diff options
Diffstat (limited to 'arch/powerpc/mm/hugetlbpage.c')
| -rw-r--r-- | arch/powerpc/mm/hugetlbpage.c | 745 | 
1 files changed, 745 insertions, 0 deletions
| diff --git a/arch/powerpc/mm/hugetlbpage.c b/arch/powerpc/mm/hugetlbpage.c new file mode 100644 index 000000000000..0ea0994ed974 --- /dev/null +++ b/arch/powerpc/mm/hugetlbpage.c | |||
| @@ -0,0 +1,745 @@ | |||
| 1 | /* | ||
| 2 | * PPC64 (POWER4) Huge TLB Page Support for Kernel. | ||
| 3 | * | ||
| 4 | * Copyright (C) 2003 David Gibson, IBM Corporation. | ||
| 5 | * | ||
| 6 | * Based on the IA-32 version: | ||
| 7 | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | ||
| 8 | */ | ||
| 9 | |||
| 10 | #include <linux/init.h> | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/mm.h> | ||
| 13 | #include <linux/hugetlb.h> | ||
| 14 | #include <linux/pagemap.h> | ||
| 15 | #include <linux/smp_lock.h> | ||
| 16 | #include <linux/slab.h> | ||
| 17 | #include <linux/err.h> | ||
| 18 | #include <linux/sysctl.h> | ||
| 19 | #include <asm/mman.h> | ||
| 20 | #include <asm/pgalloc.h> | ||
| 21 | #include <asm/tlb.h> | ||
| 22 | #include <asm/tlbflush.h> | ||
| 23 | #include <asm/mmu_context.h> | ||
| 24 | #include <asm/machdep.h> | ||
| 25 | #include <asm/cputable.h> | ||
| 26 | #include <asm/tlb.h> | ||
| 27 | |||
| 28 | #include <linux/sysctl.h> | ||
| 29 | |||
| 30 | #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT) | ||
| 31 | #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT) | ||
| 32 | |||
| 33 | /* Modelled after find_linux_pte() */ | ||
| 34 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | ||
| 35 | { | ||
| 36 | pgd_t *pg; | ||
| 37 | pud_t *pu; | ||
| 38 | pmd_t *pm; | ||
| 39 | pte_t *pt; | ||
| 40 | |||
| 41 | BUG_ON(! in_hugepage_area(mm->context, addr)); | ||
| 42 | |||
| 43 | addr &= HPAGE_MASK; | ||
| 44 | |||
| 45 | pg = pgd_offset(mm, addr); | ||
| 46 | if (!pgd_none(*pg)) { | ||
| 47 | pu = pud_offset(pg, addr); | ||
| 48 | if (!pud_none(*pu)) { | ||
| 49 | pm = pmd_offset(pu, addr); | ||
| 50 | pt = (pte_t *)pm; | ||
| 51 | BUG_ON(!pmd_none(*pm) | ||
| 52 | && !(pte_present(*pt) && pte_huge(*pt))); | ||
| 53 | return pt; | ||
| 54 | } | ||
| 55 | } | ||
| 56 | |||
| 57 | return NULL; | ||
| 58 | } | ||
| 59 | |||
| 60 | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) | ||
| 61 | { | ||
| 62 | pgd_t *pg; | ||
| 63 | pud_t *pu; | ||
| 64 | pmd_t *pm; | ||
| 65 | pte_t *pt; | ||
| 66 | |||
| 67 | BUG_ON(! in_hugepage_area(mm->context, addr)); | ||
| 68 | |||
| 69 | addr &= HPAGE_MASK; | ||
| 70 | |||
| 71 | pg = pgd_offset(mm, addr); | ||
| 72 | pu = pud_alloc(mm, pg, addr); | ||
| 73 | |||
| 74 | if (pu) { | ||
| 75 | pm = pmd_alloc(mm, pu, addr); | ||
| 76 | if (pm) { | ||
| 77 | pt = (pte_t *)pm; | ||
| 78 | BUG_ON(!pmd_none(*pm) | ||
| 79 | && !(pte_present(*pt) && pte_huge(*pt))); | ||
| 80 | return pt; | ||
| 81 | } | ||
| 82 | } | ||
| 83 | |||
| 84 | return NULL; | ||
| 85 | } | ||
| 86 | |||
| 87 | #define HUGEPTE_BATCH_SIZE (HPAGE_SIZE / PMD_SIZE) | ||
| 88 | |||
| 89 | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, | ||
| 90 | pte_t *ptep, pte_t pte) | ||
| 91 | { | ||
| 92 | int i; | ||
| 93 | |||
| 94 | if (pte_present(*ptep)) { | ||
| 95 | pte_clear(mm, addr, ptep); | ||
| 96 | flush_tlb_pending(); | ||
| 97 | } | ||
| 98 | |||
| 99 | for (i = 0; i < HUGEPTE_BATCH_SIZE; i++) { | ||
| 100 | *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | ||
| 101 | ptep++; | ||
| 102 | } | ||
| 103 | } | ||
| 104 | |||
| 105 | pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | ||
| 106 | pte_t *ptep) | ||
| 107 | { | ||
| 108 | unsigned long old = pte_update(ptep, ~0UL); | ||
| 109 | int i; | ||
| 110 | |||
| 111 | if (old & _PAGE_HASHPTE) | ||
| 112 | hpte_update(mm, addr, old, 0); | ||
| 113 | |||
| 114 | for (i = 1; i < HUGEPTE_BATCH_SIZE; i++) | ||
| 115 | ptep[i] = __pte(0); | ||
| 116 | |||
| 117 | return __pte(old); | ||
| 118 | } | ||
| 119 | |||
| 120 | /* | ||
| 121 | * This function checks for proper alignment of input addr and len parameters. | ||
| 122 | */ | ||
| 123 | int is_aligned_hugepage_range(unsigned long addr, unsigned long len) | ||
| 124 | { | ||
| 125 | if (len & ~HPAGE_MASK) | ||
| 126 | return -EINVAL; | ||
| 127 | if (addr & ~HPAGE_MASK) | ||
| 128 | return -EINVAL; | ||
| 129 | if (! (within_hugepage_low_range(addr, len) | ||
| 130 | || within_hugepage_high_range(addr, len)) ) | ||
| 131 | return -EINVAL; | ||
| 132 | return 0; | ||
| 133 | } | ||
| 134 | |||
| 135 | static void flush_low_segments(void *parm) | ||
| 136 | { | ||
| 137 | u16 areas = (unsigned long) parm; | ||
| 138 | unsigned long i; | ||
| 139 | |||
| 140 | asm volatile("isync" : : : "memory"); | ||
| 141 | |||
| 142 | BUILD_BUG_ON((sizeof(areas)*8) != NUM_LOW_AREAS); | ||
| 143 | |||
| 144 | for (i = 0; i < NUM_LOW_AREAS; i++) { | ||
| 145 | if (! (areas & (1U << i))) | ||
| 146 | continue; | ||
| 147 | asm volatile("slbie %0" | ||
| 148 | : : "r" ((i << SID_SHIFT) | SLBIE_C)); | ||
| 149 | } | ||
| 150 | |||
| 151 | asm volatile("isync" : : : "memory"); | ||
| 152 | } | ||
| 153 | |||
| 154 | static void flush_high_segments(void *parm) | ||
| 155 | { | ||
| 156 | u16 areas = (unsigned long) parm; | ||
| 157 | unsigned long i, j; | ||
| 158 | |||
| 159 | asm volatile("isync" : : : "memory"); | ||
| 160 | |||
| 161 | BUILD_BUG_ON((sizeof(areas)*8) != NUM_HIGH_AREAS); | ||
| 162 | |||
| 163 | for (i = 0; i < NUM_HIGH_AREAS; i++) { | ||
| 164 | if (! (areas & (1U << i))) | ||
| 165 | continue; | ||
| 166 | for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++) | ||
| 167 | asm volatile("slbie %0" | ||
| 168 | :: "r" (((i << HTLB_AREA_SHIFT) | ||
| 169 | + (j << SID_SHIFT)) | SLBIE_C)); | ||
| 170 | } | ||
| 171 | |||
| 172 | asm volatile("isync" : : : "memory"); | ||
| 173 | } | ||
| 174 | |||
| 175 | static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area) | ||
| 176 | { | ||
| 177 | unsigned long start = area << SID_SHIFT; | ||
| 178 | unsigned long end = (area+1) << SID_SHIFT; | ||
| 179 | struct vm_area_struct *vma; | ||
| 180 | |||
| 181 | BUG_ON(area >= NUM_LOW_AREAS); | ||
| 182 | |||
| 183 | /* Check no VMAs are in the region */ | ||
| 184 | vma = find_vma(mm, start); | ||
| 185 | if (vma && (vma->vm_start < end)) | ||
| 186 | return -EBUSY; | ||
| 187 | |||
| 188 | return 0; | ||
| 189 | } | ||
| 190 | |||
| 191 | static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area) | ||
| 192 | { | ||
| 193 | unsigned long start = area << HTLB_AREA_SHIFT; | ||
| 194 | unsigned long end = (area+1) << HTLB_AREA_SHIFT; | ||
| 195 | struct vm_area_struct *vma; | ||
| 196 | |||
| 197 | BUG_ON(area >= NUM_HIGH_AREAS); | ||
| 198 | |||
| 199 | /* Check no VMAs are in the region */ | ||
| 200 | vma = find_vma(mm, start); | ||
| 201 | if (vma && (vma->vm_start < end)) | ||
| 202 | return -EBUSY; | ||
| 203 | |||
| 204 | return 0; | ||
| 205 | } | ||
| 206 | |||
| 207 | static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas) | ||
| 208 | { | ||
| 209 | unsigned long i; | ||
| 210 | |||
| 211 | BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS); | ||
| 212 | BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS); | ||
| 213 | |||
| 214 | newareas &= ~(mm->context.low_htlb_areas); | ||
| 215 | if (! newareas) | ||
| 216 | return 0; /* The segments we want are already open */ | ||
| 217 | |||
| 218 | for (i = 0; i < NUM_LOW_AREAS; i++) | ||
| 219 | if ((1 << i) & newareas) | ||
| 220 | if (prepare_low_area_for_htlb(mm, i) != 0) | ||
| 221 | return -EBUSY; | ||
| 222 | |||
| 223 | mm->context.low_htlb_areas |= newareas; | ||
| 224 | |||
| 225 | /* update the paca copy of the context struct */ | ||
| 226 | get_paca()->context = mm->context; | ||
| 227 | |||
| 228 | /* the context change must make it to memory before the flush, | ||
| 229 | * so that further SLB misses do the right thing. */ | ||
| 230 | mb(); | ||
| 231 | on_each_cpu(flush_low_segments, (void *)(unsigned long)newareas, 0, 1); | ||
| 232 | |||
| 233 | return 0; | ||
| 234 | } | ||
| 235 | |||
| 236 | static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas) | ||
| 237 | { | ||
| 238 | unsigned long i; | ||
| 239 | |||
| 240 | BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS); | ||
| 241 | BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8) | ||
| 242 | != NUM_HIGH_AREAS); | ||
| 243 | |||
| 244 | newareas &= ~(mm->context.high_htlb_areas); | ||
| 245 | if (! newareas) | ||
| 246 | return 0; /* The areas we want are already open */ | ||
| 247 | |||
| 248 | for (i = 0; i < NUM_HIGH_AREAS; i++) | ||
| 249 | if ((1 << i) & newareas) | ||
| 250 | if (prepare_high_area_for_htlb(mm, i) != 0) | ||
| 251 | return -EBUSY; | ||
| 252 | |||
| 253 | mm->context.high_htlb_areas |= newareas; | ||
| 254 | |||
| 255 | /* update the paca copy of the context struct */ | ||
| 256 | get_paca()->context = mm->context; | ||
| 257 | |||
| 258 | /* the context change must make it to memory before the flush, | ||
| 259 | * so that further SLB misses do the right thing. */ | ||
| 260 | mb(); | ||
| 261 | on_each_cpu(flush_high_segments, (void *)(unsigned long)newareas, 0, 1); | ||
| 262 | |||
| 263 | return 0; | ||
| 264 | } | ||
| 265 | |||
| 266 | int prepare_hugepage_range(unsigned long addr, unsigned long len) | ||
| 267 | { | ||
| 268 | int err; | ||
| 269 | |||
| 270 | if ( (addr+len) < addr ) | ||
| 271 | return -EINVAL; | ||
| 272 | |||
| 273 | if ((addr + len) < 0x100000000UL) | ||
| 274 | err = open_low_hpage_areas(current->mm, | ||
| 275 | LOW_ESID_MASK(addr, len)); | ||
| 276 | else | ||
| 277 | err = open_high_hpage_areas(current->mm, | ||
| 278 | HTLB_AREA_MASK(addr, len)); | ||
| 279 | if (err) { | ||
| 280 | printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)" | ||
| 281 | " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n", | ||
| 282 | addr, len, | ||
| 283 | LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len)); | ||
| 284 | return err; | ||
| 285 | } | ||
| 286 | |||
| 287 | return 0; | ||
| 288 | } | ||
| 289 | |||
| 290 | struct page * | ||
| 291 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | ||
| 292 | { | ||
| 293 | pte_t *ptep; | ||
| 294 | struct page *page; | ||
| 295 | |||
| 296 | if (! in_hugepage_area(mm->context, address)) | ||
| 297 | return ERR_PTR(-EINVAL); | ||
| 298 | |||
| 299 | ptep = huge_pte_offset(mm, address); | ||
| 300 | page = pte_page(*ptep); | ||
| 301 | if (page) | ||
| 302 | page += (address % HPAGE_SIZE) / PAGE_SIZE; | ||
| 303 | |||
| 304 | return page; | ||
| 305 | } | ||
| 306 | |||
| 307 | int pmd_huge(pmd_t pmd) | ||
| 308 | { | ||
| 309 | return 0; | ||
| 310 | } | ||
| 311 | |||
| 312 | struct page * | ||
| 313 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | ||
| 314 | pmd_t *pmd, int write) | ||
| 315 | { | ||
| 316 | BUG(); | ||
| 317 | return NULL; | ||
| 318 | } | ||
| 319 | |||
| 320 | /* Because we have an exclusive hugepage region which lies within the | ||
| 321 | * normal user address space, we have to take special measures to make | ||
| 322 | * non-huge mmap()s evade the hugepage reserved regions. */ | ||
| 323 | unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, | ||
| 324 | unsigned long len, unsigned long pgoff, | ||
| 325 | unsigned long flags) | ||
| 326 | { | ||
| 327 | struct mm_struct *mm = current->mm; | ||
| 328 | struct vm_area_struct *vma; | ||
| 329 | unsigned long start_addr; | ||
| 330 | |||
| 331 | if (len > TASK_SIZE) | ||
| 332 | return -ENOMEM; | ||
| 333 | |||
| 334 | if (addr) { | ||
| 335 | addr = PAGE_ALIGN(addr); | ||
| 336 | vma = find_vma(mm, addr); | ||
| 337 | if (((TASK_SIZE - len) >= addr) | ||
| 338 | && (!vma || (addr+len) <= vma->vm_start) | ||
| 339 | && !is_hugepage_only_range(mm, addr,len)) | ||
| 340 | return addr; | ||
| 341 | } | ||
| 342 | if (len > mm->cached_hole_size) { | ||
| 343 | start_addr = addr = mm->free_area_cache; | ||
| 344 | } else { | ||
| 345 | start_addr = addr = TASK_UNMAPPED_BASE; | ||
| 346 | mm->cached_hole_size = 0; | ||
| 347 | } | ||
| 348 | |||
| 349 | full_search: | ||
| 350 | vma = find_vma(mm, addr); | ||
| 351 | while (TASK_SIZE - len >= addr) { | ||
| 352 | BUG_ON(vma && (addr >= vma->vm_end)); | ||
| 353 | |||
| 354 | if (touches_hugepage_low_range(mm, addr, len)) { | ||
| 355 | addr = ALIGN(addr+1, 1<<SID_SHIFT); | ||
| 356 | vma = find_vma(mm, addr); | ||
| 357 | continue; | ||
| 358 | } | ||
| 359 | if (touches_hugepage_high_range(mm, addr, len)) { | ||
| 360 | addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | ||
| 361 | vma = find_vma(mm, addr); | ||
| 362 | continue; | ||
| 363 | } | ||
| 364 | if (!vma || addr + len <= vma->vm_start) { | ||
| 365 | /* | ||
| 366 | * Remember the place where we stopped the search: | ||
| 367 | */ | ||
| 368 | mm->free_area_cache = addr + len; | ||
| 369 | return addr; | ||
| 370 | } | ||
| 371 | if (addr + mm->cached_hole_size < vma->vm_start) | ||
| 372 | mm->cached_hole_size = vma->vm_start - addr; | ||
| 373 | addr = vma->vm_end; | ||
| 374 | vma = vma->vm_next; | ||
| 375 | } | ||
| 376 | |||
| 377 | /* Make sure we didn't miss any holes */ | ||
| 378 | if (start_addr != TASK_UNMAPPED_BASE) { | ||
| 379 | start_addr = addr = TASK_UNMAPPED_BASE; | ||
| 380 | mm->cached_hole_size = 0; | ||
| 381 | goto full_search; | ||
| 382 | } | ||
| 383 | return -ENOMEM; | ||
| 384 | } | ||
| 385 | |||
| 386 | /* | ||
| 387 | * This mmap-allocator allocates new areas top-down from below the | ||
| 388 | * stack's low limit (the base): | ||
| 389 | * | ||
| 390 | * Because we have an exclusive hugepage region which lies within the | ||
| 391 | * normal user address space, we have to take special measures to make | ||
| 392 | * non-huge mmap()s evade the hugepage reserved regions. | ||
| 393 | */ | ||
| 394 | unsigned long | ||
| 395 | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | ||
| 396 | const unsigned long len, const unsigned long pgoff, | ||
| 397 | const unsigned long flags) | ||
| 398 | { | ||
| 399 | struct vm_area_struct *vma, *prev_vma; | ||
| 400 | struct mm_struct *mm = current->mm; | ||
| 401 | unsigned long base = mm->mmap_base, addr = addr0; | ||
| 402 | unsigned long largest_hole = mm->cached_hole_size; | ||
| 403 | int first_time = 1; | ||
| 404 | |||
| 405 | /* requested length too big for entire address space */ | ||
| 406 | if (len > TASK_SIZE) | ||
| 407 | return -ENOMEM; | ||
| 408 | |||
| 409 | /* dont allow allocations above current base */ | ||
| 410 | if (mm->free_area_cache > base) | ||
| 411 | mm->free_area_cache = base; | ||
| 412 | |||
| 413 | /* requesting a specific address */ | ||
| 414 | if (addr) { | ||
| 415 | addr = PAGE_ALIGN(addr); | ||
| 416 | vma = find_vma(mm, addr); | ||
| 417 | if (TASK_SIZE - len >= addr && | ||
| 418 | (!vma || addr + len <= vma->vm_start) | ||
| 419 | && !is_hugepage_only_range(mm, addr,len)) | ||
| 420 | return addr; | ||
| 421 | } | ||
| 422 | |||
| 423 | if (len <= largest_hole) { | ||
| 424 | largest_hole = 0; | ||
| 425 | mm->free_area_cache = base; | ||
| 426 | } | ||
| 427 | try_again: | ||
| 428 | /* make sure it can fit in the remaining address space */ | ||
| 429 | if (mm->free_area_cache < len) | ||
| 430 | goto fail; | ||
| 431 | |||
| 432 | /* either no address requested or cant fit in requested address hole */ | ||
| 433 | addr = (mm->free_area_cache - len) & PAGE_MASK; | ||
| 434 | do { | ||
| 435 | hugepage_recheck: | ||
| 436 | if (touches_hugepage_low_range(mm, addr, len)) { | ||
| 437 | addr = (addr & ((~0) << SID_SHIFT)) - len; | ||
| 438 | goto hugepage_recheck; | ||
| 439 | } else if (touches_hugepage_high_range(mm, addr, len)) { | ||
| 440 | addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len; | ||
| 441 | goto hugepage_recheck; | ||
| 442 | } | ||
| 443 | |||
| 444 | /* | ||
| 445 | * Lookup failure means no vma is above this address, | ||
| 446 | * i.e. return with success: | ||
| 447 | */ | ||
| 448 | if (!(vma = find_vma_prev(mm, addr, &prev_vma))) | ||
| 449 | return addr; | ||
| 450 | |||
| 451 | /* | ||
| 452 | * new region fits between prev_vma->vm_end and | ||
| 453 | * vma->vm_start, use it: | ||
| 454 | */ | ||
| 455 | if (addr+len <= vma->vm_start && | ||
| 456 | (!prev_vma || (addr >= prev_vma->vm_end))) { | ||
| 457 | /* remember the address as a hint for next time */ | ||
| 458 | mm->cached_hole_size = largest_hole; | ||
| 459 | return (mm->free_area_cache = addr); | ||
| 460 | } else { | ||
| 461 | /* pull free_area_cache down to the first hole */ | ||
| 462 | if (mm->free_area_cache == vma->vm_end) { | ||
| 463 | mm->free_area_cache = vma->vm_start; | ||
| 464 | mm->cached_hole_size = largest_hole; | ||
| 465 | } | ||
| 466 | } | ||
| 467 | |||
| 468 | /* remember the largest hole we saw so far */ | ||
| 469 | if (addr + largest_hole < vma->vm_start) | ||
| 470 | largest_hole = vma->vm_start - addr; | ||
| 471 | |||
| 472 | /* try just below the current vma->vm_start */ | ||
| 473 | addr = vma->vm_start-len; | ||
| 474 | } while (len <= vma->vm_start); | ||
| 475 | |||
| 476 | fail: | ||
| 477 | /* | ||
| 478 | * if hint left us with no space for the requested | ||
| 479 | * mapping then try again: | ||
| 480 | */ | ||
| 481 | if (first_time) { | ||
| 482 | mm->free_area_cache = base; | ||
| 483 | largest_hole = 0; | ||
| 484 | first_time = 0; | ||
| 485 | goto try_again; | ||
| 486 | } | ||
| 487 | /* | ||
| 488 | * A failed mmap() very likely causes application failure, | ||
| 489 | * so fall back to the bottom-up function here. This scenario | ||
| 490 | * can happen with large stack limits and large mmap() | ||
| 491 | * allocations. | ||
| 492 | */ | ||
| 493 | mm->free_area_cache = TASK_UNMAPPED_BASE; | ||
| 494 | mm->cached_hole_size = ~0UL; | ||
| 495 | addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); | ||
| 496 | /* | ||
| 497 | * Restore the topdown base: | ||
| 498 | */ | ||
| 499 | mm->free_area_cache = base; | ||
| 500 | mm->cached_hole_size = ~0UL; | ||
| 501 | |||
| 502 | return addr; | ||
| 503 | } | ||
| 504 | |||
| 505 | static unsigned long htlb_get_low_area(unsigned long len, u16 segmask) | ||
| 506 | { | ||
| 507 | unsigned long addr = 0; | ||
| 508 | struct vm_area_struct *vma; | ||
| 509 | |||
| 510 | vma = find_vma(current->mm, addr); | ||
| 511 | while (addr + len <= 0x100000000UL) { | ||
| 512 | BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | ||
| 513 | |||
| 514 | if (! __within_hugepage_low_range(addr, len, segmask)) { | ||
| 515 | addr = ALIGN(addr+1, 1<<SID_SHIFT); | ||
| 516 | vma = find_vma(current->mm, addr); | ||
| 517 | continue; | ||
| 518 | } | ||
| 519 | |||
| 520 | if (!vma || (addr + len) <= vma->vm_start) | ||
| 521 | return addr; | ||
| 522 | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | ||
| 523 | /* Depending on segmask this might not be a confirmed | ||
| 524 | * hugepage region, so the ALIGN could have skipped | ||
| 525 | * some VMAs */ | ||
| 526 | vma = find_vma(current->mm, addr); | ||
| 527 | } | ||
| 528 | |||
| 529 | return -ENOMEM; | ||
| 530 | } | ||
| 531 | |||
| 532 | static unsigned long htlb_get_high_area(unsigned long len, u16 areamask) | ||
| 533 | { | ||
| 534 | unsigned long addr = 0x100000000UL; | ||
| 535 | struct vm_area_struct *vma; | ||
| 536 | |||
| 537 | vma = find_vma(current->mm, addr); | ||
| 538 | while (addr + len <= TASK_SIZE_USER64) { | ||
| 539 | BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | ||
| 540 | |||
| 541 | if (! __within_hugepage_high_range(addr, len, areamask)) { | ||
| 542 | addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | ||
| 543 | vma = find_vma(current->mm, addr); | ||
| 544 | continue; | ||
| 545 | } | ||
| 546 | |||
| 547 | if (!vma || (addr + len) <= vma->vm_start) | ||
| 548 | return addr; | ||
| 549 | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | ||
| 550 | /* Depending on segmask this might not be a confirmed | ||
| 551 | * hugepage region, so the ALIGN could have skipped | ||
| 552 | * some VMAs */ | ||
| 553 | vma = find_vma(current->mm, addr); | ||
| 554 | } | ||
| 555 | |||
| 556 | return -ENOMEM; | ||
| 557 | } | ||
| 558 | |||
| 559 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | ||
| 560 | unsigned long len, unsigned long pgoff, | ||
| 561 | unsigned long flags) | ||
| 562 | { | ||
| 563 | int lastshift; | ||
| 564 | u16 areamask, curareas; | ||
| 565 | |||
| 566 | if (len & ~HPAGE_MASK) | ||
| 567 | return -EINVAL; | ||
| 568 | |||
| 569 | if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | ||
| 570 | return -EINVAL; | ||
| 571 | |||
| 572 | if (test_thread_flag(TIF_32BIT)) { | ||
| 573 | curareas = current->mm->context.low_htlb_areas; | ||
| 574 | |||
| 575 | /* First see if we can do the mapping in the existing | ||
| 576 | * low areas */ | ||
| 577 | addr = htlb_get_low_area(len, curareas); | ||
| 578 | if (addr != -ENOMEM) | ||
| 579 | return addr; | ||
| 580 | |||
| 581 | lastshift = 0; | ||
| 582 | for (areamask = LOW_ESID_MASK(0x100000000UL-len, len); | ||
| 583 | ! lastshift; areamask >>=1) { | ||
| 584 | if (areamask & 1) | ||
| 585 | lastshift = 1; | ||
| 586 | |||
| 587 | addr = htlb_get_low_area(len, curareas | areamask); | ||
| 588 | if ((addr != -ENOMEM) | ||
| 589 | && open_low_hpage_areas(current->mm, areamask) == 0) | ||
| 590 | return addr; | ||
| 591 | } | ||
| 592 | } else { | ||
| 593 | curareas = current->mm->context.high_htlb_areas; | ||
| 594 | |||
| 595 | /* First see if we can do the mapping in the existing | ||
| 596 | * high areas */ | ||
| 597 | addr = htlb_get_high_area(len, curareas); | ||
| 598 | if (addr != -ENOMEM) | ||
| 599 | return addr; | ||
| 600 | |||
| 601 | lastshift = 0; | ||
| 602 | for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len); | ||
| 603 | ! lastshift; areamask >>=1) { | ||
| 604 | if (areamask & 1) | ||
| 605 | lastshift = 1; | ||
| 606 | |||
| 607 | addr = htlb_get_high_area(len, curareas | areamask); | ||
| 608 | if ((addr != -ENOMEM) | ||
| 609 | && open_high_hpage_areas(current->mm, areamask) == 0) | ||
| 610 | return addr; | ||
| 611 | } | ||
| 612 | } | ||
| 613 | printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open" | ||
| 614 | " enough areas\n"); | ||
| 615 | return -ENOMEM; | ||
| 616 | } | ||
| 617 | |||
| 618 | int hash_huge_page(struct mm_struct *mm, unsigned long access, | ||
| 619 | unsigned long ea, unsigned long vsid, int local) | ||
| 620 | { | ||
| 621 | pte_t *ptep; | ||
| 622 | unsigned long va, vpn; | ||
| 623 | pte_t old_pte, new_pte; | ||
| 624 | unsigned long rflags, prpn; | ||
| 625 | long slot; | ||
| 626 | int err = 1; | ||
| 627 | |||
| 628 | spin_lock(&mm->page_table_lock); | ||
| 629 | |||
| 630 | ptep = huge_pte_offset(mm, ea); | ||
| 631 | |||
| 632 | /* Search the Linux page table for a match with va */ | ||
| 633 | va = (vsid << 28) | (ea & 0x0fffffff); | ||
| 634 | vpn = va >> HPAGE_SHIFT; | ||
| 635 | |||
| 636 | /* | ||
| 637 | * If no pte found or not present, send the problem up to | ||
| 638 | * do_page_fault | ||
| 639 | */ | ||
| 640 | if (unlikely(!ptep || pte_none(*ptep))) | ||
| 641 | goto out; | ||
| 642 | |||
| 643 | /* BUG_ON(pte_bad(*ptep)); */ | ||
| 644 | |||
| 645 | /* | ||
| 646 | * Check the user's access rights to the page. If access should be | ||
| 647 | * prevented then send the problem up to do_page_fault. | ||
| 648 | */ | ||
| 649 | if (unlikely(access & ~pte_val(*ptep))) | ||
| 650 | goto out; | ||
| 651 | /* | ||
| 652 | * At this point, we have a pte (old_pte) which can be used to build | ||
| 653 | * or update an HPTE. There are 2 cases: | ||
| 654 | * | ||
| 655 | * 1. There is a valid (present) pte with no associated HPTE (this is | ||
| 656 | * the most common case) | ||
| 657 | * 2. There is a valid (present) pte with an associated HPTE. The | ||
| 658 | * current values of the pp bits in the HPTE prevent access | ||
| 659 | * because we are doing software DIRTY bit management and the | ||
| 660 | * page is currently not DIRTY. | ||
| 661 | */ | ||
| 662 | |||
| 663 | |||
| 664 | old_pte = *ptep; | ||
| 665 | new_pte = old_pte; | ||
| 666 | |||
| 667 | rflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW)); | ||
| 668 | /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ | ||
| 669 | rflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC); | ||
| 670 | |||
| 671 | /* Check if pte already has an hpte (case 2) */ | ||
| 672 | if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) { | ||
| 673 | /* There MIGHT be an HPTE for this pte */ | ||
| 674 | unsigned long hash, slot; | ||
| 675 | |||
| 676 | hash = hpt_hash(vpn, 1); | ||
| 677 | if (pte_val(old_pte) & _PAGE_SECONDARY) | ||
| 678 | hash = ~hash; | ||
| 679 | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | ||
| 680 | slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12; | ||
| 681 | |||
| 682 | if (ppc_md.hpte_updatepp(slot, rflags, va, 1, local) == -1) | ||
| 683 | pte_val(old_pte) &= ~_PAGE_HPTEFLAGS; | ||
| 684 | } | ||
| 685 | |||
| 686 | if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) { | ||
| 687 | unsigned long hash = hpt_hash(vpn, 1); | ||
| 688 | unsigned long hpte_group; | ||
| 689 | |||
| 690 | prpn = pte_pfn(old_pte); | ||
| 691 | |||
| 692 | repeat: | ||
| 693 | hpte_group = ((hash & htab_hash_mask) * | ||
| 694 | HPTES_PER_GROUP) & ~0x7UL; | ||
| 695 | |||
| 696 | /* Update the linux pte with the HPTE slot */ | ||
| 697 | pte_val(new_pte) &= ~_PAGE_HPTEFLAGS; | ||
| 698 | pte_val(new_pte) |= _PAGE_HASHPTE; | ||
| 699 | |||
| 700 | /* Add in WIMG bits */ | ||
| 701 | /* XXX We should store these in the pte */ | ||
| 702 | rflags |= _PAGE_COHERENT; | ||
| 703 | |||
| 704 | slot = ppc_md.hpte_insert(hpte_group, va, prpn, | ||
| 705 | HPTE_V_LARGE, rflags); | ||
| 706 | |||
| 707 | /* Primary is full, try the secondary */ | ||
| 708 | if (unlikely(slot == -1)) { | ||
| 709 | pte_val(new_pte) |= _PAGE_SECONDARY; | ||
| 710 | hpte_group = ((~hash & htab_hash_mask) * | ||
| 711 | HPTES_PER_GROUP) & ~0x7UL; | ||
| 712 | slot = ppc_md.hpte_insert(hpte_group, va, prpn, | ||
| 713 | HPTE_V_LARGE | | ||
| 714 | HPTE_V_SECONDARY, | ||
| 715 | rflags); | ||
| 716 | if (slot == -1) { | ||
| 717 | if (mftb() & 0x1) | ||
| 718 | hpte_group = ((hash & htab_hash_mask) * | ||
| 719 | HPTES_PER_GROUP)&~0x7UL; | ||
| 720 | |||
| 721 | ppc_md.hpte_remove(hpte_group); | ||
| 722 | goto repeat; | ||
| 723 | } | ||
| 724 | } | ||
| 725 | |||
| 726 | if (unlikely(slot == -2)) | ||
| 727 | panic("hash_huge_page: pte_insert failed\n"); | ||
| 728 | |||
| 729 | pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX; | ||
| 730 | |||
| 731 | /* | ||
| 732 | * No need to use ldarx/stdcx here because all who | ||
| 733 | * might be updating the pte will hold the | ||
| 734 | * page_table_lock | ||
| 735 | */ | ||
| 736 | *ptep = new_pte; | ||
| 737 | } | ||
| 738 | |||
| 739 | err = 0; | ||
| 740 | |||
| 741 | out: | ||
| 742 | spin_unlock(&mm->page_table_lock); | ||
| 743 | |||
| 744 | return err; | ||
| 745 | } | ||
