diff options
Diffstat (limited to 'arch/powerpc/kernel/prom.c')
-rw-r--r-- | arch/powerpc/kernel/prom.c | 2141 |
1 files changed, 2141 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/prom.c b/arch/powerpc/kernel/prom.c new file mode 100644 index 000000000000..dc3d24ea3bff --- /dev/null +++ b/arch/powerpc/kernel/prom.c | |||
@@ -0,0 +1,2141 @@ | |||
1 | /* | ||
2 | * Procedures for creating, accessing and interpreting the device tree. | ||
3 | * | ||
4 | * Paul Mackerras August 1996. | ||
5 | * Copyright (C) 1996-2005 Paul Mackerras. | ||
6 | * | ||
7 | * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. | ||
8 | * {engebret|bergner}@us.ibm.com | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or | ||
11 | * modify it under the terms of the GNU General Public License | ||
12 | * as published by the Free Software Foundation; either version | ||
13 | * 2 of the License, or (at your option) any later version. | ||
14 | */ | ||
15 | |||
16 | #undef DEBUG | ||
17 | |||
18 | #include <stdarg.h> | ||
19 | #include <linux/config.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/threads.h> | ||
24 | #include <linux/spinlock.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/pci.h> | ||
27 | #include <linux/stringify.h> | ||
28 | #include <linux/delay.h> | ||
29 | #include <linux/initrd.h> | ||
30 | #include <linux/bitops.h> | ||
31 | #include <linux/module.h> | ||
32 | |||
33 | #include <asm/prom.h> | ||
34 | #include <asm/rtas.h> | ||
35 | #include <asm/lmb.h> | ||
36 | #include <asm/page.h> | ||
37 | #include <asm/processor.h> | ||
38 | #include <asm/irq.h> | ||
39 | #include <asm/io.h> | ||
40 | #include <asm/smp.h> | ||
41 | #include <asm/system.h> | ||
42 | #include <asm/mmu.h> | ||
43 | #include <asm/pgtable.h> | ||
44 | #include <asm/pci.h> | ||
45 | #include <asm/iommu.h> | ||
46 | #include <asm/btext.h> | ||
47 | #include <asm/sections.h> | ||
48 | #include <asm/machdep.h> | ||
49 | #include <asm/pSeries_reconfig.h> | ||
50 | |||
51 | #ifdef DEBUG | ||
52 | #define DBG(fmt...) printk(KERN_ERR fmt) | ||
53 | #else | ||
54 | #define DBG(fmt...) | ||
55 | #endif | ||
56 | |||
57 | struct pci_reg_property { | ||
58 | struct pci_address addr; | ||
59 | u32 size_hi; | ||
60 | u32 size_lo; | ||
61 | }; | ||
62 | |||
63 | struct isa_reg_property { | ||
64 | u32 space; | ||
65 | u32 address; | ||
66 | u32 size; | ||
67 | }; | ||
68 | |||
69 | |||
70 | typedef int interpret_func(struct device_node *, unsigned long *, | ||
71 | int, int, int); | ||
72 | |||
73 | extern struct rtas_t rtas; | ||
74 | extern struct lmb lmb; | ||
75 | extern unsigned long klimit; | ||
76 | |||
77 | static unsigned long memory_limit; | ||
78 | |||
79 | static int __initdata dt_root_addr_cells; | ||
80 | static int __initdata dt_root_size_cells; | ||
81 | |||
82 | #ifdef CONFIG_PPC64 | ||
83 | static int __initdata iommu_is_off; | ||
84 | int __initdata iommu_force_on; | ||
85 | extern unsigned long tce_alloc_start, tce_alloc_end; | ||
86 | #endif | ||
87 | |||
88 | typedef u32 cell_t; | ||
89 | |||
90 | #if 0 | ||
91 | static struct boot_param_header *initial_boot_params __initdata; | ||
92 | #else | ||
93 | struct boot_param_header *initial_boot_params; | ||
94 | #endif | ||
95 | |||
96 | static struct device_node *allnodes = NULL; | ||
97 | |||
98 | /* use when traversing tree through the allnext, child, sibling, | ||
99 | * or parent members of struct device_node. | ||
100 | */ | ||
101 | static DEFINE_RWLOCK(devtree_lock); | ||
102 | |||
103 | /* export that to outside world */ | ||
104 | struct device_node *of_chosen; | ||
105 | |||
106 | struct device_node *dflt_interrupt_controller; | ||
107 | int num_interrupt_controllers; | ||
108 | |||
109 | u32 rtas_data; | ||
110 | u32 rtas_entry; | ||
111 | |||
112 | /* | ||
113 | * Wrapper for allocating memory for various data that needs to be | ||
114 | * attached to device nodes as they are processed at boot or when | ||
115 | * added to the device tree later (e.g. DLPAR). At boot there is | ||
116 | * already a region reserved so we just increment *mem_start by size; | ||
117 | * otherwise we call kmalloc. | ||
118 | */ | ||
119 | static void * prom_alloc(unsigned long size, unsigned long *mem_start) | ||
120 | { | ||
121 | unsigned long tmp; | ||
122 | |||
123 | if (!mem_start) | ||
124 | return kmalloc(size, GFP_KERNEL); | ||
125 | |||
126 | tmp = *mem_start; | ||
127 | *mem_start += size; | ||
128 | return (void *)tmp; | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * Find the device_node with a given phandle. | ||
133 | */ | ||
134 | static struct device_node * find_phandle(phandle ph) | ||
135 | { | ||
136 | struct device_node *np; | ||
137 | |||
138 | for (np = allnodes; np != 0; np = np->allnext) | ||
139 | if (np->linux_phandle == ph) | ||
140 | return np; | ||
141 | return NULL; | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * Find the interrupt parent of a node. | ||
146 | */ | ||
147 | static struct device_node * __devinit intr_parent(struct device_node *p) | ||
148 | { | ||
149 | phandle *parp; | ||
150 | |||
151 | parp = (phandle *) get_property(p, "interrupt-parent", NULL); | ||
152 | if (parp == NULL) | ||
153 | return p->parent; | ||
154 | p = find_phandle(*parp); | ||
155 | if (p != NULL) | ||
156 | return p; | ||
157 | /* | ||
158 | * On a powermac booted with BootX, we don't get to know the | ||
159 | * phandles for any nodes, so find_phandle will return NULL. | ||
160 | * Fortunately these machines only have one interrupt controller | ||
161 | * so there isn't in fact any ambiguity. -- paulus | ||
162 | */ | ||
163 | if (num_interrupt_controllers == 1) | ||
164 | p = dflt_interrupt_controller; | ||
165 | return p; | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * Find out the size of each entry of the interrupts property | ||
170 | * for a node. | ||
171 | */ | ||
172 | int __devinit prom_n_intr_cells(struct device_node *np) | ||
173 | { | ||
174 | struct device_node *p; | ||
175 | unsigned int *icp; | ||
176 | |||
177 | for (p = np; (p = intr_parent(p)) != NULL; ) { | ||
178 | icp = (unsigned int *) | ||
179 | get_property(p, "#interrupt-cells", NULL); | ||
180 | if (icp != NULL) | ||
181 | return *icp; | ||
182 | if (get_property(p, "interrupt-controller", NULL) != NULL | ||
183 | || get_property(p, "interrupt-map", NULL) != NULL) { | ||
184 | printk("oops, node %s doesn't have #interrupt-cells\n", | ||
185 | p->full_name); | ||
186 | return 1; | ||
187 | } | ||
188 | } | ||
189 | #ifdef DEBUG_IRQ | ||
190 | printk("prom_n_intr_cells failed for %s\n", np->full_name); | ||
191 | #endif | ||
192 | return 1; | ||
193 | } | ||
194 | |||
195 | /* | ||
196 | * Map an interrupt from a device up to the platform interrupt | ||
197 | * descriptor. | ||
198 | */ | ||
199 | static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler, | ||
200 | struct device_node *np, unsigned int *ints, | ||
201 | int nintrc) | ||
202 | { | ||
203 | struct device_node *p, *ipar; | ||
204 | unsigned int *imap, *imask, *ip; | ||
205 | int i, imaplen, match; | ||
206 | int newintrc = 0, newaddrc = 0; | ||
207 | unsigned int *reg; | ||
208 | int naddrc; | ||
209 | |||
210 | reg = (unsigned int *) get_property(np, "reg", NULL); | ||
211 | naddrc = prom_n_addr_cells(np); | ||
212 | p = intr_parent(np); | ||
213 | while (p != NULL) { | ||
214 | if (get_property(p, "interrupt-controller", NULL) != NULL) | ||
215 | /* this node is an interrupt controller, stop here */ | ||
216 | break; | ||
217 | imap = (unsigned int *) | ||
218 | get_property(p, "interrupt-map", &imaplen); | ||
219 | if (imap == NULL) { | ||
220 | p = intr_parent(p); | ||
221 | continue; | ||
222 | } | ||
223 | imask = (unsigned int *) | ||
224 | get_property(p, "interrupt-map-mask", NULL); | ||
225 | if (imask == NULL) { | ||
226 | printk("oops, %s has interrupt-map but no mask\n", | ||
227 | p->full_name); | ||
228 | return 0; | ||
229 | } | ||
230 | imaplen /= sizeof(unsigned int); | ||
231 | match = 0; | ||
232 | ipar = NULL; | ||
233 | while (imaplen > 0 && !match) { | ||
234 | /* check the child-interrupt field */ | ||
235 | match = 1; | ||
236 | for (i = 0; i < naddrc && match; ++i) | ||
237 | match = ((reg[i] ^ imap[i]) & imask[i]) == 0; | ||
238 | for (; i < naddrc + nintrc && match; ++i) | ||
239 | match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; | ||
240 | imap += naddrc + nintrc; | ||
241 | imaplen -= naddrc + nintrc; | ||
242 | /* grab the interrupt parent */ | ||
243 | ipar = find_phandle((phandle) *imap++); | ||
244 | --imaplen; | ||
245 | if (ipar == NULL && num_interrupt_controllers == 1) | ||
246 | /* cope with BootX not giving us phandles */ | ||
247 | ipar = dflt_interrupt_controller; | ||
248 | if (ipar == NULL) { | ||
249 | printk("oops, no int parent %x in map of %s\n", | ||
250 | imap[-1], p->full_name); | ||
251 | return 0; | ||
252 | } | ||
253 | /* find the parent's # addr and intr cells */ | ||
254 | ip = (unsigned int *) | ||
255 | get_property(ipar, "#interrupt-cells", NULL); | ||
256 | if (ip == NULL) { | ||
257 | printk("oops, no #interrupt-cells on %s\n", | ||
258 | ipar->full_name); | ||
259 | return 0; | ||
260 | } | ||
261 | newintrc = *ip; | ||
262 | ip = (unsigned int *) | ||
263 | get_property(ipar, "#address-cells", NULL); | ||
264 | newaddrc = (ip == NULL)? 0: *ip; | ||
265 | imap += newaddrc + newintrc; | ||
266 | imaplen -= newaddrc + newintrc; | ||
267 | } | ||
268 | if (imaplen < 0) { | ||
269 | printk("oops, error decoding int-map on %s, len=%d\n", | ||
270 | p->full_name, imaplen); | ||
271 | return 0; | ||
272 | } | ||
273 | if (!match) { | ||
274 | #ifdef DEBUG_IRQ | ||
275 | printk("oops, no match in %s int-map for %s\n", | ||
276 | p->full_name, np->full_name); | ||
277 | #endif | ||
278 | return 0; | ||
279 | } | ||
280 | p = ipar; | ||
281 | naddrc = newaddrc; | ||
282 | nintrc = newintrc; | ||
283 | ints = imap - nintrc; | ||
284 | reg = ints - naddrc; | ||
285 | } | ||
286 | if (p == NULL) { | ||
287 | #ifdef DEBUG_IRQ | ||
288 | printk("hmmm, int tree for %s doesn't have ctrler\n", | ||
289 | np->full_name); | ||
290 | #endif | ||
291 | return 0; | ||
292 | } | ||
293 | *irq = ints; | ||
294 | *ictrler = p; | ||
295 | return nintrc; | ||
296 | } | ||
297 | |||
298 | static int __devinit finish_node_interrupts(struct device_node *np, | ||
299 | unsigned long *mem_start, | ||
300 | int measure_only) | ||
301 | { | ||
302 | unsigned int *ints; | ||
303 | int intlen, intrcells, intrcount; | ||
304 | int i, j, n; | ||
305 | unsigned int *irq, virq; | ||
306 | struct device_node *ic; | ||
307 | |||
308 | ints = (unsigned int *) get_property(np, "interrupts", &intlen); | ||
309 | if (ints == NULL) | ||
310 | return 0; | ||
311 | intrcells = prom_n_intr_cells(np); | ||
312 | intlen /= intrcells * sizeof(unsigned int); | ||
313 | |||
314 | np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start); | ||
315 | if (!np->intrs) | ||
316 | return -ENOMEM; | ||
317 | |||
318 | if (measure_only) | ||
319 | return 0; | ||
320 | |||
321 | intrcount = 0; | ||
322 | for (i = 0; i < intlen; ++i, ints += intrcells) { | ||
323 | n = map_interrupt(&irq, &ic, np, ints, intrcells); | ||
324 | if (n <= 0) | ||
325 | continue; | ||
326 | |||
327 | /* don't map IRQ numbers under a cascaded 8259 controller */ | ||
328 | if (ic && device_is_compatible(ic, "chrp,iic")) { | ||
329 | np->intrs[intrcount].line = irq[0]; | ||
330 | } else { | ||
331 | #ifdef CONFIG_PPC64 | ||
332 | virq = virt_irq_create_mapping(irq[0]); | ||
333 | if (virq == NO_IRQ) { | ||
334 | printk(KERN_CRIT "Could not allocate interrupt" | ||
335 | " number for %s\n", np->full_name); | ||
336 | continue; | ||
337 | } | ||
338 | virq = irq_offset_up(virq); | ||
339 | #else | ||
340 | virq = irq[0]; | ||
341 | #endif | ||
342 | np->intrs[intrcount].line = virq; | ||
343 | } | ||
344 | |||
345 | #ifdef CONFIG_PPC64 | ||
346 | /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */ | ||
347 | if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) { | ||
348 | char *name = get_property(ic->parent, "name", NULL); | ||
349 | if (name && !strcmp(name, "u3")) | ||
350 | np->intrs[intrcount].line += 128; | ||
351 | else if (!(name && !strcmp(name, "mac-io"))) | ||
352 | /* ignore other cascaded controllers, such as | ||
353 | the k2-sata-root */ | ||
354 | break; | ||
355 | } | ||
356 | #endif | ||
357 | np->intrs[intrcount].sense = 1; | ||
358 | if (n > 1) | ||
359 | np->intrs[intrcount].sense = irq[1]; | ||
360 | if (n > 2) { | ||
361 | printk("hmmm, got %d intr cells for %s:", n, | ||
362 | np->full_name); | ||
363 | for (j = 0; j < n; ++j) | ||
364 | printk(" %d", irq[j]); | ||
365 | printk("\n"); | ||
366 | } | ||
367 | ++intrcount; | ||
368 | } | ||
369 | np->n_intrs = intrcount; | ||
370 | |||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | static int __devinit interpret_pci_props(struct device_node *np, | ||
375 | unsigned long *mem_start, | ||
376 | int naddrc, int nsizec, | ||
377 | int measure_only) | ||
378 | { | ||
379 | struct address_range *adr; | ||
380 | struct pci_reg_property *pci_addrs; | ||
381 | int i, l, n_addrs; | ||
382 | |||
383 | pci_addrs = (struct pci_reg_property *) | ||
384 | get_property(np, "assigned-addresses", &l); | ||
385 | if (!pci_addrs) | ||
386 | return 0; | ||
387 | |||
388 | n_addrs = l / sizeof(*pci_addrs); | ||
389 | |||
390 | adr = prom_alloc(n_addrs * sizeof(*adr), mem_start); | ||
391 | if (!adr) | ||
392 | return -ENOMEM; | ||
393 | |||
394 | if (measure_only) | ||
395 | return 0; | ||
396 | |||
397 | np->addrs = adr; | ||
398 | np->n_addrs = n_addrs; | ||
399 | |||
400 | for (i = 0; i < n_addrs; i++) { | ||
401 | adr[i].space = pci_addrs[i].addr.a_hi; | ||
402 | adr[i].address = pci_addrs[i].addr.a_lo | | ||
403 | ((u64)pci_addrs[i].addr.a_mid << 32); | ||
404 | adr[i].size = pci_addrs[i].size_lo; | ||
405 | } | ||
406 | |||
407 | return 0; | ||
408 | } | ||
409 | |||
410 | static int __init interpret_dbdma_props(struct device_node *np, | ||
411 | unsigned long *mem_start, | ||
412 | int naddrc, int nsizec, | ||
413 | int measure_only) | ||
414 | { | ||
415 | struct reg_property32 *rp; | ||
416 | struct address_range *adr; | ||
417 | unsigned long base_address; | ||
418 | int i, l; | ||
419 | struct device_node *db; | ||
420 | |||
421 | base_address = 0; | ||
422 | if (!measure_only) { | ||
423 | for (db = np->parent; db != NULL; db = db->parent) { | ||
424 | if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { | ||
425 | base_address = db->addrs[0].address; | ||
426 | break; | ||
427 | } | ||
428 | } | ||
429 | } | ||
430 | |||
431 | rp = (struct reg_property32 *) get_property(np, "reg", &l); | ||
432 | if (rp != 0 && l >= sizeof(struct reg_property32)) { | ||
433 | i = 0; | ||
434 | adr = (struct address_range *) (*mem_start); | ||
435 | while ((l -= sizeof(struct reg_property32)) >= 0) { | ||
436 | if (!measure_only) { | ||
437 | adr[i].space = 2; | ||
438 | adr[i].address = rp[i].address + base_address; | ||
439 | adr[i].size = rp[i].size; | ||
440 | } | ||
441 | ++i; | ||
442 | } | ||
443 | np->addrs = adr; | ||
444 | np->n_addrs = i; | ||
445 | (*mem_start) += i * sizeof(struct address_range); | ||
446 | } | ||
447 | |||
448 | return 0; | ||
449 | } | ||
450 | |||
451 | static int __init interpret_macio_props(struct device_node *np, | ||
452 | unsigned long *mem_start, | ||
453 | int naddrc, int nsizec, | ||
454 | int measure_only) | ||
455 | { | ||
456 | struct reg_property32 *rp; | ||
457 | struct address_range *adr; | ||
458 | unsigned long base_address; | ||
459 | int i, l; | ||
460 | struct device_node *db; | ||
461 | |||
462 | base_address = 0; | ||
463 | if (!measure_only) { | ||
464 | for (db = np->parent; db != NULL; db = db->parent) { | ||
465 | if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { | ||
466 | base_address = db->addrs[0].address; | ||
467 | break; | ||
468 | } | ||
469 | } | ||
470 | } | ||
471 | |||
472 | rp = (struct reg_property32 *) get_property(np, "reg", &l); | ||
473 | if (rp != 0 && l >= sizeof(struct reg_property32)) { | ||
474 | i = 0; | ||
475 | adr = (struct address_range *) (*mem_start); | ||
476 | while ((l -= sizeof(struct reg_property32)) >= 0) { | ||
477 | if (!measure_only) { | ||
478 | adr[i].space = 2; | ||
479 | adr[i].address = rp[i].address + base_address; | ||
480 | adr[i].size = rp[i].size; | ||
481 | } | ||
482 | ++i; | ||
483 | } | ||
484 | np->addrs = adr; | ||
485 | np->n_addrs = i; | ||
486 | (*mem_start) += i * sizeof(struct address_range); | ||
487 | } | ||
488 | |||
489 | return 0; | ||
490 | } | ||
491 | |||
492 | static int __init interpret_isa_props(struct device_node *np, | ||
493 | unsigned long *mem_start, | ||
494 | int naddrc, int nsizec, | ||
495 | int measure_only) | ||
496 | { | ||
497 | struct isa_reg_property *rp; | ||
498 | struct address_range *adr; | ||
499 | int i, l; | ||
500 | |||
501 | rp = (struct isa_reg_property *) get_property(np, "reg", &l); | ||
502 | if (rp != 0 && l >= sizeof(struct isa_reg_property)) { | ||
503 | i = 0; | ||
504 | adr = (struct address_range *) (*mem_start); | ||
505 | while ((l -= sizeof(struct isa_reg_property)) >= 0) { | ||
506 | if (!measure_only) { | ||
507 | adr[i].space = rp[i].space; | ||
508 | adr[i].address = rp[i].address; | ||
509 | adr[i].size = rp[i].size; | ||
510 | } | ||
511 | ++i; | ||
512 | } | ||
513 | np->addrs = adr; | ||
514 | np->n_addrs = i; | ||
515 | (*mem_start) += i * sizeof(struct address_range); | ||
516 | } | ||
517 | |||
518 | return 0; | ||
519 | } | ||
520 | |||
521 | static int __init interpret_root_props(struct device_node *np, | ||
522 | unsigned long *mem_start, | ||
523 | int naddrc, int nsizec, | ||
524 | int measure_only) | ||
525 | { | ||
526 | struct address_range *adr; | ||
527 | int i, l; | ||
528 | unsigned int *rp; | ||
529 | int rpsize = (naddrc + nsizec) * sizeof(unsigned int); | ||
530 | |||
531 | rp = (unsigned int *) get_property(np, "reg", &l); | ||
532 | if (rp != 0 && l >= rpsize) { | ||
533 | i = 0; | ||
534 | adr = (struct address_range *) (*mem_start); | ||
535 | while ((l -= rpsize) >= 0) { | ||
536 | if (!measure_only) { | ||
537 | adr[i].space = 0; | ||
538 | adr[i].address = rp[naddrc - 1]; | ||
539 | adr[i].size = rp[naddrc + nsizec - 1]; | ||
540 | } | ||
541 | ++i; | ||
542 | rp += naddrc + nsizec; | ||
543 | } | ||
544 | np->addrs = adr; | ||
545 | np->n_addrs = i; | ||
546 | (*mem_start) += i * sizeof(struct address_range); | ||
547 | } | ||
548 | |||
549 | return 0; | ||
550 | } | ||
551 | |||
552 | static int __devinit finish_node(struct device_node *np, | ||
553 | unsigned long *mem_start, | ||
554 | interpret_func *ifunc, | ||
555 | int naddrc, int nsizec, | ||
556 | int measure_only) | ||
557 | { | ||
558 | struct device_node *child; | ||
559 | int *ip, rc = 0; | ||
560 | |||
561 | /* get the device addresses and interrupts */ | ||
562 | if (ifunc != NULL) | ||
563 | rc = ifunc(np, mem_start, naddrc, nsizec, measure_only); | ||
564 | if (rc) | ||
565 | goto out; | ||
566 | |||
567 | rc = finish_node_interrupts(np, mem_start, measure_only); | ||
568 | if (rc) | ||
569 | goto out; | ||
570 | |||
571 | /* Look for #address-cells and #size-cells properties. */ | ||
572 | ip = (int *) get_property(np, "#address-cells", NULL); | ||
573 | if (ip != NULL) | ||
574 | naddrc = *ip; | ||
575 | ip = (int *) get_property(np, "#size-cells", NULL); | ||
576 | if (ip != NULL) | ||
577 | nsizec = *ip; | ||
578 | |||
579 | if (!strcmp(np->name, "device-tree") || np->parent == NULL) | ||
580 | ifunc = interpret_root_props; | ||
581 | else if (np->type == 0) | ||
582 | ifunc = NULL; | ||
583 | else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) | ||
584 | ifunc = interpret_pci_props; | ||
585 | else if (!strcmp(np->type, "dbdma")) | ||
586 | ifunc = interpret_dbdma_props; | ||
587 | else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) | ||
588 | ifunc = interpret_macio_props; | ||
589 | else if (!strcmp(np->type, "isa")) | ||
590 | ifunc = interpret_isa_props; | ||
591 | else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) | ||
592 | ifunc = interpret_root_props; | ||
593 | else if (!((ifunc == interpret_dbdma_props | ||
594 | || ifunc == interpret_macio_props) | ||
595 | && (!strcmp(np->type, "escc") | ||
596 | || !strcmp(np->type, "media-bay")))) | ||
597 | ifunc = NULL; | ||
598 | |||
599 | for (child = np->child; child != NULL; child = child->sibling) { | ||
600 | rc = finish_node(child, mem_start, ifunc, | ||
601 | naddrc, nsizec, measure_only); | ||
602 | if (rc) | ||
603 | goto out; | ||
604 | } | ||
605 | out: | ||
606 | return rc; | ||
607 | } | ||
608 | |||
609 | static void __init scan_interrupt_controllers(void) | ||
610 | { | ||
611 | struct device_node *np; | ||
612 | int n = 0; | ||
613 | char *name, *ic; | ||
614 | int iclen; | ||
615 | |||
616 | for (np = allnodes; np != NULL; np = np->allnext) { | ||
617 | ic = get_property(np, "interrupt-controller", &iclen); | ||
618 | name = get_property(np, "name", NULL); | ||
619 | /* checking iclen makes sure we don't get a false | ||
620 | match on /chosen.interrupt_controller */ | ||
621 | if ((name != NULL | ||
622 | && strcmp(name, "interrupt-controller") == 0) | ||
623 | || (ic != NULL && iclen == 0 | ||
624 | && strcmp(name, "AppleKiwi"))) { | ||
625 | if (n == 0) | ||
626 | dflt_interrupt_controller = np; | ||
627 | ++n; | ||
628 | } | ||
629 | } | ||
630 | num_interrupt_controllers = n; | ||
631 | } | ||
632 | |||
633 | /** | ||
634 | * finish_device_tree is called once things are running normally | ||
635 | * (i.e. with text and data mapped to the address they were linked at). | ||
636 | * It traverses the device tree and fills in some of the additional, | ||
637 | * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt | ||
638 | * mapping is also initialized at this point. | ||
639 | */ | ||
640 | void __init finish_device_tree(void) | ||
641 | { | ||
642 | unsigned long start, end, size = 0; | ||
643 | |||
644 | DBG(" -> finish_device_tree\n"); | ||
645 | |||
646 | #ifdef CONFIG_PPC64 | ||
647 | /* Initialize virtual IRQ map */ | ||
648 | virt_irq_init(); | ||
649 | #endif | ||
650 | scan_interrupt_controllers(); | ||
651 | |||
652 | /* | ||
653 | * Finish device-tree (pre-parsing some properties etc...) | ||
654 | * We do this in 2 passes. One with "measure_only" set, which | ||
655 | * will only measure the amount of memory needed, then we can | ||
656 | * allocate that memory, and call finish_node again. However, | ||
657 | * we must be careful as most routines will fail nowadays when | ||
658 | * prom_alloc() returns 0, so we must make sure our first pass | ||
659 | * doesn't start at 0. We pre-initialize size to 16 for that | ||
660 | * reason and then remove those additional 16 bytes | ||
661 | */ | ||
662 | size = 16; | ||
663 | finish_node(allnodes, &size, NULL, 0, 0, 1); | ||
664 | size -= 16; | ||
665 | end = start = (unsigned long) __va(lmb_alloc(size, 128)); | ||
666 | finish_node(allnodes, &end, NULL, 0, 0, 0); | ||
667 | BUG_ON(end != start + size); | ||
668 | |||
669 | DBG(" <- finish_device_tree\n"); | ||
670 | } | ||
671 | |||
672 | static inline char *find_flat_dt_string(u32 offset) | ||
673 | { | ||
674 | return ((char *)initial_boot_params) + | ||
675 | initial_boot_params->off_dt_strings + offset; | ||
676 | } | ||
677 | |||
678 | /** | ||
679 | * This function is used to scan the flattened device-tree, it is | ||
680 | * used to extract the memory informations at boot before we can | ||
681 | * unflatten the tree | ||
682 | */ | ||
683 | static int __init scan_flat_dt(int (*it)(unsigned long node, | ||
684 | const char *uname, int depth, | ||
685 | void *data), | ||
686 | void *data) | ||
687 | { | ||
688 | unsigned long p = ((unsigned long)initial_boot_params) + | ||
689 | initial_boot_params->off_dt_struct; | ||
690 | int rc = 0; | ||
691 | int depth = -1; | ||
692 | |||
693 | do { | ||
694 | u32 tag = *((u32 *)p); | ||
695 | char *pathp; | ||
696 | |||
697 | p += 4; | ||
698 | if (tag == OF_DT_END_NODE) { | ||
699 | depth --; | ||
700 | continue; | ||
701 | } | ||
702 | if (tag == OF_DT_NOP) | ||
703 | continue; | ||
704 | if (tag == OF_DT_END) | ||
705 | break; | ||
706 | if (tag == OF_DT_PROP) { | ||
707 | u32 sz = *((u32 *)p); | ||
708 | p += 8; | ||
709 | if (initial_boot_params->version < 0x10) | ||
710 | p = _ALIGN(p, sz >= 8 ? 8 : 4); | ||
711 | p += sz; | ||
712 | p = _ALIGN(p, 4); | ||
713 | continue; | ||
714 | } | ||
715 | if (tag != OF_DT_BEGIN_NODE) { | ||
716 | printk(KERN_WARNING "Invalid tag %x scanning flattened" | ||
717 | " device tree !\n", tag); | ||
718 | return -EINVAL; | ||
719 | } | ||
720 | depth++; | ||
721 | pathp = (char *)p; | ||
722 | p = _ALIGN(p + strlen(pathp) + 1, 4); | ||
723 | if ((*pathp) == '/') { | ||
724 | char *lp, *np; | ||
725 | for (lp = NULL, np = pathp; *np; np++) | ||
726 | if ((*np) == '/') | ||
727 | lp = np+1; | ||
728 | if (lp != NULL) | ||
729 | pathp = lp; | ||
730 | } | ||
731 | rc = it(p, pathp, depth, data); | ||
732 | if (rc != 0) | ||
733 | break; | ||
734 | } while(1); | ||
735 | |||
736 | return rc; | ||
737 | } | ||
738 | |||
739 | /** | ||
740 | * This function can be used within scan_flattened_dt callback to get | ||
741 | * access to properties | ||
742 | */ | ||
743 | static void* __init get_flat_dt_prop(unsigned long node, const char *name, | ||
744 | unsigned long *size) | ||
745 | { | ||
746 | unsigned long p = node; | ||
747 | |||
748 | do { | ||
749 | u32 tag = *((u32 *)p); | ||
750 | u32 sz, noff; | ||
751 | const char *nstr; | ||
752 | |||
753 | p += 4; | ||
754 | if (tag == OF_DT_NOP) | ||
755 | continue; | ||
756 | if (tag != OF_DT_PROP) | ||
757 | return NULL; | ||
758 | |||
759 | sz = *((u32 *)p); | ||
760 | noff = *((u32 *)(p + 4)); | ||
761 | p += 8; | ||
762 | if (initial_boot_params->version < 0x10) | ||
763 | p = _ALIGN(p, sz >= 8 ? 8 : 4); | ||
764 | |||
765 | nstr = find_flat_dt_string(noff); | ||
766 | if (nstr == NULL) { | ||
767 | printk(KERN_WARNING "Can't find property index" | ||
768 | " name !\n"); | ||
769 | return NULL; | ||
770 | } | ||
771 | if (strcmp(name, nstr) == 0) { | ||
772 | if (size) | ||
773 | *size = sz; | ||
774 | return (void *)p; | ||
775 | } | ||
776 | p += sz; | ||
777 | p = _ALIGN(p, 4); | ||
778 | } while(1); | ||
779 | } | ||
780 | |||
781 | static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, | ||
782 | unsigned long align) | ||
783 | { | ||
784 | void *res; | ||
785 | |||
786 | *mem = _ALIGN(*mem, align); | ||
787 | res = (void *)*mem; | ||
788 | *mem += size; | ||
789 | |||
790 | return res; | ||
791 | } | ||
792 | |||
793 | static unsigned long __init unflatten_dt_node(unsigned long mem, | ||
794 | unsigned long *p, | ||
795 | struct device_node *dad, | ||
796 | struct device_node ***allnextpp, | ||
797 | unsigned long fpsize) | ||
798 | { | ||
799 | struct device_node *np; | ||
800 | struct property *pp, **prev_pp = NULL; | ||
801 | char *pathp; | ||
802 | u32 tag; | ||
803 | unsigned int l, allocl; | ||
804 | int has_name = 0; | ||
805 | int new_format = 0; | ||
806 | |||
807 | tag = *((u32 *)(*p)); | ||
808 | if (tag != OF_DT_BEGIN_NODE) { | ||
809 | printk("Weird tag at start of node: %x\n", tag); | ||
810 | return mem; | ||
811 | } | ||
812 | *p += 4; | ||
813 | pathp = (char *)*p; | ||
814 | l = allocl = strlen(pathp) + 1; | ||
815 | *p = _ALIGN(*p + l, 4); | ||
816 | |||
817 | /* version 0x10 has a more compact unit name here instead of the full | ||
818 | * path. we accumulate the full path size using "fpsize", we'll rebuild | ||
819 | * it later. We detect this because the first character of the name is | ||
820 | * not '/'. | ||
821 | */ | ||
822 | if ((*pathp) != '/') { | ||
823 | new_format = 1; | ||
824 | if (fpsize == 0) { | ||
825 | /* root node: special case. fpsize accounts for path | ||
826 | * plus terminating zero. root node only has '/', so | ||
827 | * fpsize should be 2, but we want to avoid the first | ||
828 | * level nodes to have two '/' so we use fpsize 1 here | ||
829 | */ | ||
830 | fpsize = 1; | ||
831 | allocl = 2; | ||
832 | } else { | ||
833 | /* account for '/' and path size minus terminal 0 | ||
834 | * already in 'l' | ||
835 | */ | ||
836 | fpsize += l; | ||
837 | allocl = fpsize; | ||
838 | } | ||
839 | } | ||
840 | |||
841 | |||
842 | np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, | ||
843 | __alignof__(struct device_node)); | ||
844 | if (allnextpp) { | ||
845 | memset(np, 0, sizeof(*np)); | ||
846 | np->full_name = ((char*)np) + sizeof(struct device_node); | ||
847 | if (new_format) { | ||
848 | char *p = np->full_name; | ||
849 | /* rebuild full path for new format */ | ||
850 | if (dad && dad->parent) { | ||
851 | strcpy(p, dad->full_name); | ||
852 | #ifdef DEBUG | ||
853 | if ((strlen(p) + l + 1) != allocl) { | ||
854 | DBG("%s: p: %d, l: %d, a: %d\n", | ||
855 | pathp, strlen(p), l, allocl); | ||
856 | } | ||
857 | #endif | ||
858 | p += strlen(p); | ||
859 | } | ||
860 | *(p++) = '/'; | ||
861 | memcpy(p, pathp, l); | ||
862 | } else | ||
863 | memcpy(np->full_name, pathp, l); | ||
864 | prev_pp = &np->properties; | ||
865 | **allnextpp = np; | ||
866 | *allnextpp = &np->allnext; | ||
867 | if (dad != NULL) { | ||
868 | np->parent = dad; | ||
869 | /* we temporarily use the next field as `last_child'*/ | ||
870 | if (dad->next == 0) | ||
871 | dad->child = np; | ||
872 | else | ||
873 | dad->next->sibling = np; | ||
874 | dad->next = np; | ||
875 | } | ||
876 | kref_init(&np->kref); | ||
877 | } | ||
878 | while(1) { | ||
879 | u32 sz, noff; | ||
880 | char *pname; | ||
881 | |||
882 | tag = *((u32 *)(*p)); | ||
883 | if (tag == OF_DT_NOP) { | ||
884 | *p += 4; | ||
885 | continue; | ||
886 | } | ||
887 | if (tag != OF_DT_PROP) | ||
888 | break; | ||
889 | *p += 4; | ||
890 | sz = *((u32 *)(*p)); | ||
891 | noff = *((u32 *)((*p) + 4)); | ||
892 | *p += 8; | ||
893 | if (initial_boot_params->version < 0x10) | ||
894 | *p = _ALIGN(*p, sz >= 8 ? 8 : 4); | ||
895 | |||
896 | pname = find_flat_dt_string(noff); | ||
897 | if (pname == NULL) { | ||
898 | printk("Can't find property name in list !\n"); | ||
899 | break; | ||
900 | } | ||
901 | if (strcmp(pname, "name") == 0) | ||
902 | has_name = 1; | ||
903 | l = strlen(pname) + 1; | ||
904 | pp = unflatten_dt_alloc(&mem, sizeof(struct property), | ||
905 | __alignof__(struct property)); | ||
906 | if (allnextpp) { | ||
907 | if (strcmp(pname, "linux,phandle") == 0) { | ||
908 | np->node = *((u32 *)*p); | ||
909 | if (np->linux_phandle == 0) | ||
910 | np->linux_phandle = np->node; | ||
911 | } | ||
912 | if (strcmp(pname, "ibm,phandle") == 0) | ||
913 | np->linux_phandle = *((u32 *)*p); | ||
914 | pp->name = pname; | ||
915 | pp->length = sz; | ||
916 | pp->value = (void *)*p; | ||
917 | *prev_pp = pp; | ||
918 | prev_pp = &pp->next; | ||
919 | } | ||
920 | *p = _ALIGN((*p) + sz, 4); | ||
921 | } | ||
922 | /* with version 0x10 we may not have the name property, recreate | ||
923 | * it here from the unit name if absent | ||
924 | */ | ||
925 | if (!has_name) { | ||
926 | char *p = pathp, *ps = pathp, *pa = NULL; | ||
927 | int sz; | ||
928 | |||
929 | while (*p) { | ||
930 | if ((*p) == '@') | ||
931 | pa = p; | ||
932 | if ((*p) == '/') | ||
933 | ps = p + 1; | ||
934 | p++; | ||
935 | } | ||
936 | if (pa < ps) | ||
937 | pa = p; | ||
938 | sz = (pa - ps) + 1; | ||
939 | pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, | ||
940 | __alignof__(struct property)); | ||
941 | if (allnextpp) { | ||
942 | pp->name = "name"; | ||
943 | pp->length = sz; | ||
944 | pp->value = (unsigned char *)(pp + 1); | ||
945 | *prev_pp = pp; | ||
946 | prev_pp = &pp->next; | ||
947 | memcpy(pp->value, ps, sz - 1); | ||
948 | ((char *)pp->value)[sz - 1] = 0; | ||
949 | DBG("fixed up name for %s -> %s\n", pathp, pp->value); | ||
950 | } | ||
951 | } | ||
952 | if (allnextpp) { | ||
953 | *prev_pp = NULL; | ||
954 | np->name = get_property(np, "name", NULL); | ||
955 | np->type = get_property(np, "device_type", NULL); | ||
956 | |||
957 | if (!np->name) | ||
958 | np->name = "<NULL>"; | ||
959 | if (!np->type) | ||
960 | np->type = "<NULL>"; | ||
961 | } | ||
962 | while (tag == OF_DT_BEGIN_NODE) { | ||
963 | mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize); | ||
964 | tag = *((u32 *)(*p)); | ||
965 | } | ||
966 | if (tag != OF_DT_END_NODE) { | ||
967 | printk("Weird tag at end of node: %x\n", tag); | ||
968 | return mem; | ||
969 | } | ||
970 | *p += 4; | ||
971 | return mem; | ||
972 | } | ||
973 | |||
974 | |||
975 | /** | ||
976 | * unflattens the device-tree passed by the firmware, creating the | ||
977 | * tree of struct device_node. It also fills the "name" and "type" | ||
978 | * pointers of the nodes so the normal device-tree walking functions | ||
979 | * can be used (this used to be done by finish_device_tree) | ||
980 | */ | ||
981 | void __init unflatten_device_tree(void) | ||
982 | { | ||
983 | unsigned long start, mem, size; | ||
984 | struct device_node **allnextp = &allnodes; | ||
985 | char *p = NULL; | ||
986 | int l = 0; | ||
987 | |||
988 | DBG(" -> unflatten_device_tree()\n"); | ||
989 | |||
990 | /* First pass, scan for size */ | ||
991 | start = ((unsigned long)initial_boot_params) + | ||
992 | initial_boot_params->off_dt_struct; | ||
993 | size = unflatten_dt_node(0, &start, NULL, NULL, 0); | ||
994 | size = (size | 3) + 1; | ||
995 | |||
996 | DBG(" size is %lx, allocating...\n", size); | ||
997 | |||
998 | /* Allocate memory for the expanded device tree */ | ||
999 | mem = lmb_alloc(size + 4, __alignof__(struct device_node)); | ||
1000 | if (!mem) { | ||
1001 | DBG("Couldn't allocate memory with lmb_alloc()!\n"); | ||
1002 | panic("Couldn't allocate memory with lmb_alloc()!\n"); | ||
1003 | } | ||
1004 | mem = (unsigned long) __va(mem); | ||
1005 | |||
1006 | ((u32 *)mem)[size / 4] = 0xdeadbeef; | ||
1007 | |||
1008 | DBG(" unflattening %lx...\n", mem); | ||
1009 | |||
1010 | /* Second pass, do actual unflattening */ | ||
1011 | start = ((unsigned long)initial_boot_params) + | ||
1012 | initial_boot_params->off_dt_struct; | ||
1013 | unflatten_dt_node(mem, &start, NULL, &allnextp, 0); | ||
1014 | if (*((u32 *)start) != OF_DT_END) | ||
1015 | printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start)); | ||
1016 | if (((u32 *)mem)[size / 4] != 0xdeadbeef) | ||
1017 | printk(KERN_WARNING "End of tree marker overwritten: %08x\n", | ||
1018 | ((u32 *)mem)[size / 4] ); | ||
1019 | *allnextp = NULL; | ||
1020 | |||
1021 | /* Get pointer to OF "/chosen" node for use everywhere */ | ||
1022 | of_chosen = of_find_node_by_path("/chosen"); | ||
1023 | |||
1024 | /* Retreive command line */ | ||
1025 | if (of_chosen != NULL) { | ||
1026 | p = (char *)get_property(of_chosen, "bootargs", &l); | ||
1027 | if (p != NULL && l > 0) | ||
1028 | strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE)); | ||
1029 | } | ||
1030 | #ifdef CONFIG_CMDLINE | ||
1031 | if (l == 0 || (l == 1 && (*p) == 0)) | ||
1032 | strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); | ||
1033 | #endif /* CONFIG_CMDLINE */ | ||
1034 | |||
1035 | DBG("Command line is: %s\n", cmd_line); | ||
1036 | |||
1037 | DBG(" <- unflatten_device_tree()\n"); | ||
1038 | } | ||
1039 | |||
1040 | |||
1041 | static int __init early_init_dt_scan_cpus(unsigned long node, | ||
1042 | const char *uname, int depth, void *data) | ||
1043 | { | ||
1044 | char *type = get_flat_dt_prop(node, "device_type", NULL); | ||
1045 | u32 *prop; | ||
1046 | unsigned long size = 0; | ||
1047 | |||
1048 | /* We are scanning "cpu" nodes only */ | ||
1049 | if (type == NULL || strcmp(type, "cpu") != 0) | ||
1050 | return 0; | ||
1051 | |||
1052 | #ifdef CONFIG_PPC_PSERIES | ||
1053 | /* On LPAR, look for the first ibm,pft-size property for the hash table size | ||
1054 | */ | ||
1055 | if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) { | ||
1056 | u32 *pft_size; | ||
1057 | pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL); | ||
1058 | if (pft_size != NULL) { | ||
1059 | /* pft_size[0] is the NUMA CEC cookie */ | ||
1060 | ppc64_pft_size = pft_size[1]; | ||
1061 | } | ||
1062 | } | ||
1063 | #endif | ||
1064 | |||
1065 | #ifdef CONFIG_PPC64 | ||
1066 | if (initial_boot_params && initial_boot_params->version >= 2) { | ||
1067 | /* version 2 of the kexec param format adds the phys cpuid | ||
1068 | * of booted proc. | ||
1069 | */ | ||
1070 | boot_cpuid_phys = initial_boot_params->boot_cpuid_phys; | ||
1071 | boot_cpuid = 0; | ||
1072 | } else { | ||
1073 | /* Check if it's the boot-cpu, set it's hw index in paca now */ | ||
1074 | if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) { | ||
1075 | u32 *prop = get_flat_dt_prop(node, "reg", NULL); | ||
1076 | set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop); | ||
1077 | boot_cpuid_phys = get_hard_smp_processor_id(0); | ||
1078 | } | ||
1079 | } | ||
1080 | #endif | ||
1081 | |||
1082 | #ifdef CONFIG_ALTIVEC | ||
1083 | /* Check if we have a VMX and eventually update CPU features */ | ||
1084 | prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size); | ||
1085 | if (prop && (*prop) > 0) { | ||
1086 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; | ||
1087 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; | ||
1088 | } | ||
1089 | |||
1090 | /* Same goes for Apple's "altivec" property */ | ||
1091 | prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL); | ||
1092 | if (prop) { | ||
1093 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; | ||
1094 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; | ||
1095 | } | ||
1096 | #endif /* CONFIG_ALTIVEC */ | ||
1097 | |||
1098 | #ifdef CONFIG_PPC_PSERIES | ||
1099 | /* | ||
1100 | * Check for an SMT capable CPU and set the CPU feature. We do | ||
1101 | * this by looking at the size of the ibm,ppc-interrupt-server#s | ||
1102 | * property | ||
1103 | */ | ||
1104 | prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", | ||
1105 | &size); | ||
1106 | cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; | ||
1107 | if (prop && ((size / sizeof(u32)) > 1)) | ||
1108 | cur_cpu_spec->cpu_features |= CPU_FTR_SMT; | ||
1109 | #endif | ||
1110 | |||
1111 | return 0; | ||
1112 | } | ||
1113 | |||
1114 | static int __init early_init_dt_scan_chosen(unsigned long node, | ||
1115 | const char *uname, int depth, void *data) | ||
1116 | { | ||
1117 | u32 *prop; | ||
1118 | unsigned long *lprop; | ||
1119 | |||
1120 | DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname); | ||
1121 | |||
1122 | if (depth != 1 || strcmp(uname, "chosen") != 0) | ||
1123 | return 0; | ||
1124 | |||
1125 | /* get platform type */ | ||
1126 | prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL); | ||
1127 | if (prop == NULL) | ||
1128 | return 0; | ||
1129 | #ifdef CONFIG_PPC64 | ||
1130 | systemcfg->platform = *prop; | ||
1131 | #else | ||
1132 | _machine = *prop; | ||
1133 | #endif | ||
1134 | |||
1135 | #ifdef CONFIG_PPC64 | ||
1136 | /* check if iommu is forced on or off */ | ||
1137 | if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) | ||
1138 | iommu_is_off = 1; | ||
1139 | if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) | ||
1140 | iommu_force_on = 1; | ||
1141 | #endif | ||
1142 | |||
1143 | lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL); | ||
1144 | if (lprop) | ||
1145 | memory_limit = *lprop; | ||
1146 | |||
1147 | #ifdef CONFIG_PPC64 | ||
1148 | lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); | ||
1149 | if (lprop) | ||
1150 | tce_alloc_start = *lprop; | ||
1151 | lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); | ||
1152 | if (lprop) | ||
1153 | tce_alloc_end = *lprop; | ||
1154 | #endif | ||
1155 | |||
1156 | #ifdef CONFIG_PPC_RTAS | ||
1157 | /* To help early debugging via the front panel, we retreive a minimal | ||
1158 | * set of RTAS infos now if available | ||
1159 | */ | ||
1160 | { | ||
1161 | u64 *basep, *entryp; | ||
1162 | |||
1163 | basep = get_flat_dt_prop(node, "linux,rtas-base", NULL); | ||
1164 | entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL); | ||
1165 | prop = get_flat_dt_prop(node, "linux,rtas-size", NULL); | ||
1166 | if (basep && entryp && prop) { | ||
1167 | rtas.base = *basep; | ||
1168 | rtas.entry = *entryp; | ||
1169 | rtas.size = *prop; | ||
1170 | } | ||
1171 | } | ||
1172 | #endif /* CONFIG_PPC_RTAS */ | ||
1173 | |||
1174 | /* break now */ | ||
1175 | return 1; | ||
1176 | } | ||
1177 | |||
1178 | static int __init early_init_dt_scan_root(unsigned long node, | ||
1179 | const char *uname, int depth, void *data) | ||
1180 | { | ||
1181 | u32 *prop; | ||
1182 | |||
1183 | if (depth != 0) | ||
1184 | return 0; | ||
1185 | |||
1186 | prop = get_flat_dt_prop(node, "#size-cells", NULL); | ||
1187 | dt_root_size_cells = (prop == NULL) ? 1 : *prop; | ||
1188 | DBG("dt_root_size_cells = %x\n", dt_root_size_cells); | ||
1189 | |||
1190 | prop = get_flat_dt_prop(node, "#address-cells", NULL); | ||
1191 | dt_root_addr_cells = (prop == NULL) ? 2 : *prop; | ||
1192 | DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells); | ||
1193 | |||
1194 | /* break now */ | ||
1195 | return 1; | ||
1196 | } | ||
1197 | |||
1198 | static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp) | ||
1199 | { | ||
1200 | cell_t *p = *cellp; | ||
1201 | unsigned long r; | ||
1202 | |||
1203 | /* Ignore more than 2 cells */ | ||
1204 | while (s > sizeof(unsigned long) / 4) { | ||
1205 | p++; | ||
1206 | s--; | ||
1207 | } | ||
1208 | r = *p++; | ||
1209 | #ifdef CONFIG_PPC64 | ||
1210 | if (s > 1) { | ||
1211 | r <<= 32; | ||
1212 | r |= *(p++); | ||
1213 | s--; | ||
1214 | } | ||
1215 | #endif | ||
1216 | |||
1217 | *cellp = p; | ||
1218 | return r; | ||
1219 | } | ||
1220 | |||
1221 | |||
1222 | static int __init early_init_dt_scan_memory(unsigned long node, | ||
1223 | const char *uname, int depth, void *data) | ||
1224 | { | ||
1225 | char *type = get_flat_dt_prop(node, "device_type", NULL); | ||
1226 | cell_t *reg, *endp; | ||
1227 | unsigned long l; | ||
1228 | |||
1229 | /* We are scanning "memory" nodes only */ | ||
1230 | if (type == NULL || strcmp(type, "memory") != 0) | ||
1231 | return 0; | ||
1232 | |||
1233 | reg = (cell_t *)get_flat_dt_prop(node, "reg", &l); | ||
1234 | if (reg == NULL) | ||
1235 | return 0; | ||
1236 | |||
1237 | endp = reg + (l / sizeof(cell_t)); | ||
1238 | |||
1239 | DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n", | ||
1240 | uname, l, reg[0], reg[1], reg[2], reg[3]); | ||
1241 | |||
1242 | while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { | ||
1243 | unsigned long base, size; | ||
1244 | |||
1245 | base = dt_mem_next_cell(dt_root_addr_cells, ®); | ||
1246 | size = dt_mem_next_cell(dt_root_size_cells, ®); | ||
1247 | |||
1248 | if (size == 0) | ||
1249 | continue; | ||
1250 | DBG(" - %lx , %lx\n", base, size); | ||
1251 | #ifdef CONFIG_PPC64 | ||
1252 | if (iommu_is_off) { | ||
1253 | if (base >= 0x80000000ul) | ||
1254 | continue; | ||
1255 | if ((base + size) > 0x80000000ul) | ||
1256 | size = 0x80000000ul - base; | ||
1257 | } | ||
1258 | #endif | ||
1259 | lmb_add(base, size); | ||
1260 | } | ||
1261 | return 0; | ||
1262 | } | ||
1263 | |||
1264 | static void __init early_reserve_mem(void) | ||
1265 | { | ||
1266 | unsigned long base, size; | ||
1267 | unsigned long *reserve_map; | ||
1268 | |||
1269 | reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) + | ||
1270 | initial_boot_params->off_mem_rsvmap); | ||
1271 | while (1) { | ||
1272 | base = *(reserve_map++); | ||
1273 | size = *(reserve_map++); | ||
1274 | if (size == 0) | ||
1275 | break; | ||
1276 | DBG("reserving: %lx -> %lx\n", base, size); | ||
1277 | lmb_reserve(base, size); | ||
1278 | } | ||
1279 | |||
1280 | #if 0 | ||
1281 | DBG("memory reserved, lmbs :\n"); | ||
1282 | lmb_dump_all(); | ||
1283 | #endif | ||
1284 | } | ||
1285 | |||
1286 | void __init early_init_devtree(void *params) | ||
1287 | { | ||
1288 | DBG(" -> early_init_devtree()\n"); | ||
1289 | |||
1290 | /* Setup flat device-tree pointer */ | ||
1291 | initial_boot_params = params; | ||
1292 | |||
1293 | /* Retrieve various informations from the /chosen node of the | ||
1294 | * device-tree, including the platform type, initrd location and | ||
1295 | * size, TCE reserve, and more ... | ||
1296 | */ | ||
1297 | scan_flat_dt(early_init_dt_scan_chosen, NULL); | ||
1298 | |||
1299 | /* Scan memory nodes and rebuild LMBs */ | ||
1300 | lmb_init(); | ||
1301 | scan_flat_dt(early_init_dt_scan_root, NULL); | ||
1302 | scan_flat_dt(early_init_dt_scan_memory, NULL); | ||
1303 | lmb_enforce_memory_limit(memory_limit); | ||
1304 | lmb_analyze(); | ||
1305 | #ifdef CONFIG_PPC64 | ||
1306 | systemcfg->physicalMemorySize = lmb_phys_mem_size(); | ||
1307 | #endif | ||
1308 | lmb_reserve(0, __pa(klimit)); | ||
1309 | |||
1310 | DBG("Phys. mem: %lx\n", lmb_phys_mem_size()); | ||
1311 | |||
1312 | /* Reserve LMB regions used by kernel, initrd, dt, etc... */ | ||
1313 | early_reserve_mem(); | ||
1314 | |||
1315 | DBG("Scanning CPUs ...\n"); | ||
1316 | |||
1317 | /* Retreive hash table size from flattened tree plus other | ||
1318 | * CPU related informations (altivec support, boot CPU ID, ...) | ||
1319 | */ | ||
1320 | scan_flat_dt(early_init_dt_scan_cpus, NULL); | ||
1321 | |||
1322 | #ifdef CONFIG_PPC_PSERIES | ||
1323 | /* If hash size wasn't obtained above, we calculate it now based on | ||
1324 | * the total RAM size | ||
1325 | */ | ||
1326 | if (ppc64_pft_size == 0) { | ||
1327 | unsigned long rnd_mem_size, pteg_count; | ||
1328 | |||
1329 | /* round mem_size up to next power of 2 */ | ||
1330 | rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize); | ||
1331 | if (rnd_mem_size < systemcfg->physicalMemorySize) | ||
1332 | rnd_mem_size <<= 1; | ||
1333 | |||
1334 | /* # pages / 2 */ | ||
1335 | pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11); | ||
1336 | |||
1337 | ppc64_pft_size = __ilog2(pteg_count << 7); | ||
1338 | } | ||
1339 | |||
1340 | DBG("Hash pftSize: %x\n", (int)ppc64_pft_size); | ||
1341 | #endif | ||
1342 | DBG(" <- early_init_devtree()\n"); | ||
1343 | } | ||
1344 | |||
1345 | #undef printk | ||
1346 | |||
1347 | int | ||
1348 | prom_n_addr_cells(struct device_node* np) | ||
1349 | { | ||
1350 | int* ip; | ||
1351 | do { | ||
1352 | if (np->parent) | ||
1353 | np = np->parent; | ||
1354 | ip = (int *) get_property(np, "#address-cells", NULL); | ||
1355 | if (ip != NULL) | ||
1356 | return *ip; | ||
1357 | } while (np->parent); | ||
1358 | /* No #address-cells property for the root node, default to 1 */ | ||
1359 | return 1; | ||
1360 | } | ||
1361 | |||
1362 | int | ||
1363 | prom_n_size_cells(struct device_node* np) | ||
1364 | { | ||
1365 | int* ip; | ||
1366 | do { | ||
1367 | if (np->parent) | ||
1368 | np = np->parent; | ||
1369 | ip = (int *) get_property(np, "#size-cells", NULL); | ||
1370 | if (ip != NULL) | ||
1371 | return *ip; | ||
1372 | } while (np->parent); | ||
1373 | /* No #size-cells property for the root node, default to 1 */ | ||
1374 | return 1; | ||
1375 | } | ||
1376 | |||
1377 | /** | ||
1378 | * Work out the sense (active-low level / active-high edge) | ||
1379 | * of each interrupt from the device tree. | ||
1380 | */ | ||
1381 | void __init prom_get_irq_senses(unsigned char *senses, int off, int max) | ||
1382 | { | ||
1383 | struct device_node *np; | ||
1384 | int i, j; | ||
1385 | |||
1386 | /* default to level-triggered */ | ||
1387 | memset(senses, 1, max - off); | ||
1388 | |||
1389 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1390 | for (j = 0; j < np->n_intrs; j++) { | ||
1391 | i = np->intrs[j].line; | ||
1392 | if (i >= off && i < max) | ||
1393 | senses[i-off] = np->intrs[j].sense ? | ||
1394 | IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE : | ||
1395 | IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE; | ||
1396 | } | ||
1397 | } | ||
1398 | } | ||
1399 | |||
1400 | /** | ||
1401 | * Construct and return a list of the device_nodes with a given name. | ||
1402 | */ | ||
1403 | struct device_node *find_devices(const char *name) | ||
1404 | { | ||
1405 | struct device_node *head, **prevp, *np; | ||
1406 | |||
1407 | prevp = &head; | ||
1408 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1409 | if (np->name != 0 && strcasecmp(np->name, name) == 0) { | ||
1410 | *prevp = np; | ||
1411 | prevp = &np->next; | ||
1412 | } | ||
1413 | } | ||
1414 | *prevp = NULL; | ||
1415 | return head; | ||
1416 | } | ||
1417 | EXPORT_SYMBOL(find_devices); | ||
1418 | |||
1419 | /** | ||
1420 | * Construct and return a list of the device_nodes with a given type. | ||
1421 | */ | ||
1422 | struct device_node *find_type_devices(const char *type) | ||
1423 | { | ||
1424 | struct device_node *head, **prevp, *np; | ||
1425 | |||
1426 | prevp = &head; | ||
1427 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1428 | if (np->type != 0 && strcasecmp(np->type, type) == 0) { | ||
1429 | *prevp = np; | ||
1430 | prevp = &np->next; | ||
1431 | } | ||
1432 | } | ||
1433 | *prevp = NULL; | ||
1434 | return head; | ||
1435 | } | ||
1436 | EXPORT_SYMBOL(find_type_devices); | ||
1437 | |||
1438 | /** | ||
1439 | * Returns all nodes linked together | ||
1440 | */ | ||
1441 | struct device_node *find_all_nodes(void) | ||
1442 | { | ||
1443 | struct device_node *head, **prevp, *np; | ||
1444 | |||
1445 | prevp = &head; | ||
1446 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1447 | *prevp = np; | ||
1448 | prevp = &np->next; | ||
1449 | } | ||
1450 | *prevp = NULL; | ||
1451 | return head; | ||
1452 | } | ||
1453 | EXPORT_SYMBOL(find_all_nodes); | ||
1454 | |||
1455 | /** Checks if the given "compat" string matches one of the strings in | ||
1456 | * the device's "compatible" property | ||
1457 | */ | ||
1458 | int device_is_compatible(struct device_node *device, const char *compat) | ||
1459 | { | ||
1460 | const char* cp; | ||
1461 | int cplen, l; | ||
1462 | |||
1463 | cp = (char *) get_property(device, "compatible", &cplen); | ||
1464 | if (cp == NULL) | ||
1465 | return 0; | ||
1466 | while (cplen > 0) { | ||
1467 | if (strncasecmp(cp, compat, strlen(compat)) == 0) | ||
1468 | return 1; | ||
1469 | l = strlen(cp) + 1; | ||
1470 | cp += l; | ||
1471 | cplen -= l; | ||
1472 | } | ||
1473 | |||
1474 | return 0; | ||
1475 | } | ||
1476 | EXPORT_SYMBOL(device_is_compatible); | ||
1477 | |||
1478 | |||
1479 | /** | ||
1480 | * Indicates whether the root node has a given value in its | ||
1481 | * compatible property. | ||
1482 | */ | ||
1483 | int machine_is_compatible(const char *compat) | ||
1484 | { | ||
1485 | struct device_node *root; | ||
1486 | int rc = 0; | ||
1487 | |||
1488 | root = of_find_node_by_path("/"); | ||
1489 | if (root) { | ||
1490 | rc = device_is_compatible(root, compat); | ||
1491 | of_node_put(root); | ||
1492 | } | ||
1493 | return rc; | ||
1494 | } | ||
1495 | EXPORT_SYMBOL(machine_is_compatible); | ||
1496 | |||
1497 | /** | ||
1498 | * Construct and return a list of the device_nodes with a given type | ||
1499 | * and compatible property. | ||
1500 | */ | ||
1501 | struct device_node *find_compatible_devices(const char *type, | ||
1502 | const char *compat) | ||
1503 | { | ||
1504 | struct device_node *head, **prevp, *np; | ||
1505 | |||
1506 | prevp = &head; | ||
1507 | for (np = allnodes; np != 0; np = np->allnext) { | ||
1508 | if (type != NULL | ||
1509 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) | ||
1510 | continue; | ||
1511 | if (device_is_compatible(np, compat)) { | ||
1512 | *prevp = np; | ||
1513 | prevp = &np->next; | ||
1514 | } | ||
1515 | } | ||
1516 | *prevp = NULL; | ||
1517 | return head; | ||
1518 | } | ||
1519 | EXPORT_SYMBOL(find_compatible_devices); | ||
1520 | |||
1521 | /** | ||
1522 | * Find the device_node with a given full_name. | ||
1523 | */ | ||
1524 | struct device_node *find_path_device(const char *path) | ||
1525 | { | ||
1526 | struct device_node *np; | ||
1527 | |||
1528 | for (np = allnodes; np != 0; np = np->allnext) | ||
1529 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) | ||
1530 | return np; | ||
1531 | return NULL; | ||
1532 | } | ||
1533 | EXPORT_SYMBOL(find_path_device); | ||
1534 | |||
1535 | /******* | ||
1536 | * | ||
1537 | * New implementation of the OF "find" APIs, return a refcounted | ||
1538 | * object, call of_node_put() when done. The device tree and list | ||
1539 | * are protected by a rw_lock. | ||
1540 | * | ||
1541 | * Note that property management will need some locking as well, | ||
1542 | * this isn't dealt with yet. | ||
1543 | * | ||
1544 | *******/ | ||
1545 | |||
1546 | /** | ||
1547 | * of_find_node_by_name - Find a node by its "name" property | ||
1548 | * @from: The node to start searching from or NULL, the node | ||
1549 | * you pass will not be searched, only the next one | ||
1550 | * will; typically, you pass what the previous call | ||
1551 | * returned. of_node_put() will be called on it | ||
1552 | * @name: The name string to match against | ||
1553 | * | ||
1554 | * Returns a node pointer with refcount incremented, use | ||
1555 | * of_node_put() on it when done. | ||
1556 | */ | ||
1557 | struct device_node *of_find_node_by_name(struct device_node *from, | ||
1558 | const char *name) | ||
1559 | { | ||
1560 | struct device_node *np; | ||
1561 | |||
1562 | read_lock(&devtree_lock); | ||
1563 | np = from ? from->allnext : allnodes; | ||
1564 | for (; np != 0; np = np->allnext) | ||
1565 | if (np->name != 0 && strcasecmp(np->name, name) == 0 | ||
1566 | && of_node_get(np)) | ||
1567 | break; | ||
1568 | if (from) | ||
1569 | of_node_put(from); | ||
1570 | read_unlock(&devtree_lock); | ||
1571 | return np; | ||
1572 | } | ||
1573 | EXPORT_SYMBOL(of_find_node_by_name); | ||
1574 | |||
1575 | /** | ||
1576 | * of_find_node_by_type - Find a node by its "device_type" property | ||
1577 | * @from: The node to start searching from or NULL, the node | ||
1578 | * you pass will not be searched, only the next one | ||
1579 | * will; typically, you pass what the previous call | ||
1580 | * returned. of_node_put() will be called on it | ||
1581 | * @name: The type string to match against | ||
1582 | * | ||
1583 | * Returns a node pointer with refcount incremented, use | ||
1584 | * of_node_put() on it when done. | ||
1585 | */ | ||
1586 | struct device_node *of_find_node_by_type(struct device_node *from, | ||
1587 | const char *type) | ||
1588 | { | ||
1589 | struct device_node *np; | ||
1590 | |||
1591 | read_lock(&devtree_lock); | ||
1592 | np = from ? from->allnext : allnodes; | ||
1593 | for (; np != 0; np = np->allnext) | ||
1594 | if (np->type != 0 && strcasecmp(np->type, type) == 0 | ||
1595 | && of_node_get(np)) | ||
1596 | break; | ||
1597 | if (from) | ||
1598 | of_node_put(from); | ||
1599 | read_unlock(&devtree_lock); | ||
1600 | return np; | ||
1601 | } | ||
1602 | EXPORT_SYMBOL(of_find_node_by_type); | ||
1603 | |||
1604 | /** | ||
1605 | * of_find_compatible_node - Find a node based on type and one of the | ||
1606 | * tokens in its "compatible" property | ||
1607 | * @from: The node to start searching from or NULL, the node | ||
1608 | * you pass will not be searched, only the next one | ||
1609 | * will; typically, you pass what the previous call | ||
1610 | * returned. of_node_put() will be called on it | ||
1611 | * @type: The type string to match "device_type" or NULL to ignore | ||
1612 | * @compatible: The string to match to one of the tokens in the device | ||
1613 | * "compatible" list. | ||
1614 | * | ||
1615 | * Returns a node pointer with refcount incremented, use | ||
1616 | * of_node_put() on it when done. | ||
1617 | */ | ||
1618 | struct device_node *of_find_compatible_node(struct device_node *from, | ||
1619 | const char *type, const char *compatible) | ||
1620 | { | ||
1621 | struct device_node *np; | ||
1622 | |||
1623 | read_lock(&devtree_lock); | ||
1624 | np = from ? from->allnext : allnodes; | ||
1625 | for (; np != 0; np = np->allnext) { | ||
1626 | if (type != NULL | ||
1627 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) | ||
1628 | continue; | ||
1629 | if (device_is_compatible(np, compatible) && of_node_get(np)) | ||
1630 | break; | ||
1631 | } | ||
1632 | if (from) | ||
1633 | of_node_put(from); | ||
1634 | read_unlock(&devtree_lock); | ||
1635 | return np; | ||
1636 | } | ||
1637 | EXPORT_SYMBOL(of_find_compatible_node); | ||
1638 | |||
1639 | /** | ||
1640 | * of_find_node_by_path - Find a node matching a full OF path | ||
1641 | * @path: The full path to match | ||
1642 | * | ||
1643 | * Returns a node pointer with refcount incremented, use | ||
1644 | * of_node_put() on it when done. | ||
1645 | */ | ||
1646 | struct device_node *of_find_node_by_path(const char *path) | ||
1647 | { | ||
1648 | struct device_node *np = allnodes; | ||
1649 | |||
1650 | read_lock(&devtree_lock); | ||
1651 | for (; np != 0; np = np->allnext) { | ||
1652 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0 | ||
1653 | && of_node_get(np)) | ||
1654 | break; | ||
1655 | } | ||
1656 | read_unlock(&devtree_lock); | ||
1657 | return np; | ||
1658 | } | ||
1659 | EXPORT_SYMBOL(of_find_node_by_path); | ||
1660 | |||
1661 | /** | ||
1662 | * of_find_node_by_phandle - Find a node given a phandle | ||
1663 | * @handle: phandle of the node to find | ||
1664 | * | ||
1665 | * Returns a node pointer with refcount incremented, use | ||
1666 | * of_node_put() on it when done. | ||
1667 | */ | ||
1668 | struct device_node *of_find_node_by_phandle(phandle handle) | ||
1669 | { | ||
1670 | struct device_node *np; | ||
1671 | |||
1672 | read_lock(&devtree_lock); | ||
1673 | for (np = allnodes; np != 0; np = np->allnext) | ||
1674 | if (np->linux_phandle == handle) | ||
1675 | break; | ||
1676 | if (np) | ||
1677 | of_node_get(np); | ||
1678 | read_unlock(&devtree_lock); | ||
1679 | return np; | ||
1680 | } | ||
1681 | EXPORT_SYMBOL(of_find_node_by_phandle); | ||
1682 | |||
1683 | /** | ||
1684 | * of_find_all_nodes - Get next node in global list | ||
1685 | * @prev: Previous node or NULL to start iteration | ||
1686 | * of_node_put() will be called on it | ||
1687 | * | ||
1688 | * Returns a node pointer with refcount incremented, use | ||
1689 | * of_node_put() on it when done. | ||
1690 | */ | ||
1691 | struct device_node *of_find_all_nodes(struct device_node *prev) | ||
1692 | { | ||
1693 | struct device_node *np; | ||
1694 | |||
1695 | read_lock(&devtree_lock); | ||
1696 | np = prev ? prev->allnext : allnodes; | ||
1697 | for (; np != 0; np = np->allnext) | ||
1698 | if (of_node_get(np)) | ||
1699 | break; | ||
1700 | if (prev) | ||
1701 | of_node_put(prev); | ||
1702 | read_unlock(&devtree_lock); | ||
1703 | return np; | ||
1704 | } | ||
1705 | EXPORT_SYMBOL(of_find_all_nodes); | ||
1706 | |||
1707 | /** | ||
1708 | * of_get_parent - Get a node's parent if any | ||
1709 | * @node: Node to get parent | ||
1710 | * | ||
1711 | * Returns a node pointer with refcount incremented, use | ||
1712 | * of_node_put() on it when done. | ||
1713 | */ | ||
1714 | struct device_node *of_get_parent(const struct device_node *node) | ||
1715 | { | ||
1716 | struct device_node *np; | ||
1717 | |||
1718 | if (!node) | ||
1719 | return NULL; | ||
1720 | |||
1721 | read_lock(&devtree_lock); | ||
1722 | np = of_node_get(node->parent); | ||
1723 | read_unlock(&devtree_lock); | ||
1724 | return np; | ||
1725 | } | ||
1726 | EXPORT_SYMBOL(of_get_parent); | ||
1727 | |||
1728 | /** | ||
1729 | * of_get_next_child - Iterate a node childs | ||
1730 | * @node: parent node | ||
1731 | * @prev: previous child of the parent node, or NULL to get first | ||
1732 | * | ||
1733 | * Returns a node pointer with refcount incremented, use | ||
1734 | * of_node_put() on it when done. | ||
1735 | */ | ||
1736 | struct device_node *of_get_next_child(const struct device_node *node, | ||
1737 | struct device_node *prev) | ||
1738 | { | ||
1739 | struct device_node *next; | ||
1740 | |||
1741 | read_lock(&devtree_lock); | ||
1742 | next = prev ? prev->sibling : node->child; | ||
1743 | for (; next != 0; next = next->sibling) | ||
1744 | if (of_node_get(next)) | ||
1745 | break; | ||
1746 | if (prev) | ||
1747 | of_node_put(prev); | ||
1748 | read_unlock(&devtree_lock); | ||
1749 | return next; | ||
1750 | } | ||
1751 | EXPORT_SYMBOL(of_get_next_child); | ||
1752 | |||
1753 | /** | ||
1754 | * of_node_get - Increment refcount of a node | ||
1755 | * @node: Node to inc refcount, NULL is supported to | ||
1756 | * simplify writing of callers | ||
1757 | * | ||
1758 | * Returns node. | ||
1759 | */ | ||
1760 | struct device_node *of_node_get(struct device_node *node) | ||
1761 | { | ||
1762 | if (node) | ||
1763 | kref_get(&node->kref); | ||
1764 | return node; | ||
1765 | } | ||
1766 | EXPORT_SYMBOL(of_node_get); | ||
1767 | |||
1768 | static inline struct device_node * kref_to_device_node(struct kref *kref) | ||
1769 | { | ||
1770 | return container_of(kref, struct device_node, kref); | ||
1771 | } | ||
1772 | |||
1773 | /** | ||
1774 | * of_node_release - release a dynamically allocated node | ||
1775 | * @kref: kref element of the node to be released | ||
1776 | * | ||
1777 | * In of_node_put() this function is passed to kref_put() | ||
1778 | * as the destructor. | ||
1779 | */ | ||
1780 | static void of_node_release(struct kref *kref) | ||
1781 | { | ||
1782 | struct device_node *node = kref_to_device_node(kref); | ||
1783 | struct property *prop = node->properties; | ||
1784 | |||
1785 | if (!OF_IS_DYNAMIC(node)) | ||
1786 | return; | ||
1787 | while (prop) { | ||
1788 | struct property *next = prop->next; | ||
1789 | kfree(prop->name); | ||
1790 | kfree(prop->value); | ||
1791 | kfree(prop); | ||
1792 | prop = next; | ||
1793 | } | ||
1794 | kfree(node->intrs); | ||
1795 | kfree(node->addrs); | ||
1796 | kfree(node->full_name); | ||
1797 | kfree(node->data); | ||
1798 | kfree(node); | ||
1799 | } | ||
1800 | |||
1801 | /** | ||
1802 | * of_node_put - Decrement refcount of a node | ||
1803 | * @node: Node to dec refcount, NULL is supported to | ||
1804 | * simplify writing of callers | ||
1805 | * | ||
1806 | */ | ||
1807 | void of_node_put(struct device_node *node) | ||
1808 | { | ||
1809 | if (node) | ||
1810 | kref_put(&node->kref, of_node_release); | ||
1811 | } | ||
1812 | EXPORT_SYMBOL(of_node_put); | ||
1813 | |||
1814 | /* | ||
1815 | * Plug a device node into the tree and global list. | ||
1816 | */ | ||
1817 | void of_attach_node(struct device_node *np) | ||
1818 | { | ||
1819 | write_lock(&devtree_lock); | ||
1820 | np->sibling = np->parent->child; | ||
1821 | np->allnext = allnodes; | ||
1822 | np->parent->child = np; | ||
1823 | allnodes = np; | ||
1824 | write_unlock(&devtree_lock); | ||
1825 | } | ||
1826 | |||
1827 | /* | ||
1828 | * "Unplug" a node from the device tree. The caller must hold | ||
1829 | * a reference to the node. The memory associated with the node | ||
1830 | * is not freed until its refcount goes to zero. | ||
1831 | */ | ||
1832 | void of_detach_node(const struct device_node *np) | ||
1833 | { | ||
1834 | struct device_node *parent; | ||
1835 | |||
1836 | write_lock(&devtree_lock); | ||
1837 | |||
1838 | parent = np->parent; | ||
1839 | |||
1840 | if (allnodes == np) | ||
1841 | allnodes = np->allnext; | ||
1842 | else { | ||
1843 | struct device_node *prev; | ||
1844 | for (prev = allnodes; | ||
1845 | prev->allnext != np; | ||
1846 | prev = prev->allnext) | ||
1847 | ; | ||
1848 | prev->allnext = np->allnext; | ||
1849 | } | ||
1850 | |||
1851 | if (parent->child == np) | ||
1852 | parent->child = np->sibling; | ||
1853 | else { | ||
1854 | struct device_node *prevsib; | ||
1855 | for (prevsib = np->parent->child; | ||
1856 | prevsib->sibling != np; | ||
1857 | prevsib = prevsib->sibling) | ||
1858 | ; | ||
1859 | prevsib->sibling = np->sibling; | ||
1860 | } | ||
1861 | |||
1862 | write_unlock(&devtree_lock); | ||
1863 | } | ||
1864 | |||
1865 | #ifdef CONFIG_PPC_PSERIES | ||
1866 | /* | ||
1867 | * Fix up the uninitialized fields in a new device node: | ||
1868 | * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields | ||
1869 | * | ||
1870 | * A lot of boot-time code is duplicated here, because functions such | ||
1871 | * as finish_node_interrupts, interpret_pci_props, etc. cannot use the | ||
1872 | * slab allocator. | ||
1873 | * | ||
1874 | * This should probably be split up into smaller chunks. | ||
1875 | */ | ||
1876 | |||
1877 | static int of_finish_dynamic_node(struct device_node *node, | ||
1878 | unsigned long *unused1, int unused2, | ||
1879 | int unused3, int unused4) | ||
1880 | { | ||
1881 | struct device_node *parent = of_get_parent(node); | ||
1882 | int err = 0; | ||
1883 | phandle *ibm_phandle; | ||
1884 | |||
1885 | node->name = get_property(node, "name", NULL); | ||
1886 | node->type = get_property(node, "device_type", NULL); | ||
1887 | |||
1888 | if (!parent) { | ||
1889 | err = -ENODEV; | ||
1890 | goto out; | ||
1891 | } | ||
1892 | |||
1893 | /* We don't support that function on PowerMac, at least | ||
1894 | * not yet | ||
1895 | */ | ||
1896 | if (systemcfg->platform == PLATFORM_POWERMAC) | ||
1897 | return -ENODEV; | ||
1898 | |||
1899 | /* fix up new node's linux_phandle field */ | ||
1900 | if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL))) | ||
1901 | node->linux_phandle = *ibm_phandle; | ||
1902 | |||
1903 | out: | ||
1904 | of_node_put(parent); | ||
1905 | return err; | ||
1906 | } | ||
1907 | |||
1908 | static int prom_reconfig_notifier(struct notifier_block *nb, | ||
1909 | unsigned long action, void *node) | ||
1910 | { | ||
1911 | int err; | ||
1912 | |||
1913 | switch (action) { | ||
1914 | case PSERIES_RECONFIG_ADD: | ||
1915 | err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0); | ||
1916 | if (err < 0) { | ||
1917 | printk(KERN_ERR "finish_node returned %d\n", err); | ||
1918 | err = NOTIFY_BAD; | ||
1919 | } | ||
1920 | break; | ||
1921 | default: | ||
1922 | err = NOTIFY_DONE; | ||
1923 | break; | ||
1924 | } | ||
1925 | return err; | ||
1926 | } | ||
1927 | |||
1928 | static struct notifier_block prom_reconfig_nb = { | ||
1929 | .notifier_call = prom_reconfig_notifier, | ||
1930 | .priority = 10, /* This one needs to run first */ | ||
1931 | }; | ||
1932 | |||
1933 | static int __init prom_reconfig_setup(void) | ||
1934 | { | ||
1935 | return pSeries_reconfig_notifier_register(&prom_reconfig_nb); | ||
1936 | } | ||
1937 | __initcall(prom_reconfig_setup); | ||
1938 | #endif | ||
1939 | |||
1940 | /* | ||
1941 | * Find a property with a given name for a given node | ||
1942 | * and return the value. | ||
1943 | */ | ||
1944 | unsigned char *get_property(struct device_node *np, const char *name, | ||
1945 | int *lenp) | ||
1946 | { | ||
1947 | struct property *pp; | ||
1948 | |||
1949 | for (pp = np->properties; pp != 0; pp = pp->next) | ||
1950 | if (strcmp(pp->name, name) == 0) { | ||
1951 | if (lenp != 0) | ||
1952 | *lenp = pp->length; | ||
1953 | return pp->value; | ||
1954 | } | ||
1955 | return NULL; | ||
1956 | } | ||
1957 | EXPORT_SYMBOL(get_property); | ||
1958 | |||
1959 | /* | ||
1960 | * Add a property to a node | ||
1961 | */ | ||
1962 | void prom_add_property(struct device_node* np, struct property* prop) | ||
1963 | { | ||
1964 | struct property **next = &np->properties; | ||
1965 | |||
1966 | prop->next = NULL; | ||
1967 | while (*next) | ||
1968 | next = &(*next)->next; | ||
1969 | *next = prop; | ||
1970 | } | ||
1971 | |||
1972 | /* I quickly hacked that one, check against spec ! */ | ||
1973 | static inline unsigned long | ||
1974 | bus_space_to_resource_flags(unsigned int bus_space) | ||
1975 | { | ||
1976 | u8 space = (bus_space >> 24) & 0xf; | ||
1977 | if (space == 0) | ||
1978 | space = 0x02; | ||
1979 | if (space == 0x02) | ||
1980 | return IORESOURCE_MEM; | ||
1981 | else if (space == 0x01) | ||
1982 | return IORESOURCE_IO; | ||
1983 | else { | ||
1984 | printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n", | ||
1985 | bus_space); | ||
1986 | return 0; | ||
1987 | } | ||
1988 | } | ||
1989 | |||
1990 | static struct resource *find_parent_pci_resource(struct pci_dev* pdev, | ||
1991 | struct address_range *range) | ||
1992 | { | ||
1993 | unsigned long mask; | ||
1994 | int i; | ||
1995 | |||
1996 | /* Check this one */ | ||
1997 | mask = bus_space_to_resource_flags(range->space); | ||
1998 | for (i=0; i<DEVICE_COUNT_RESOURCE; i++) { | ||
1999 | if ((pdev->resource[i].flags & mask) == mask && | ||
2000 | pdev->resource[i].start <= range->address && | ||
2001 | pdev->resource[i].end > range->address) { | ||
2002 | if ((range->address + range->size - 1) > pdev->resource[i].end) { | ||
2003 | /* Add better message */ | ||
2004 | printk(KERN_WARNING "PCI/OF resource overlap !\n"); | ||
2005 | return NULL; | ||
2006 | } | ||
2007 | break; | ||
2008 | } | ||
2009 | } | ||
2010 | if (i == DEVICE_COUNT_RESOURCE) | ||
2011 | return NULL; | ||
2012 | return &pdev->resource[i]; | ||
2013 | } | ||
2014 | |||
2015 | /* | ||
2016 | * Request an OF device resource. Currently handles child of PCI devices, | ||
2017 | * or other nodes attached to the root node. Ultimately, put some | ||
2018 | * link to resources in the OF node. | ||
2019 | */ | ||
2020 | struct resource *request_OF_resource(struct device_node* node, int index, | ||
2021 | const char* name_postfix) | ||
2022 | { | ||
2023 | struct pci_dev* pcidev; | ||
2024 | u8 pci_bus, pci_devfn; | ||
2025 | unsigned long iomask; | ||
2026 | struct device_node* nd; | ||
2027 | struct resource* parent; | ||
2028 | struct resource *res = NULL; | ||
2029 | int nlen, plen; | ||
2030 | |||
2031 | if (index >= node->n_addrs) | ||
2032 | goto fail; | ||
2033 | |||
2034 | /* Sanity check on bus space */ | ||
2035 | iomask = bus_space_to_resource_flags(node->addrs[index].space); | ||
2036 | if (iomask & IORESOURCE_MEM) | ||
2037 | parent = &iomem_resource; | ||
2038 | else if (iomask & IORESOURCE_IO) | ||
2039 | parent = &ioport_resource; | ||
2040 | else | ||
2041 | goto fail; | ||
2042 | |||
2043 | /* Find a PCI parent if any */ | ||
2044 | nd = node; | ||
2045 | pcidev = NULL; | ||
2046 | while (nd) { | ||
2047 | if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) | ||
2048 | pcidev = pci_find_slot(pci_bus, pci_devfn); | ||
2049 | if (pcidev) break; | ||
2050 | nd = nd->parent; | ||
2051 | } | ||
2052 | if (pcidev) | ||
2053 | parent = find_parent_pci_resource(pcidev, &node->addrs[index]); | ||
2054 | if (!parent) { | ||
2055 | printk(KERN_WARNING "request_OF_resource(%s), parent not found\n", | ||
2056 | node->name); | ||
2057 | goto fail; | ||
2058 | } | ||
2059 | |||
2060 | res = __request_region(parent, node->addrs[index].address, | ||
2061 | node->addrs[index].size, NULL); | ||
2062 | if (!res) | ||
2063 | goto fail; | ||
2064 | nlen = strlen(node->name); | ||
2065 | plen = name_postfix ? strlen(name_postfix) : 0; | ||
2066 | res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL); | ||
2067 | if (res->name) { | ||
2068 | strcpy((char *)res->name, node->name); | ||
2069 | if (plen) | ||
2070 | strcpy((char *)res->name+nlen, name_postfix); | ||
2071 | } | ||
2072 | return res; | ||
2073 | fail: | ||
2074 | return NULL; | ||
2075 | } | ||
2076 | EXPORT_SYMBOL(request_OF_resource); | ||
2077 | |||
2078 | int release_OF_resource(struct device_node *node, int index) | ||
2079 | { | ||
2080 | struct pci_dev* pcidev; | ||
2081 | u8 pci_bus, pci_devfn; | ||
2082 | unsigned long iomask, start, end; | ||
2083 | struct device_node* nd; | ||
2084 | struct resource* parent; | ||
2085 | struct resource *res = NULL; | ||
2086 | |||
2087 | if (index >= node->n_addrs) | ||
2088 | return -EINVAL; | ||
2089 | |||
2090 | /* Sanity check on bus space */ | ||
2091 | iomask = bus_space_to_resource_flags(node->addrs[index].space); | ||
2092 | if (iomask & IORESOURCE_MEM) | ||
2093 | parent = &iomem_resource; | ||
2094 | else if (iomask & IORESOURCE_IO) | ||
2095 | parent = &ioport_resource; | ||
2096 | else | ||
2097 | return -EINVAL; | ||
2098 | |||
2099 | /* Find a PCI parent if any */ | ||
2100 | nd = node; | ||
2101 | pcidev = NULL; | ||
2102 | while(nd) { | ||
2103 | if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) | ||
2104 | pcidev = pci_find_slot(pci_bus, pci_devfn); | ||
2105 | if (pcidev) break; | ||
2106 | nd = nd->parent; | ||
2107 | } | ||
2108 | if (pcidev) | ||
2109 | parent = find_parent_pci_resource(pcidev, &node->addrs[index]); | ||
2110 | if (!parent) { | ||
2111 | printk(KERN_WARNING "release_OF_resource(%s), parent not found\n", | ||
2112 | node->name); | ||
2113 | return -ENODEV; | ||
2114 | } | ||
2115 | |||
2116 | /* Find us in the parent and its childs */ | ||
2117 | res = parent->child; | ||
2118 | start = node->addrs[index].address; | ||
2119 | end = start + node->addrs[index].size - 1; | ||
2120 | while (res) { | ||
2121 | if (res->start == start && res->end == end && | ||
2122 | (res->flags & IORESOURCE_BUSY)) | ||
2123 | break; | ||
2124 | if (res->start <= start && res->end >= end) | ||
2125 | res = res->child; | ||
2126 | else | ||
2127 | res = res->sibling; | ||
2128 | } | ||
2129 | if (!res) | ||
2130 | return -ENODEV; | ||
2131 | |||
2132 | if (res->name) { | ||
2133 | kfree(res->name); | ||
2134 | res->name = NULL; | ||
2135 | } | ||
2136 | release_resource(res); | ||
2137 | kfree(res); | ||
2138 | |||
2139 | return 0; | ||
2140 | } | ||
2141 | EXPORT_SYMBOL(release_OF_resource); | ||