aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/kernel')
-rw-r--r--arch/powerpc/kernel/asm-offsets.c1
-rw-r--r--arch/powerpc/kernel/smp.c2
-rw-r--r--arch/powerpc/kernel/time.c142
-rw-r--r--arch/powerpc/kernel/vdso32/gettimeofday.S184
-rw-r--r--arch/powerpc/kernel/vdso64/gettimeofday.S88
5 files changed, 72 insertions, 345 deletions
diff --git a/arch/powerpc/kernel/asm-offsets.c b/arch/powerpc/kernel/asm-offsets.c
index 496cc5b3984f..acbbac6aaa22 100644
--- a/arch/powerpc/kernel/asm-offsets.c
+++ b/arch/powerpc/kernel/asm-offsets.c
@@ -342,6 +342,7 @@ int main(void)
342 DEFINE(WTOM_CLOCK_SEC, offsetof(struct vdso_data, wtom_clock_sec)); 342 DEFINE(WTOM_CLOCK_SEC, offsetof(struct vdso_data, wtom_clock_sec));
343 DEFINE(WTOM_CLOCK_NSEC, offsetof(struct vdso_data, wtom_clock_nsec)); 343 DEFINE(WTOM_CLOCK_NSEC, offsetof(struct vdso_data, wtom_clock_nsec));
344 DEFINE(STAMP_XTIME, offsetof(struct vdso_data, stamp_xtime)); 344 DEFINE(STAMP_XTIME, offsetof(struct vdso_data, stamp_xtime));
345 DEFINE(STAMP_SEC_FRAC, offsetof(struct vdso_data, stamp_sec_fraction));
345 DEFINE(CFG_ICACHE_BLOCKSZ, offsetof(struct vdso_data, icache_block_size)); 346 DEFINE(CFG_ICACHE_BLOCKSZ, offsetof(struct vdso_data, icache_block_size));
346 DEFINE(CFG_DCACHE_BLOCKSZ, offsetof(struct vdso_data, dcache_block_size)); 347 DEFINE(CFG_DCACHE_BLOCKSZ, offsetof(struct vdso_data, dcache_block_size));
347 DEFINE(CFG_ICACHE_LOGBLOCKSZ, offsetof(struct vdso_data, icache_log_block_size)); 348 DEFINE(CFG_ICACHE_LOGBLOCKSZ, offsetof(struct vdso_data, icache_log_block_size));
diff --git a/arch/powerpc/kernel/smp.c b/arch/powerpc/kernel/smp.c
index 5c196d1086d9..8764daad309b 100644
--- a/arch/powerpc/kernel/smp.c
+++ b/arch/powerpc/kernel/smp.c
@@ -288,8 +288,6 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
288 max_cpus = NR_CPUS; 288 max_cpus = NR_CPUS;
289 else 289 else
290 max_cpus = 1; 290 max_cpus = 1;
291
292 smp_space_timers(max_cpus);
293 291
294 for_each_possible_cpu(cpu) 292 for_each_possible_cpu(cpu)
295 if (cpu != boot_cpuid) 293 if (cpu != boot_cpuid)
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index e215f76bba1c..ce53dfa7130d 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -149,16 +149,6 @@ unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec); 149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec; 150unsigned long tb_ticks_per_sec;
151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
152u64 tb_to_xs;
153unsigned tb_to_us;
154
155#define TICKLEN_SCALE NTP_SCALE_SHIFT
156static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157static u64 ticklen_to_xs; /* 0.64 fraction */
158
159/* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162 152
163DEFINE_SPINLOCK(rtc_lock); 153DEFINE_SPINLOCK(rtc_lock);
164EXPORT_SYMBOL_GPL(rtc_lock); 154EXPORT_SYMBOL_GPL(rtc_lock);
@@ -174,7 +164,6 @@ unsigned long ppc_proc_freq;
174EXPORT_SYMBOL(ppc_proc_freq); 164EXPORT_SYMBOL(ppc_proc_freq);
175unsigned long ppc_tb_freq; 165unsigned long ppc_tb_freq;
176 166
177static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178static DEFINE_PER_CPU(u64, last_jiffy); 167static DEFINE_PER_CPU(u64, last_jiffy);
179 168
180#ifdef CONFIG_VIRT_CPU_ACCOUNTING 169#ifdef CONFIG_VIRT_CPU_ACCOUNTING
@@ -446,7 +435,6 @@ EXPORT_SYMBOL(profile_pc);
446 435
447static int __init iSeries_tb_recal(void) 436static int __init iSeries_tb_recal(void)
448{ 437{
449 struct div_result divres;
450 unsigned long titan, tb; 438 unsigned long titan, tb;
451 439
452 /* Make sure we only run on iSeries */ 440 /* Make sure we only run on iSeries */
@@ -477,10 +465,7 @@ static int __init iSeries_tb_recal(void)
477 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 465 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
478 tb_ticks_per_sec = new_tb_ticks_per_sec; 466 tb_ticks_per_sec = new_tb_ticks_per_sec;
479 calc_cputime_factors(); 467 calc_cputime_factors();
480 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
481 tb_to_xs = divres.result_low;
482 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 468 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
483 vdso_data->tb_to_xs = tb_to_xs;
484 setup_cputime_one_jiffy(); 469 setup_cputime_one_jiffy();
485 } 470 }
486 else { 471 else {
@@ -643,27 +628,9 @@ void timer_interrupt(struct pt_regs * regs)
643 trace_timer_interrupt_exit(regs); 628 trace_timer_interrupt_exit(regs);
644} 629}
645 630
646void wakeup_decrementer(void)
647{
648 unsigned long ticks;
649
650 /*
651 * The timebase gets saved on sleep and restored on wakeup,
652 * so all we need to do is to reset the decrementer.
653 */
654 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
655 if (ticks < tb_ticks_per_jiffy)
656 ticks = tb_ticks_per_jiffy - ticks;
657 else
658 ticks = 1;
659 set_dec(ticks);
660}
661
662#ifdef CONFIG_SUSPEND 631#ifdef CONFIG_SUSPEND
663void generic_suspend_disable_irqs(void) 632static void generic_suspend_disable_irqs(void)
664{ 633{
665 preempt_disable();
666
667 /* Disable the decrementer, so that it doesn't interfere 634 /* Disable the decrementer, so that it doesn't interfere
668 * with suspending. 635 * with suspending.
669 */ 636 */
@@ -673,12 +640,9 @@ void generic_suspend_disable_irqs(void)
673 set_dec(0x7fffffff); 640 set_dec(0x7fffffff);
674} 641}
675 642
676void generic_suspend_enable_irqs(void) 643static void generic_suspend_enable_irqs(void)
677{ 644{
678 wakeup_decrementer();
679
680 local_irq_enable(); 645 local_irq_enable();
681 preempt_enable();
682} 646}
683 647
684/* Overrides the weak version in kernel/power/main.c */ 648/* Overrides the weak version in kernel/power/main.c */
@@ -698,23 +662,6 @@ void arch_suspend_enable_irqs(void)
698} 662}
699#endif 663#endif
700 664
701#ifdef CONFIG_SMP
702void __init smp_space_timers(unsigned int max_cpus)
703{
704 int i;
705 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
706
707 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
708 previous_tb -= tb_ticks_per_jiffy;
709
710 for_each_possible_cpu(i) {
711 if (i == boot_cpuid)
712 continue;
713 per_cpu(last_jiffy, i) = previous_tb;
714 }
715}
716#endif
717
718/* 665/*
719 * Scheduler clock - returns current time in nanosec units. 666 * Scheduler clock - returns current time in nanosec units.
720 * 667 *
@@ -853,6 +800,7 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
853 struct clocksource *clock, u32 mult) 800 struct clocksource *clock, u32 mult)
854{ 801{
855 u64 new_tb_to_xs, new_stamp_xsec; 802 u64 new_tb_to_xs, new_stamp_xsec;
803 u32 frac_sec;
856 804
857 if (clock != &clocksource_timebase) 805 if (clock != &clocksource_timebase)
858 return; 806 return;
@@ -868,6 +816,10 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
868 do_div(new_stamp_xsec, 1000000000); 816 do_div(new_stamp_xsec, 1000000000);
869 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC; 817 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
870 818
819 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
820 /* this is tv_nsec / 1e9 as a 0.32 fraction */
821 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
822
871 /* 823 /*
872 * tb_update_count is used to allow the userspace gettimeofday code 824 * tb_update_count is used to allow the userspace gettimeofday code
873 * to assure itself that it sees a consistent view of the tb_to_xs and 825 * to assure itself that it sees a consistent view of the tb_to_xs and
@@ -885,6 +837,7 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
885 vdso_data->wtom_clock_sec = wtm->tv_sec; 837 vdso_data->wtom_clock_sec = wtm->tv_sec;
886 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 838 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
887 vdso_data->stamp_xtime = *wall_time; 839 vdso_data->stamp_xtime = *wall_time;
840 vdso_data->stamp_sec_fraction = frac_sec;
888 smp_wmb(); 841 smp_wmb();
889 ++(vdso_data->tb_update_count); 842 ++(vdso_data->tb_update_count);
890} 843}
@@ -1002,15 +955,13 @@ void secondary_cpu_time_init(void)
1002/* This function is only called on the boot processor */ 955/* This function is only called on the boot processor */
1003void __init time_init(void) 956void __init time_init(void)
1004{ 957{
1005 unsigned long flags;
1006 struct div_result res; 958 struct div_result res;
1007 u64 scale, x; 959 u64 scale;
1008 unsigned shift; 960 unsigned shift;
1009 961
1010 if (__USE_RTC()) { 962 if (__USE_RTC()) {
1011 /* 601 processor: dec counts down by 128 every 128ns */ 963 /* 601 processor: dec counts down by 128 every 128ns */
1012 ppc_tb_freq = 1000000000; 964 ppc_tb_freq = 1000000000;
1013 tb_last_jiffy = get_rtcl();
1014 } else { 965 } else {
1015 /* Normal PowerPC with timebase register */ 966 /* Normal PowerPC with timebase register */
1016 ppc_md.calibrate_decr(); 967 ppc_md.calibrate_decr();
@@ -1018,50 +969,15 @@ void __init time_init(void)
1018 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 969 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1019 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 970 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
1020 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 971 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1021 tb_last_jiffy = get_tb();
1022 } 972 }
1023 973
1024 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 974 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1025 tb_ticks_per_sec = ppc_tb_freq; 975 tb_ticks_per_sec = ppc_tb_freq;
1026 tb_ticks_per_usec = ppc_tb_freq / 1000000; 976 tb_ticks_per_usec = ppc_tb_freq / 1000000;
1027 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
1028 calc_cputime_factors(); 977 calc_cputime_factors();
1029 setup_cputime_one_jiffy(); 978 setup_cputime_one_jiffy();
1030 979
1031 /* 980 /*
1032 * Calculate the length of each tick in ns. It will not be
1033 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1034 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1035 * rounded up.
1036 */
1037 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1038 do_div(x, ppc_tb_freq);
1039 tick_nsec = x;
1040 last_tick_len = x << TICKLEN_SCALE;
1041
1042 /*
1043 * Compute ticklen_to_xs, which is a factor which gets multiplied
1044 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1045 * It is computed as:
1046 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1047 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1048 * which turns out to be N = 51 - SHIFT_HZ.
1049 * This gives the result as a 0.64 fixed-point fraction.
1050 * That value is reduced by an offset amounting to 1 xsec per
1051 * 2^31 timebase ticks to avoid problems with time going backwards
1052 * by 1 xsec when we do timer_recalc_offset due to losing the
1053 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1054 * since there are 2^20 xsec in a second.
1055 */
1056 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1057 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1058 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1059 ticklen_to_xs = res.result_low;
1060
1061 /* Compute tb_to_xs from tick_nsec */
1062 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1063
1064 /*
1065 * Compute scale factor for sched_clock. 981 * Compute scale factor for sched_clock.
1066 * The calibrate_decr() function has set tb_ticks_per_sec, 982 * The calibrate_decr() function has set tb_ticks_per_sec,
1067 * which is the timebase frequency. 983 * which is the timebase frequency.
@@ -1082,21 +998,14 @@ void __init time_init(void)
1082 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 998 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1083 boot_tb = get_tb_or_rtc(); 999 boot_tb = get_tb_or_rtc();
1084 1000
1085 write_seqlock_irqsave(&xtime_lock, flags);
1086
1087 /* If platform provided a timezone (pmac), we correct the time */ 1001 /* If platform provided a timezone (pmac), we correct the time */
1088 if (timezone_offset) { 1002 if (timezone_offset) {
1089 sys_tz.tz_minuteswest = -timezone_offset / 60; 1003 sys_tz.tz_minuteswest = -timezone_offset / 60;
1090 sys_tz.tz_dsttime = 0; 1004 sys_tz.tz_dsttime = 0;
1091 } 1005 }
1092 1006
1093 vdso_data->tb_orig_stamp = tb_last_jiffy;
1094 vdso_data->tb_update_count = 0; 1007 vdso_data->tb_update_count = 0;
1095 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1008 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1096 vdso_data->stamp_xsec = (u64) get_seconds() * XSEC_PER_SEC;
1097 vdso_data->tb_to_xs = tb_to_xs;
1098
1099 write_sequnlock_irqrestore(&xtime_lock, flags);
1100 1009
1101 /* Start the decrementer on CPUs that have manual control 1010 /* Start the decrementer on CPUs that have manual control
1102 * such as BookE 1011 * such as BookE
@@ -1190,39 +1099,6 @@ void to_tm(int tim, struct rtc_time * tm)
1190 GregorianDay(tm); 1099 GregorianDay(tm);
1191} 1100}
1192 1101
1193/* Auxiliary function to compute scaling factors */
1194/* Actually the choice of a timebase running at 1/4 the of the bus
1195 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1196 * It makes this computation very precise (27-28 bits typically) which
1197 * is optimistic considering the stability of most processor clock
1198 * oscillators and the precision with which the timebase frequency
1199 * is measured but does not harm.
1200 */
1201unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1202{
1203 unsigned mlt=0, tmp, err;
1204 /* No concern for performance, it's done once: use a stupid
1205 * but safe and compact method to find the multiplier.
1206 */
1207
1208 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1209 if (mulhwu(inscale, mlt|tmp) < outscale)
1210 mlt |= tmp;
1211 }
1212
1213 /* We might still be off by 1 for the best approximation.
1214 * A side effect of this is that if outscale is too large
1215 * the returned value will be zero.
1216 * Many corner cases have been checked and seem to work,
1217 * some might have been forgotten in the test however.
1218 */
1219
1220 err = inscale * (mlt+1);
1221 if (err <= inscale/2)
1222 mlt++;
1223 return mlt;
1224}
1225
1226/* 1102/*
1227 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1103 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1228 * result. 1104 * result.
diff --git a/arch/powerpc/kernel/vdso32/gettimeofday.S b/arch/powerpc/kernel/vdso32/gettimeofday.S
index ee038d4bf252..4ee09ee2e836 100644
--- a/arch/powerpc/kernel/vdso32/gettimeofday.S
+++ b/arch/powerpc/kernel/vdso32/gettimeofday.S
@@ -19,8 +19,10 @@
19/* Offset for the low 32-bit part of a field of long type */ 19/* Offset for the low 32-bit part of a field of long type */
20#ifdef CONFIG_PPC64 20#ifdef CONFIG_PPC64
21#define LOPART 4 21#define LOPART 4
22#define TSPEC_TV_SEC TSPC64_TV_SEC+LOPART
22#else 23#else
23#define LOPART 0 24#define LOPART 0
25#define TSPEC_TV_SEC TSPC32_TV_SEC
24#endif 26#endif
25 27
26 .text 28 .text
@@ -41,23 +43,11 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
41 mr r9, r3 /* datapage ptr in r9 */ 43 mr r9, r3 /* datapage ptr in r9 */
42 cmplwi r10,0 /* check if tv is NULL */ 44 cmplwi r10,0 /* check if tv is NULL */
43 beq 3f 45 beq 3f
44 bl __do_get_xsec@local /* get xsec from tb & kernel */ 46 lis r7,1000000@ha /* load up USEC_PER_SEC */
45 bne- 2f /* out of line -> do syscall */ 47 addi r7,r7,1000000@l /* so we get microseconds in r4 */
46 48 bl __do_get_tspec@local /* get sec/usec from tb & kernel */
47 /* seconds are xsec >> 20 */ 49 stw r3,TVAL32_TV_SEC(r10)
48 rlwinm r5,r4,12,20,31 50 stw r4,TVAL32_TV_USEC(r10)
49 rlwimi r5,r3,12,0,19
50 stw r5,TVAL32_TV_SEC(r10)
51
52 /* get remaining xsec and convert to usec. we scale
53 * up remaining xsec by 12 bits and get the top 32 bits
54 * of the multiplication
55 */
56 rlwinm r5,r4,12,0,19
57 lis r6,1000000@h
58 ori r6,r6,1000000@l
59 mulhwu r5,r5,r6
60 stw r5,TVAL32_TV_USEC(r10)
61 51
623: cmplwi r11,0 /* check if tz is NULL */ 523: cmplwi r11,0 /* check if tz is NULL */
63 beq 1f 53 beq 1f
@@ -70,14 +60,6 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
70 crclr cr0*4+so 60 crclr cr0*4+so
71 li r3,0 61 li r3,0
72 blr 62 blr
73
742:
75 mtlr r12
76 mr r3,r10
77 mr r4,r11
78 li r0,__NR_gettimeofday
79 sc
80 blr
81 .cfi_endproc 63 .cfi_endproc
82V_FUNCTION_END(__kernel_gettimeofday) 64V_FUNCTION_END(__kernel_gettimeofday)
83 65
@@ -100,7 +82,8 @@ V_FUNCTION_BEGIN(__kernel_clock_gettime)
100 mr r11,r4 /* r11 saves tp */ 82 mr r11,r4 /* r11 saves tp */
101 bl __get_datapage@local /* get data page */ 83 bl __get_datapage@local /* get data page */
102 mr r9,r3 /* datapage ptr in r9 */ 84 mr r9,r3 /* datapage ptr in r9 */
103 85 lis r7,NSEC_PER_SEC@h /* want nanoseconds */
86 ori r7,r7,NSEC_PER_SEC@l
10450: bl __do_get_tspec@local /* get sec/nsec from tb & kernel */ 8750: bl __do_get_tspec@local /* get sec/nsec from tb & kernel */
105 bne cr1,80f /* not monotonic -> all done */ 88 bne cr1,80f /* not monotonic -> all done */
106 89
@@ -198,83 +181,12 @@ V_FUNCTION_END(__kernel_clock_getres)
198 181
199 182
200/* 183/*
201 * This is the core of gettimeofday() & friends, it returns the xsec 184 * This is the core of clock_gettime() and gettimeofday(),
202 * value in r3 & r4 and expects the datapage ptr (non clobbered) 185 * it returns the current time in r3 (seconds) and r4.
203 * in r9. clobbers r0,r4,r5,r6,r7,r8. 186 * On entry, r7 gives the resolution of r4, either USEC_PER_SEC
204 * When returning, r8 contains the counter value that can be reused 187 * or NSEC_PER_SEC, giving r4 in microseconds or nanoseconds.
205 * by the monotonic clock implementation
206 */
207__do_get_xsec:
208 .cfi_startproc
209 /* Check for update count & load values. We use the low
210 * order 32 bits of the update count
211 */
2121: lwz r8,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
213 andi. r0,r8,1 /* pending update ? loop */
214 bne- 1b
215 xor r0,r8,r8 /* create dependency */
216 add r9,r9,r0
217
218 /* Load orig stamp (offset to TB) */
219 lwz r5,CFG_TB_ORIG_STAMP(r9)
220 lwz r6,(CFG_TB_ORIG_STAMP+4)(r9)
221
222 /* Get a stable TB value */
2232: mftbu r3
224 mftbl r4
225 mftbu r0
226 cmpl cr0,r3,r0
227 bne- 2b
228
229 /* Substract tb orig stamp. If the high part is non-zero, we jump to
230 * the slow path which call the syscall.
231 * If it's ok, then we have our 32 bits tb_ticks value in r7
232 */
233 subfc r7,r6,r4
234 subfe. r0,r5,r3
235 bne- 3f
236
237 /* Load scale factor & do multiplication */
238 lwz r5,CFG_TB_TO_XS(r9) /* load values */
239 lwz r6,(CFG_TB_TO_XS+4)(r9)
240 mulhwu r4,r7,r5
241 mulhwu r6,r7,r6
242 mullw r0,r7,r5
243 addc r6,r6,r0
244
245 /* At this point, we have the scaled xsec value in r4 + XER:CA
246 * we load & add the stamp since epoch
247 */
248 lwz r5,CFG_STAMP_XSEC(r9)
249 lwz r6,(CFG_STAMP_XSEC+4)(r9)
250 adde r4,r4,r6
251 addze r3,r5
252
253 /* We now have our result in r3,r4. We create a fake dependency
254 * on that result and re-check the counter
255 */
256 or r6,r4,r3
257 xor r0,r6,r6
258 add r9,r9,r0
259 lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
260 cmpl cr0,r8,r0 /* check if updated */
261 bne- 1b
262
263 /* Warning ! The caller expects CR:EQ to be set to indicate a
264 * successful calculation (so it won't fallback to the syscall
265 * method). We have overriden that CR bit in the counter check,
266 * but fortunately, the loop exit condition _is_ CR:EQ set, so
267 * we can exit safely here. If you change this code, be careful
268 * of that side effect.
269 */
2703: blr
271 .cfi_endproc
272
273/*
274 * This is the core of clock_gettime(), it returns the current
275 * time in seconds and nanoseconds in r3 and r4.
276 * It expects the datapage ptr in r9 and doesn't clobber it. 188 * It expects the datapage ptr in r9 and doesn't clobber it.
277 * It clobbers r0, r5, r6, r10 and returns NSEC_PER_SEC in r7. 189 * It clobbers r0, r5 and r6.
278 * On return, r8 contains the counter value that can be reused. 190 * On return, r8 contains the counter value that can be reused.
279 * This clobbers cr0 but not any other cr field. 191 * This clobbers cr0 but not any other cr field.
280 */ 192 */
@@ -297,70 +209,58 @@ __do_get_tspec:
2972: mftbu r3 2092: mftbu r3
298 mftbl r4 210 mftbl r4
299 mftbu r0 211 mftbu r0
300 cmpl cr0,r3,r0 212 cmplw cr0,r3,r0
301 bne- 2b 213 bne- 2b
302 214
303 /* Subtract tb orig stamp and shift left 12 bits. 215 /* Subtract tb orig stamp and shift left 12 bits.
304 */ 216 */
305 subfc r7,r6,r4 217 subfc r4,r6,r4
306 subfe r0,r5,r3 218 subfe r0,r5,r3
307 slwi r0,r0,12 219 slwi r0,r0,12
308 rlwimi. r0,r7,12,20,31 220 rlwimi. r0,r4,12,20,31
309 slwi r7,r7,12 221 slwi r4,r4,12
310 222
311 /* Load scale factor & do multiplication */ 223 /*
224 * Load scale factor & do multiplication.
225 * We only use the high 32 bits of the tb_to_xs value.
226 * Even with a 1GHz timebase clock, the high 32 bits of
227 * tb_to_xs will be at least 4 million, so the error from
228 * ignoring the low 32 bits will be no more than 0.25ppm.
229 * The error will just make the clock run very very slightly
230 * slow until the next time the kernel updates the VDSO data,
231 * at which point the clock will catch up to the kernel's value,
232 * so there is no long-term error accumulation.
233 */
312 lwz r5,CFG_TB_TO_XS(r9) /* load values */ 234 lwz r5,CFG_TB_TO_XS(r9) /* load values */
313 lwz r6,(CFG_TB_TO_XS+4)(r9) 235 mulhwu r4,r4,r5
314 mulhwu r3,r7,r6
315 mullw r10,r7,r5
316 mulhwu r4,r7,r5
317 addc r10,r3,r10
318 li r3,0 236 li r3,0
319 237
320 beq+ 4f /* skip high part computation if 0 */ 238 beq+ 4f /* skip high part computation if 0 */
321 mulhwu r3,r0,r5 239 mulhwu r3,r0,r5
322 mullw r7,r0,r5 240 mullw r5,r0,r5
323 mulhwu r5,r0,r6
324 mullw r6,r0,r6
325 adde r4,r4,r7
326 addze r3,r3
327 addc r4,r4,r5 241 addc r4,r4,r5
328 addze r3,r3 242 addze r3,r3
329 addc r10,r10,r6 2434:
330 244 /* At this point, we have seconds since the xtime stamp
3314: addze r4,r4 /* add in carry */ 245 * as a 32.32 fixed-point number in r3 and r4.
332 lis r7,NSEC_PER_SEC@h 246 * Load & add the xtime stamp.
333 ori r7,r7,NSEC_PER_SEC@l
334 mulhwu r4,r4,r7 /* convert to nanoseconds */
335
336 /* At this point, we have seconds & nanoseconds since the xtime
337 * stamp in r3+CA and r4. Load & add the xtime stamp.
338 */ 247 */
339#ifdef CONFIG_PPC64 248 lwz r5,STAMP_XTIME+TSPEC_TV_SEC(r9)
340 lwz r5,STAMP_XTIME+TSPC64_TV_SEC+LOPART(r9) 249 lwz r6,STAMP_SEC_FRAC(r9)
341 lwz r6,STAMP_XTIME+TSPC64_TV_NSEC+LOPART(r9) 250 addc r4,r4,r6
342#else
343 lwz r5,STAMP_XTIME+TSPC32_TV_SEC(r9)
344 lwz r6,STAMP_XTIME+TSPC32_TV_NSEC(r9)
345#endif
346 add r4,r4,r6
347 adde r3,r3,r5 251 adde r3,r3,r5
348 252
349 /* We now have our result in r3,r4. We create a fake dependency 253 /* We create a fake dependency on the result in r3/r4
350 * on that result and re-check the counter 254 * and re-check the counter
351 */ 255 */
352 or r6,r4,r3 256 or r6,r4,r3
353 xor r0,r6,r6 257 xor r0,r6,r6
354 add r9,r9,r0 258 add r9,r9,r0
355 lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9) 259 lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
356 cmpl cr0,r8,r0 /* check if updated */ 260 cmplw cr0,r8,r0 /* check if updated */
357 bne- 1b 261 bne- 1b
358 262
359 /* check for nanosecond overflow and adjust if necessary */ 263 mulhwu r4,r4,r7 /* convert to micro or nanoseconds */
360 cmpw r4,r7
361 bltlr /* all done if no overflow */
362 subf r4,r7,r4 /* adjust if overflow */
363 addi r3,r3,1
364 264
365 blr 265 blr
366 .cfi_endproc 266 .cfi_endproc
diff --git a/arch/powerpc/kernel/vdso64/gettimeofday.S b/arch/powerpc/kernel/vdso64/gettimeofday.S
index 262cd5857a56..e97a9a0dc4ac 100644
--- a/arch/powerpc/kernel/vdso64/gettimeofday.S
+++ b/arch/powerpc/kernel/vdso64/gettimeofday.S
@@ -33,18 +33,11 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
33 bl V_LOCAL_FUNC(__get_datapage) /* get data page */ 33 bl V_LOCAL_FUNC(__get_datapage) /* get data page */
34 cmpldi r11,0 /* check if tv is NULL */ 34 cmpldi r11,0 /* check if tv is NULL */
35 beq 2f 35 beq 2f
36 bl V_LOCAL_FUNC(__do_get_xsec) /* get xsec from tb & kernel */ 36 lis r7,1000000@ha /* load up USEC_PER_SEC */
37 lis r7,15 /* r7 = 1000000 = USEC_PER_SEC */ 37 addi r7,r7,1000000@l
38 ori r7,r7,16960 38 bl V_LOCAL_FUNC(__do_get_tspec) /* get sec/us from tb & kernel */
39 rldicl r5,r4,44,20 /* r5 = sec = xsec / XSEC_PER_SEC */ 39 std r4,TVAL64_TV_SEC(r11) /* store sec in tv */
40 rldicr r6,r5,20,43 /* r6 = sec * XSEC_PER_SEC */ 40 std r5,TVAL64_TV_USEC(r11) /* store usec in tv */
41 std r5,TVAL64_TV_SEC(r11) /* store sec in tv */
42 subf r0,r6,r4 /* r0 = xsec = (xsec - r6) */
43 mulld r0,r0,r7 /* usec = (xsec * USEC_PER_SEC) /
44 * XSEC_PER_SEC
45 */
46 rldicl r0,r0,44,20
47 std r0,TVAL64_TV_USEC(r11) /* store usec in tv */
482: cmpldi r10,0 /* check if tz is NULL */ 412: cmpldi r10,0 /* check if tz is NULL */
49 beq 1f 42 beq 1f
50 lwz r4,CFG_TZ_MINUTEWEST(r3)/* fill tz */ 43 lwz r4,CFG_TZ_MINUTEWEST(r3)/* fill tz */
@@ -77,6 +70,8 @@ V_FUNCTION_BEGIN(__kernel_clock_gettime)
77 .cfi_register lr,r12 70 .cfi_register lr,r12
78 mr r11,r4 /* r11 saves tp */ 71 mr r11,r4 /* r11 saves tp */
79 bl V_LOCAL_FUNC(__get_datapage) /* get data page */ 72 bl V_LOCAL_FUNC(__get_datapage) /* get data page */
73 lis r7,NSEC_PER_SEC@h /* want nanoseconds */
74 ori r7,r7,NSEC_PER_SEC@l
8050: bl V_LOCAL_FUNC(__do_get_tspec) /* get time from tb & kernel */ 7550: bl V_LOCAL_FUNC(__do_get_tspec) /* get time from tb & kernel */
81 bne cr1,80f /* if not monotonic, all done */ 76 bne cr1,80f /* if not monotonic, all done */
82 77
@@ -171,49 +166,12 @@ V_FUNCTION_END(__kernel_clock_getres)
171 166
172 167
173/* 168/*
174 * This is the core of gettimeofday(), it returns the xsec 169 * This is the core of clock_gettime() and gettimeofday(),
175 * value in r4 and expects the datapage ptr (non clobbered) 170 * it returns the current time in r4 (seconds) and r5.
176 * in r3. clobbers r0,r4,r5,r6,r7,r8 171 * On entry, r7 gives the resolution of r5, either USEC_PER_SEC
177 * When returning, r8 contains the counter value that can be reused 172 * or NSEC_PER_SEC, giving r5 in microseconds or nanoseconds.
178 */
179V_FUNCTION_BEGIN(__do_get_xsec)
180 .cfi_startproc
181 /* check for update count & load values */
1821: ld r8,CFG_TB_UPDATE_COUNT(r3)
183 andi. r0,r8,1 /* pending update ? loop */
184 bne- 1b
185 xor r0,r8,r8 /* create dependency */
186 add r3,r3,r0
187
188 /* Get TB & offset it. We use the MFTB macro which will generate
189 * workaround code for Cell.
190 */
191 MFTB(r7)
192 ld r9,CFG_TB_ORIG_STAMP(r3)
193 subf r7,r9,r7
194
195 /* Scale result */
196 ld r5,CFG_TB_TO_XS(r3)
197 mulhdu r7,r7,r5
198
199 /* Add stamp since epoch */
200 ld r6,CFG_STAMP_XSEC(r3)
201 add r4,r6,r7
202
203 xor r0,r4,r4
204 add r3,r3,r0
205 ld r0,CFG_TB_UPDATE_COUNT(r3)
206 cmpld cr0,r0,r8 /* check if updated */
207 bne- 1b
208 blr
209 .cfi_endproc
210V_FUNCTION_END(__do_get_xsec)
211
212/*
213 * This is the core of clock_gettime(), it returns the current
214 * time in seconds and nanoseconds in r4 and r5.
215 * It expects the datapage ptr in r3 and doesn't clobber it. 173 * It expects the datapage ptr in r3 and doesn't clobber it.
216 * It clobbers r0 and r6 and returns NSEC_PER_SEC in r7. 174 * It clobbers r0, r6 and r9.
217 * On return, r8 contains the counter value that can be reused. 175 * On return, r8 contains the counter value that can be reused.
218 * This clobbers cr0 but not any other cr field. 176 * This clobbers cr0 but not any other cr field.
219 */ 177 */
@@ -229,18 +187,18 @@ V_FUNCTION_BEGIN(__do_get_tspec)
229 /* Get TB & offset it. We use the MFTB macro which will generate 187 /* Get TB & offset it. We use the MFTB macro which will generate
230 * workaround code for Cell. 188 * workaround code for Cell.
231 */ 189 */
232 MFTB(r7) 190 MFTB(r6)
233 ld r9,CFG_TB_ORIG_STAMP(r3) 191 ld r9,CFG_TB_ORIG_STAMP(r3)
234 subf r7,r9,r7 192 subf r6,r9,r6
235 193
236 /* Scale result */ 194 /* Scale result */
237 ld r5,CFG_TB_TO_XS(r3) 195 ld r5,CFG_TB_TO_XS(r3)
238 sldi r7,r7,12 /* compute time since stamp_xtime */ 196 sldi r6,r6,12 /* compute time since stamp_xtime */
239 mulhdu r6,r7,r5 /* in units of 2^-32 seconds */ 197 mulhdu r6,r6,r5 /* in units of 2^-32 seconds */
240 198
241 /* Add stamp since epoch */ 199 /* Add stamp since epoch */
242 ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3) 200 ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3)
243 ld r5,STAMP_XTIME+TSPC64_TV_NSEC(r3) 201 lwz r5,STAMP_SEC_FRAC(r3)
244 or r0,r4,r5 202 or r0,r4,r5
245 or r0,r0,r6 203 or r0,r0,r6
246 xor r0,r0,r0 204 xor r0,r0,r0
@@ -250,17 +208,11 @@ V_FUNCTION_BEGIN(__do_get_tspec)
250 bne- 1b /* reload if so */ 208 bne- 1b /* reload if so */
251 209
252 /* convert to seconds & nanoseconds and add to stamp */ 210 /* convert to seconds & nanoseconds and add to stamp */
253 lis r7,NSEC_PER_SEC@h 211 add r6,r6,r5 /* add on fractional seconds of xtime */
254 ori r7,r7,NSEC_PER_SEC@l 212 mulhwu r5,r6,r7 /* compute micro or nanoseconds and */
255 mulhwu r0,r6,r7 /* compute nanoseconds and */
256 srdi r6,r6,32 /* seconds since stamp_xtime */ 213 srdi r6,r6,32 /* seconds since stamp_xtime */
257 clrldi r0,r0,32 214 clrldi r5,r5,32
258 add r5,r5,r0 /* add nanoseconds together */
259 cmpd r5,r7 /* overflow? */
260 add r4,r4,r6 215 add r4,r4,r6
261 bltlr /* all done if no overflow */
262 subf r5,r7,r5 /* if overflow, adjust */
263 addi r4,r4,1
264 blr 216 blr
265 .cfi_endproc 217 .cfi_endproc
266V_FUNCTION_END(__do_get_tspec) 218V_FUNCTION_END(__do_get_tspec)