diff options
Diffstat (limited to 'arch/powerpc/oprofile')
-rw-r--r-- | arch/powerpc/oprofile/cell/pr_util.h | 11 | ||||
-rw-r--r-- | arch/powerpc/oprofile/cell/spu_profiler.c | 56 | ||||
-rw-r--r-- | arch/powerpc/oprofile/common.c | 22 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_cell.c | 748 |
4 files changed, 697 insertions, 140 deletions
diff --git a/arch/powerpc/oprofile/cell/pr_util.h b/arch/powerpc/oprofile/cell/pr_util.h index dfdbffa06818..964b93974d89 100644 --- a/arch/powerpc/oprofile/cell/pr_util.h +++ b/arch/powerpc/oprofile/cell/pr_util.h | |||
@@ -30,6 +30,10 @@ | |||
30 | extern struct delayed_work spu_work; | 30 | extern struct delayed_work spu_work; |
31 | extern int spu_prof_running; | 31 | extern int spu_prof_running; |
32 | 32 | ||
33 | #define TRACE_ARRAY_SIZE 1024 | ||
34 | |||
35 | extern spinlock_t oprof_spu_smpl_arry_lck; | ||
36 | |||
33 | struct spu_overlay_info { /* map of sections within an SPU overlay */ | 37 | struct spu_overlay_info { /* map of sections within an SPU overlay */ |
34 | unsigned int vma; /* SPU virtual memory address from elf */ | 38 | unsigned int vma; /* SPU virtual memory address from elf */ |
35 | unsigned int size; /* size of section from elf */ | 39 | unsigned int size; /* size of section from elf */ |
@@ -89,10 +93,11 @@ void vma_map_free(struct vma_to_fileoffset_map *map); | |||
89 | * Entry point for SPU profiling. | 93 | * Entry point for SPU profiling. |
90 | * cycles_reset is the SPU_CYCLES count value specified by the user. | 94 | * cycles_reset is the SPU_CYCLES count value specified by the user. |
91 | */ | 95 | */ |
92 | int start_spu_profiling(unsigned int cycles_reset); | 96 | int start_spu_profiling_cycles(unsigned int cycles_reset); |
93 | 97 | void start_spu_profiling_events(void); | |
94 | void stop_spu_profiling(void); | ||
95 | 98 | ||
99 | void stop_spu_profiling_cycles(void); | ||
100 | void stop_spu_profiling_events(void); | ||
96 | 101 | ||
97 | /* add the necessary profiling hooks */ | 102 | /* add the necessary profiling hooks */ |
98 | int spu_sync_start(void); | 103 | int spu_sync_start(void); |
diff --git a/arch/powerpc/oprofile/cell/spu_profiler.c b/arch/powerpc/oprofile/cell/spu_profiler.c index 83faa958b9d4..9305ddaac512 100644 --- a/arch/powerpc/oprofile/cell/spu_profiler.c +++ b/arch/powerpc/oprofile/cell/spu_profiler.c | |||
@@ -18,11 +18,21 @@ | |||
18 | #include <asm/cell-pmu.h> | 18 | #include <asm/cell-pmu.h> |
19 | #include "pr_util.h" | 19 | #include "pr_util.h" |
20 | 20 | ||
21 | #define TRACE_ARRAY_SIZE 1024 | ||
22 | #define SCALE_SHIFT 14 | 21 | #define SCALE_SHIFT 14 |
23 | 22 | ||
24 | static u32 *samples; | 23 | static u32 *samples; |
25 | 24 | ||
25 | /* spu_prof_running is a flag used to indicate if spu profiling is enabled | ||
26 | * or not. It is set by the routines start_spu_profiling_cycles() and | ||
27 | * start_spu_profiling_events(). The flag is cleared by the routines | ||
28 | * stop_spu_profiling_cycles() and stop_spu_profiling_events(). These | ||
29 | * routines are called via global_start() and global_stop() which are called in | ||
30 | * op_powerpc_start() and op_powerpc_stop(). These routines are called once | ||
31 | * per system as a result of the user starting/stopping oprofile. Hence, only | ||
32 | * one CPU per user at a time will be changing the value of spu_prof_running. | ||
33 | * In general, OProfile does not protect against multiple users trying to run | ||
34 | * OProfile at a time. | ||
35 | */ | ||
26 | int spu_prof_running; | 36 | int spu_prof_running; |
27 | static unsigned int profiling_interval; | 37 | static unsigned int profiling_interval; |
28 | 38 | ||
@@ -31,8 +41,8 @@ static unsigned int profiling_interval; | |||
31 | 41 | ||
32 | #define SPU_PC_MASK 0xFFFF | 42 | #define SPU_PC_MASK 0xFFFF |
33 | 43 | ||
34 | static DEFINE_SPINLOCK(sample_array_lock); | 44 | DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck); |
35 | unsigned long sample_array_lock_flags; | 45 | unsigned long oprof_spu_smpl_arry_lck_flags; |
36 | 46 | ||
37 | void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset) | 47 | void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset) |
38 | { | 48 | { |
@@ -145,13 +155,13 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer) | |||
145 | * sample array must be loaded and then processed for a given | 155 | * sample array must be loaded and then processed for a given |
146 | * cpu. The sample array is not per cpu. | 156 | * cpu. The sample array is not per cpu. |
147 | */ | 157 | */ |
148 | spin_lock_irqsave(&sample_array_lock, | 158 | spin_lock_irqsave(&oprof_spu_smpl_arry_lck, |
149 | sample_array_lock_flags); | 159 | oprof_spu_smpl_arry_lck_flags); |
150 | num_samples = cell_spu_pc_collection(cpu); | 160 | num_samples = cell_spu_pc_collection(cpu); |
151 | 161 | ||
152 | if (num_samples == 0) { | 162 | if (num_samples == 0) { |
153 | spin_unlock_irqrestore(&sample_array_lock, | 163 | spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, |
154 | sample_array_lock_flags); | 164 | oprof_spu_smpl_arry_lck_flags); |
155 | continue; | 165 | continue; |
156 | } | 166 | } |
157 | 167 | ||
@@ -162,8 +172,8 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer) | |||
162 | num_samples); | 172 | num_samples); |
163 | } | 173 | } |
164 | 174 | ||
165 | spin_unlock_irqrestore(&sample_array_lock, | 175 | spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, |
166 | sample_array_lock_flags); | 176 | oprof_spu_smpl_arry_lck_flags); |
167 | 177 | ||
168 | } | 178 | } |
169 | smp_wmb(); /* insure spu event buffer updates are written */ | 179 | smp_wmb(); /* insure spu event buffer updates are written */ |
@@ -182,13 +192,13 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer) | |||
182 | 192 | ||
183 | static struct hrtimer timer; | 193 | static struct hrtimer timer; |
184 | /* | 194 | /* |
185 | * Entry point for SPU profiling. | 195 | * Entry point for SPU cycle profiling. |
186 | * NOTE: SPU profiling is done system-wide, not per-CPU. | 196 | * NOTE: SPU profiling is done system-wide, not per-CPU. |
187 | * | 197 | * |
188 | * cycles_reset is the count value specified by the user when | 198 | * cycles_reset is the count value specified by the user when |
189 | * setting up OProfile to count SPU_CYCLES. | 199 | * setting up OProfile to count SPU_CYCLES. |
190 | */ | 200 | */ |
191 | int start_spu_profiling(unsigned int cycles_reset) | 201 | int start_spu_profiling_cycles(unsigned int cycles_reset) |
192 | { | 202 | { |
193 | ktime_t kt; | 203 | ktime_t kt; |
194 | 204 | ||
@@ -212,10 +222,30 @@ int start_spu_profiling(unsigned int cycles_reset) | |||
212 | return 0; | 222 | return 0; |
213 | } | 223 | } |
214 | 224 | ||
215 | void stop_spu_profiling(void) | 225 | /* |
226 | * Entry point for SPU event profiling. | ||
227 | * NOTE: SPU profiling is done system-wide, not per-CPU. | ||
228 | * | ||
229 | * cycles_reset is the count value specified by the user when | ||
230 | * setting up OProfile to count SPU_CYCLES. | ||
231 | */ | ||
232 | void start_spu_profiling_events(void) | ||
233 | { | ||
234 | spu_prof_running = 1; | ||
235 | schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); | ||
236 | |||
237 | return; | ||
238 | } | ||
239 | |||
240 | void stop_spu_profiling_cycles(void) | ||
216 | { | 241 | { |
217 | spu_prof_running = 0; | 242 | spu_prof_running = 0; |
218 | hrtimer_cancel(&timer); | 243 | hrtimer_cancel(&timer); |
219 | kfree(samples); | 244 | kfree(samples); |
220 | pr_debug("SPU_PROF: stop_spu_profiling issued\n"); | 245 | pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n"); |
246 | } | ||
247 | |||
248 | void stop_spu_profiling_events(void) | ||
249 | { | ||
250 | spu_prof_running = 0; | ||
221 | } | 251 | } |
diff --git a/arch/powerpc/oprofile/common.c b/arch/powerpc/oprofile/common.c index 17807acb05d9..21f16edf6c8d 100644 --- a/arch/powerpc/oprofile/common.c +++ b/arch/powerpc/oprofile/common.c | |||
@@ -132,6 +132,28 @@ static int op_powerpc_create_files(struct super_block *sb, struct dentry *root) | |||
132 | oprofilefs_create_ulong(sb, root, "mmcr0", &sys.mmcr0); | 132 | oprofilefs_create_ulong(sb, root, "mmcr0", &sys.mmcr0); |
133 | oprofilefs_create_ulong(sb, root, "mmcr1", &sys.mmcr1); | 133 | oprofilefs_create_ulong(sb, root, "mmcr1", &sys.mmcr1); |
134 | oprofilefs_create_ulong(sb, root, "mmcra", &sys.mmcra); | 134 | oprofilefs_create_ulong(sb, root, "mmcra", &sys.mmcra); |
135 | #ifdef CONFIG_OPROFILE_CELL | ||
136 | /* create a file the user tool can check to see what level of profiling | ||
137 | * support exits with this kernel. Initialize bit mask to indicate | ||
138 | * what support the kernel has: | ||
139 | * bit 0 - Supports SPU event profiling in addition to PPU | ||
140 | * event and cycles; and SPU cycle profiling | ||
141 | * bits 1-31 - Currently unused. | ||
142 | * | ||
143 | * If the file does not exist, then the kernel only supports SPU | ||
144 | * cycle profiling, PPU event and cycle profiling. | ||
145 | */ | ||
146 | oprofilefs_create_ulong(sb, root, "cell_support", &sys.cell_support); | ||
147 | sys.cell_support = 0x1; /* Note, the user OProfile tool must check | ||
148 | * that this bit is set before attempting to | ||
149 | * user SPU event profiling. Older kernels | ||
150 | * will not have this file, hence the user | ||
151 | * tool is not allowed to do SPU event | ||
152 | * profiling on older kernels. Older kernels | ||
153 | * will accept SPU events but collected data | ||
154 | * is garbage. | ||
155 | */ | ||
156 | #endif | ||
135 | #endif | 157 | #endif |
136 | 158 | ||
137 | for (i = 0; i < model->num_counters; ++i) { | 159 | for (i = 0; i < model->num_counters; ++i) { |
diff --git a/arch/powerpc/oprofile/op_model_cell.c b/arch/powerpc/oprofile/op_model_cell.c index 25a4ec2514a3..ae06c6236d9c 100644 --- a/arch/powerpc/oprofile/op_model_cell.c +++ b/arch/powerpc/oprofile/op_model_cell.c | |||
@@ -40,14 +40,15 @@ | |||
40 | #include "../platforms/cell/interrupt.h" | 40 | #include "../platforms/cell/interrupt.h" |
41 | #include "cell/pr_util.h" | 41 | #include "cell/pr_util.h" |
42 | 42 | ||
43 | static void cell_global_stop_spu(void); | 43 | #define PPU_PROFILING 0 |
44 | #define SPU_PROFILING_CYCLES 1 | ||
45 | #define SPU_PROFILING_EVENTS 2 | ||
44 | 46 | ||
45 | /* | 47 | #define SPU_EVENT_NUM_START 4100 |
46 | * spu_cycle_reset is the number of cycles between samples. | 48 | #define SPU_EVENT_NUM_STOP 4399 |
47 | * This variable is used for SPU profiling and should ONLY be set | 49 | #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */ |
48 | * at the beginning of cell_reg_setup; otherwise, it's read-only. | 50 | #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */ |
49 | */ | 51 | #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */ |
50 | static unsigned int spu_cycle_reset; | ||
51 | 52 | ||
52 | #define NUM_SPUS_PER_NODE 8 | 53 | #define NUM_SPUS_PER_NODE 8 |
53 | #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */ | 54 | #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */ |
@@ -66,6 +67,21 @@ static unsigned int spu_cycle_reset; | |||
66 | 67 | ||
67 | #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */ | 68 | #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */ |
68 | 69 | ||
70 | /* Minumum HW interval timer setting to send value to trace buffer is 10 cycle. | ||
71 | * To configure counter to send value every N cycles set counter to | ||
72 | * 2^32 - 1 - N. | ||
73 | */ | ||
74 | #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10 | ||
75 | |||
76 | /* | ||
77 | * spu_cycle_reset is the number of cycles between samples. | ||
78 | * This variable is used for SPU profiling and should ONLY be set | ||
79 | * at the beginning of cell_reg_setup; otherwise, it's read-only. | ||
80 | */ | ||
81 | static unsigned int spu_cycle_reset; | ||
82 | static unsigned int profiling_mode; | ||
83 | static int spu_evnt_phys_spu_indx; | ||
84 | |||
69 | struct pmc_cntrl_data { | 85 | struct pmc_cntrl_data { |
70 | unsigned long vcntr; | 86 | unsigned long vcntr; |
71 | unsigned long evnts; | 87 | unsigned long evnts; |
@@ -105,6 +121,8 @@ struct pm_cntrl { | |||
105 | u16 trace_mode; | 121 | u16 trace_mode; |
106 | u16 freeze; | 122 | u16 freeze; |
107 | u16 count_mode; | 123 | u16 count_mode; |
124 | u16 spu_addr_trace; | ||
125 | u8 trace_buf_ovflw; | ||
108 | }; | 126 | }; |
109 | 127 | ||
110 | static struct { | 128 | static struct { |
@@ -122,7 +140,7 @@ static struct { | |||
122 | #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) | 140 | #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) |
123 | 141 | ||
124 | static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); | 142 | static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); |
125 | 143 | static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE]; | |
126 | static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; | 144 | static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; |
127 | 145 | ||
128 | /* | 146 | /* |
@@ -152,6 +170,7 @@ static u32 hdw_thread; | |||
152 | 170 | ||
153 | static u32 virt_cntr_inter_mask; | 171 | static u32 virt_cntr_inter_mask; |
154 | static struct timer_list timer_virt_cntr; | 172 | static struct timer_list timer_virt_cntr; |
173 | static struct timer_list timer_spu_event_swap; | ||
155 | 174 | ||
156 | /* | 175 | /* |
157 | * pm_signal needs to be global since it is initialized in | 176 | * pm_signal needs to be global since it is initialized in |
@@ -165,7 +184,7 @@ static int spu_rtas_token; /* token for SPU cycle profiling */ | |||
165 | static u32 reset_value[NR_PHYS_CTRS]; | 184 | static u32 reset_value[NR_PHYS_CTRS]; |
166 | static int num_counters; | 185 | static int num_counters; |
167 | static int oprofile_running; | 186 | static int oprofile_running; |
168 | static DEFINE_SPINLOCK(virt_cntr_lock); | 187 | static DEFINE_SPINLOCK(cntr_lock); |
169 | 188 | ||
170 | static u32 ctr_enabled; | 189 | static u32 ctr_enabled; |
171 | 190 | ||
@@ -336,13 +355,13 @@ static void set_pm_event(u32 ctr, int event, u32 unit_mask) | |||
336 | for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) { | 355 | for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) { |
337 | if (bus_word & (1 << i)) { | 356 | if (bus_word & (1 << i)) { |
338 | pm_regs.debug_bus_control |= | 357 | pm_regs.debug_bus_control |= |
339 | (bus_type << (30 - (2 * i))); | 358 | (bus_type << (30 - (2 * i))); |
340 | 359 | ||
341 | for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) { | 360 | for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) { |
342 | if (input_bus[j] == 0xff) { | 361 | if (input_bus[j] == 0xff) { |
343 | input_bus[j] = i; | 362 | input_bus[j] = i; |
344 | pm_regs.group_control |= | 363 | pm_regs.group_control |= |
345 | (i << (30 - (2 * j))); | 364 | (i << (30 - (2 * j))); |
346 | 365 | ||
347 | break; | 366 | break; |
348 | } | 367 | } |
@@ -367,12 +386,16 @@ static void write_pm_cntrl(int cpu) | |||
367 | if (pm_regs.pm_cntrl.stop_at_max == 1) | 386 | if (pm_regs.pm_cntrl.stop_at_max == 1) |
368 | val |= CBE_PM_STOP_AT_MAX; | 387 | val |= CBE_PM_STOP_AT_MAX; |
369 | 388 | ||
370 | if (pm_regs.pm_cntrl.trace_mode == 1) | 389 | if (pm_regs.pm_cntrl.trace_mode != 0) |
371 | val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode); | 390 | val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode); |
372 | 391 | ||
392 | if (pm_regs.pm_cntrl.trace_buf_ovflw == 1) | ||
393 | val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw); | ||
373 | if (pm_regs.pm_cntrl.freeze == 1) | 394 | if (pm_regs.pm_cntrl.freeze == 1) |
374 | val |= CBE_PM_FREEZE_ALL_CTRS; | 395 | val |= CBE_PM_FREEZE_ALL_CTRS; |
375 | 396 | ||
397 | val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace); | ||
398 | |||
376 | /* | 399 | /* |
377 | * Routine set_count_mode must be called previously to set | 400 | * Routine set_count_mode must be called previously to set |
378 | * the count mode based on the user selection of user and kernel. | 401 | * the count mode based on the user selection of user and kernel. |
@@ -441,7 +464,7 @@ static void cell_virtual_cntr(unsigned long data) | |||
441 | * not both playing with the counters on the same node. | 464 | * not both playing with the counters on the same node. |
442 | */ | 465 | */ |
443 | 466 | ||
444 | spin_lock_irqsave(&virt_cntr_lock, flags); | 467 | spin_lock_irqsave(&cntr_lock, flags); |
445 | 468 | ||
446 | prev_hdw_thread = hdw_thread; | 469 | prev_hdw_thread = hdw_thread; |
447 | 470 | ||
@@ -480,7 +503,7 @@ static void cell_virtual_cntr(unsigned long data) | |||
480 | cbe_disable_pm_interrupts(cpu); | 503 | cbe_disable_pm_interrupts(cpu); |
481 | for (i = 0; i < num_counters; i++) { | 504 | for (i = 0; i < num_counters; i++) { |
482 | per_cpu(pmc_values, cpu + prev_hdw_thread)[i] | 505 | per_cpu(pmc_values, cpu + prev_hdw_thread)[i] |
483 | = cbe_read_ctr(cpu, i); | 506 | = cbe_read_ctr(cpu, i); |
484 | 507 | ||
485 | if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] | 508 | if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] |
486 | == 0xFFFFFFFF) | 509 | == 0xFFFFFFFF) |
@@ -527,7 +550,7 @@ static void cell_virtual_cntr(unsigned long data) | |||
527 | cbe_enable_pm(cpu); | 550 | cbe_enable_pm(cpu); |
528 | } | 551 | } |
529 | 552 | ||
530 | spin_unlock_irqrestore(&virt_cntr_lock, flags); | 553 | spin_unlock_irqrestore(&cntr_lock, flags); |
531 | 554 | ||
532 | mod_timer(&timer_virt_cntr, jiffies + HZ / 10); | 555 | mod_timer(&timer_virt_cntr, jiffies + HZ / 10); |
533 | } | 556 | } |
@@ -541,38 +564,146 @@ static void start_virt_cntrs(void) | |||
541 | add_timer(&timer_virt_cntr); | 564 | add_timer(&timer_virt_cntr); |
542 | } | 565 | } |
543 | 566 | ||
544 | /* This function is called once for all cpus combined */ | 567 | static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr, |
545 | static int cell_reg_setup(struct op_counter_config *ctr, | ||
546 | struct op_system_config *sys, int num_ctrs) | 568 | struct op_system_config *sys, int num_ctrs) |
547 | { | 569 | { |
548 | int i, j, cpu; | 570 | spu_cycle_reset = ctr[0].count; |
549 | spu_cycle_reset = 0; | ||
550 | 571 | ||
551 | if (ctr[0].event == SPU_CYCLES_EVENT_NUM) { | 572 | /* |
552 | spu_cycle_reset = ctr[0].count; | 573 | * Each node will need to make the rtas call to start |
574 | * and stop SPU profiling. Get the token once and store it. | ||
575 | */ | ||
576 | spu_rtas_token = rtas_token("ibm,cbe-spu-perftools"); | ||
577 | |||
578 | if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) { | ||
579 | printk(KERN_ERR | ||
580 | "%s: rtas token ibm,cbe-spu-perftools unknown\n", | ||
581 | __func__); | ||
582 | return -EIO; | ||
583 | } | ||
584 | return 0; | ||
585 | } | ||
586 | |||
587 | /* Unfortunately, the hardware will only support event profiling | ||
588 | * on one SPU per node at a time. Therefore, we must time slice | ||
589 | * the profiling across all SPUs in the node. Note, we do this | ||
590 | * in parallel for each node. The following routine is called | ||
591 | * periodically based on kernel timer to switch which SPU is | ||
592 | * being monitored in a round robbin fashion. | ||
593 | */ | ||
594 | static void spu_evnt_swap(unsigned long data) | ||
595 | { | ||
596 | int node; | ||
597 | int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx; | ||
598 | unsigned long flags; | ||
599 | int cpu; | ||
600 | int ret; | ||
601 | u32 interrupt_mask; | ||
602 | |||
603 | |||
604 | /* enable interrupts on cntr 0 */ | ||
605 | interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0); | ||
606 | |||
607 | hdw_thread = 0; | ||
608 | |||
609 | /* Make sure spu event interrupt handler and spu event swap | ||
610 | * don't access the counters simultaneously. | ||
611 | */ | ||
612 | spin_lock_irqsave(&cntr_lock, flags); | ||
613 | |||
614 | cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx; | ||
615 | |||
616 | if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE) | ||
617 | spu_evnt_phys_spu_indx = 0; | ||
618 | |||
619 | pm_signal[0].sub_unit = spu_evnt_phys_spu_indx; | ||
620 | pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; | ||
621 | pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; | ||
622 | |||
623 | /* switch the SPU being profiled on each node */ | ||
624 | for_each_online_cpu(cpu) { | ||
625 | if (cbe_get_hw_thread_id(cpu)) | ||
626 | continue; | ||
627 | |||
628 | node = cbe_cpu_to_node(cpu); | ||
629 | cur_phys_spu = (node * NUM_SPUS_PER_NODE) | ||
630 | + cur_spu_evnt_phys_spu_indx; | ||
631 | nxt_phys_spu = (node * NUM_SPUS_PER_NODE) | ||
632 | + spu_evnt_phys_spu_indx; | ||
553 | 633 | ||
554 | /* | 634 | /* |
555 | * Each node will need to make the rtas call to start | 635 | * stop counters, save counter values, restore counts |
556 | * and stop SPU profiling. Get the token once and store it. | 636 | * for previous physical SPU |
557 | */ | 637 | */ |
558 | spu_rtas_token = rtas_token("ibm,cbe-spu-perftools"); | 638 | cbe_disable_pm(cpu); |
639 | cbe_disable_pm_interrupts(cpu); | ||
559 | 640 | ||
560 | if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) { | 641 | spu_pm_cnt[cur_phys_spu] |
561 | printk(KERN_ERR | 642 | = cbe_read_ctr(cpu, 0); |
562 | "%s: rtas token ibm,cbe-spu-perftools unknown\n", | 643 | |
563 | __func__); | 644 | /* restore previous count for the next spu to sample */ |
564 | return -EIO; | 645 | /* NOTE, hardware issue, counter will not start if the |
565 | } | 646 | * counter value is at max (0xFFFFFFFF). |
647 | */ | ||
648 | if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF) | ||
649 | cbe_write_ctr(cpu, 0, 0xFFFFFFF0); | ||
650 | else | ||
651 | cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]); | ||
652 | |||
653 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | ||
654 | |||
655 | /* setup the debug bus measure the one event and | ||
656 | * the two events to route the next SPU's PC on | ||
657 | * the debug bus | ||
658 | */ | ||
659 | ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3); | ||
660 | if (ret) | ||
661 | printk(KERN_ERR "%s: pm_rtas_activate_signals failed, " | ||
662 | "SPU event swap\n", __func__); | ||
663 | |||
664 | /* clear the trace buffer, don't want to take PC for | ||
665 | * previous SPU*/ | ||
666 | cbe_write_pm(cpu, trace_address, 0); | ||
667 | |||
668 | enable_ctr(cpu, 0, pm_regs.pm07_cntrl); | ||
669 | |||
670 | /* Enable interrupts on the CPU thread that is starting */ | ||
671 | cbe_enable_pm_interrupts(cpu, hdw_thread, | ||
672 | interrupt_mask); | ||
673 | cbe_enable_pm(cpu); | ||
566 | } | 674 | } |
567 | 675 | ||
568 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); | 676 | spin_unlock_irqrestore(&cntr_lock, flags); |
569 | 677 | ||
678 | /* swap approximately every 0.1 seconds */ | ||
679 | mod_timer(&timer_spu_event_swap, jiffies + HZ / 25); | ||
680 | } | ||
681 | |||
682 | static void start_spu_event_swap(void) | ||
683 | { | ||
684 | init_timer(&timer_spu_event_swap); | ||
685 | timer_spu_event_swap.function = spu_evnt_swap; | ||
686 | timer_spu_event_swap.data = 0UL; | ||
687 | timer_spu_event_swap.expires = jiffies + HZ / 25; | ||
688 | add_timer(&timer_spu_event_swap); | ||
689 | } | ||
690 | |||
691 | static int cell_reg_setup_spu_events(struct op_counter_config *ctr, | ||
692 | struct op_system_config *sys, int num_ctrs) | ||
693 | { | ||
694 | int i; | ||
695 | |||
696 | /* routine is called once for all nodes */ | ||
697 | |||
698 | spu_evnt_phys_spu_indx = 0; | ||
570 | /* | 699 | /* |
571 | * For all events excetp PPU CYCLEs, each node will need to make | 700 | * For all events except PPU CYCLEs, each node will need to make |
572 | * the rtas cbe-perftools call to setup and reset the debug bus. | 701 | * the rtas cbe-perftools call to setup and reset the debug bus. |
573 | * Make the token lookup call once and store it in the global | 702 | * Make the token lookup call once and store it in the global |
574 | * variable pm_rtas_token. | 703 | * variable pm_rtas_token. |
575 | */ | 704 | */ |
705 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); | ||
706 | |||
576 | if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { | 707 | if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { |
577 | printk(KERN_ERR | 708 | printk(KERN_ERR |
578 | "%s: rtas token ibm,cbe-perftools unknown\n", | 709 | "%s: rtas token ibm,cbe-perftools unknown\n", |
@@ -580,6 +711,58 @@ static int cell_reg_setup(struct op_counter_config *ctr, | |||
580 | return -EIO; | 711 | return -EIO; |
581 | } | 712 | } |
582 | 713 | ||
714 | /* setup the pm_control register settings, | ||
715 | * settings will be written per node by the | ||
716 | * cell_cpu_setup() function. | ||
717 | */ | ||
718 | pm_regs.pm_cntrl.trace_buf_ovflw = 1; | ||
719 | |||
720 | /* Use the occurrence trace mode to have SPU PC saved | ||
721 | * to the trace buffer. Occurrence data in trace buffer | ||
722 | * is not used. Bit 2 must be set to store SPU addresses. | ||
723 | */ | ||
724 | pm_regs.pm_cntrl.trace_mode = 2; | ||
725 | |||
726 | pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus | ||
727 | event 2 & 3 */ | ||
728 | |||
729 | /* setup the debug bus event array with the SPU PC routing events. | ||
730 | * Note, pm_signal[0] will be filled in by set_pm_event() call below. | ||
731 | */ | ||
732 | pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100; | ||
733 | pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A); | ||
734 | pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100; | ||
735 | pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; | ||
736 | |||
737 | pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100; | ||
738 | pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B); | ||
739 | pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100; | ||
740 | pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; | ||
741 | |||
742 | /* Set the user selected spu event to profile on, | ||
743 | * note, only one SPU profiling event is supported | ||
744 | */ | ||
745 | num_counters = 1; /* Only support one SPU event at a time */ | ||
746 | set_pm_event(0, ctr[0].event, ctr[0].unit_mask); | ||
747 | |||
748 | reset_value[0] = 0xFFFFFFFF - ctr[0].count; | ||
749 | |||
750 | /* global, used by cell_cpu_setup */ | ||
751 | ctr_enabled |= 1; | ||
752 | |||
753 | /* Initialize the count for each SPU to the reset value */ | ||
754 | for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++) | ||
755 | spu_pm_cnt[i] = reset_value[0]; | ||
756 | |||
757 | return 0; | ||
758 | } | ||
759 | |||
760 | static int cell_reg_setup_ppu(struct op_counter_config *ctr, | ||
761 | struct op_system_config *sys, int num_ctrs) | ||
762 | { | ||
763 | /* routine is called once for all nodes */ | ||
764 | int i, j, cpu; | ||
765 | |||
583 | num_counters = num_ctrs; | 766 | num_counters = num_ctrs; |
584 | 767 | ||
585 | if (unlikely(num_ctrs > NR_PHYS_CTRS)) { | 768 | if (unlikely(num_ctrs > NR_PHYS_CTRS)) { |
@@ -589,14 +772,6 @@ static int cell_reg_setup(struct op_counter_config *ctr, | |||
589 | __func__); | 772 | __func__); |
590 | return -EIO; | 773 | return -EIO; |
591 | } | 774 | } |
592 | pm_regs.group_control = 0; | ||
593 | pm_regs.debug_bus_control = 0; | ||
594 | |||
595 | /* setup the pm_control register */ | ||
596 | memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl)); | ||
597 | pm_regs.pm_cntrl.stop_at_max = 1; | ||
598 | pm_regs.pm_cntrl.trace_mode = 0; | ||
599 | pm_regs.pm_cntrl.freeze = 1; | ||
600 | 775 | ||
601 | set_count_mode(sys->enable_kernel, sys->enable_user); | 776 | set_count_mode(sys->enable_kernel, sys->enable_user); |
602 | 777 | ||
@@ -665,6 +840,63 @@ static int cell_reg_setup(struct op_counter_config *ctr, | |||
665 | } | 840 | } |
666 | 841 | ||
667 | 842 | ||
843 | /* This function is called once for all cpus combined */ | ||
844 | static int cell_reg_setup(struct op_counter_config *ctr, | ||
845 | struct op_system_config *sys, int num_ctrs) | ||
846 | { | ||
847 | int ret=0; | ||
848 | spu_cycle_reset = 0; | ||
849 | |||
850 | /* initialize the spu_arr_trace value, will be reset if | ||
851 | * doing spu event profiling. | ||
852 | */ | ||
853 | pm_regs.group_control = 0; | ||
854 | pm_regs.debug_bus_control = 0; | ||
855 | pm_regs.pm_cntrl.stop_at_max = 1; | ||
856 | pm_regs.pm_cntrl.trace_mode = 0; | ||
857 | pm_regs.pm_cntrl.freeze = 1; | ||
858 | pm_regs.pm_cntrl.trace_buf_ovflw = 0; | ||
859 | pm_regs.pm_cntrl.spu_addr_trace = 0; | ||
860 | |||
861 | /* | ||
862 | * For all events except PPU CYCLEs, each node will need to make | ||
863 | * the rtas cbe-perftools call to setup and reset the debug bus. | ||
864 | * Make the token lookup call once and store it in the global | ||
865 | * variable pm_rtas_token. | ||
866 | */ | ||
867 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); | ||
868 | |||
869 | if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { | ||
870 | printk(KERN_ERR | ||
871 | "%s: rtas token ibm,cbe-perftools unknown\n", | ||
872 | __func__); | ||
873 | return -EIO; | ||
874 | } | ||
875 | |||
876 | if (ctr[0].event == SPU_CYCLES_EVENT_NUM) { | ||
877 | profiling_mode = SPU_PROFILING_CYCLES; | ||
878 | ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs); | ||
879 | } else if ((ctr[0].event >= SPU_EVENT_NUM_START) && | ||
880 | (ctr[0].event <= SPU_EVENT_NUM_STOP)) { | ||
881 | profiling_mode = SPU_PROFILING_EVENTS; | ||
882 | spu_cycle_reset = ctr[0].count; | ||
883 | |||
884 | /* for SPU event profiling, need to setup the | ||
885 | * pm_signal array with the events to route the | ||
886 | * SPU PC before making the FW call. Note, only | ||
887 | * one SPU event for profiling can be specified | ||
888 | * at a time. | ||
889 | */ | ||
890 | cell_reg_setup_spu_events(ctr, sys, num_ctrs); | ||
891 | } else { | ||
892 | profiling_mode = PPU_PROFILING; | ||
893 | ret = cell_reg_setup_ppu(ctr, sys, num_ctrs); | ||
894 | } | ||
895 | |||
896 | return ret; | ||
897 | } | ||
898 | |||
899 | |||
668 | 900 | ||
669 | /* This function is called once for each cpu */ | 901 | /* This function is called once for each cpu */ |
670 | static int cell_cpu_setup(struct op_counter_config *cntr) | 902 | static int cell_cpu_setup(struct op_counter_config *cntr) |
@@ -672,8 +904,13 @@ static int cell_cpu_setup(struct op_counter_config *cntr) | |||
672 | u32 cpu = smp_processor_id(); | 904 | u32 cpu = smp_processor_id(); |
673 | u32 num_enabled = 0; | 905 | u32 num_enabled = 0; |
674 | int i; | 906 | int i; |
907 | int ret; | ||
675 | 908 | ||
676 | if (spu_cycle_reset) | 909 | /* Cycle based SPU profiling does not use the performance |
910 | * counters. The trace array is configured to collect | ||
911 | * the data. | ||
912 | */ | ||
913 | if (profiling_mode == SPU_PROFILING_CYCLES) | ||
677 | return 0; | 914 | return 0; |
678 | 915 | ||
679 | /* There is one performance monitor per processor chip (i.e. node), | 916 | /* There is one performance monitor per processor chip (i.e. node), |
@@ -686,7 +923,6 @@ static int cell_cpu_setup(struct op_counter_config *cntr) | |||
686 | cbe_disable_pm(cpu); | 923 | cbe_disable_pm(cpu); |
687 | cbe_disable_pm_interrupts(cpu); | 924 | cbe_disable_pm_interrupts(cpu); |
688 | 925 | ||
689 | cbe_write_pm(cpu, pm_interval, 0); | ||
690 | cbe_write_pm(cpu, pm_start_stop, 0); | 926 | cbe_write_pm(cpu, pm_start_stop, 0); |
691 | cbe_write_pm(cpu, group_control, pm_regs.group_control); | 927 | cbe_write_pm(cpu, group_control, pm_regs.group_control); |
692 | cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); | 928 | cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); |
@@ -703,7 +939,20 @@ static int cell_cpu_setup(struct op_counter_config *cntr) | |||
703 | * The pm_rtas_activate_signals will return -EIO if the FW | 939 | * The pm_rtas_activate_signals will return -EIO if the FW |
704 | * call failed. | 940 | * call failed. |
705 | */ | 941 | */ |
706 | return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled); | 942 | if (profiling_mode == SPU_PROFILING_EVENTS) { |
943 | /* For SPU event profiling also need to setup the | ||
944 | * pm interval timer | ||
945 | */ | ||
946 | ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), | ||
947 | num_enabled+2); | ||
948 | /* store PC from debug bus to Trace buffer as often | ||
949 | * as possible (every 10 cycles) | ||
950 | */ | ||
951 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); | ||
952 | return ret; | ||
953 | } else | ||
954 | return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), | ||
955 | num_enabled); | ||
707 | } | 956 | } |
708 | 957 | ||
709 | #define ENTRIES 303 | 958 | #define ENTRIES 303 |
@@ -885,7 +1134,122 @@ static struct notifier_block cpu_freq_notifier_block = { | |||
885 | }; | 1134 | }; |
886 | #endif | 1135 | #endif |
887 | 1136 | ||
888 | static int cell_global_start_spu(struct op_counter_config *ctr) | 1137 | /* |
1138 | * Note the generic OProfile stop calls do not support returning | ||
1139 | * an error on stop. Hence, will not return an error if the FW | ||
1140 | * calls fail on stop. Failure to reset the debug bus is not an issue. | ||
1141 | * Failure to disable the SPU profiling is not an issue. The FW calls | ||
1142 | * to enable the performance counters and debug bus will work even if | ||
1143 | * the hardware was not cleanly reset. | ||
1144 | */ | ||
1145 | static void cell_global_stop_spu_cycles(void) | ||
1146 | { | ||
1147 | int subfunc, rtn_value; | ||
1148 | unsigned int lfsr_value; | ||
1149 | int cpu; | ||
1150 | |||
1151 | oprofile_running = 0; | ||
1152 | smp_wmb(); | ||
1153 | |||
1154 | #ifdef CONFIG_CPU_FREQ | ||
1155 | cpufreq_unregister_notifier(&cpu_freq_notifier_block, | ||
1156 | CPUFREQ_TRANSITION_NOTIFIER); | ||
1157 | #endif | ||
1158 | |||
1159 | for_each_online_cpu(cpu) { | ||
1160 | if (cbe_get_hw_thread_id(cpu)) | ||
1161 | continue; | ||
1162 | |||
1163 | subfunc = 3; /* | ||
1164 | * 2 - activate SPU tracing, | ||
1165 | * 3 - deactivate | ||
1166 | */ | ||
1167 | lfsr_value = 0x8f100000; | ||
1168 | |||
1169 | rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL, | ||
1170 | subfunc, cbe_cpu_to_node(cpu), | ||
1171 | lfsr_value); | ||
1172 | |||
1173 | if (unlikely(rtn_value != 0)) { | ||
1174 | printk(KERN_ERR | ||
1175 | "%s: rtas call ibm,cbe-spu-perftools " \ | ||
1176 | "failed, return = %d\n", | ||
1177 | __func__, rtn_value); | ||
1178 | } | ||
1179 | |||
1180 | /* Deactivate the signals */ | ||
1181 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | ||
1182 | } | ||
1183 | |||
1184 | stop_spu_profiling_cycles(); | ||
1185 | } | ||
1186 | |||
1187 | static void cell_global_stop_spu_events(void) | ||
1188 | { | ||
1189 | int cpu; | ||
1190 | oprofile_running = 0; | ||
1191 | |||
1192 | stop_spu_profiling_events(); | ||
1193 | smp_wmb(); | ||
1194 | |||
1195 | for_each_online_cpu(cpu) { | ||
1196 | if (cbe_get_hw_thread_id(cpu)) | ||
1197 | continue; | ||
1198 | |||
1199 | cbe_sync_irq(cbe_cpu_to_node(cpu)); | ||
1200 | /* Stop the counters */ | ||
1201 | cbe_disable_pm(cpu); | ||
1202 | cbe_write_pm07_control(cpu, 0, 0); | ||
1203 | |||
1204 | /* Deactivate the signals */ | ||
1205 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | ||
1206 | |||
1207 | /* Deactivate interrupts */ | ||
1208 | cbe_disable_pm_interrupts(cpu); | ||
1209 | } | ||
1210 | del_timer_sync(&timer_spu_event_swap); | ||
1211 | } | ||
1212 | |||
1213 | static void cell_global_stop_ppu(void) | ||
1214 | { | ||
1215 | int cpu; | ||
1216 | |||
1217 | /* | ||
1218 | * This routine will be called once for the system. | ||
1219 | * There is one performance monitor per node, so we | ||
1220 | * only need to perform this function once per node. | ||
1221 | */ | ||
1222 | del_timer_sync(&timer_virt_cntr); | ||
1223 | oprofile_running = 0; | ||
1224 | smp_wmb(); | ||
1225 | |||
1226 | for_each_online_cpu(cpu) { | ||
1227 | if (cbe_get_hw_thread_id(cpu)) | ||
1228 | continue; | ||
1229 | |||
1230 | cbe_sync_irq(cbe_cpu_to_node(cpu)); | ||
1231 | /* Stop the counters */ | ||
1232 | cbe_disable_pm(cpu); | ||
1233 | |||
1234 | /* Deactivate the signals */ | ||
1235 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | ||
1236 | |||
1237 | /* Deactivate interrupts */ | ||
1238 | cbe_disable_pm_interrupts(cpu); | ||
1239 | } | ||
1240 | } | ||
1241 | |||
1242 | static void cell_global_stop(void) | ||
1243 | { | ||
1244 | if (profiling_mode == PPU_PROFILING) | ||
1245 | cell_global_stop_ppu(); | ||
1246 | else if (profiling_mode == SPU_PROFILING_EVENTS) | ||
1247 | cell_global_stop_spu_events(); | ||
1248 | else | ||
1249 | cell_global_stop_spu_cycles(); | ||
1250 | } | ||
1251 | |||
1252 | static int cell_global_start_spu_cycles(struct op_counter_config *ctr) | ||
889 | { | 1253 | { |
890 | int subfunc; | 1254 | int subfunc; |
891 | unsigned int lfsr_value; | 1255 | unsigned int lfsr_value; |
@@ -951,18 +1315,18 @@ static int cell_global_start_spu(struct op_counter_config *ctr) | |||
951 | 1315 | ||
952 | /* start profiling */ | 1316 | /* start profiling */ |
953 | ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc, | 1317 | ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc, |
954 | cbe_cpu_to_node(cpu), lfsr_value); | 1318 | cbe_cpu_to_node(cpu), lfsr_value); |
955 | 1319 | ||
956 | if (unlikely(ret != 0)) { | 1320 | if (unlikely(ret != 0)) { |
957 | printk(KERN_ERR | 1321 | printk(KERN_ERR |
958 | "%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n", | 1322 | "%s: rtas call ibm,cbe-spu-perftools failed, " \ |
959 | __func__, ret); | 1323 | "return = %d\n", __func__, ret); |
960 | rtas_error = -EIO; | 1324 | rtas_error = -EIO; |
961 | goto out; | 1325 | goto out; |
962 | } | 1326 | } |
963 | } | 1327 | } |
964 | 1328 | ||
965 | rtas_error = start_spu_profiling(spu_cycle_reset); | 1329 | rtas_error = start_spu_profiling_cycles(spu_cycle_reset); |
966 | if (rtas_error) | 1330 | if (rtas_error) |
967 | goto out_stop; | 1331 | goto out_stop; |
968 | 1332 | ||
@@ -970,11 +1334,74 @@ static int cell_global_start_spu(struct op_counter_config *ctr) | |||
970 | return 0; | 1334 | return 0; |
971 | 1335 | ||
972 | out_stop: | 1336 | out_stop: |
973 | cell_global_stop_spu(); /* clean up the PMU/debug bus */ | 1337 | cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */ |
974 | out: | 1338 | out: |
975 | return rtas_error; | 1339 | return rtas_error; |
976 | } | 1340 | } |
977 | 1341 | ||
1342 | static int cell_global_start_spu_events(struct op_counter_config *ctr) | ||
1343 | { | ||
1344 | int cpu; | ||
1345 | u32 interrupt_mask = 0; | ||
1346 | int rtn = 0; | ||
1347 | |||
1348 | hdw_thread = 0; | ||
1349 | |||
1350 | /* spu event profiling, uses the performance counters to generate | ||
1351 | * an interrupt. The hardware is setup to store the SPU program | ||
1352 | * counter into the trace array. The occurrence mode is used to | ||
1353 | * enable storing data to the trace buffer. The bits are set | ||
1354 | * to send/store the SPU address in the trace buffer. The debug | ||
1355 | * bus must be setup to route the SPU program counter onto the | ||
1356 | * debug bus. The occurrence data in the trace buffer is not used. | ||
1357 | */ | ||
1358 | |||
1359 | /* This routine gets called once for the system. | ||
1360 | * There is one performance monitor per node, so we | ||
1361 | * only need to perform this function once per node. | ||
1362 | */ | ||
1363 | |||
1364 | for_each_online_cpu(cpu) { | ||
1365 | if (cbe_get_hw_thread_id(cpu)) | ||
1366 | continue; | ||
1367 | |||
1368 | /* | ||
1369 | * Setup SPU event-based profiling. | ||
1370 | * Set perf_mon_control bit 0 to a zero before | ||
1371 | * enabling spu collection hardware. | ||
1372 | * | ||
1373 | * Only support one SPU event on one SPU per node. | ||
1374 | */ | ||
1375 | if (ctr_enabled & 1) { | ||
1376 | cbe_write_ctr(cpu, 0, reset_value[0]); | ||
1377 | enable_ctr(cpu, 0, pm_regs.pm07_cntrl); | ||
1378 | interrupt_mask |= | ||
1379 | CBE_PM_CTR_OVERFLOW_INTR(0); | ||
1380 | } else { | ||
1381 | /* Disable counter */ | ||
1382 | cbe_write_pm07_control(cpu, 0, 0); | ||
1383 | } | ||
1384 | |||
1385 | cbe_get_and_clear_pm_interrupts(cpu); | ||
1386 | cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); | ||
1387 | cbe_enable_pm(cpu); | ||
1388 | |||
1389 | /* clear the trace buffer */ | ||
1390 | cbe_write_pm(cpu, trace_address, 0); | ||
1391 | } | ||
1392 | |||
1393 | /* Start the timer to time slice collecting the event profile | ||
1394 | * on each of the SPUs. Note, can collect profile on one SPU | ||
1395 | * per node at a time. | ||
1396 | */ | ||
1397 | start_spu_event_swap(); | ||
1398 | start_spu_profiling_events(); | ||
1399 | oprofile_running = 1; | ||
1400 | smp_wmb(); | ||
1401 | |||
1402 | return rtn; | ||
1403 | } | ||
1404 | |||
978 | static int cell_global_start_ppu(struct op_counter_config *ctr) | 1405 | static int cell_global_start_ppu(struct op_counter_config *ctr) |
979 | { | 1406 | { |
980 | u32 cpu, i; | 1407 | u32 cpu, i; |
@@ -994,8 +1421,7 @@ static int cell_global_start_ppu(struct op_counter_config *ctr) | |||
994 | if (ctr_enabled & (1 << i)) { | 1421 | if (ctr_enabled & (1 << i)) { |
995 | cbe_write_ctr(cpu, i, reset_value[i]); | 1422 | cbe_write_ctr(cpu, i, reset_value[i]); |
996 | enable_ctr(cpu, i, pm_regs.pm07_cntrl); | 1423 | enable_ctr(cpu, i, pm_regs.pm07_cntrl); |
997 | interrupt_mask |= | 1424 | interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i); |
998 | CBE_PM_CTR_OVERFLOW_INTR(i); | ||
999 | } else { | 1425 | } else { |
1000 | /* Disable counter */ | 1426 | /* Disable counter */ |
1001 | cbe_write_pm07_control(cpu, i, 0); | 1427 | cbe_write_pm07_control(cpu, i, 0); |
@@ -1024,99 +1450,162 @@ static int cell_global_start_ppu(struct op_counter_config *ctr) | |||
1024 | 1450 | ||
1025 | static int cell_global_start(struct op_counter_config *ctr) | 1451 | static int cell_global_start(struct op_counter_config *ctr) |
1026 | { | 1452 | { |
1027 | if (spu_cycle_reset) | 1453 | if (profiling_mode == SPU_PROFILING_CYCLES) |
1028 | return cell_global_start_spu(ctr); | 1454 | return cell_global_start_spu_cycles(ctr); |
1455 | else if (profiling_mode == SPU_PROFILING_EVENTS) | ||
1456 | return cell_global_start_spu_events(ctr); | ||
1029 | else | 1457 | else |
1030 | return cell_global_start_ppu(ctr); | 1458 | return cell_global_start_ppu(ctr); |
1031 | } | 1459 | } |
1032 | 1460 | ||
1033 | /* | 1461 | |
1034 | * Note the generic OProfile stop calls do not support returning | 1462 | /* The SPU interrupt handler |
1035 | * an error on stop. Hence, will not return an error if the FW | 1463 | * |
1036 | * calls fail on stop. Failure to reset the debug bus is not an issue. | 1464 | * SPU event profiling works as follows: |
1037 | * Failure to disable the SPU profiling is not an issue. The FW calls | 1465 | * The pm_signal[0] holds the one SPU event to be measured. It is routed on |
1038 | * to enable the performance counters and debug bus will work even if | 1466 | * the debug bus using word 0 or 1. The value of pm_signal[1] and |
1039 | * the hardware was not cleanly reset. | 1467 | * pm_signal[2] contain the necessary events to route the SPU program |
1468 | * counter for the selected SPU onto the debug bus using words 2 and 3. | ||
1469 | * The pm_interval register is setup to write the SPU PC value into the | ||
1470 | * trace buffer at the maximum rate possible. The trace buffer is configured | ||
1471 | * to store the PCs, wrapping when it is full. The performance counter is | ||
1472 | * intialized to the max hardware count minus the number of events, N, between | ||
1473 | * samples. Once the N events have occured, a HW counter overflow occurs | ||
1474 | * causing the generation of a HW counter interrupt which also stops the | ||
1475 | * writing of the SPU PC values to the trace buffer. Hence the last PC | ||
1476 | * written to the trace buffer is the SPU PC that we want. Unfortunately, | ||
1477 | * we have to read from the beginning of the trace buffer to get to the | ||
1478 | * last value written. We just hope the PPU has nothing better to do then | ||
1479 | * service this interrupt. The PC for the specific SPU being profiled is | ||
1480 | * extracted from the trace buffer processed and stored. The trace buffer | ||
1481 | * is cleared, interrupts are cleared, the counter is reset to max - N. | ||
1482 | * A kernel timer is used to periodically call the routine spu_evnt_swap() | ||
1483 | * to switch to the next physical SPU in the node to profile in round robbin | ||
1484 | * order. This way data is collected for all SPUs on the node. It does mean | ||
1485 | * that we need to use a relatively small value of N to ensure enough samples | ||
1486 | * on each SPU are collected each SPU is being profiled 1/8 of the time. | ||
1487 | * It may also be necessary to use a longer sample collection period. | ||
1040 | */ | 1488 | */ |
1041 | static void cell_global_stop_spu(void) | 1489 | static void cell_handle_interrupt_spu(struct pt_regs *regs, |
1490 | struct op_counter_config *ctr) | ||
1042 | { | 1491 | { |
1043 | int subfunc, rtn_value; | 1492 | u32 cpu, cpu_tmp; |
1044 | unsigned int lfsr_value; | 1493 | u64 trace_entry; |
1045 | int cpu; | 1494 | u32 interrupt_mask; |
1495 | u64 trace_buffer[2]; | ||
1496 | u64 last_trace_buffer; | ||
1497 | u32 sample; | ||
1498 | u32 trace_addr; | ||
1499 | unsigned long sample_array_lock_flags; | ||
1500 | int spu_num; | ||
1501 | unsigned long flags; | ||
1046 | 1502 | ||
1047 | oprofile_running = 0; | 1503 | /* Make sure spu event interrupt handler and spu event swap |
1504 | * don't access the counters simultaneously. | ||
1505 | */ | ||
1506 | cpu = smp_processor_id(); | ||
1507 | spin_lock_irqsave(&cntr_lock, flags); | ||
1048 | 1508 | ||
1049 | #ifdef CONFIG_CPU_FREQ | 1509 | cpu_tmp = cpu; |
1050 | cpufreq_unregister_notifier(&cpu_freq_notifier_block, | 1510 | cbe_disable_pm(cpu); |
1051 | CPUFREQ_TRANSITION_NOTIFIER); | ||
1052 | #endif | ||
1053 | 1511 | ||
1054 | for_each_online_cpu(cpu) { | 1512 | interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); |
1055 | if (cbe_get_hw_thread_id(cpu)) | ||
1056 | continue; | ||
1057 | 1513 | ||
1058 | subfunc = 3; /* | 1514 | sample = 0xABCDEF; |
1059 | * 2 - activate SPU tracing, | 1515 | trace_entry = 0xfedcba; |
1060 | * 3 - deactivate | 1516 | last_trace_buffer = 0xdeadbeaf; |
1061 | */ | ||
1062 | lfsr_value = 0x8f100000; | ||
1063 | 1517 | ||
1064 | rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL, | 1518 | if ((oprofile_running == 1) && (interrupt_mask != 0)) { |
1065 | subfunc, cbe_cpu_to_node(cpu), | 1519 | /* disable writes to trace buff */ |
1066 | lfsr_value); | 1520 | cbe_write_pm(cpu, pm_interval, 0); |
1067 | 1521 | ||
1068 | if (unlikely(rtn_value != 0)) { | 1522 | /* only have one perf cntr being used, cntr 0 */ |
1069 | printk(KERN_ERR | 1523 | if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0)) |
1070 | "%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n", | 1524 | && ctr[0].enabled) |
1071 | __func__, rtn_value); | 1525 | /* The SPU PC values will be read |
1526 | * from the trace buffer, reset counter | ||
1527 | */ | ||
1528 | |||
1529 | cbe_write_ctr(cpu, 0, reset_value[0]); | ||
1530 | |||
1531 | trace_addr = cbe_read_pm(cpu, trace_address); | ||
1532 | |||
1533 | while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { | ||
1534 | /* There is data in the trace buffer to process | ||
1535 | * Read the buffer until you get to the last | ||
1536 | * entry. This is the value we want. | ||
1537 | */ | ||
1538 | |||
1539 | cbe_read_trace_buffer(cpu, trace_buffer); | ||
1540 | trace_addr = cbe_read_pm(cpu, trace_address); | ||
1072 | } | 1541 | } |
1073 | 1542 | ||
1074 | /* Deactivate the signals */ | 1543 | /* SPU Address 16 bit count format for 128 bit |
1075 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | 1544 | * HW trace buffer is used for the SPU PC storage |
1076 | } | 1545 | * HDR bits 0:15 |
1546 | * SPU Addr 0 bits 16:31 | ||
1547 | * SPU Addr 1 bits 32:47 | ||
1548 | * unused bits 48:127 | ||
1549 | * | ||
1550 | * HDR: bit4 = 1 SPU Address 0 valid | ||
1551 | * HDR: bit5 = 1 SPU Address 1 valid | ||
1552 | * - unfortunately, the valid bits don't seem to work | ||
1553 | * | ||
1554 | * Note trace_buffer[0] holds bits 0:63 of the HW | ||
1555 | * trace buffer, trace_buffer[1] holds bits 64:127 | ||
1556 | */ | ||
1077 | 1557 | ||
1078 | stop_spu_profiling(); | 1558 | trace_entry = trace_buffer[0] |
1079 | } | 1559 | & 0x00000000FFFF0000; |
1080 | 1560 | ||
1081 | static void cell_global_stop_ppu(void) | 1561 | /* only top 16 of the 18 bit SPU PC address |
1082 | { | 1562 | * is stored in trace buffer, hence shift right |
1083 | int cpu; | 1563 | * by 16 -2 bits */ |
1564 | sample = trace_entry >> 14; | ||
1565 | last_trace_buffer = trace_buffer[0]; | ||
1084 | 1566 | ||
1085 | /* | 1567 | spu_num = spu_evnt_phys_spu_indx |
1086 | * This routine will be called once for the system. | 1568 | + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE); |
1087 | * There is one performance monitor per node, so we | ||
1088 | * only need to perform this function once per node. | ||
1089 | */ | ||
1090 | del_timer_sync(&timer_virt_cntr); | ||
1091 | oprofile_running = 0; | ||
1092 | smp_wmb(); | ||
1093 | 1569 | ||
1094 | for_each_online_cpu(cpu) { | 1570 | /* make sure only one process at a time is calling |
1095 | if (cbe_get_hw_thread_id(cpu)) | 1571 | * spu_sync_buffer() |
1096 | continue; | 1572 | */ |
1573 | spin_lock_irqsave(&oprof_spu_smpl_arry_lck, | ||
1574 | sample_array_lock_flags); | ||
1575 | spu_sync_buffer(spu_num, &sample, 1); | ||
1576 | spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, | ||
1577 | sample_array_lock_flags); | ||
1097 | 1578 | ||
1098 | cbe_sync_irq(cbe_cpu_to_node(cpu)); | 1579 | smp_wmb(); /* insure spu event buffer updates are written |
1099 | /* Stop the counters */ | 1580 | * don't want events intermingled... */ |
1100 | cbe_disable_pm(cpu); | ||
1101 | 1581 | ||
1102 | /* Deactivate the signals */ | 1582 | /* The counters were frozen by the interrupt. |
1103 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); | 1583 | * Reenable the interrupt and restart the counters. |
1584 | */ | ||
1585 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); | ||
1586 | cbe_enable_pm_interrupts(cpu, hdw_thread, | ||
1587 | virt_cntr_inter_mask); | ||
1104 | 1588 | ||
1105 | /* Deactivate interrupts */ | 1589 | /* clear the trace buffer, re-enable writes to trace buff */ |
1106 | cbe_disable_pm_interrupts(cpu); | 1590 | cbe_write_pm(cpu, trace_address, 0); |
1107 | } | 1591 | cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); |
1108 | } | ||
1109 | 1592 | ||
1110 | static void cell_global_stop(void) | 1593 | /* The writes to the various performance counters only writes |
1111 | { | 1594 | * to a latch. The new values (interrupt setting bits, reset |
1112 | if (spu_cycle_reset) | 1595 | * counter value etc.) are not copied to the actual registers |
1113 | cell_global_stop_spu(); | 1596 | * until the performance monitor is enabled. In order to get |
1114 | else | 1597 | * this to work as desired, the permormance monitor needs to |
1115 | cell_global_stop_ppu(); | 1598 | * be disabled while writing to the latches. This is a |
1599 | * HW design issue. | ||
1600 | */ | ||
1601 | write_pm_cntrl(cpu); | ||
1602 | cbe_enable_pm(cpu); | ||
1603 | } | ||
1604 | spin_unlock_irqrestore(&cntr_lock, flags); | ||
1116 | } | 1605 | } |
1117 | 1606 | ||
1118 | static void cell_handle_interrupt(struct pt_regs *regs, | 1607 | static void cell_handle_interrupt_ppu(struct pt_regs *regs, |
1119 | struct op_counter_config *ctr) | 1608 | struct op_counter_config *ctr) |
1120 | { | 1609 | { |
1121 | u32 cpu; | 1610 | u32 cpu; |
1122 | u64 pc; | 1611 | u64 pc; |
@@ -1132,7 +1621,7 @@ static void cell_handle_interrupt(struct pt_regs *regs, | |||
1132 | * routine are not running at the same time. See the | 1621 | * routine are not running at the same time. See the |
1133 | * cell_virtual_cntr() routine for additional comments. | 1622 | * cell_virtual_cntr() routine for additional comments. |
1134 | */ | 1623 | */ |
1135 | spin_lock_irqsave(&virt_cntr_lock, flags); | 1624 | spin_lock_irqsave(&cntr_lock, flags); |
1136 | 1625 | ||
1137 | /* | 1626 | /* |
1138 | * Need to disable and reenable the performance counters | 1627 | * Need to disable and reenable the performance counters |
@@ -1185,7 +1674,16 @@ static void cell_handle_interrupt(struct pt_regs *regs, | |||
1185 | */ | 1674 | */ |
1186 | cbe_enable_pm(cpu); | 1675 | cbe_enable_pm(cpu); |
1187 | } | 1676 | } |
1188 | spin_unlock_irqrestore(&virt_cntr_lock, flags); | 1677 | spin_unlock_irqrestore(&cntr_lock, flags); |
1678 | } | ||
1679 | |||
1680 | static void cell_handle_interrupt(struct pt_regs *regs, | ||
1681 | struct op_counter_config *ctr) | ||
1682 | { | ||
1683 | if (profiling_mode == PPU_PROFILING) | ||
1684 | cell_handle_interrupt_ppu(regs, ctr); | ||
1685 | else | ||
1686 | cell_handle_interrupt_spu(regs, ctr); | ||
1189 | } | 1687 | } |
1190 | 1688 | ||
1191 | /* | 1689 | /* |
@@ -1195,7 +1693,8 @@ static void cell_handle_interrupt(struct pt_regs *regs, | |||
1195 | */ | 1693 | */ |
1196 | static int cell_sync_start(void) | 1694 | static int cell_sync_start(void) |
1197 | { | 1695 | { |
1198 | if (spu_cycle_reset) | 1696 | if ((profiling_mode == SPU_PROFILING_CYCLES) || |
1697 | (profiling_mode == SPU_PROFILING_EVENTS)) | ||
1199 | return spu_sync_start(); | 1698 | return spu_sync_start(); |
1200 | else | 1699 | else |
1201 | return DO_GENERIC_SYNC; | 1700 | return DO_GENERIC_SYNC; |
@@ -1203,7 +1702,8 @@ static int cell_sync_start(void) | |||
1203 | 1702 | ||
1204 | static int cell_sync_stop(void) | 1703 | static int cell_sync_stop(void) |
1205 | { | 1704 | { |
1206 | if (spu_cycle_reset) | 1705 | if ((profiling_mode == SPU_PROFILING_CYCLES) || |
1706 | (profiling_mode == SPU_PROFILING_EVENTS)) | ||
1207 | return spu_sync_stop(); | 1707 | return spu_sync_stop(); |
1208 | else | 1708 | else |
1209 | return 1; | 1709 | return 1; |