diff options
Diffstat (limited to 'arch/powerpc/kernel/time.c')
-rw-r--r-- | arch/powerpc/kernel/time.c | 1005 |
1 files changed, 1005 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c new file mode 100644 index 000000000000..23436b6c1881 --- /dev/null +++ b/arch/powerpc/kernel/time.c | |||
@@ -0,0 +1,1005 @@ | |||
1 | /* | ||
2 | * Common time routines among all ppc machines. | ||
3 | * | ||
4 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | ||
5 | * Paul Mackerras' version and mine for PReP and Pmac. | ||
6 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | ||
7 | * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) | ||
8 | * | ||
9 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | ||
10 | * to make clock more stable (2.4.0-test5). The only thing | ||
11 | * that this code assumes is that the timebases have been synchronized | ||
12 | * by firmware on SMP and are never stopped (never do sleep | ||
13 | * on SMP then, nap and doze are OK). | ||
14 | * | ||
15 | * Speeded up do_gettimeofday by getting rid of references to | ||
16 | * xtime (which required locks for consistency). (mikejc@us.ibm.com) | ||
17 | * | ||
18 | * TODO (not necessarily in this file): | ||
19 | * - improve precision and reproducibility of timebase frequency | ||
20 | * measurement at boot time. (for iSeries, we calibrate the timebase | ||
21 | * against the Titan chip's clock.) | ||
22 | * - for astronomical applications: add a new function to get | ||
23 | * non ambiguous timestamps even around leap seconds. This needs | ||
24 | * a new timestamp format and a good name. | ||
25 | * | ||
26 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
27 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
28 | * | ||
29 | * This program is free software; you can redistribute it and/or | ||
30 | * modify it under the terms of the GNU General Public License | ||
31 | * as published by the Free Software Foundation; either version | ||
32 | * 2 of the License, or (at your option) any later version. | ||
33 | */ | ||
34 | |||
35 | #include <linux/config.h> | ||
36 | #include <linux/errno.h> | ||
37 | #include <linux/module.h> | ||
38 | #include <linux/sched.h> | ||
39 | #include <linux/kernel.h> | ||
40 | #include <linux/param.h> | ||
41 | #include <linux/string.h> | ||
42 | #include <linux/mm.h> | ||
43 | #include <linux/interrupt.h> | ||
44 | #include <linux/timex.h> | ||
45 | #include <linux/kernel_stat.h> | ||
46 | #include <linux/time.h> | ||
47 | #include <linux/init.h> | ||
48 | #include <linux/profile.h> | ||
49 | #include <linux/cpu.h> | ||
50 | #include <linux/security.h> | ||
51 | #include <linux/percpu.h> | ||
52 | #include <linux/rtc.h> | ||
53 | |||
54 | #include <asm/io.h> | ||
55 | #include <asm/processor.h> | ||
56 | #include <asm/nvram.h> | ||
57 | #include <asm/cache.h> | ||
58 | #include <asm/machdep.h> | ||
59 | #include <asm/uaccess.h> | ||
60 | #include <asm/time.h> | ||
61 | #include <asm/prom.h> | ||
62 | #include <asm/irq.h> | ||
63 | #include <asm/div64.h> | ||
64 | #ifdef CONFIG_PPC64 | ||
65 | #include <asm/systemcfg.h> | ||
66 | #include <asm/firmware.h> | ||
67 | #endif | ||
68 | #ifdef CONFIG_PPC_ISERIES | ||
69 | #include <asm/iSeries/ItLpQueue.h> | ||
70 | #include <asm/iSeries/HvCallXm.h> | ||
71 | #endif | ||
72 | |||
73 | /* keep track of when we need to update the rtc */ | ||
74 | time_t last_rtc_update; | ||
75 | extern int piranha_simulator; | ||
76 | #ifdef CONFIG_PPC_ISERIES | ||
77 | unsigned long iSeries_recal_titan = 0; | ||
78 | unsigned long iSeries_recal_tb = 0; | ||
79 | static unsigned long first_settimeofday = 1; | ||
80 | #endif | ||
81 | |||
82 | /* The decrementer counts down by 128 every 128ns on a 601. */ | ||
83 | #define DECREMENTER_COUNT_601 (1000000000 / HZ) | ||
84 | |||
85 | #define XSEC_PER_SEC (1024*1024) | ||
86 | |||
87 | #ifdef CONFIG_PPC64 | ||
88 | #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) | ||
89 | #else | ||
90 | /* compute ((xsec << 12) * max) >> 32 */ | ||
91 | #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) | ||
92 | #endif | ||
93 | |||
94 | unsigned long tb_ticks_per_jiffy; | ||
95 | unsigned long tb_ticks_per_usec = 100; /* sane default */ | ||
96 | EXPORT_SYMBOL(tb_ticks_per_usec); | ||
97 | unsigned long tb_ticks_per_sec; | ||
98 | u64 tb_to_xs; | ||
99 | unsigned tb_to_us; | ||
100 | unsigned long processor_freq; | ||
101 | DEFINE_SPINLOCK(rtc_lock); | ||
102 | EXPORT_SYMBOL_GPL(rtc_lock); | ||
103 | |||
104 | u64 tb_to_ns_scale; | ||
105 | unsigned tb_to_ns_shift; | ||
106 | |||
107 | struct gettimeofday_struct do_gtod; | ||
108 | |||
109 | extern unsigned long wall_jiffies; | ||
110 | |||
111 | extern struct timezone sys_tz; | ||
112 | static long timezone_offset; | ||
113 | |||
114 | void ppc_adjtimex(void); | ||
115 | |||
116 | static unsigned adjusting_time = 0; | ||
117 | |||
118 | unsigned long ppc_proc_freq; | ||
119 | unsigned long ppc_tb_freq; | ||
120 | |||
121 | #ifdef CONFIG_PPC32 /* XXX for now */ | ||
122 | #define boot_cpuid 0 | ||
123 | #endif | ||
124 | |||
125 | u64 tb_last_jiffy __cacheline_aligned_in_smp; | ||
126 | unsigned long tb_last_stamp; | ||
127 | |||
128 | /* | ||
129 | * Note that on ppc32 this only stores the bottom 32 bits of | ||
130 | * the timebase value, but that's enough to tell when a jiffy | ||
131 | * has passed. | ||
132 | */ | ||
133 | DEFINE_PER_CPU(unsigned long, last_jiffy); | ||
134 | |||
135 | static __inline__ void timer_check_rtc(void) | ||
136 | { | ||
137 | /* | ||
138 | * update the rtc when needed, this should be performed on the | ||
139 | * right fraction of a second. Half or full second ? | ||
140 | * Full second works on mk48t59 clocks, others need testing. | ||
141 | * Note that this update is basically only used through | ||
142 | * the adjtimex system calls. Setting the HW clock in | ||
143 | * any other way is a /dev/rtc and userland business. | ||
144 | * This is still wrong by -0.5/+1.5 jiffies because of the | ||
145 | * timer interrupt resolution and possible delay, but here we | ||
146 | * hit a quantization limit which can only be solved by higher | ||
147 | * resolution timers and decoupling time management from timer | ||
148 | * interrupts. This is also wrong on the clocks | ||
149 | * which require being written at the half second boundary. | ||
150 | * We should have an rtc call that only sets the minutes and | ||
151 | * seconds like on Intel to avoid problems with non UTC clocks. | ||
152 | */ | ||
153 | if (ppc_md.set_rtc_time && ntp_synced() && | ||
154 | xtime.tv_sec - last_rtc_update >= 659 && | ||
155 | abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && | ||
156 | jiffies - wall_jiffies == 1) { | ||
157 | struct rtc_time tm; | ||
158 | to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); | ||
159 | tm.tm_year -= 1900; | ||
160 | tm.tm_mon -= 1; | ||
161 | if (ppc_md.set_rtc_time(&tm) == 0) | ||
162 | last_rtc_update = xtime.tv_sec + 1; | ||
163 | else | ||
164 | /* Try again one minute later */ | ||
165 | last_rtc_update += 60; | ||
166 | } | ||
167 | } | ||
168 | |||
169 | /* | ||
170 | * This version of gettimeofday has microsecond resolution. | ||
171 | */ | ||
172 | static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) | ||
173 | { | ||
174 | unsigned long sec, usec; | ||
175 | u64 tb_ticks, xsec; | ||
176 | struct gettimeofday_vars *temp_varp; | ||
177 | u64 temp_tb_to_xs, temp_stamp_xsec; | ||
178 | |||
179 | /* | ||
180 | * These calculations are faster (gets rid of divides) | ||
181 | * if done in units of 1/2^20 rather than microseconds. | ||
182 | * The conversion to microseconds at the end is done | ||
183 | * without a divide (and in fact, without a multiply) | ||
184 | */ | ||
185 | temp_varp = do_gtod.varp; | ||
186 | tb_ticks = tb_val - temp_varp->tb_orig_stamp; | ||
187 | temp_tb_to_xs = temp_varp->tb_to_xs; | ||
188 | temp_stamp_xsec = temp_varp->stamp_xsec; | ||
189 | xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); | ||
190 | sec = xsec / XSEC_PER_SEC; | ||
191 | usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); | ||
192 | usec = SCALE_XSEC(usec, 1000000); | ||
193 | |||
194 | tv->tv_sec = sec; | ||
195 | tv->tv_usec = usec; | ||
196 | } | ||
197 | |||
198 | void do_gettimeofday(struct timeval *tv) | ||
199 | { | ||
200 | if (__USE_RTC()) { | ||
201 | /* do this the old way */ | ||
202 | unsigned long flags, seq; | ||
203 | unsigned int sec, nsec, usec, lost; | ||
204 | |||
205 | do { | ||
206 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | ||
207 | sec = xtime.tv_sec; | ||
208 | nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); | ||
209 | lost = jiffies - wall_jiffies; | ||
210 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | ||
211 | usec = nsec / 1000 + lost * (1000000 / HZ); | ||
212 | while (usec >= 1000000) { | ||
213 | usec -= 1000000; | ||
214 | ++sec; | ||
215 | } | ||
216 | tv->tv_sec = sec; | ||
217 | tv->tv_usec = usec; | ||
218 | return; | ||
219 | } | ||
220 | __do_gettimeofday(tv, get_tb()); | ||
221 | } | ||
222 | |||
223 | EXPORT_SYMBOL(do_gettimeofday); | ||
224 | |||
225 | /* Synchronize xtime with do_gettimeofday */ | ||
226 | |||
227 | static inline void timer_sync_xtime(unsigned long cur_tb) | ||
228 | { | ||
229 | #ifdef CONFIG_PPC64 | ||
230 | /* why do we do this? */ | ||
231 | struct timeval my_tv; | ||
232 | |||
233 | __do_gettimeofday(&my_tv, cur_tb); | ||
234 | |||
235 | if (xtime.tv_sec <= my_tv.tv_sec) { | ||
236 | xtime.tv_sec = my_tv.tv_sec; | ||
237 | xtime.tv_nsec = my_tv.tv_usec * 1000; | ||
238 | } | ||
239 | #endif | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * There are two copies of tb_to_xs and stamp_xsec so that no | ||
244 | * lock is needed to access and use these values in | ||
245 | * do_gettimeofday. We alternate the copies and as long as a | ||
246 | * reasonable time elapses between changes, there will never | ||
247 | * be inconsistent values. ntpd has a minimum of one minute | ||
248 | * between updates. | ||
249 | */ | ||
250 | static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, | ||
251 | u64 new_tb_to_xs) | ||
252 | { | ||
253 | unsigned temp_idx; | ||
254 | struct gettimeofday_vars *temp_varp; | ||
255 | |||
256 | temp_idx = (do_gtod.var_idx == 0); | ||
257 | temp_varp = &do_gtod.vars[temp_idx]; | ||
258 | |||
259 | temp_varp->tb_to_xs = new_tb_to_xs; | ||
260 | temp_varp->tb_orig_stamp = new_tb_stamp; | ||
261 | temp_varp->stamp_xsec = new_stamp_xsec; | ||
262 | smp_mb(); | ||
263 | do_gtod.varp = temp_varp; | ||
264 | do_gtod.var_idx = temp_idx; | ||
265 | |||
266 | #ifdef CONFIG_PPC64 | ||
267 | /* | ||
268 | * tb_update_count is used to allow the userspace gettimeofday code | ||
269 | * to assure itself that it sees a consistent view of the tb_to_xs and | ||
270 | * stamp_xsec variables. It reads the tb_update_count, then reads | ||
271 | * tb_to_xs and stamp_xsec and then reads tb_update_count again. If | ||
272 | * the two values of tb_update_count match and are even then the | ||
273 | * tb_to_xs and stamp_xsec values are consistent. If not, then it | ||
274 | * loops back and reads them again until this criteria is met. | ||
275 | */ | ||
276 | ++(systemcfg->tb_update_count); | ||
277 | smp_wmb(); | ||
278 | systemcfg->tb_orig_stamp = new_tb_stamp; | ||
279 | systemcfg->stamp_xsec = new_stamp_xsec; | ||
280 | systemcfg->tb_to_xs = new_tb_to_xs; | ||
281 | smp_wmb(); | ||
282 | ++(systemcfg->tb_update_count); | ||
283 | #endif | ||
284 | } | ||
285 | |||
286 | /* | ||
287 | * When the timebase - tb_orig_stamp gets too big, we do a manipulation | ||
288 | * between tb_orig_stamp and stamp_xsec. The goal here is to keep the | ||
289 | * difference tb - tb_orig_stamp small enough to always fit inside a | ||
290 | * 32 bits number. This is a requirement of our fast 32 bits userland | ||
291 | * implementation in the vdso. If we "miss" a call to this function | ||
292 | * (interrupt latency, CPU locked in a spinlock, ...) and we end up | ||
293 | * with a too big difference, then the vdso will fallback to calling | ||
294 | * the syscall | ||
295 | */ | ||
296 | static __inline__ void timer_recalc_offset(u64 cur_tb) | ||
297 | { | ||
298 | unsigned long offset; | ||
299 | u64 new_stamp_xsec; | ||
300 | |||
301 | if (__USE_RTC()) | ||
302 | return; | ||
303 | offset = cur_tb - do_gtod.varp->tb_orig_stamp; | ||
304 | if ((offset & 0x80000000u) == 0) | ||
305 | return; | ||
306 | new_stamp_xsec = do_gtod.varp->stamp_xsec | ||
307 | + mulhdu(offset, do_gtod.varp->tb_to_xs); | ||
308 | update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); | ||
309 | } | ||
310 | |||
311 | #ifdef CONFIG_SMP | ||
312 | unsigned long profile_pc(struct pt_regs *regs) | ||
313 | { | ||
314 | unsigned long pc = instruction_pointer(regs); | ||
315 | |||
316 | if (in_lock_functions(pc)) | ||
317 | return regs->link; | ||
318 | |||
319 | return pc; | ||
320 | } | ||
321 | EXPORT_SYMBOL(profile_pc); | ||
322 | #endif | ||
323 | |||
324 | #ifdef CONFIG_PPC_ISERIES | ||
325 | |||
326 | /* | ||
327 | * This function recalibrates the timebase based on the 49-bit time-of-day | ||
328 | * value in the Titan chip. The Titan is much more accurate than the value | ||
329 | * returned by the service processor for the timebase frequency. | ||
330 | */ | ||
331 | |||
332 | static void iSeries_tb_recal(void) | ||
333 | { | ||
334 | struct div_result divres; | ||
335 | unsigned long titan, tb; | ||
336 | tb = get_tb(); | ||
337 | titan = HvCallXm_loadTod(); | ||
338 | if ( iSeries_recal_titan ) { | ||
339 | unsigned long tb_ticks = tb - iSeries_recal_tb; | ||
340 | unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; | ||
341 | unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; | ||
342 | unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; | ||
343 | long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; | ||
344 | char sign = '+'; | ||
345 | /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ | ||
346 | new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; | ||
347 | |||
348 | if ( tick_diff < 0 ) { | ||
349 | tick_diff = -tick_diff; | ||
350 | sign = '-'; | ||
351 | } | ||
352 | if ( tick_diff ) { | ||
353 | if ( tick_diff < tb_ticks_per_jiffy/25 ) { | ||
354 | printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", | ||
355 | new_tb_ticks_per_jiffy, sign, tick_diff ); | ||
356 | tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; | ||
357 | tb_ticks_per_sec = new_tb_ticks_per_sec; | ||
358 | div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); | ||
359 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
360 | tb_to_xs = divres.result_low; | ||
361 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
362 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
363 | systemcfg->tb_to_xs = tb_to_xs; | ||
364 | } | ||
365 | else { | ||
366 | printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" | ||
367 | " new tb_ticks_per_jiffy = %lu\n" | ||
368 | " old tb_ticks_per_jiffy = %lu\n", | ||
369 | new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); | ||
370 | } | ||
371 | } | ||
372 | } | ||
373 | iSeries_recal_titan = titan; | ||
374 | iSeries_recal_tb = tb; | ||
375 | } | ||
376 | #endif | ||
377 | |||
378 | /* | ||
379 | * For iSeries shared processors, we have to let the hypervisor | ||
380 | * set the hardware decrementer. We set a virtual decrementer | ||
381 | * in the lppaca and call the hypervisor if the virtual | ||
382 | * decrementer is less than the current value in the hardware | ||
383 | * decrementer. (almost always the new decrementer value will | ||
384 | * be greater than the current hardware decementer so the hypervisor | ||
385 | * call will not be needed) | ||
386 | */ | ||
387 | |||
388 | /* | ||
389 | * timer_interrupt - gets called when the decrementer overflows, | ||
390 | * with interrupts disabled. | ||
391 | */ | ||
392 | void timer_interrupt(struct pt_regs * regs) | ||
393 | { | ||
394 | int next_dec; | ||
395 | int cpu = smp_processor_id(); | ||
396 | unsigned long ticks; | ||
397 | |||
398 | #ifdef CONFIG_PPC32 | ||
399 | if (atomic_read(&ppc_n_lost_interrupts) != 0) | ||
400 | do_IRQ(regs); | ||
401 | #endif | ||
402 | |||
403 | irq_enter(); | ||
404 | |||
405 | profile_tick(CPU_PROFILING, regs); | ||
406 | |||
407 | #ifdef CONFIG_PPC_ISERIES | ||
408 | get_paca()->lppaca.int_dword.fields.decr_int = 0; | ||
409 | #endif | ||
410 | |||
411 | while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) | ||
412 | >= tb_ticks_per_jiffy) { | ||
413 | /* Update last_jiffy */ | ||
414 | per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; | ||
415 | /* Handle RTCL overflow on 601 */ | ||
416 | if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) | ||
417 | per_cpu(last_jiffy, cpu) -= 1000000000; | ||
418 | |||
419 | /* | ||
420 | * We cannot disable the decrementer, so in the period | ||
421 | * between this cpu's being marked offline in cpu_online_map | ||
422 | * and calling stop-self, it is taking timer interrupts. | ||
423 | * Avoid calling into the scheduler rebalancing code if this | ||
424 | * is the case. | ||
425 | */ | ||
426 | if (!cpu_is_offline(cpu)) | ||
427 | update_process_times(user_mode(regs)); | ||
428 | |||
429 | /* | ||
430 | * No need to check whether cpu is offline here; boot_cpuid | ||
431 | * should have been fixed up by now. | ||
432 | */ | ||
433 | if (cpu != boot_cpuid) | ||
434 | continue; | ||
435 | |||
436 | write_seqlock(&xtime_lock); | ||
437 | tb_last_jiffy += tb_ticks_per_jiffy; | ||
438 | tb_last_stamp = per_cpu(last_jiffy, cpu); | ||
439 | timer_recalc_offset(tb_last_jiffy); | ||
440 | do_timer(regs); | ||
441 | timer_sync_xtime(tb_last_jiffy); | ||
442 | timer_check_rtc(); | ||
443 | write_sequnlock(&xtime_lock); | ||
444 | if (adjusting_time && (time_adjust == 0)) | ||
445 | ppc_adjtimex(); | ||
446 | } | ||
447 | |||
448 | next_dec = tb_ticks_per_jiffy - ticks; | ||
449 | set_dec(next_dec); | ||
450 | |||
451 | #ifdef CONFIG_PPC_ISERIES | ||
452 | if (hvlpevent_is_pending()) | ||
453 | process_hvlpevents(regs); | ||
454 | #endif | ||
455 | |||
456 | #ifdef CONFIG_PPC64 | ||
457 | /* collect purr register values often, for accurate calculations */ | ||
458 | if (firmware_has_feature(FW_FEATURE_SPLPAR)) { | ||
459 | struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | ||
460 | cu->current_tb = mfspr(SPRN_PURR); | ||
461 | } | ||
462 | #endif | ||
463 | |||
464 | irq_exit(); | ||
465 | } | ||
466 | |||
467 | void wakeup_decrementer(void) | ||
468 | { | ||
469 | int i; | ||
470 | |||
471 | set_dec(tb_ticks_per_jiffy); | ||
472 | /* | ||
473 | * We don't expect this to be called on a machine with a 601, | ||
474 | * so using get_tbl is fine. | ||
475 | */ | ||
476 | tb_last_stamp = tb_last_jiffy = get_tb(); | ||
477 | for_each_cpu(i) | ||
478 | per_cpu(last_jiffy, i) = tb_last_stamp; | ||
479 | } | ||
480 | |||
481 | #ifdef CONFIG_SMP | ||
482 | void __init smp_space_timers(unsigned int max_cpus) | ||
483 | { | ||
484 | int i; | ||
485 | unsigned long offset = tb_ticks_per_jiffy / max_cpus; | ||
486 | unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); | ||
487 | |||
488 | for_each_cpu(i) { | ||
489 | if (i != boot_cpuid) { | ||
490 | previous_tb += offset; | ||
491 | per_cpu(last_jiffy, i) = previous_tb; | ||
492 | } | ||
493 | } | ||
494 | } | ||
495 | #endif | ||
496 | |||
497 | /* | ||
498 | * Scheduler clock - returns current time in nanosec units. | ||
499 | * | ||
500 | * Note: mulhdu(a, b) (multiply high double unsigned) returns | ||
501 | * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b | ||
502 | * are 64-bit unsigned numbers. | ||
503 | */ | ||
504 | unsigned long long sched_clock(void) | ||
505 | { | ||
506 | if (__USE_RTC()) | ||
507 | return get_rtc(); | ||
508 | return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; | ||
509 | } | ||
510 | |||
511 | int do_settimeofday(struct timespec *tv) | ||
512 | { | ||
513 | time_t wtm_sec, new_sec = tv->tv_sec; | ||
514 | long wtm_nsec, new_nsec = tv->tv_nsec; | ||
515 | unsigned long flags; | ||
516 | long int tb_delta; | ||
517 | u64 new_xsec, tb_delta_xs; | ||
518 | |||
519 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
520 | return -EINVAL; | ||
521 | |||
522 | write_seqlock_irqsave(&xtime_lock, flags); | ||
523 | |||
524 | /* | ||
525 | * Updating the RTC is not the job of this code. If the time is | ||
526 | * stepped under NTP, the RTC will be updated after STA_UNSYNC | ||
527 | * is cleared. Tools like clock/hwclock either copy the RTC | ||
528 | * to the system time, in which case there is no point in writing | ||
529 | * to the RTC again, or write to the RTC but then they don't call | ||
530 | * settimeofday to perform this operation. | ||
531 | */ | ||
532 | #ifdef CONFIG_PPC_ISERIES | ||
533 | if (first_settimeofday) { | ||
534 | iSeries_tb_recal(); | ||
535 | first_settimeofday = 0; | ||
536 | } | ||
537 | #endif | ||
538 | tb_delta = tb_ticks_since(tb_last_stamp); | ||
539 | tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | ||
540 | tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); | ||
541 | |||
542 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | ||
543 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | ||
544 | |||
545 | set_normalized_timespec(&xtime, new_sec, new_nsec); | ||
546 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
547 | |||
548 | /* In case of a large backwards jump in time with NTP, we want the | ||
549 | * clock to be updated as soon as the PLL is again in lock. | ||
550 | */ | ||
551 | last_rtc_update = new_sec - 658; | ||
552 | |||
553 | ntp_clear(); | ||
554 | |||
555 | new_xsec = 0; | ||
556 | if (new_nsec != 0) { | ||
557 | new_xsec = (u64)new_nsec * XSEC_PER_SEC; | ||
558 | do_div(new_xsec, NSEC_PER_SEC); | ||
559 | } | ||
560 | new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs; | ||
561 | update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); | ||
562 | |||
563 | #ifdef CONFIG_PPC64 | ||
564 | systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; | ||
565 | systemcfg->tz_dsttime = sys_tz.tz_dsttime; | ||
566 | #endif | ||
567 | |||
568 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
569 | clock_was_set(); | ||
570 | return 0; | ||
571 | } | ||
572 | |||
573 | EXPORT_SYMBOL(do_settimeofday); | ||
574 | |||
575 | void __init generic_calibrate_decr(void) | ||
576 | { | ||
577 | struct device_node *cpu; | ||
578 | unsigned int *fp; | ||
579 | int node_found; | ||
580 | |||
581 | /* | ||
582 | * The cpu node should have a timebase-frequency property | ||
583 | * to tell us the rate at which the decrementer counts. | ||
584 | */ | ||
585 | cpu = of_find_node_by_type(NULL, "cpu"); | ||
586 | |||
587 | ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ | ||
588 | node_found = 0; | ||
589 | if (cpu != 0) { | ||
590 | fp = (unsigned int *)get_property(cpu, "timebase-frequency", | ||
591 | NULL); | ||
592 | if (fp != 0) { | ||
593 | node_found = 1; | ||
594 | ppc_tb_freq = *fp; | ||
595 | } | ||
596 | } | ||
597 | if (!node_found) | ||
598 | printk(KERN_ERR "WARNING: Estimating decrementer frequency " | ||
599 | "(not found)\n"); | ||
600 | |||
601 | ppc_proc_freq = DEFAULT_PROC_FREQ; | ||
602 | node_found = 0; | ||
603 | if (cpu != 0) { | ||
604 | fp = (unsigned int *)get_property(cpu, "clock-frequency", | ||
605 | NULL); | ||
606 | if (fp != 0) { | ||
607 | node_found = 1; | ||
608 | ppc_proc_freq = *fp; | ||
609 | } | ||
610 | } | ||
611 | #ifdef CONFIG_BOOKE | ||
612 | /* Set the time base to zero */ | ||
613 | mtspr(SPRN_TBWL, 0); | ||
614 | mtspr(SPRN_TBWU, 0); | ||
615 | |||
616 | /* Clear any pending timer interrupts */ | ||
617 | mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); | ||
618 | |||
619 | /* Enable decrementer interrupt */ | ||
620 | mtspr(SPRN_TCR, TCR_DIE); | ||
621 | #endif | ||
622 | if (!node_found) | ||
623 | printk(KERN_ERR "WARNING: Estimating processor frequency " | ||
624 | "(not found)\n"); | ||
625 | |||
626 | of_node_put(cpu); | ||
627 | } | ||
628 | |||
629 | unsigned long get_boot_time(void) | ||
630 | { | ||
631 | struct rtc_time tm; | ||
632 | |||
633 | if (ppc_md.get_boot_time) | ||
634 | return ppc_md.get_boot_time(); | ||
635 | if (!ppc_md.get_rtc_time) | ||
636 | return 0; | ||
637 | ppc_md.get_rtc_time(&tm); | ||
638 | return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, | ||
639 | tm.tm_hour, tm.tm_min, tm.tm_sec); | ||
640 | } | ||
641 | |||
642 | /* This function is only called on the boot processor */ | ||
643 | void __init time_init(void) | ||
644 | { | ||
645 | unsigned long flags; | ||
646 | unsigned long tm = 0; | ||
647 | struct div_result res; | ||
648 | u64 scale; | ||
649 | unsigned shift; | ||
650 | |||
651 | if (ppc_md.time_init != NULL) | ||
652 | timezone_offset = ppc_md.time_init(); | ||
653 | |||
654 | if (__USE_RTC()) { | ||
655 | /* 601 processor: dec counts down by 128 every 128ns */ | ||
656 | ppc_tb_freq = 1000000000; | ||
657 | tb_last_stamp = get_rtcl(); | ||
658 | tb_last_jiffy = tb_last_stamp; | ||
659 | } else { | ||
660 | /* Normal PowerPC with timebase register */ | ||
661 | ppc_md.calibrate_decr(); | ||
662 | printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", | ||
663 | ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); | ||
664 | printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", | ||
665 | ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); | ||
666 | tb_last_stamp = tb_last_jiffy = get_tb(); | ||
667 | } | ||
668 | |||
669 | tb_ticks_per_jiffy = ppc_tb_freq / HZ; | ||
670 | tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; | ||
671 | tb_ticks_per_usec = ppc_tb_freq / 1000000; | ||
672 | tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); | ||
673 | div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); | ||
674 | tb_to_xs = res.result_low; | ||
675 | |||
676 | #ifdef CONFIG_PPC64 | ||
677 | get_paca()->default_decr = tb_ticks_per_jiffy; | ||
678 | #endif | ||
679 | |||
680 | /* | ||
681 | * Compute scale factor for sched_clock. | ||
682 | * The calibrate_decr() function has set tb_ticks_per_sec, | ||
683 | * which is the timebase frequency. | ||
684 | * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret | ||
685 | * the 128-bit result as a 64.64 fixed-point number. | ||
686 | * We then shift that number right until it is less than 1.0, | ||
687 | * giving us the scale factor and shift count to use in | ||
688 | * sched_clock(). | ||
689 | */ | ||
690 | div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); | ||
691 | scale = res.result_low; | ||
692 | for (shift = 0; res.result_high != 0; ++shift) { | ||
693 | scale = (scale >> 1) | (res.result_high << 63); | ||
694 | res.result_high >>= 1; | ||
695 | } | ||
696 | tb_to_ns_scale = scale; | ||
697 | tb_to_ns_shift = shift; | ||
698 | |||
699 | #ifdef CONFIG_PPC_ISERIES | ||
700 | if (!piranha_simulator) | ||
701 | #endif | ||
702 | tm = get_boot_time(); | ||
703 | |||
704 | write_seqlock_irqsave(&xtime_lock, flags); | ||
705 | xtime.tv_sec = tm; | ||
706 | xtime.tv_nsec = 0; | ||
707 | do_gtod.varp = &do_gtod.vars[0]; | ||
708 | do_gtod.var_idx = 0; | ||
709 | do_gtod.varp->tb_orig_stamp = tb_last_jiffy; | ||
710 | __get_cpu_var(last_jiffy) = tb_last_stamp; | ||
711 | do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; | ||
712 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
713 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
714 | do_gtod.tb_to_us = tb_to_us; | ||
715 | #ifdef CONFIG_PPC64 | ||
716 | systemcfg->tb_orig_stamp = tb_last_jiffy; | ||
717 | systemcfg->tb_update_count = 0; | ||
718 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
719 | systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; | ||
720 | systemcfg->tb_to_xs = tb_to_xs; | ||
721 | #endif | ||
722 | |||
723 | time_freq = 0; | ||
724 | |||
725 | /* If platform provided a timezone (pmac), we correct the time */ | ||
726 | if (timezone_offset) { | ||
727 | sys_tz.tz_minuteswest = -timezone_offset / 60; | ||
728 | sys_tz.tz_dsttime = 0; | ||
729 | xtime.tv_sec -= timezone_offset; | ||
730 | } | ||
731 | |||
732 | last_rtc_update = xtime.tv_sec; | ||
733 | set_normalized_timespec(&wall_to_monotonic, | ||
734 | -xtime.tv_sec, -xtime.tv_nsec); | ||
735 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
736 | |||
737 | /* Not exact, but the timer interrupt takes care of this */ | ||
738 | set_dec(tb_ticks_per_jiffy); | ||
739 | } | ||
740 | |||
741 | /* | ||
742 | * After adjtimex is called, adjust the conversion of tb ticks | ||
743 | * to microseconds to keep do_gettimeofday synchronized | ||
744 | * with ntpd. | ||
745 | * | ||
746 | * Use the time_adjust, time_freq and time_offset computed by adjtimex to | ||
747 | * adjust the frequency. | ||
748 | */ | ||
749 | |||
750 | /* #define DEBUG_PPC_ADJTIMEX 1 */ | ||
751 | |||
752 | void ppc_adjtimex(void) | ||
753 | { | ||
754 | #ifdef CONFIG_PPC64 | ||
755 | unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, | ||
756 | new_tb_to_xs, new_xsec, new_stamp_xsec; | ||
757 | unsigned long tb_ticks_per_sec_delta; | ||
758 | long delta_freq, ltemp; | ||
759 | struct div_result divres; | ||
760 | unsigned long flags; | ||
761 | long singleshot_ppm = 0; | ||
762 | |||
763 | /* | ||
764 | * Compute parts per million frequency adjustment to | ||
765 | * accomplish the time adjustment implied by time_offset to be | ||
766 | * applied over the elapsed time indicated by time_constant. | ||
767 | * Use SHIFT_USEC to get it into the same units as | ||
768 | * time_freq. | ||
769 | */ | ||
770 | if ( time_offset < 0 ) { | ||
771 | ltemp = -time_offset; | ||
772 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
773 | ltemp >>= SHIFT_KG + time_constant; | ||
774 | ltemp = -ltemp; | ||
775 | } else { | ||
776 | ltemp = time_offset; | ||
777 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
778 | ltemp >>= SHIFT_KG + time_constant; | ||
779 | } | ||
780 | |||
781 | /* If there is a single shot time adjustment in progress */ | ||
782 | if ( time_adjust ) { | ||
783 | #ifdef DEBUG_PPC_ADJTIMEX | ||
784 | printk("ppc_adjtimex: "); | ||
785 | if ( adjusting_time == 0 ) | ||
786 | printk("starting "); | ||
787 | printk("single shot time_adjust = %ld\n", time_adjust); | ||
788 | #endif | ||
789 | |||
790 | adjusting_time = 1; | ||
791 | |||
792 | /* | ||
793 | * Compute parts per million frequency adjustment | ||
794 | * to match time_adjust | ||
795 | */ | ||
796 | singleshot_ppm = tickadj * HZ; | ||
797 | /* | ||
798 | * The adjustment should be tickadj*HZ to match the code in | ||
799 | * linux/kernel/timer.c, but experiments show that this is too | ||
800 | * large. 3/4 of tickadj*HZ seems about right | ||
801 | */ | ||
802 | singleshot_ppm -= singleshot_ppm / 4; | ||
803 | /* Use SHIFT_USEC to get it into the same units as time_freq */ | ||
804 | singleshot_ppm <<= SHIFT_USEC; | ||
805 | if ( time_adjust < 0 ) | ||
806 | singleshot_ppm = -singleshot_ppm; | ||
807 | } | ||
808 | else { | ||
809 | #ifdef DEBUG_PPC_ADJTIMEX | ||
810 | if ( adjusting_time ) | ||
811 | printk("ppc_adjtimex: ending single shot time_adjust\n"); | ||
812 | #endif | ||
813 | adjusting_time = 0; | ||
814 | } | ||
815 | |||
816 | /* Add up all of the frequency adjustments */ | ||
817 | delta_freq = time_freq + ltemp + singleshot_ppm; | ||
818 | |||
819 | /* | ||
820 | * Compute a new value for tb_ticks_per_sec based on | ||
821 | * the frequency adjustment | ||
822 | */ | ||
823 | den = 1000000 * (1 << (SHIFT_USEC - 8)); | ||
824 | if ( delta_freq < 0 ) { | ||
825 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; | ||
826 | new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; | ||
827 | } | ||
828 | else { | ||
829 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; | ||
830 | new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; | ||
831 | } | ||
832 | |||
833 | #ifdef DEBUG_PPC_ADJTIMEX | ||
834 | printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); | ||
835 | printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); | ||
836 | #endif | ||
837 | |||
838 | /* | ||
839 | * Compute a new value of tb_to_xs (used to convert tb to | ||
840 | * microseconds) and a new value of stamp_xsec which is the | ||
841 | * time (in 1/2^20 second units) corresponding to | ||
842 | * tb_orig_stamp. This new value of stamp_xsec compensates | ||
843 | * for the change in frequency (implied by the new tb_to_xs) | ||
844 | * which guarantees that the current time remains the same. | ||
845 | */ | ||
846 | write_seqlock_irqsave( &xtime_lock, flags ); | ||
847 | tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; | ||
848 | div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); | ||
849 | new_tb_to_xs = divres.result_low; | ||
850 | new_xsec = mulhdu(tb_ticks, new_tb_to_xs); | ||
851 | |||
852 | old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); | ||
853 | new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; | ||
854 | |||
855 | update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); | ||
856 | |||
857 | write_sequnlock_irqrestore( &xtime_lock, flags ); | ||
858 | #endif /* CONFIG_PPC64 */ | ||
859 | } | ||
860 | |||
861 | |||
862 | #define FEBRUARY 2 | ||
863 | #define STARTOFTIME 1970 | ||
864 | #define SECDAY 86400L | ||
865 | #define SECYR (SECDAY * 365) | ||
866 | #define leapyear(year) ((year) % 4 == 0 && \ | ||
867 | ((year) % 100 != 0 || (year) % 400 == 0)) | ||
868 | #define days_in_year(a) (leapyear(a) ? 366 : 365) | ||
869 | #define days_in_month(a) (month_days[(a) - 1]) | ||
870 | |||
871 | static int month_days[12] = { | ||
872 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | ||
873 | }; | ||
874 | |||
875 | /* | ||
876 | * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) | ||
877 | */ | ||
878 | void GregorianDay(struct rtc_time * tm) | ||
879 | { | ||
880 | int leapsToDate; | ||
881 | int lastYear; | ||
882 | int day; | ||
883 | int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; | ||
884 | |||
885 | lastYear = tm->tm_year - 1; | ||
886 | |||
887 | /* | ||
888 | * Number of leap corrections to apply up to end of last year | ||
889 | */ | ||
890 | leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; | ||
891 | |||
892 | /* | ||
893 | * This year is a leap year if it is divisible by 4 except when it is | ||
894 | * divisible by 100 unless it is divisible by 400 | ||
895 | * | ||
896 | * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was | ||
897 | */ | ||
898 | day = tm->tm_mon > 2 && leapyear(tm->tm_year); | ||
899 | |||
900 | day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + | ||
901 | tm->tm_mday; | ||
902 | |||
903 | tm->tm_wday = day % 7; | ||
904 | } | ||
905 | |||
906 | void to_tm(int tim, struct rtc_time * tm) | ||
907 | { | ||
908 | register int i; | ||
909 | register long hms, day; | ||
910 | |||
911 | day = tim / SECDAY; | ||
912 | hms = tim % SECDAY; | ||
913 | |||
914 | /* Hours, minutes, seconds are easy */ | ||
915 | tm->tm_hour = hms / 3600; | ||
916 | tm->tm_min = (hms % 3600) / 60; | ||
917 | tm->tm_sec = (hms % 3600) % 60; | ||
918 | |||
919 | /* Number of years in days */ | ||
920 | for (i = STARTOFTIME; day >= days_in_year(i); i++) | ||
921 | day -= days_in_year(i); | ||
922 | tm->tm_year = i; | ||
923 | |||
924 | /* Number of months in days left */ | ||
925 | if (leapyear(tm->tm_year)) | ||
926 | days_in_month(FEBRUARY) = 29; | ||
927 | for (i = 1; day >= days_in_month(i); i++) | ||
928 | day -= days_in_month(i); | ||
929 | days_in_month(FEBRUARY) = 28; | ||
930 | tm->tm_mon = i; | ||
931 | |||
932 | /* Days are what is left over (+1) from all that. */ | ||
933 | tm->tm_mday = day + 1; | ||
934 | |||
935 | /* | ||
936 | * Determine the day of week | ||
937 | */ | ||
938 | GregorianDay(tm); | ||
939 | } | ||
940 | |||
941 | /* Auxiliary function to compute scaling factors */ | ||
942 | /* Actually the choice of a timebase running at 1/4 the of the bus | ||
943 | * frequency giving resolution of a few tens of nanoseconds is quite nice. | ||
944 | * It makes this computation very precise (27-28 bits typically) which | ||
945 | * is optimistic considering the stability of most processor clock | ||
946 | * oscillators and the precision with which the timebase frequency | ||
947 | * is measured but does not harm. | ||
948 | */ | ||
949 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) | ||
950 | { | ||
951 | unsigned mlt=0, tmp, err; | ||
952 | /* No concern for performance, it's done once: use a stupid | ||
953 | * but safe and compact method to find the multiplier. | ||
954 | */ | ||
955 | |||
956 | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | ||
957 | if (mulhwu(inscale, mlt|tmp) < outscale) | ||
958 | mlt |= tmp; | ||
959 | } | ||
960 | |||
961 | /* We might still be off by 1 for the best approximation. | ||
962 | * A side effect of this is that if outscale is too large | ||
963 | * the returned value will be zero. | ||
964 | * Many corner cases have been checked and seem to work, | ||
965 | * some might have been forgotten in the test however. | ||
966 | */ | ||
967 | |||
968 | err = inscale * (mlt+1); | ||
969 | if (err <= inscale/2) | ||
970 | mlt++; | ||
971 | return mlt; | ||
972 | } | ||
973 | |||
974 | /* | ||
975 | * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit | ||
976 | * result. | ||
977 | */ | ||
978 | void div128_by_32(u64 dividend_high, u64 dividend_low, | ||
979 | unsigned divisor, struct div_result *dr) | ||
980 | { | ||
981 | unsigned long a, b, c, d; | ||
982 | unsigned long w, x, y, z; | ||
983 | u64 ra, rb, rc; | ||
984 | |||
985 | a = dividend_high >> 32; | ||
986 | b = dividend_high & 0xffffffff; | ||
987 | c = dividend_low >> 32; | ||
988 | d = dividend_low & 0xffffffff; | ||
989 | |||
990 | w = a / divisor; | ||
991 | ra = ((u64)(a - (w * divisor)) << 32) + b; | ||
992 | |||
993 | rb = ((u64) do_div(ra, divisor) << 32) + c; | ||
994 | x = ra; | ||
995 | |||
996 | rc = ((u64) do_div(rb, divisor) << 32) + d; | ||
997 | y = rb; | ||
998 | |||
999 | do_div(rc, divisor); | ||
1000 | z = rc; | ||
1001 | |||
1002 | dr->result_high = ((u64)w << 32) + x; | ||
1003 | dr->result_low = ((u64)y << 32) + z; | ||
1004 | |||
1005 | } | ||