/mii.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
41
42#include <asm/immap_cpm2.h>
43#include <asm/pgtable.h>
44#include <asm/mpc8260.h>
45#include <asm/irq.h>
46#include <asm/uaccess.h>
47#include <asm/signal.h>
48
49/* We can't use the PHY interrupt if we aren't using MDIO. */
50#if !defined(CONFIG_USE_MDIO)
51#undef PHY_INTERRUPT
52#endif
53
54/* If we have a PHY interrupt, we will advertise both full-duplex and half-
55 * duplex capabilities. If we don't have a PHY interrupt, then we will only
56 * advertise half-duplex capabilities.
57 */
58#define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
59 ADVERTISE_CSMA)
60#define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
61 MII_ADVERTISE_HALF)
62#ifdef PHY_INTERRUPT
63#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
64#else
65#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
66#endif
67#include <asm/cpm2.h>
68
69/* The transmitter timeout
70 */
71#define TX_TIMEOUT (2*HZ)
72
73#ifdef CONFIG_USE_MDIO
74/* Forward declarations of some structures to support different PHYs */
75
76typedef struct {
77 uint mii_data;
78 void (*funct)(uint mii_reg, struct net_device *dev);
79} phy_cmd_t;
80
81typedef struct {
82 uint id;
83 char *name;
84
85 const phy_cmd_t *config;
86 const phy_cmd_t *startup;
87 const phy_cmd_t *ack_int;
88 const phy_cmd_t *shutdown;
89} phy_info_t;
90
91/* values for phy_status */
92
93#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
94#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
95#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
96#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
97#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
98#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
99#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
100
101#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
102#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
103#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
104#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
105#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
106#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
107#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
108#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
109#endif /* CONFIG_USE_MDIO */
110
111/* The number of Tx and Rx buffers. These are allocated from the page
112 * pool. The code may assume these are power of two, so it is best
113 * to keep them that size.
114 * We don't need to allocate pages for the transmitter. We just use
115 * the skbuffer directly.
116 */
117#define FCC_ENET_RX_PAGES 16
118#define FCC_ENET_RX_FRSIZE 2048
119#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
120#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
121#define TX_RING_SIZE 16 /* Must be power of two */
122#define TX_RING_MOD_MASK 15 /* for this to work */
123
124/* The FCC stores dest/src/type, data, and checksum for receive packets.
125 * size includes support for VLAN
126 */
127#define PKT_MAXBUF_SIZE 1522
128#define PKT_MINBUF_SIZE 64
129
130/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
131 * size includes support for VLAN
132 */
133#define PKT_MAXDMA_SIZE 1524
134
135/* Maximum input buffer size. Must be a multiple of 32.
136*/
137#define PKT_MAXBLR_SIZE 1536
138
139static int fcc_enet_open(struct net_device *dev);
140static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
141static int fcc_enet_rx(struct net_device *dev);
142static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
143static int fcc_enet_close(struct net_device *dev);
144static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
145/* static void set_multicast_list(struct net_device *dev); */
146static void fcc_restart(struct net_device *dev, int duplex);
147static void fcc_stop(struct net_device *dev);
148static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
149
150/* These will be configurable for the FCC choice.
151 * Multiple ports can be configured. There is little choice among the
152 * I/O pins to the PHY, except the clocks. We will need some board
153 * dependent clock selection.
154 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
155 * help show what pins are used for each device.
156 */
157
158/* Since the CLK setting changes greatly from board to board, I changed
159 * it to a easy way. You just need to specify which CLK number to use.
160 * Note that only limited choices can be make on each port.
161 */
162
163/* FCC1 Clock Source Configuration. There are board specific.
164 Can only choose from CLK9-12 */
165#ifdef CONFIG_SBC82xx
166#define F1_RXCLK 9
167#define F1_TXCLK 10
168#else
169#define F1_RXCLK 12
170#define F1_TXCLK 11
171#endif
172
173/* FCC2 Clock Source Configuration. There are board specific.
174 Can only choose from CLK13-16 */
175#define F2_RXCLK 13
176#define F2_TXCLK 14
177
178/* FCC3 Clock Source Configuration. There are board specific.
179 Can only choose from CLK13-16 */
180#define F3_RXCLK 15
181#define F3_TXCLK 16
182
183/* Automatically generates register configurations */
184#define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
185
186#define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
187#define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
188#define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
189#define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
190#define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
191#define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
192
193#define PC_F1RXCLK PC_CLK(F1_RXCLK)
194#define PC_F1TXCLK PC_CLK(F1_TXCLK)
195#define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
196#define CMX1_CLK_MASK ((uint)0xff000000)
197
198#define PC_F2RXCLK PC_CLK(F2_RXCLK)
199#define PC_F2TXCLK PC_CLK(F2_TXCLK)
200#define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
201#define CMX2_CLK_MASK ((uint)0x00ff0000)
202
203#define PC_F3RXCLK PC_CLK(F3_RXCLK)
204#define PC_F3TXCLK PC_CLK(F3_TXCLK)
205#define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
206#define CMX3_CLK_MASK ((uint)0x0000ff00)
207
208
209/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
210 * but there is little variation among the choices.
211 */
212#define PA1_COL ((uint)0x00000001)
213#define PA1_CRS ((uint)0x00000002)
214#define PA1_TXER ((uint)0x00000004)
215#define PA1_TXEN ((uint)0x00000008)
216#define PA1_RXDV ((uint)0x00000010)
217#define PA1_RXER ((uint)0x00000020)
218#define PA1_TXDAT ((uint)0x00003c00)
219#define PA1_RXDAT ((uint)0x0003c000)
220#define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
221#define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
222 PA1_RXDV | PA1_RXER)
223#define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
224#define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
225
226
227/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
228 * but there is little variation among the choices.
229 */
230#define PB2_TXER ((uint)0x00000001)
231#define PB2_RXDV ((uint)0x00000002)
232#define PB2_TXEN ((uint)0x00000004)
233#define PB2_RXER ((uint)0x00000008)
234#define PB2_COL ((uint)0x00000010)
235#define PB2_CRS ((uint)0x00000020)
236#define PB2_TXDAT ((uint)0x000003c0)
237#define PB2_RXDAT ((uint)0x00003c00)
238#define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
239 PB2_RXER | PB2_RXDV | PB2_TXER)
240#define PB2_PSORB_BIN (PB2_TXEN)
241#define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
242#define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
243
244
245/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
246 * but there is little variation among the choices.
247 */
248#define PB3_RXDV ((uint)0x00004000)
249#define PB3_RXER ((uint)0x00008000)
250#define PB3_TXER ((uint)0x00010000)
251#define PB3_TXEN ((uint)0x00020000)
252#define PB3_COL ((uint)0x00040000)
253#define PB3_CRS ((uint)0x00080000)
254#ifndef CONFIG_RPX8260
255#define PB3_TXDAT ((uint)0x0f000000)
256#define PC3_TXDAT ((uint)0x00000000)
257#else
258#define PB3_TXDAT ((uint)0x0f000000)
259#define PC3_TXDAT 0
260#endif
261#define PB3_RXDAT ((uint)0x00f00000)
262#define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
263 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
264#define PB3_PSORB_BIN (0)
265#define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
266#define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
267
268#define PC3_PSORC_BOUT (PC3_TXDAT)
269#define PC3_PSORC_BIN (0)
270#define PC3_DIRC_BOUT (0)
271#define PC3_DIRC_BIN (PC3_TXDAT)
272
273
274/* MII status/control serial interface.
275*/
276#if defined(CONFIG_RPX8260)
277/* The EP8260 doesn't use Port C for MDIO */
278#define PC_MDIO ((uint)0x00000000)
279#define PC_MDCK ((uint)0x00000000)
280#elif defined(CONFIG_TQM8260)
281/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
282#define PC_MDIO ((uint)0x00000002)
283#define PC_MDCK ((uint)0x00000001)
284#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260)
285#define PC_MDIO ((uint)0x00400000)
286#define PC_MDCK ((uint)0x00200000)
287#else
288#define PC_MDIO ((uint)0x00000004)
289#define PC_MDCK ((uint)0x00000020)
290#endif
291
292#if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
293#error "Must define PC_MDIO and PC_MDCK if using MDIO"
294#endif
295
296/* PHY addresses */
297/* default to dynamic config of phy addresses */
298#define FCC1_PHY_ADDR 0
299#ifdef CONFIG_PQ2FADS
300#define FCC2_PHY_ADDR 0
301#else
302#define FCC2_PHY_ADDR 2
303#endif
304#define FCC3_PHY_ADDR 3
305
306/* A table of information for supporting FCCs. This does two things.
307 * First, we know how many FCCs we have and they are always externally
308 * numbered from zero. Second, it holds control register and I/O
309 * information that could be different among board designs.
310 */
311typedef struct fcc_info {
312 uint fc_fccnum;
313 uint fc_phyaddr;
314 uint fc_cpmblock;
315 uint fc_cpmpage;
316 uint fc_proff;
317 uint fc_interrupt;
318 uint fc_trxclocks;
319 uint fc_clockroute;
320 uint fc_clockmask;
321 uint fc_mdio;
322 uint fc_mdck;
323} fcc_info_t;
324
325static fcc_info_t fcc_ports[] = {
326#ifdef CONFIG_FCC1_ENET
327 { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
328 (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
329 PC_MDIO, PC_MDCK },
330#endif
331#ifdef CONFIG_FCC2_ENET
332 { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
333 (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
334 PC_MDIO, PC_MDCK },
335#endif
336#ifdef CONFIG_FCC3_ENET
337 { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
338 (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
339 PC_MDIO, PC_MDCK },
340#endif
341};
342
343/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
344 * tx_bd_base always point to the base of the buffer descriptors. The
345 * cur_rx and cur_tx point to the currently available buffer.
346 * The dirty_tx tracks the current buffer that is being sent by the
347 * controller. The cur_tx and dirty_tx are equal under both completely
348 * empty and completely full conditions. The empty/ready indicator in
349 * the buffer descriptor determines the actual condition.
350 */
351struct fcc_enet_private {
352 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
353 struct sk_buff* tx_skbuff[TX_RING_SIZE];
354 ushort skb_cur;
355 ushort skb_dirty;
356
357 /* CPM dual port RAM relative addresses.
358 */
359 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
360 cbd_t *tx_bd_base;
361 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
362 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
363 volatile fcc_t *fccp;
364 volatile fcc_enet_t *ep;
365 struct net_device_stats stats;
366 uint tx_free;
367 spinlock_t lock;
368
369#ifdef CONFIG_USE_MDIO
370 uint phy_id;
371 uint phy_id_done;
372 uint phy_status;
373 phy_info_t *phy;
374 struct work_struct phy_relink;
375 struct work_struct phy_display_config;
376 struct net_device *dev;
377
378 uint sequence_done;
379
380 uint phy_addr;
381#endif /* CONFIG_USE_MDIO */
382
383 int link;
384 int old_link;
385 int full_duplex;
386
387 fcc_info_t *fip;
388};
389
390static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
391 volatile cpm2_map_t *immap);
392static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
393static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
394 volatile cpm2_map_t *immap);
395static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
396 volatile cpm2_map_t *immap);
397
398#ifdef CONFIG_USE_MDIO
399static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
400static uint mii_send_receive(fcc_info_t *fip, uint cmd);
401static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
402
403/* Make MII read/write commands for the FCC.
404*/
405#define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
406#define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
407 ((VAL) & 0xffff))
408#define mk_mii_end 0
409#endif /* CONFIG_USE_MDIO */
410
411
412static int
413fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
414{
415 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
416 volatile cbd_t *bdp;
417
418 /* Fill in a Tx ring entry */
419 bdp = cep->cur_tx;
420
421#ifndef final_version
422 if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
423 /* Ooops. All transmit buffers are full. Bail out.
424 * This should not happen, since the tx queue should be stopped.
425 */
426 printk("%s: tx queue full!.\n", dev->name);
427 return 1;
428 }
429#endif
430
431 /* Clear all of the status flags. */
432 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
433
434 /* If the frame is short, tell CPM to pad it. */
435 if (skb->len <= ETH_ZLEN)
436 bdp->cbd_sc |= BD_ENET_TX_PAD;
437 else
438 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
439
440 /* Set buffer length and buffer pointer. */
441 bdp->cbd_datlen = skb->len;
442 bdp->cbd_bufaddr = __pa(skb->data);
443
444 spin_lock_irq(&cep->lock);
445
446 /* Save skb pointer. */
447 cep->tx_skbuff[cep->skb_cur] = skb;
448
449 cep->stats.tx_bytes += skb->len;
450 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
451
452 /* Send it on its way. Tell CPM its ready, interrupt when done,
453 * its the last BD of the frame, and to put the CRC on the end.
454 */
455 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
456
457#if 0
458 /* Errata says don't do this. */
459 cep->fccp->fcc_ftodr = 0x8000;
460#endif
461 dev->trans_start = jiffies;
462
463 /* If this was the last BD in the ring, start at the beginning again. */
464 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
465 bdp = cep->tx_bd_base;
466 else
467 bdp++;
468
469 if (!--cep->tx_free)
470 netif_stop_queue(dev);
471
472 cep->cur_tx = (cbd_t *)bdp;
473
474 spin_unlock_irq(&cep->lock);
475
476 return 0;
477}
478
479
480static void
481fcc_enet_timeout(struct net_device *dev)
482{
483 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
484
485 printk("%s: transmit timed out.\n", dev->name);
486 cep->stats.tx_errors++;
487#ifndef final_version
488 {
489 int i;
490 cbd_t *bdp;
491 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
492 cep->cur_tx, cep->tx_free,
493 cep->cur_rx);
494 bdp = cep->tx_bd_base;
495 printk(" Tx @base %p :\n", bdp);
496 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
497 printk("%04x %04x %08x\n",
498 bdp->cbd_sc,
499 bdp->cbd_datlen,
500 bdp->cbd_bufaddr);
501 bdp = cep->rx_bd_base;
502 printk(" Rx @base %p :\n", bdp);
503 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
504 printk("%04x %04x %08x\n",
505 bdp->cbd_sc,
506 bdp->cbd_datlen,
507 bdp->cbd_bufaddr);
508 }
509#endif
510 if (cep->tx_free)
511 netif_wake_queue(dev);
512}
513
514/* The interrupt handler. */
515static irqreturn_t
516fcc_enet_interrupt(int irq, void *dev_id)
517{
518 struct net_device *dev = dev_id;
519 volatile struct fcc_enet_private *cep;
520 volatile cbd_t *bdp;
521 ushort int_events;
522 int must_restart;
523
524 cep = dev->priv;
525
526 /* Get the interrupt events that caused us to be here.
527 */
528 int_events = cep->fccp->fcc_fcce;
529 cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
530 must_restart = 0;
531
532#ifdef PHY_INTERRUPT
533 /* We have to be careful here to make sure that we aren't
534 * interrupted by a PHY interrupt.
535 */
536 disable_irq_nosync(PHY_INTERRUPT);
537#endif
538
539 /* Handle receive event in its own function.
540 */
541 if (int_events & FCC_ENET_RXF)
542 fcc_enet_rx(dev_id);
543
544 /* Check for a transmit error. The manual is a little unclear
545 * about this, so the debug code until I get it figured out. It
546 * appears that if TXE is set, then TXB is not set. However,
547 * if carrier sense is lost during frame transmission, the TXE
548 * bit is set, "and continues the buffer transmission normally."
549 * I don't know if "normally" implies TXB is set when the buffer
550 * descriptor is closed.....trial and error :-).
551 */
552
553 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
554 */
555 if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
556 spin_lock(&cep->lock);
557 bdp = cep->dirty_tx;
558 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
559 if (cep->tx_free == TX_RING_SIZE)
560 break;
561
562 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
563 cep->stats.tx_heartbeat_errors++;
564 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
565 cep->stats.tx_window_errors++;
566 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
567 cep->stats.tx_aborted_errors++;
568 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
569 cep->stats.tx_fifo_errors++;
570 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
571 cep->stats.tx_carrier_errors++;
572
573
574 /* No heartbeat or Lost carrier are not really bad errors.
575 * The others require a restart transmit command.
576 */
577 if (bdp->cbd_sc &
578 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
579 must_restart = 1;
580 cep->stats.tx_errors++;
581 }
582
583 cep->stats.tx_packets++;
584
585 /* Deferred means some collisions occurred during transmit,
586 * but we eventually sent the packet OK.
587 */
588 if (bdp->cbd_sc & BD_ENET_TX_DEF)
589 cep->stats.collisions++;
590
591 /* Free the sk buffer associated with this last transmit. */
592 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
593 cep->tx_skbuff[cep->skb_dirty] = NULL;
594 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
595
596 /* Update pointer to next buffer descriptor to be transmitted. */
597 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
598 bdp = cep->tx_bd_base;
599 else
600 bdp++;
601
602 /* I don't know if we can be held off from processing these
603 * interrupts for more than one frame time. I really hope
604 * not. In such a case, we would now want to check the
605 * currently available BD (cur_tx) and determine if any
606 * buffers between the dirty_tx and cur_tx have also been
607 * sent. We would want to process anything in between that
608 * does not have BD_ENET_TX_READY set.
609 */
610
611 /* Since we have freed up a buffer, the ring is no longer
612 * full.
613 */
614 if (!cep->tx_free++) {
615 if (netif_queue_stopped(dev)) {
616 netif_wake_queue(dev);
617 }
618 }
619
620 cep->dirty_tx = (cbd_t *)bdp;
621 }
622
623 if (must_restart) {
624 volatile cpm_cpm2_t *cp;
625
626 /* Some transmit errors cause the transmitter to shut
627 * down. We now issue a restart transmit. Since the
628 * errors close the BD and update the pointers, the restart
629 * _should_ pick up without having to reset any of our
630 * pointers either. Also, To workaround 8260 device erratum
631 * CPM37, we must disable and then re-enable the transmitter
632 * following a Late Collision, Underrun, or Retry Limit error.
633 */
634 cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
635 udelay(10); /* wait a few microseconds just on principle */
636 cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
637
638 cp = cpmp;
639 cp->cp_cpcr =
640 mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
641 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
642 while (cp->cp_cpcr & CPM_CR_FLG);
643 }
644 spin_unlock(&cep->lock);
645 }
646
647 /* Check for receive busy, i.e. packets coming but no place to
648 * put them.
649 */
650 if (int_events & FCC_ENET_BSY) {
651 cep->fccp->fcc_fcce = FCC_ENET_BSY;
652 cep->stats.rx_dropped++;
653 }
654
655#ifdef PHY_INTERRUPT
656 enable_irq(PHY_INTERRUPT);
657#endif
658 return IRQ_HANDLED;
659}
660
661/* During a receive, the cur_rx points to the current incoming buffer.
662 * When we update through the ring, if the next incoming buffer has
663 * not been given to the system, we just set the empty indicator,
664 * effectively tossing the packet.
665 */
666static int
667fcc_enet_rx(struct net_device *dev)
668{
669 struct fcc_enet_private *cep;
670 volatile cbd_t *bdp;
671 struct sk_buff *skb;
672 ushort pkt_len;
673
674 cep = dev->priv;
675
676 /* First, grab all of the stats for the incoming packet.
677 * These get messed up if we get called due to a busy condition.
678 */
679 bdp = cep->cur_rx;
680
681for (;;) {
682 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
683 break;
684
685#ifndef final_version
686 /* Since we have allocated space to hold a complete frame, both
687 * the first and last indicators should be set.
688 */
689 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
690 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
691 printk("CPM ENET: rcv is not first+last\n");
692#endif
693
694 /* Frame too long or too short. */
695 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
696 cep->stats.rx_length_errors++;
697 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
698 cep->stats.rx_frame_errors++;
699 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
700 cep->stats.rx_crc_errors++;
701 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
702 cep->stats.rx_crc_errors++;
703 if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
704 cep->stats.rx_frame_errors++;
705
706 if (!(bdp->cbd_sc &
707 (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
708 | BD_ENET_RX_OV | BD_ENET_RX_CL)))
709 {
710 /* Process the incoming frame. */
711 cep->stats.rx_packets++;
712
713 /* Remove the FCS from the packet length. */
714 pkt_len = bdp->cbd_datlen - 4;
715 cep->stats.rx_bytes += pkt_len;
716
717 /* This does 16 byte alignment, much more than we need. */
718 skb = dev_alloc_skb(pkt_len);
719
720 if (skb == NULL) {
721 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
722 cep->stats.rx_dropped++;
723 }
724 else {
725 skb_put(skb,pkt_len); /* Make room */
726 skb_copy_to_linear_data(skb,
727 (unsigned char *)__va(bdp->cbd_bufaddr),
728 pkt_len);
729 skb->protocol=eth_type_trans(skb,dev);
730 netif_rx(skb);
731 }
732 }
733
734 /* Clear the status flags for this buffer. */
735 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
736
737 /* Mark the buffer empty. */
738 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
739
740 /* Update BD pointer to next entry. */
741 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
742 bdp = cep->rx_bd_base;
743 else
744 bdp++;
745
746 }
747 cep->cur_rx = (cbd_t *)bdp;
748
749 return 0;
750}
751
752static int
753fcc_enet_close(struct net_device *dev)
754{
755#ifdef CONFIG_USE_MDIO
756 struct fcc_enet_private *fep = dev->priv;
757#endif
758
759 netif_stop_queue(dev);
760 fcc_stop(dev);
761#ifdef CONFIG_USE_MDIO
762 if (fep->phy)
763 mii_do_cmd(dev, fep->phy->shutdown);
764#endif
765
766 return 0;
767}
768
769static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
770{
771 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
772
773 return &cep->stats;
774}
775
776#ifdef CONFIG_USE_MDIO
777
778/* NOTE: Most of the following comes from the FEC driver for 860. The
779 * overall structure of MII code has been retained (as it's proved stable
780 * and well-tested), but actual transfer requests are processed "at once"
781 * instead of being queued (there's no interrupt-driven MII transfer
782 * mechanism, one has to toggle the data/clock bits manually).
783 */
784static int
785mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
786{
787 struct fcc_enet_private *fep;
788 int retval, tmp;
789
790 /* Add PHY address to register command. */
791 fep = dev->priv;
792 regval |= fep->phy_addr << 23;
793
794 retval = 0;
795
796 tmp = mii_send_receive(fep->fip, regval);
797 if (func)
798 func(tmp, dev);
799
800 return retval;
801}
802
803static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
804{
805 int k;
806
807 if(!c)
808 return;
809
810 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
811 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
812}
813
814static void mii_parse_sr(uint mii_reg, struct net_device *dev)
815{
816 volatile struct fcc_enet_private *fep = dev->priv;
817 uint s = fep->phy_status;
818
819 s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
820
821 if (mii_reg & BMSR_LSTATUS)
822 s |= PHY_STAT_LINK;
823 if (mii_reg & BMSR_RFAULT)
824 s |= PHY_STAT_FAULT;
825 if (mii_reg & BMSR_ANEGCOMPLETE)
826 s |= PHY_STAT_ANC;
827
828 fep->phy_status = s;
829}
830
831static void mii_parse_cr(uint mii_reg, struct net_device *dev)
832{
833 volatile struct fcc_enet_private *fep = dev->priv;
834 uint s = fep->phy_status;
835
836 s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
837
838 if (mii_reg & BMCR_ANENABLE)
839 s |= PHY_CONF_ANE;
840 if (mii_reg & BMCR_LOOPBACK)
841 s |= PHY_CONF_LOOP;
842
843 fep->phy_status = s;
844}
845
846static void mii_parse_anar(uint mii_reg, struct net_device *dev)
847{
848 volatile struct fcc_enet_private *fep = dev->priv;
849 uint s = fep->phy_status;
850
851 s &= ~(PHY_CONF_SPMASK);
852
853 if (mii_reg & ADVERTISE_10HALF)
854 s |= PHY_CONF_10HDX;
855 if (mii_reg & ADVERTISE_10FULL)
856 s |= PHY_CONF_10FDX;
857 if (mii_reg & ADVERTISE_100HALF)
858 s |= PHY_CONF_100HDX;
859 if (mii_reg & ADVERTISE_100FULL)
860 s |= PHY_CONF_100FDX;
861
862 fep->phy_status = s;
863}
864
865/* ------------------------------------------------------------------------- */
866/* Generic PHY support. Should work for all PHYs, but does not support link
867 * change interrupts.
868 */
869#ifdef CONFIG_FCC_GENERIC_PHY
870
871static phy_info_t phy_info_generic = {
872 0x00000000, /* 0-->match any PHY */
873 "GENERIC",
874
875 (const phy_cmd_t []) { /* config */
876 /* advertise only half-duplex capabilities */
877 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
878 mii_parse_anar },
879
880 /* enable auto-negotiation */
881 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
882 { mk_mii_end, }
883 },
884 (const phy_cmd_t []) { /* startup */
885 /* restart auto-negotiation */
886 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
887 NULL },
888 { mk_mii_end, }
889 },
890 (const phy_cmd_t []) { /* ack_int */
891 /* We don't actually use the ack_int table with a generic
892 * PHY, but putting a reference to mii_parse_sr here keeps
893 * us from getting a compiler warning about unused static
894 * functions in the case where we only compile in generic
895 * PHY support.
896 */
897 { mk_mii_read(MII_BMSR), mii_parse_sr },
898 { mk_mii_end, }
899 },
900 (const phy_cmd_t []) { /* shutdown */
901 { mk_mii_end, }
902 },
903};
904#endif /* ifdef CONFIG_FCC_GENERIC_PHY */
905
906/* ------------------------------------------------------------------------- */
907/* The Level one LXT970 is used by many boards */
908
909#ifdef CONFIG_FCC_LXT970
910
911#define MII_LXT970_MIRROR 16 /* Mirror register */
912#define MII_LXT970_IER 17 /* Interrupt Enable Register */
913#define MII_LXT970_ISR 18 /* Interrupt Status Register */
914#define MII_LXT970_CONFIG 19 /* Configuration Register */
915#define MII_LXT970_CSR 20 /* Chip Status Register */
916
917static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
918{
919 volatile struct fcc_enet_private *fep = dev->priv;
920 uint s = fep->phy_status;
921
922 s &= ~(PHY_STAT_SPMASK);
923
924 if (mii_reg & 0x0800) {
925 if (mii_reg & 0x1000)
926 s |= PHY_STAT_100FDX;
927 else
928 s |= PHY_STAT_100HDX;
929 } else {
930 if (mii_reg & 0x1000)
931 s |= PHY_STAT_10FDX;
932 else
933 s |= PHY_STAT_10HDX;
934 }
935
936 fep->phy_status = s;
937}
938
939static phy_info_t phy_info_lxt970 = {
940 0x07810000,
941 "LXT970",
942
943 (const phy_cmd_t []) { /* config */
944#if 0
945// { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
946
947 /* Set default operation of 100-TX....for some reason
948 * some of these bits are set on power up, which is wrong.
949 */
950 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
951#endif
952 { mk_mii_read(MII_BMCR), mii_parse_cr },
953 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
954 { mk_mii_end, }
955 },
956 (const phy_cmd_t []) { /* startup - enable interrupts */
957 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
958 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
959 { mk_mii_end, }
960 },
961 (const phy_cmd_t []) { /* ack_int */
962 /* read SR and ISR to acknowledge */
963
964 { mk_mii_read(MII_BMSR), mii_parse_sr },
965 { mk_mii_read(MII_LXT970_ISR), NULL },
966
967 /* find out the current status */
968
969 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
970 { mk_mii_end, }
971 },
972 (const phy_cmd_t []) { /* shutdown - disable interrupts */
973 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
974 { mk_mii_end, }
975 },
976};
977
978#endif /* CONFIG_FEC_LXT970 */
979
980/* ------------------------------------------------------------------------- */
981/* The Level one LXT971 is used on some of my custom boards */
982
983#ifdef CONFIG_FCC_LXT971
984
985/* register definitions for the 971 */
986
987#define MII_LXT971_PCR 16 /* Port Control Register */
988#define MII_LXT971_SR2 17 /* Status Register 2 */
989#define MII_LXT971_IER 18 /* Interrupt Enable Register */
990#define MII_LXT971_ISR 19 /* Interrupt Status Register */
991#define MII_LXT971_LCR 20 /* LED Control Register */
992#define MII_LXT971_TCR 30 /* Transmit Control Register */
993
994/*
995 * I had some nice ideas of running the MDIO faster...
996 * The 971 should support 8MHz and I tried it, but things acted really
997 * weird, so 2.5 MHz ought to be enough for anyone...
998 */
999
1000static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1001{
1002 volatile struct fcc_enet_private *fep = dev->priv;
1003 uint s = fep->phy_status;
1004
1005 s &= ~(PHY_STAT_SPMASK);
1006
1007 if (mii_reg & 0x4000) {
1008 if (mii_reg & 0x0200)
1009 s |= PHY_STAT_100FDX;
1010 else
1011 s |= PHY_STAT_100HDX;
1012 } else {
1013 if (mii_reg & 0x0200)
1014 s |= PHY_STAT_10FDX;
1015 else
1016 s |= PHY_STAT_10HDX;
1017 }
1018 if (mii_reg & 0x0008)
1019 s |= PHY_STAT_FAULT;
1020
1021 fep->phy_status = s;
1022}
1023
1024static phy_info_t phy_info_lxt971 = {
1025 0x0001378e,
1026 "LXT971",
1027
1028 (const phy_cmd_t []) { /* config */
1029 /* configure link capabilities to advertise */
1030 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
1031 mii_parse_anar },
1032
1033 /* enable auto-negotiation */
1034 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
1035 { mk_mii_end, }
1036 },
1037 (const phy_cmd_t []) { /* startup - enable interrupts */
1038 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1039
1040 /* restart auto-negotiation */
1041 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
1042 NULL },
1043 { mk_mii_end, }
1044 },
1045 (const phy_cmd_t []) { /* ack_int */
1046 /* find out the current status */
1047 { mk_mii_read(MII_BMSR), NULL },
1048 { mk_mii_read(MII_BMSR), mii_parse_sr },
1049 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1050
1051 /* we only need to read ISR to acknowledge */
1052 { mk_mii_read(MII_LXT971_ISR), NULL },
1053 { mk_mii_end, }
1054 },
1055 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1056 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1057 { mk_mii_end, }
1058 },
1059};
1060
1061#endif /* CONFIG_FCC_LXT971 */
1062
1063/* ------------------------------------------------------------------------- */
1064/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1065
1066#ifdef CONFIG_FCC_QS6612
1067
1068/* register definitions */
1069
1070#define MII_QS6612_MCR 17 /* Mode Control Register */
1071#define MII_QS6612_FTR 27 /* Factory Test Register */
1072#define MII_QS6612_MCO 28 /* Misc. Control Register */
1073#define MII_QS6612_ISR 29 /* Interrupt Source Register */
1074#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1075#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1076
1077static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1078{
1079 volatile struct fcc_enet_private *fep = dev->priv;
1080 uint s = fep->phy_status;
1081
1082 s &= ~(PHY_STAT_SPMASK);
1083
1084 switch((mii_reg >> 2) & 7) {
1085 case 1: s |= PHY_STAT_10HDX; break;
1086 case 2: s |= PHY_STAT_100HDX; break;
1087 case 5: s |= PHY_STAT_10FDX; break;
1088 case 6: s |= PHY_STAT_100FDX; break;
1089 }
1090
1091 fep->phy_status = s;
1092}
1093
1094static phy_info_t phy_info_qs6612 = {
1095 0x00181440,
1096 "QS6612",
1097
1098 (const phy_cmd_t []) { /* config */
1099// { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1100
1101 /* The PHY powers up isolated on the RPX,
1102 * so send a command to allow operation.
1103 */
1104
1105 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1106
1107 /* parse cr and anar to get some info */
1108
1109 { mk_mii_read(MII_BMCR), mii_parse_cr },
1110 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1111 { mk_mii_end, }
1112 },
1113 (const phy_cmd_t []) { /* startup - enable interrupts */
1114 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1115 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1116 { mk_mii_end, }
1117 },
1118 (const phy_cmd_t []) { /* ack_int */
1119
1120 /* we need to read ISR, SR and ANER to acknowledge */
1121
1122 { mk_mii_read(MII_QS6612_ISR), NULL },
1123 { mk_mii_read(MII_BMSR), mii_parse_sr },
1124 { mk_mii_read(MII_EXPANSION), NULL },
1125
1126 /* read pcr to get info */
1127
1128 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1129 { mk_mii_end, }
1130 },
1131 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1132 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1133 { mk_mii_end, }
1134 },
1135};
1136
1137
1138#endif /* CONFIG_FEC_QS6612 */
1139
1140
1141/* ------------------------------------------------------------------------- */
1142/* The Davicom DM9131 is used on the HYMOD board */
1143
1144#ifdef CONFIG_FCC_DM9131
1145
1146/* register definitions */
1147
1148#define MII_DM9131_ACR 16 /* Aux. Config Register */
1149#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1150#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1151#define MII_DM9131_INTR 21 /* Interrupt Register */
1152#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1153#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1154
1155static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
1156{
1157 volatile struct fcc_enet_private *fep = dev->priv;
1158 uint s = fep->phy_status;
1159
1160 s &= ~(PHY_STAT_SPMASK);
1161
1162 switch ((mii_reg >> 12) & 0xf) {
1163 case 1: s |= PHY_STAT_10HDX; break;
1164 case 2: s |= PHY_STAT_10FDX; break;
1165 case 4: s |= PHY_STAT_100HDX; break;
1166 case 8: s |= PHY_STAT_100FDX; break;
1167 }
1168
1169 fep->phy_status = s;
1170}
1171
1172static phy_info_t phy_info_dm9131 = {
1173 0x00181b80,
1174 "DM9131",
1175
1176 (const phy_cmd_t []) { /* config */
1177 /* parse cr and anar to get some info */
1178 { mk_mii_read(MII_BMCR), mii_parse_cr },
1179 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1180 { mk_mii_end, }
1181 },
1182 (const phy_cmd_t []) { /* startup - enable interrupts */
1183 { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
1184 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1185 { mk_mii_end, }
1186 },
1187 (const phy_cmd_t []) { /* ack_int */
1188
1189 /* we need to read INTR, SR and ANER to acknowledge */
1190
1191 { mk_mii_read(MII_DM9131_INTR), NULL },
1192 { mk_mii_read(MII_BMSR), mii_parse_sr },
1193 { mk_mii_read(MII_EXPANSION), NULL },
1194
1195 /* read acsr to get info */
1196
1197 { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1201 { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
1202 { mk_mii_end, }
1203 },
1204};
1205
1206
1207#endif /* CONFIG_FEC_DM9131 */
1208#ifdef CONFIG_FCC_DM9161
1209/* ------------------------------------------------------------------------- */
1210/* DM9161 Control register values */
1211#define MIIM_DM9161_CR_STOP 0x0400
1212#define MIIM_DM9161_CR_RSTAN 0x1200
1213
1214#define MIIM_DM9161_SCR 0x10
1215#define MIIM_DM9161_SCR_INIT 0x0610
1216
1217/* DM9161 Specified Configuration and Status Register */
1218#define MIIM_DM9161_SCSR 0x11
1219#define MIIM_DM9161_SCSR_100F 0x8000
1220#define MIIM_DM9161_SCSR_100H 0x4000
1221#define MIIM_DM9161_SCSR_10F 0x2000
1222#define MIIM_DM9161_SCSR_10H 0x1000
1223/* DM9161 10BT register */
1224#define MIIM_DM9161_10BTCSR 0x12
1225#define MIIM_DM9161_10BTCSR_INIT 0x7800
1226/* DM9161 Interrupt Register */
1227#define MIIM_DM9161_INTR 0x15
1228#define MIIM_DM9161_INTR_PEND 0x8000
1229#define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1230#define MIIM_DM9161_INTR_SPD_MASK 0x0400
1231#define MIIM_DM9161_INTR_LINK_MASK 0x0200
1232#define MIIM_DM9161_INTR_MASK 0x0100
1233#define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1234#define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1235#define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1236#define MIIM_DM9161_INTR_INIT 0x0000
1237#define MIIM_DM9161_INTR_STOP \
1238(MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1239 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1240
1241static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
1242{
1243 volatile struct fcc_enet_private *fep = dev->priv;
1244 uint regstat, timeout=0xffff;
1245
1246 while(!(mii_reg & 0x0020) && timeout--)
1247 {
1248 regstat=mk_mii_read(MII_BMSR);
1249 regstat |= fep->phy_addr <<23;
1250 mii_reg = mii_send_receive(fep->fip,regstat);
1251 }
1252
1253 mii_parse_sr(mii_reg, dev);
1254}
1255
1256static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
1257{
1258 volatile struct fcc_enet_private *fep = dev->priv;
1259 uint s = fep->phy_status;
1260
1261 s &= ~(PHY_STAT_SPMASK);
1262 switch((mii_reg >>12) & 0xf) {
1263 case 1:
1264 {
1265 s |= PHY_STAT_10HDX;
1266 printk("10BaseT Half Duplex\n");
1267 break;
1268 }
1269 case 2:
1270 {
1271 s |= PHY_STAT_10FDX;
1272 printk("10BaseT Full Duplex\n");
1273 break;
1274 }
1275 case 4:
1276 {
1277 s |= PHY_STAT_100HDX;
1278 printk("100BaseT Half Duplex\n");
1279 break;
1280 }
1281 case 8:
1282 {
1283 s |= PHY_STAT_100FDX;
1284 printk("100BaseT Full Duplex\n");
1285 break;
1286 }
1287 }
1288
1289 fep->phy_status = s;
1290
1291}
1292
1293static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
1294{
1295 int timeout = HZ;
1296
1297 /* Davicom takes a bit to come up after a reset,
1298 * so wait here for a bit */
1299 schedule_timeout_uninterruptible(timeout);
1300}
1301
1302static phy_info_t phy_info_dm9161 = {
1303 0x00181b88,
1304 "Davicom DM9161E",
1305 (const phy_cmd_t[]) { /* config */
1306 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
1307 /* Do not bypass the scrambler/descrambler */
1308 { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
1309 /* Configure 10BTCSR register */
1310 { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
1311 /* Configure some basic stuff */
1312 { mk_mii_write(MII_BMCR, 0x1000), NULL},
1313 { mk_mii_read(MII_BMCR), mii_parse_cr },
1314 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1315 { mk_mii_end,}
1316 },
1317 (const phy_cmd_t[]) { /* startup */
1318 /* Restart Auto Negotiation */
1319 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
1320 /* Status is read once to clear old link state */
1321 { mk_mii_read(MII_BMSR), mii_dm9161_wait},
1322 /* Auto-negotiate */
1323 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1324 /* Read the status */
1325 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1326 /* Clear any pending interrupts */
1327 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1328 /* Enable Interrupts */
1329 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
1330 { mk_mii_end,}
1331 },
1332 (const phy_cmd_t[]) { /* ack_int */
1333 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1334#if 0
1335 { mk_mii_read(MII_BMSR), NULL},
1336 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1337 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1338#endif
1339 { mk_mii_end,}
1340 },
1341 (const phy_cmd_t[]) { /* shutdown */
1342 { mk_mii_read(MIIM_DM9161_INTR),NULL},
1343 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
1344 { mk_mii_end,}
1345 },
1346};
1347#endif /* CONFIG_FCC_DM9161 */
1348
1349static phy_info_t *phy_info[] = {
1350
1351#ifdef CONFIG_FCC_LXT970
1352 &phy_info_lxt970,
1353#endif /* CONFIG_FEC_LXT970 */
1354
1355#ifdef CONFIG_FCC_LXT971
1356 &phy_info_lxt971,
1357#endif /* CONFIG_FEC_LXT971 */
1358
1359#ifdef CONFIG_FCC_QS6612
1360 &phy_info_qs6612,
1361#endif /* CONFIG_FEC_QS6612 */
1362
1363#ifdef CONFIG_FCC_DM9131
1364 &phy_info_dm9131,
1365#endif /* CONFIG_FEC_DM9131 */
1366
1367#ifdef CONFIG_FCC_DM9161
1368 &phy_info_dm9161,
1369#endif /* CONFIG_FCC_DM9161 */
1370
1371#ifdef CONFIG_FCC_GENERIC_PHY
1372 /* Generic PHY support. This must be the last PHY in the table.
1373 * It will be used to support any PHY that doesn't match a previous
1374 * entry in the table.
1375 */
1376 &phy_info_generic,
1377#endif /* CONFIG_FCC_GENERIC_PHY */
1378
1379 NULL
1380};
1381
1382static void mii_display_status(struct work_struct *work)
1383{
1384 volatile struct fcc_enet_private *fep =
1385 container_of(work, struct fcc_enet_private, phy_relink);
1386 struct net_device *dev = fep->dev;
1387 uint s = fep->phy_status;
1388
1389 if (!fep->link && !fep->old_link) {
1390 /* Link is still down - don't print anything */
1391 return;
1392 }
1393
1394 printk("%s: status: ", dev->name);
1395
1396 if (!fep->link) {
1397 printk("link down");
1398 } else {
1399 printk("link up");
1400
1401 switch(s & PHY_STAT_SPMASK) {
1402 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1403 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1404 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1405 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1406 default:
1407 printk(", Unknown speed/duplex");
1408 }
1409
1410 if (s & PHY_STAT_ANC)
1411 printk(", auto-negotiation complete");
1412 }
1413
1414 if (s & PHY_STAT_FAULT)
1415 printk(", remote fault");
1416
1417 printk(".\n");
1418}
1419
1420static void mii_display_config(struct work_struct *work)
1421{
1422 volatile struct fcc_enet_private *fep =
1423 container_of(work, struct fcc_enet_private,
1424 phy_display_config);
1425 struct net_device *dev = fep->dev;
1426 uint s = fep->phy_status;
1427
1428 printk("%s: config: auto-negotiation ", dev->name);
1429
1430 if (s & PHY_CONF_ANE)
1431 printk("on");
1432 else
1433 printk("off");
1434
1435 if (s & PHY_CONF_100FDX)
1436 printk(", 100FDX");
1437 if (s & PHY_CONF_100HDX)
1438 printk(", 100HDX");
1439 if (s & PHY_CONF_10FDX)
1440 printk(", 10FDX");
1441 if (s & PHY_CONF_10HDX)
1442 printk(", 10HDX");
1443 if (!(s & PHY_CONF_SPMASK))
1444 printk(", No speed/duplex selected?");
1445
1446 if (s & PHY_CONF_LOOP)
1447 printk(", loopback enabled");
1448
1449 printk(".\n");
1450
1451 fep->sequence_done = 1;
1452}
1453
1454static void mii_relink(struct net_device *dev)
1455{
1456 struct fcc_enet_private *fep = dev->priv;
1457 int duplex = 0;
1458
1459 fep->old_link = fep->link;
1460 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1461
1462#ifdef MDIO_DEBUG
1463 printk(" mii_relink: link=%d\n", fep->link);
1464#endif
1465
1466 if (fep->link) {
1467 if (fep->phy_status
1468 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1469 duplex = 1;
1470 fcc_restart(dev, duplex);
1471#ifdef MDIO_DEBUG
1472 printk(" mii_relink: duplex=%d\n", duplex);
1473#endif
1474 }
1475}
1476
1477static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1478{
1479 struct fcc_enet_private *fep = dev->priv;
1480
1481 mii_relink(dev);
1482
1483 schedule_work(&fep->phy_relink);
1484}
1485
1486static void mii_queue_config(uint mii_reg, struct net_device *dev)
1487{
1488 struct fcc_enet_private *fep = dev->priv;
1489
1490 schedule_work(&fep->phy_display_config);
1491}
1492
1493phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
1494 { mk_mii_end, } };
1495phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
1496 { mk_mii_end, } };
1497
1498
1499/* Read remainder of PHY ID.
1500*/
1501static void
1502mii_discover_phy3(uint mii_reg, struct net_device *dev)
1503{
1504 struct fcc_enet_private *fep;
1505 int i;
1506
1507 fep = dev->priv;
1508 printk("mii_reg: %08x\n", mii_reg);
1509 fep->phy_id |= (mii_reg & 0xffff);
1510
1511 for(i = 0; phy_info[i]; i++)
1512 if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
1513 break;
1514
1515 if(!phy_info[i])
1516 panic("%s: PHY id 0x%08x is not supported!\n",
1517 dev->name, fep->phy_id);
1518
1519 fep->phy = phy_info[i];
1520 fep->phy_id_done = 1;
1521
1522 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1523 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1524}
1525
1526/* Scan all of the MII PHY addresses looking for someone to respond
1527 * with a valid ID. This usually happens quickly.
1528 */
1529static void
1530mii_discover_phy(uint mii_reg, struct net_device *dev)
1531{
1532 struct fcc_enet_private *fep;
1533 uint phytype;
1534
1535 fep = dev->priv;
1536
1537 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1538
1539 /* Got first part of ID, now get remainder. */
1540 fep->phy_id = phytype << 16;
1541 mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
1542 } else {
1543 fep->phy_addr++;
1544 if (fep->phy_addr < 32) {
1545 mii_queue(dev, mk_mii_read(MII_PHYSID1),
1546 mii_discover_phy);
1547 } else {
1548 printk("fec: No PHY device found.\n");
1549 }
1550 }
1551}
1552#endif /* CONFIG_USE_MDIO */
1553
1554#ifdef PHY_INTERRUPT
1555/* This interrupt occurs when the PHY detects a link change. */
1556static irqreturn_t
1557mii_link_interrupt(int irq, void * dev_id)
1558{
1559 struct net_device *dev = dev_id;
1560 struct fcc_enet_private *fep = dev->priv;
1561 fcc_info_t *fip = fep->fip;
1562
1563 if (fep->phy) {
1564 /* We don't want to be interrupted by an FCC
1565 * interrupt here.
1566 */
1567 disable_irq_nosync(fip->fc_interrupt);
1568
1569 mii_do_cmd(dev, fep->phy->ack_int);
1570 /* restart and display status */
1571 mii_do_cmd(dev, phy_cmd_relink);
1572
1573 enable_irq(fip->fc_interrupt);
1574 }
1575 return IRQ_HANDLED;
1576}
1577#endif /* ifdef PHY_INTERRUPT */
1578
1579#if 0 /* This should be fixed someday */
1580/* Set or clear the multicast filter for this adaptor.
1581 * Skeleton taken from sunlance driver.
1582 * The CPM Ethernet implementation allows Multicast as well as individual
1583 * MAC address filtering. Some of the drivers check to make sure it is
1584 * a group multicast address, and discard those that are not. I guess I
1585 * will do the same for now, but just remove the test if you want
1586 * individual filtering as well (do the upper net layers want or support
1587 * this kind of feature?).
1588 */
1589static void
1590set_multicast_list(struct net_device *dev)
1591{
1592 struct fcc_enet_private *cep;
1593 struct dev_mc_list *dmi;
1594 u_char *mcptr, *tdptr;
1595 volatile fcc_enet_t *ep;
1596 int i, j;
1597
1598 cep = (struct fcc_enet_private *)dev->priv;
1599
1600return;
1601 /* Get pointer to FCC area in parameter RAM.
1602 */
1603 ep = (fcc_enet_t *)dev->base_addr;
1604
1605 if (dev->flags&IFF_PROMISC) {
1606
1607 /* Log any net taps. */
1608 printk("%s: Promiscuous mode enabled.\n", dev->name);
1609 cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
1610 } else {
1611
1612 cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
1613
1614 if (dev->flags & IFF_ALLMULTI) {
1615 /* Catch all multicast addresses, so set the
1616 * filter to all 1's.
1617 */
1618 ep->fen_gaddrh = 0xffffffff;
1619 ep->fen_gaddrl = 0xffffffff;
1620 }
1621 else {
1622 /* Clear filter and add the addresses in the list.
1623 */
1624 ep->fen_gaddrh = 0;
1625 ep->fen_gaddrl = 0;
1626
1627 dmi = dev->mc_list;
1628
1629 for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
1630
1631 /* Only support group multicast for now.
1632 */
1633 if (!(dmi->dmi_addr[0] & 1))
1634 continue;
1635
1636 /* The address in dmi_addr is LSB first,
1637 * and taddr is MSB first. We have to
1638 * copy bytes MSB first from dmi_addr.
1639 */
1640 mcptr = (u_char *)dmi->dmi_addr + 5;
1641 tdptr = (u_char *)&ep->fen_taddrh;
1642 for (j=0; j<6; j++)
1643 *tdptr++ = *mcptr--;
1644
1645 /* Ask CPM to run CRC and set bit in
1646 * filter mask.
1647 */
1648 cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
1649 cep->fip->fc_cpmblock, 0x0c,
1650 CPM_CR_SET_GADDR) | CPM_CR_FLG;
1651 udelay(10);
1652 while (cpmp->cp_cpcr & CPM_CR_FLG);
1653 }
1654 }
1655 }
1656}
1657#endif /* if 0 */
1658
1659
1660/* Set the individual MAC address.
1661 */
1662int fcc_enet_set_mac_address(struct net_device *dev, void *p)
1663{
1664 struct sockaddr *addr= (struct sockaddr *) p;
1665 struct fcc_enet_private *cep;
1666 volatile fcc_enet_t *ep;
1667 unsigned char *eap;
1668 int i;
1669
1670 cep = (struct fcc_enet_private *)(dev->priv);
1671 ep = cep->ep;
1672
1673 if (netif_running(dev))
1674 return -EBUSY;
1675
1676 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1677
1678 eap = (unsigned char *) &(ep->fen_paddrh);
1679 for (i=5; i>=0; i--)
1680 *eap++ = addr->sa_data[i];
1681
1682 return 0;
1683}
1684
1685
1686/* Initialize the CPM Ethernet on FCC.
1687 */
1688static int __init fec_enet_init(void)
1689{
1690 struct net_device *dev;
1691 struct fcc_enet_private *cep;
1692 fcc_info_t *fip;
1693 int i, np, err;
1694 volatile cpm2_map_t *immap;
1695 volatile iop_cpm2_t *io;
1696
1697 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
1698 io = &immap->im_ioport;
1699
1700 np = sizeof(fcc_ports) / sizeof(fcc_info_t);
1701 fip = fcc_ports;
1702
1703 while (np-- > 0) {
1704 /* Create an Ethernet device instance.
1705 */
1706 dev = alloc_etherdev(sizeof(*cep));
1707 if (!dev)
1708 return -ENOMEM;
1709
1710 cep = dev->priv;
1711 spin_lock_init(&cep->lock);
1712 cep->fip = fip;
1713
1714 init_fcc_shutdown(fip, cep, immap);
1715 init_fcc_ioports(fip, io, immap);
1716 init_fcc_param(fip, dev, immap);
1717
1718 dev->base_addr = (unsigned long)(cep->ep);
1719
1720 /* The CPM Ethernet specific entries in the device
1721 * structure.
1722 */
1723 dev->open = fcc_enet_open;
1724 dev->hard_start_xmit = fcc_enet_start_xmit;
1725 dev->tx_timeout = fcc_enet_timeout;
1726 dev->watchdog_timeo = TX_TIMEOUT;
1727 dev->stop = fcc_enet_close;
1728 dev->get_stats = fcc_enet_get_stats;
1729 /* dev->set_multicast_list = set_multicast_list; */
1730 dev->set_mac_address = fcc_enet_set_mac_address;
1731
1732 init_fcc_startup(fip, dev);
1733
1734 err = register_netdev(dev);
1735 if (err) {
1736 free_netdev(dev);
1737 return err;
1738 }
1739
1740 printk("%s: FCC ENET Version 0.3, ", dev->name);
1741 for (i=0; i<5; i++)
1742 printk("%02x:", dev->dev_addr[i]);
1743 printk("%02x\n", dev->dev_addr[5]);
1744
1745#ifdef CONFIG_USE_MDIO
1746 /* Queue up command to detect the PHY and initialize the
1747 * remainder of the interface.
1748 */
1749 cep->phy_id_done = 0;
1750 cep->phy_addr = fip->fc_phyaddr;
1751 mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
1752 INIT_WORK(&cep->phy_relink, mii_display_status);
1753 INIT_WORK(&cep->phy_display_config, mii_display_config);
1754 cep->dev = dev;
1755#endif /* CONFIG_USE_MDIO */
1756
1757 fip++;
1758 }
1759
1760 return 0;
1761}
1762module_init(fec_enet_init);
1763
1764/* Make sure the device is shut down during initialization.
1765*/
1766static void __init
1767init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
1768 volatile cpm2_map_t *immap)
1769{
1770 volatile fcc_enet_t *ep;
1771 volatile fcc_t *fccp;
1772
1773 /* Get pointer to FCC area in parameter RAM.
1774 */
1775 ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
1776
1777 /* And another to the FCC register area.
1778 */
1779 fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
1780 cep->fccp = fccp; /* Keep the pointers handy */
1781 cep->ep = ep;
1782
1783 /* Disable receive and transmit in case someone left it running.
1784 */
1785 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
1786}
1787
1788/* Initialize the I/O pins for the FCC Ethernet.
1789*/
1790static void __init
1791init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
1792 volatile cpm2_map_t *immap)
1793{
1794
1795 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1796 */
1797 if (fip->fc_proff == PROFF_FCC1) {
1798 /* Configure port A and C pins for FCC1 Ethernet.
1799 */
1800 io->iop_pdira &= ~PA1_DIRA_BOUT;
1801 io->iop_pdira |= PA1_DIRA_BIN;
1802 io->iop_psora &= ~PA1_PSORA_BOUT;
1803 io->iop_psora |= PA1_PSORA_BIN;
1804 io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
1805 }
1806 if (fip->fc_proff == PROFF_FCC2) {
1807 /* Configure port B and C pins for FCC Ethernet.
1808 */
1809 io->iop_pdirb &= ~PB2_DIRB_BOUT;
1810 io->iop_pdirb |= PB2_DIRB_BIN;
1811 io->iop_psorb &= ~PB2_PSORB_BOUT;
1812 io->iop_psorb |= PB2_PSORB_BIN;
1813 io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
1814 }
1815 if (fip->fc_proff == PROFF_FCC3) {
1816 /* Configure port B and C pins for FCC Ethernet.
1817 */
1818 io->iop_pdirb &= ~PB3_DIRB_BOUT;
1819 io->iop_pdirb |= PB3_DIRB_BIN;
1820 io->iop_psorb &= ~PB3_PSORB_BOUT;
1821 io->iop_psorb |= PB3_PSORB_BIN;
1822 io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
1823
1824 io->iop_pdirc &= ~PC3_DIRC_BOUT;
1825 io->iop_pdirc |= PC3_DIRC_BIN;
1826 io->iop_psorc &= ~PC3_PSORC_BOUT;
1827 io->iop_psorc |= PC3_PSORC_BIN;
1828 io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
1829
1830 }
1831
1832 /* Port C has clocks......
1833 */
1834 io->iop_psorc &= ~(fip->fc_trxclocks);
1835 io->iop_pdirc &= ~(fip->fc_trxclocks);
1836 io->iop_pparc |= fip->fc_trxclocks;
1837
1838#ifdef CONFIG_USE_MDIO
1839 /* ....and the MII serial clock/data.
1840 */
1841 io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
1842 io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
1843 io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
1844 io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
1845#endif /* CONFIG_USE_MDIO */
1846
1847 /* Configure Serial Interface clock routing.
1848 * First, clear all FCC bits to zero,
1849 * then set the ones we want.
1850 */
1851 immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
1852 immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
1853}
1854
1855static void __init
1856init_fcc_param(fcc_info_t *fip, struct net_device *dev,
1857 volatile cpm2_map_t *immap)
1858{
1859 unsigned char *eap;
1860 unsigned long mem_addr;
1861 bd_t *bd;
1862 int i, j;
1863 struct fcc_enet_private *cep;
1864 volatile fcc_enet_t *ep;
1865 volatile cbd_t *bdp;
1866 volatile cpm_cpm2_t *cp;
1867
1868 cep = (struct fcc_enet_private *)(dev->priv);
1869 ep = cep->ep;
1870 cp = cpmp;
1871
1872 bd = (bd_t *)__res;
1873
1874 /* Zero the whole thing.....I must have missed some individually.
1875 * It works when I do this.
1876 */
1877 memset((char *)ep, 0, sizeof(fcc_enet_t));
1878
1879 /* Allocate space for the buffer descriptors from regular memory.
1880 * Initialize base addresses for the buffer descriptors.
1881 */
1882 cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
1883 GFP_KERNEL | GFP_DMA);
1884 ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
1885 cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
1886 GFP_KERNEL | GFP_DMA);
1887 ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
1888
1889 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
1890 cep->cur_rx = cep->rx_bd_base;
1891
1892 ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1893 ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1894
1895 /* Set maximum bytes per receive buffer.
1896 * It must be a multiple of 32.
1897 */
1898 ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
1899
1900 /* Allocate space in the reserved FCC area of DPRAM for the
1901 * internal buffers. No one uses this space (yet), so we
1902 * can do this. Later, we will add resource management for
1903 * this area.
1904 */
1905 mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
1906 ep->fen_genfcc.fcc_riptr = mem_addr;
1907 ep->fen_genfcc.fcc_tiptr = mem_addr+32;
1908 ep->fen_padptr = mem_addr+64;
1909 memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
1910
1911 ep->fen_genfcc.fcc_rbptr = 0;
1912 ep->fen_genfcc.fcc_tbptr = 0;
1913 ep->fen_genfcc.fcc_rcrc = 0;
1914 ep->fen_genfcc.fcc_tcrc = 0;
1915 ep->fen_genfcc.fcc_res1 = 0;
1916 ep->fen_genfcc.fcc_res2 = 0;
1917
1918 ep->fen_camptr = 0; /* CAM isn't used in this driver */
1919
1920 /* Set CRC preset and mask.
1921 */
1922 ep->fen_cmask = 0xdebb20e3;
1923 ep->fen_cpres = 0xffffffff;
1924
1925 ep->fen_crcec = 0; /* CRC Error counter */
1926 ep->fen_alec = 0; /* alignment error counter */
1927 ep->fen_disfc = 0; /* discard frame counter */
1928 ep->fen_retlim = 15; /* Retry limit threshold */
1929 ep->fen_pper = 0; /* Normal persistence */
1930
1931 /* Clear hash filter tables.
1932 */
1933 ep->fen_gaddrh = 0;
1934 ep->fen_gaddrl = 0;
1935 ep->fen_iaddrh = 0;
1936 ep->fen_iaddrl = 0;
1937
1938 /* Clear the Out-of-sequence TxBD.
1939 */
1940 ep->fen_tfcstat = 0;
1941 ep->fen_tfclen = 0;
1942 ep->fen_tfcptr = 0;
1943
1944 ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
1945 ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
1946
1947 /* Set Ethernet station address.
1948 *
1949 * This is supplied in the board information structure, so we
1950 * copy that into the controller.
1951 * So, far we have only been given one Ethernet address. We make
1952 * it unique by setting a few bits in the upper byte of the
1953 * non-static part of the address.
1954 */
1955 eap = (unsigned char *)&(ep->fen_paddrh);
1956 for (i=5; i>=0; i--) {
1957
1958/*
1959 * The EP8260 only uses FCC3, so we can safely give it the real
1960 * MAC address.
1961 */
1962#ifdef CONFIG_SBC82xx
1963 if (i == 5) {
1964 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1965 devices count up from there */
1966 dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
1967 dev->dev_addr[i] += 1 + fip->fc_fccnum;
1968 *eap++ = dev->dev_addr[i];
1969 }
1970#else
1971#ifndef CONFIG_RPX8260
1972 if (i == 3) {
1973 dev->dev_addr[i] = bd->bi_enetaddr[i];
1974 dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
1975 *eap++ = dev->dev_addr[i];
1976 } else
1977#endif
1978 {
1979 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
1980 }
1981#endif
1982 }
1983
1984 ep->fen_taddrh = 0;
1985 ep->fen_taddrm = 0;
1986 ep->fen_taddrl = 0;
1987
1988 ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
1989 ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
1990
1991 /* Clear stat counters, in case we ever enable RMON.
1992 */
1993 ep->fen_octc = 0;
1994 ep->fen_colc = 0;
1995 ep->fen_broc = 0;
1996 ep->fen_mulc = 0;
1997 ep->fen_uspc = 0;
1998 ep->fen_frgc = 0;
1999 ep->fen_ospc = 0;
2000 ep->fen_jbrc = 0;
2001 ep->fen_p64c = 0;
2002 ep->fen_p65c = 0;
2003 ep->fen_p128c = 0;
2004 ep->fen_p256c = 0;
2005 ep->fen_p512c = 0;
2006 ep->fen_p1024c = 0;
2007
2008 ep->fen_rfthr = 0; /* Suggested by manual */
2009 ep->fen_rfcnt = 0;
2010 ep->fen_cftype = 0;
2011
2012 /* Now allocate the host memory pages and initialize the
2013 * buffer descriptors.
2014 */
2015 bdp = cep->tx_bd_base;
2016 for (i=0; i<TX_RING_SIZE; i++) {
2017
2018 /* Initialize the BD for every fragment in the page.
2019 */
2020 bdp->cbd_sc = 0;
2021 bdp->cbd_datlen = 0;
2022 bdp->cbd_bufaddr = 0;
2023 bdp++;
2024 }
2025
2026 /* Set the last buffer to wrap.
2027 */
2028 bdp--;
2029 bdp->cbd_sc |= BD_SC_WRAP;
2030
2031 bdp = cep->rx_bd_base;
2032 for (i=0; i<FCC_ENET_RX_PAGES; i++) {
2033
2034 /* Allocate a page.
2035 */
2036 mem_addr = __get_free_page(GFP_KERNEL);
2037
2038 /* Initialize the BD for every fragment in the page.
2039 */
2040 for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
2041 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
2042 bdp->cbd_datlen = 0;
2043 bdp->cbd_bufaddr = __pa(mem_addr);
2044 mem_addr += FCC_ENET_RX_FRSIZE;
2045 bdp++;
2046 }
2047 }
2048
2049 /* Set the last buffer to wrap.
2050 */
2051 bdp--;
2052 bdp->cbd_sc |= BD_SC_WRAP;
2053
2054 /* Let's re-initialize the channel now. We have to do it later
2055 * than the manual describes because we have just now finished
2056 * the BD initialization.
2057 */
2058 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
2059 CPM_CR_INIT_TRX) | CPM_CR_FLG;
2060 while (cp->cp_cpcr & CPM_CR_FLG);
2061
2062 cep->skb_cur = cep->skb_dirty = 0;
2063}
2064
2065/* Let 'er rip.
2066*/
2067static void __init
2068init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
2069{
2070 volatile fcc_t *fccp;
2071 struct fcc_enet_private *cep;
2072
2073 cep = (struct fcc_enet_private *)(dev->priv);
2074 fccp = cep->fccp;
2075
2076#ifdef CONFIG_RPX8260
2077#ifdef PHY_INTERRUPT
2078 /* Route PHY interrupt to IRQ. The following code only works for
2079 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2080 */
2081 *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
2082 *((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
2083 ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
2084#endif
2085 /* Initialize MDIO pins. */
2086 *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
2087 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
2088 BCSR4_MII_READ | BCSR4_MII_MDIO;
2089 /* Enable external LXT971 PHY. */
2090 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
2091 udelay(1000);
2092 *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
2093 udelay(1000);
2094#endif /* ifdef CONFIG_RPX8260 */
2095
2096 fccp->fcc_fcce = 0xffff; /* Clear any pending events */
2097
2098 /* Leave FCC interrupts masked for now. Will be unmasked by
2099 * fcc_restart().
2100 */
2101 fccp->fcc_fccm = 0;
2102
2103 /* Install our interrupt handler.
2104 */
2105 if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
2106 dev) < 0)
2107 printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
2108
2109#ifdef PHY_INTERRUPT
2110 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2111 * on Port C.
2112 */
2113 ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
2114 (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
2115
2116 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
2117 "mii", dev) < 0)
2118 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2119#endif /* PHY_INTERRUPT */
2120
2121 /* Set GFMR to enable Ethernet operating mode.
2122 */
2123 fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
2124
2125 /* Set sync/delimiters.
2126 */
2127 fccp->fcc_fdsr = 0xd555;
2128
2129 /* Set protocol specific processing mode for Ethernet.
2130 * This has to be adjusted for Full Duplex operation after we can
2131 * determine how to detect that.
2132 */
2133 fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
2134
2135#ifdef CONFIG_PQ2ADS
2136 /* Enable the PHY. */
2137 *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
2138 *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
2139#endif
2140#if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2141 /* Enable the 2nd PHY. */
2142 *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
2143 *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
2144#endif
2145
2146#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2147 /* start in full duplex mode, and negotiate speed
2148 */
2149 fcc_restart (dev, 1);
2150#else
2151 /* start in half duplex mode
2152 */
2153 fcc_restart (dev, 0);
2154#endif
2155}
2156
2157#ifdef CONFIG_USE_MDIO
2158/* MII command/status interface.
2159 * I'm not going to describe all of the details. You can find the
2160 * protocol definition in many other places, including the data sheet
2161 * of most PHY parts.
2162 * I wonder what "they" were thinking (maybe weren't) when they leave
2163 * the I2C in the CPM but I have to toggle these bits......
2164 */
2165#ifdef CONFIG_RPX8260
2166 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2167 * like most other boards.
2168 */
2169#define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2170#define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2171#define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2172#define OUT_MDIO(bit) \
2173 if (bit) \
2174 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2175 else \
2176 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2177#define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2178#define OUT_MDC(bit) \
2179 if (bit) \
2180 *MDIO_ADDR |= BCSR4_MII_MDC; \
2181 else \
2182 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2183#else /* ifdef CONFIG_RPX8260 */
2184 /* This is for the usual case where the MDIO pins are on Port C.
2185 */
2186#define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2187#define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2188#define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2189#define OUT_MDIO(bit) \
2190 if (bit) \
2191 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2192 else \
2193 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2194#define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2195#define OUT_MDC(bit) \
2196 if (bit) \
2197 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2198 else \
2199 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2200#endif /* ifdef CONFIG_RPX8260 */
2201
2202static uint
2203mii_send_receive(fcc_info_t *fip, uint cmd)
2204{
2205 uint retval;
2206 int read_op, i, off;
2207 const int us = 1;
2208
2209 read_op = ((cmd & 0xf0000000) == 0x60000000);
2210
2211 /* Write preamble
2212 */
2213 OUT_MDIO(1);
2214 MAKE_MDIO_OUTPUT;
2215 OUT_MDIO(1);
2216 for (i = 0; i < 32; i++)
2217 {
2218 udelay(us);
2219 OUT_MDC(1);
2220 udelay(us);
2221 OUT_MDC(0);
2222 }
2223
2224 /* Write data
2225 */
2226 for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
2227 {
2228 OUT_MDIO((cmd >> off) & 0x00000001);
2229 udelay(us);
2230 OUT_MDC(1);
2231 udelay(us);
2232 OUT_MDC(0);
2233 }
2234
2235 retval = cmd;
2236
2237 if (read_op)
2238 {
2239 retval >>= 16;
2240
2241 MAKE_MDIO_INPUT;
2242 udelay(us);
2243 OUT_MDC(1);
2244 udelay(us);
2245 OUT_MDC(0);
2246
2247 for (i = 0; i < 16; i++)
2248 {
2249 udelay(us);
2250 OUT_MDC(1);
2251 udelay(us);
2252 retval <<= 1;
2253 if (IN_MDIO)
2254 retval++;
2255 OUT_MDC(0);
2256 }
2257 }
2258
2259 MAKE_MDIO_INPUT;
2260 udelay(us);
2261 OUT_MDC(1);
2262 udelay(us);
2263 OUT_MDC(0);
2264
2265 return retval;
2266}
2267#endif /* CONFIG_USE_MDIO */
2268
2269static void
2270fcc_stop(struct net_device *dev)
2271{
2272 struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
2273 volatile fcc_t *fccp = fep->fccp;
2274 fcc_info_t *fip = fep->fip;
2275 volatile fcc_enet_t *ep = fep->ep;
2276 volatile cpm_cpm2_t *cp = cpmp;
2277 volatile cbd_t *bdp;
2278 int i;
2279
2280 if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
2281 return; /* already down */
2282
2283 fccp->fcc_fccm = 0;
2284
2285 /* issue the graceful stop tx command */
2286 while (cp->cp_cpcr & CPM_CR_FLG);
2287 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2288 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
2289 while (cp->cp_cpcr & CPM_CR_FLG);
2290
2291 /* Disable transmit/receive */
2292 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
2293
2294 /* issue the restart tx command */
2295 fccp->fcc_fcce = FCC_ENET_GRA;
2296 while (cp->cp_cpcr & CPM_CR_FLG);
2297 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2298 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
2299 while (cp->cp_cpcr & CPM_CR_FLG);
2300
2301 /* free tx buffers */
2302 fep->skb_cur = fep->skb_dirty = 0;
2303 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2304 if (fep->tx_skbuff[i] != NULL) {
2305 dev_kfree_skb(fep->tx_skbuff[i]);
2306 fep->tx_skbuff[i] = NULL;
2307 }
2308 }
2309 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2310 fep->tx_free = TX_RING_SIZE;
2311 ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
2312
2313 /* Initialize the tx buffer descriptors. */
2314 bdp = fep->tx_bd_base;
2315 for (i=0; i<TX_RING_SIZE; i++) {
2316 bdp->cbd_sc = 0;
2317 bdp->cbd_datlen = 0;
2318 bdp->cbd_bufaddr = 0;
2319 bdp++;
2320 }
2321 /* Set the last buffer to wrap. */
2322 bdp--;
2323 bdp->cbd_sc |= BD_SC_WRAP;
2324}
2325
2326static void
2327fcc_restart(struct net_device *dev, int duplex)
2328{
2329 struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
2330 volatile fcc_t *fccp = fep->fccp;
2331
2332 /* stop any transmissions in progress */
2333 fcc_stop(dev);
2334
2335 if (duplex)
2336 fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
2337 else
2338 fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
2339
2340 /* Enable interrupts for transmit error, complete frame
2341 * received, and any transmit buffer we have also set the
2342 * interrupt flag.
2343 */
2344 fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
2345
2346 /* Enable transmit/receive */
2347 fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
2348}
2349
2350static int
2351fcc_enet_open(struct net_device *dev)
2352{
2353 struct fcc_enet_private *fep = dev->priv;
2354
2355#ifdef CONFIG_USE_MDIO
2356 fep->sequence_done = 0;
2357 fep->link = 0;
2358
2359 if (fep->phy) {
2360 fcc_restart(dev, 0); /* always start in half-duplex */
2361 mii_do_cmd(dev, fep->phy->ack_int);
2362 mii_do_cmd(dev, fep->phy->config);
2363 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2364 while(!fep->sequence_done)
2365 schedule();
2366
2367 mii_do_cmd(dev, fep->phy->startup);
2368 netif_start_queue(dev);
2369 return 0; /* Success */
2370 }
2371 return -ENODEV; /* No PHY we understand */
2372#else
2373 fep->link = 1;
2374 fcc_restart(dev, 0); /* always start in half-duplex */
2375 netif_start_queue(dev);
2376 return 0; /* Always succeed */
2377#endif /* CONFIG_USE_MDIO */
2378}
2379