aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/perf_event.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/kernel/perf_event.c')
-rw-r--r--arch/powerpc/kernel/perf_event.c1315
1 files changed, 1315 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/perf_event.c b/arch/powerpc/kernel/perf_event.c
new file mode 100644
index 000000000000..c98321fcb459
--- /dev/null
+++ b/arch/powerpc/kernel/perf_event.c
@@ -0,0 +1,1315 @@
1/*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_event.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <asm/reg.h>
17#include <asm/pmc.h>
18#include <asm/machdep.h>
19#include <asm/firmware.h>
20#include <asm/ptrace.h>
21
22struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_event[MAX_LIMITED_HWEVENTS];
34 u8 limited_hwidx[MAX_LIMITED_HWEVENTS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38};
39DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
40
41struct power_pmu *ppmu;
42
43/*
44 * Normally, to ignore kernel events we set the FCS (freeze events
45 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
46 * hypervisor bit set in the MSR, or if we are running on a processor
47 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
48 * then we need to use the FCHV bit to ignore kernel events.
49 */
50static unsigned int freeze_events_kernel = MMCR0_FCS;
51
52/*
53 * 32-bit doesn't have MMCRA but does have an MMCR2,
54 * and a few other names are different.
55 */
56#ifdef CONFIG_PPC32
57
58#define MMCR0_FCHV 0
59#define MMCR0_PMCjCE MMCR0_PMCnCE
60
61#define SPRN_MMCRA SPRN_MMCR2
62#define MMCRA_SAMPLE_ENABLE 0
63
64static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
65{
66 return 0;
67}
68static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
69static inline u32 perf_get_misc_flags(struct pt_regs *regs)
70{
71 return 0;
72}
73static inline void perf_read_regs(struct pt_regs *regs) { }
74static inline int perf_intr_is_nmi(struct pt_regs *regs)
75{
76 return 0;
77}
78
79#endif /* CONFIG_PPC32 */
80
81/*
82 * Things that are specific to 64-bit implementations.
83 */
84#ifdef CONFIG_PPC64
85
86static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
87{
88 unsigned long mmcra = regs->dsisr;
89
90 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
91 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
92 if (slot > 1)
93 return 4 * (slot - 1);
94 }
95 return 0;
96}
97
98/*
99 * The user wants a data address recorded.
100 * If we're not doing instruction sampling, give them the SDAR
101 * (sampled data address). If we are doing instruction sampling, then
102 * only give them the SDAR if it corresponds to the instruction
103 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
104 * bit in MMCRA.
105 */
106static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
107{
108 unsigned long mmcra = regs->dsisr;
109 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
110 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
111
112 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
113 *addrp = mfspr(SPRN_SDAR);
114}
115
116static inline u32 perf_get_misc_flags(struct pt_regs *regs)
117{
118 unsigned long mmcra = regs->dsisr;
119
120 if (TRAP(regs) != 0xf00)
121 return 0; /* not a PMU interrupt */
122
123 if (ppmu->flags & PPMU_ALT_SIPR) {
124 if (mmcra & POWER6_MMCRA_SIHV)
125 return PERF_RECORD_MISC_HYPERVISOR;
126 return (mmcra & POWER6_MMCRA_SIPR) ?
127 PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL;
128 }
129 if (mmcra & MMCRA_SIHV)
130 return PERF_RECORD_MISC_HYPERVISOR;
131 return (mmcra & MMCRA_SIPR) ? PERF_RECORD_MISC_USER :
132 PERF_RECORD_MISC_KERNEL;
133}
134
135/*
136 * Overload regs->dsisr to store MMCRA so we only need to read it once
137 * on each interrupt.
138 */
139static inline void perf_read_regs(struct pt_regs *regs)
140{
141 regs->dsisr = mfspr(SPRN_MMCRA);
142}
143
144/*
145 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
146 * it as an NMI.
147 */
148static inline int perf_intr_is_nmi(struct pt_regs *regs)
149{
150 return !regs->softe;
151}
152
153#endif /* CONFIG_PPC64 */
154
155static void perf_event_interrupt(struct pt_regs *regs);
156
157void perf_event_print_debug(void)
158{
159}
160
161/*
162 * Read one performance monitor event (PMC).
163 */
164static unsigned long read_pmc(int idx)
165{
166 unsigned long val;
167
168 switch (idx) {
169 case 1:
170 val = mfspr(SPRN_PMC1);
171 break;
172 case 2:
173 val = mfspr(SPRN_PMC2);
174 break;
175 case 3:
176 val = mfspr(SPRN_PMC3);
177 break;
178 case 4:
179 val = mfspr(SPRN_PMC4);
180 break;
181 case 5:
182 val = mfspr(SPRN_PMC5);
183 break;
184 case 6:
185 val = mfspr(SPRN_PMC6);
186 break;
187#ifdef CONFIG_PPC64
188 case 7:
189 val = mfspr(SPRN_PMC7);
190 break;
191 case 8:
192 val = mfspr(SPRN_PMC8);
193 break;
194#endif /* CONFIG_PPC64 */
195 default:
196 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
197 val = 0;
198 }
199 return val;
200}
201
202/*
203 * Write one PMC.
204 */
205static void write_pmc(int idx, unsigned long val)
206{
207 switch (idx) {
208 case 1:
209 mtspr(SPRN_PMC1, val);
210 break;
211 case 2:
212 mtspr(SPRN_PMC2, val);
213 break;
214 case 3:
215 mtspr(SPRN_PMC3, val);
216 break;
217 case 4:
218 mtspr(SPRN_PMC4, val);
219 break;
220 case 5:
221 mtspr(SPRN_PMC5, val);
222 break;
223 case 6:
224 mtspr(SPRN_PMC6, val);
225 break;
226#ifdef CONFIG_PPC64
227 case 7:
228 mtspr(SPRN_PMC7, val);
229 break;
230 case 8:
231 mtspr(SPRN_PMC8, val);
232 break;
233#endif /* CONFIG_PPC64 */
234 default:
235 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
236 }
237}
238
239/*
240 * Check if a set of events can all go on the PMU at once.
241 * If they can't, this will look at alternative codes for the events
242 * and see if any combination of alternative codes is feasible.
243 * The feasible set is returned in event_id[].
244 */
245static int power_check_constraints(struct cpu_hw_events *cpuhw,
246 u64 event_id[], unsigned int cflags[],
247 int n_ev)
248{
249 unsigned long mask, value, nv;
250 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
251 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
252 int i, j;
253 unsigned long addf = ppmu->add_fields;
254 unsigned long tadd = ppmu->test_adder;
255
256 if (n_ev > ppmu->n_event)
257 return -1;
258
259 /* First see if the events will go on as-is */
260 for (i = 0; i < n_ev; ++i) {
261 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
262 && !ppmu->limited_pmc_event(event_id[i])) {
263 ppmu->get_alternatives(event_id[i], cflags[i],
264 cpuhw->alternatives[i]);
265 event_id[i] = cpuhw->alternatives[i][0];
266 }
267 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
268 &cpuhw->avalues[i][0]))
269 return -1;
270 }
271 value = mask = 0;
272 for (i = 0; i < n_ev; ++i) {
273 nv = (value | cpuhw->avalues[i][0]) +
274 (value & cpuhw->avalues[i][0] & addf);
275 if ((((nv + tadd) ^ value) & mask) != 0 ||
276 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
277 cpuhw->amasks[i][0]) != 0)
278 break;
279 value = nv;
280 mask |= cpuhw->amasks[i][0];
281 }
282 if (i == n_ev)
283 return 0; /* all OK */
284
285 /* doesn't work, gather alternatives... */
286 if (!ppmu->get_alternatives)
287 return -1;
288 for (i = 0; i < n_ev; ++i) {
289 choice[i] = 0;
290 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
291 cpuhw->alternatives[i]);
292 for (j = 1; j < n_alt[i]; ++j)
293 ppmu->get_constraint(cpuhw->alternatives[i][j],
294 &cpuhw->amasks[i][j],
295 &cpuhw->avalues[i][j]);
296 }
297
298 /* enumerate all possibilities and see if any will work */
299 i = 0;
300 j = -1;
301 value = mask = nv = 0;
302 while (i < n_ev) {
303 if (j >= 0) {
304 /* we're backtracking, restore context */
305 value = svalues[i];
306 mask = smasks[i];
307 j = choice[i];
308 }
309 /*
310 * See if any alternative k for event_id i,
311 * where k > j, will satisfy the constraints.
312 */
313 while (++j < n_alt[i]) {
314 nv = (value | cpuhw->avalues[i][j]) +
315 (value & cpuhw->avalues[i][j] & addf);
316 if ((((nv + tadd) ^ value) & mask) == 0 &&
317 (((nv + tadd) ^ cpuhw->avalues[i][j])
318 & cpuhw->amasks[i][j]) == 0)
319 break;
320 }
321 if (j >= n_alt[i]) {
322 /*
323 * No feasible alternative, backtrack
324 * to event_id i-1 and continue enumerating its
325 * alternatives from where we got up to.
326 */
327 if (--i < 0)
328 return -1;
329 } else {
330 /*
331 * Found a feasible alternative for event_id i,
332 * remember where we got up to with this event_id,
333 * go on to the next event_id, and start with
334 * the first alternative for it.
335 */
336 choice[i] = j;
337 svalues[i] = value;
338 smasks[i] = mask;
339 value = nv;
340 mask |= cpuhw->amasks[i][j];
341 ++i;
342 j = -1;
343 }
344 }
345
346 /* OK, we have a feasible combination, tell the caller the solution */
347 for (i = 0; i < n_ev; ++i)
348 event_id[i] = cpuhw->alternatives[i][choice[i]];
349 return 0;
350}
351
352/*
353 * Check if newly-added events have consistent settings for
354 * exclude_{user,kernel,hv} with each other and any previously
355 * added events.
356 */
357static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
358 int n_prev, int n_new)
359{
360 int eu = 0, ek = 0, eh = 0;
361 int i, n, first;
362 struct perf_event *event;
363
364 n = n_prev + n_new;
365 if (n <= 1)
366 return 0;
367
368 first = 1;
369 for (i = 0; i < n; ++i) {
370 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
371 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
372 continue;
373 }
374 event = ctrs[i];
375 if (first) {
376 eu = event->attr.exclude_user;
377 ek = event->attr.exclude_kernel;
378 eh = event->attr.exclude_hv;
379 first = 0;
380 } else if (event->attr.exclude_user != eu ||
381 event->attr.exclude_kernel != ek ||
382 event->attr.exclude_hv != eh) {
383 return -EAGAIN;
384 }
385 }
386
387 if (eu || ek || eh)
388 for (i = 0; i < n; ++i)
389 if (cflags[i] & PPMU_LIMITED_PMC_OK)
390 cflags[i] |= PPMU_LIMITED_PMC_REQD;
391
392 return 0;
393}
394
395static void power_pmu_read(struct perf_event *event)
396{
397 s64 val, delta, prev;
398
399 if (!event->hw.idx)
400 return;
401 /*
402 * Performance monitor interrupts come even when interrupts
403 * are soft-disabled, as long as interrupts are hard-enabled.
404 * Therefore we treat them like NMIs.
405 */
406 do {
407 prev = atomic64_read(&event->hw.prev_count);
408 barrier();
409 val = read_pmc(event->hw.idx);
410 } while (atomic64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
411
412 /* The events are only 32 bits wide */
413 delta = (val - prev) & 0xfffffffful;
414 atomic64_add(delta, &event->count);
415 atomic64_sub(delta, &event->hw.period_left);
416}
417
418/*
419 * On some machines, PMC5 and PMC6 can't be written, don't respect
420 * the freeze conditions, and don't generate interrupts. This tells
421 * us if `event' is using such a PMC.
422 */
423static int is_limited_pmc(int pmcnum)
424{
425 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
426 && (pmcnum == 5 || pmcnum == 6);
427}
428
429static void freeze_limited_events(struct cpu_hw_events *cpuhw,
430 unsigned long pmc5, unsigned long pmc6)
431{
432 struct perf_event *event;
433 u64 val, prev, delta;
434 int i;
435
436 for (i = 0; i < cpuhw->n_limited; ++i) {
437 event = cpuhw->limited_event[i];
438 if (!event->hw.idx)
439 continue;
440 val = (event->hw.idx == 5) ? pmc5 : pmc6;
441 prev = atomic64_read(&event->hw.prev_count);
442 event->hw.idx = 0;
443 delta = (val - prev) & 0xfffffffful;
444 atomic64_add(delta, &event->count);
445 }
446}
447
448static void thaw_limited_events(struct cpu_hw_events *cpuhw,
449 unsigned long pmc5, unsigned long pmc6)
450{
451 struct perf_event *event;
452 u64 val;
453 int i;
454
455 for (i = 0; i < cpuhw->n_limited; ++i) {
456 event = cpuhw->limited_event[i];
457 event->hw.idx = cpuhw->limited_hwidx[i];
458 val = (event->hw.idx == 5) ? pmc5 : pmc6;
459 atomic64_set(&event->hw.prev_count, val);
460 perf_event_update_userpage(event);
461 }
462}
463
464/*
465 * Since limited events don't respect the freeze conditions, we
466 * have to read them immediately after freezing or unfreezing the
467 * other events. We try to keep the values from the limited
468 * events as consistent as possible by keeping the delay (in
469 * cycles and instructions) between freezing/unfreezing and reading
470 * the limited events as small and consistent as possible.
471 * Therefore, if any limited events are in use, we read them
472 * both, and always in the same order, to minimize variability,
473 * and do it inside the same asm that writes MMCR0.
474 */
475static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
476{
477 unsigned long pmc5, pmc6;
478
479 if (!cpuhw->n_limited) {
480 mtspr(SPRN_MMCR0, mmcr0);
481 return;
482 }
483
484 /*
485 * Write MMCR0, then read PMC5 and PMC6 immediately.
486 * To ensure we don't get a performance monitor interrupt
487 * between writing MMCR0 and freezing/thawing the limited
488 * events, we first write MMCR0 with the event overflow
489 * interrupt enable bits turned off.
490 */
491 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
492 : "=&r" (pmc5), "=&r" (pmc6)
493 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
494 "i" (SPRN_MMCR0),
495 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
496
497 if (mmcr0 & MMCR0_FC)
498 freeze_limited_events(cpuhw, pmc5, pmc6);
499 else
500 thaw_limited_events(cpuhw, pmc5, pmc6);
501
502 /*
503 * Write the full MMCR0 including the event overflow interrupt
504 * enable bits, if necessary.
505 */
506 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
507 mtspr(SPRN_MMCR0, mmcr0);
508}
509
510/*
511 * Disable all events to prevent PMU interrupts and to allow
512 * events to be added or removed.
513 */
514void hw_perf_disable(void)
515{
516 struct cpu_hw_events *cpuhw;
517 unsigned long flags;
518
519 if (!ppmu)
520 return;
521 local_irq_save(flags);
522 cpuhw = &__get_cpu_var(cpu_hw_events);
523
524 if (!cpuhw->disabled) {
525 cpuhw->disabled = 1;
526 cpuhw->n_added = 0;
527
528 /*
529 * Check if we ever enabled the PMU on this cpu.
530 */
531 if (!cpuhw->pmcs_enabled) {
532 ppc_enable_pmcs();
533 cpuhw->pmcs_enabled = 1;
534 }
535
536 /*
537 * Disable instruction sampling if it was enabled
538 */
539 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
540 mtspr(SPRN_MMCRA,
541 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
542 mb();
543 }
544
545 /*
546 * Set the 'freeze events' bit.
547 * The barrier is to make sure the mtspr has been
548 * executed and the PMU has frozen the events
549 * before we return.
550 */
551 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
552 mb();
553 }
554 local_irq_restore(flags);
555}
556
557/*
558 * Re-enable all events if disable == 0.
559 * If we were previously disabled and events were added, then
560 * put the new config on the PMU.
561 */
562void hw_perf_enable(void)
563{
564 struct perf_event *event;
565 struct cpu_hw_events *cpuhw;
566 unsigned long flags;
567 long i;
568 unsigned long val;
569 s64 left;
570 unsigned int hwc_index[MAX_HWEVENTS];
571 int n_lim;
572 int idx;
573
574 if (!ppmu)
575 return;
576 local_irq_save(flags);
577 cpuhw = &__get_cpu_var(cpu_hw_events);
578 if (!cpuhw->disabled) {
579 local_irq_restore(flags);
580 return;
581 }
582 cpuhw->disabled = 0;
583
584 /*
585 * If we didn't change anything, or only removed events,
586 * no need to recalculate MMCR* settings and reset the PMCs.
587 * Just reenable the PMU with the current MMCR* settings
588 * (possibly updated for removal of events).
589 */
590 if (!cpuhw->n_added) {
591 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
592 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
593 if (cpuhw->n_events == 0)
594 ppc_set_pmu_inuse(0);
595 goto out_enable;
596 }
597
598 /*
599 * Compute MMCR* values for the new set of events
600 */
601 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
602 cpuhw->mmcr)) {
603 /* shouldn't ever get here */
604 printk(KERN_ERR "oops compute_mmcr failed\n");
605 goto out;
606 }
607
608 /*
609 * Add in MMCR0 freeze bits corresponding to the
610 * attr.exclude_* bits for the first event.
611 * We have already checked that all events have the
612 * same values for these bits as the first event.
613 */
614 event = cpuhw->event[0];
615 if (event->attr.exclude_user)
616 cpuhw->mmcr[0] |= MMCR0_FCP;
617 if (event->attr.exclude_kernel)
618 cpuhw->mmcr[0] |= freeze_events_kernel;
619 if (event->attr.exclude_hv)
620 cpuhw->mmcr[0] |= MMCR0_FCHV;
621
622 /*
623 * Write the new configuration to MMCR* with the freeze
624 * bit set and set the hardware events to their initial values.
625 * Then unfreeze the events.
626 */
627 ppc_set_pmu_inuse(1);
628 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
629 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
630 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
631 | MMCR0_FC);
632
633 /*
634 * Read off any pre-existing events that need to move
635 * to another PMC.
636 */
637 for (i = 0; i < cpuhw->n_events; ++i) {
638 event = cpuhw->event[i];
639 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
640 power_pmu_read(event);
641 write_pmc(event->hw.idx, 0);
642 event->hw.idx = 0;
643 }
644 }
645
646 /*
647 * Initialize the PMCs for all the new and moved events.
648 */
649 cpuhw->n_limited = n_lim = 0;
650 for (i = 0; i < cpuhw->n_events; ++i) {
651 event = cpuhw->event[i];
652 if (event->hw.idx)
653 continue;
654 idx = hwc_index[i] + 1;
655 if (is_limited_pmc(idx)) {
656 cpuhw->limited_event[n_lim] = event;
657 cpuhw->limited_hwidx[n_lim] = idx;
658 ++n_lim;
659 continue;
660 }
661 val = 0;
662 if (event->hw.sample_period) {
663 left = atomic64_read(&event->hw.period_left);
664 if (left < 0x80000000L)
665 val = 0x80000000L - left;
666 }
667 atomic64_set(&event->hw.prev_count, val);
668 event->hw.idx = idx;
669 write_pmc(idx, val);
670 perf_event_update_userpage(event);
671 }
672 cpuhw->n_limited = n_lim;
673 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
674
675 out_enable:
676 mb();
677 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
678
679 /*
680 * Enable instruction sampling if necessary
681 */
682 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
683 mb();
684 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
685 }
686
687 out:
688 local_irq_restore(flags);
689}
690
691static int collect_events(struct perf_event *group, int max_count,
692 struct perf_event *ctrs[], u64 *events,
693 unsigned int *flags)
694{
695 int n = 0;
696 struct perf_event *event;
697
698 if (!is_software_event(group)) {
699 if (n >= max_count)
700 return -1;
701 ctrs[n] = group;
702 flags[n] = group->hw.event_base;
703 events[n++] = group->hw.config;
704 }
705 list_for_each_entry(event, &group->sibling_list, list_entry) {
706 if (!is_software_event(event) &&
707 event->state != PERF_EVENT_STATE_OFF) {
708 if (n >= max_count)
709 return -1;
710 ctrs[n] = event;
711 flags[n] = event->hw.event_base;
712 events[n++] = event->hw.config;
713 }
714 }
715 return n;
716}
717
718static void event_sched_in(struct perf_event *event, int cpu)
719{
720 event->state = PERF_EVENT_STATE_ACTIVE;
721 event->oncpu = cpu;
722 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
723 if (is_software_event(event))
724 event->pmu->enable(event);
725}
726
727/*
728 * Called to enable a whole group of events.
729 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
730 * Assumes the caller has disabled interrupts and has
731 * frozen the PMU with hw_perf_save_disable.
732 */
733int hw_perf_group_sched_in(struct perf_event *group_leader,
734 struct perf_cpu_context *cpuctx,
735 struct perf_event_context *ctx, int cpu)
736{
737 struct cpu_hw_events *cpuhw;
738 long i, n, n0;
739 struct perf_event *sub;
740
741 if (!ppmu)
742 return 0;
743 cpuhw = &__get_cpu_var(cpu_hw_events);
744 n0 = cpuhw->n_events;
745 n = collect_events(group_leader, ppmu->n_event - n0,
746 &cpuhw->event[n0], &cpuhw->events[n0],
747 &cpuhw->flags[n0]);
748 if (n < 0)
749 return -EAGAIN;
750 if (check_excludes(cpuhw->event, cpuhw->flags, n0, n))
751 return -EAGAIN;
752 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n + n0);
753 if (i < 0)
754 return -EAGAIN;
755 cpuhw->n_events = n0 + n;
756 cpuhw->n_added += n;
757
758 /*
759 * OK, this group can go on; update event states etc.,
760 * and enable any software events
761 */
762 for (i = n0; i < n0 + n; ++i)
763 cpuhw->event[i]->hw.config = cpuhw->events[i];
764 cpuctx->active_oncpu += n;
765 n = 1;
766 event_sched_in(group_leader, cpu);
767 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
768 if (sub->state != PERF_EVENT_STATE_OFF) {
769 event_sched_in(sub, cpu);
770 ++n;
771 }
772 }
773 ctx->nr_active += n;
774
775 return 1;
776}
777
778/*
779 * Add a event to the PMU.
780 * If all events are not already frozen, then we disable and
781 * re-enable the PMU in order to get hw_perf_enable to do the
782 * actual work of reconfiguring the PMU.
783 */
784static int power_pmu_enable(struct perf_event *event)
785{
786 struct cpu_hw_events *cpuhw;
787 unsigned long flags;
788 int n0;
789 int ret = -EAGAIN;
790
791 local_irq_save(flags);
792 perf_disable();
793
794 /*
795 * Add the event to the list (if there is room)
796 * and check whether the total set is still feasible.
797 */
798 cpuhw = &__get_cpu_var(cpu_hw_events);
799 n0 = cpuhw->n_events;
800 if (n0 >= ppmu->n_event)
801 goto out;
802 cpuhw->event[n0] = event;
803 cpuhw->events[n0] = event->hw.config;
804 cpuhw->flags[n0] = event->hw.event_base;
805 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
806 goto out;
807 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
808 goto out;
809
810 event->hw.config = cpuhw->events[n0];
811 ++cpuhw->n_events;
812 ++cpuhw->n_added;
813
814 ret = 0;
815 out:
816 perf_enable();
817 local_irq_restore(flags);
818 return ret;
819}
820
821/*
822 * Remove a event from the PMU.
823 */
824static void power_pmu_disable(struct perf_event *event)
825{
826 struct cpu_hw_events *cpuhw;
827 long i;
828 unsigned long flags;
829
830 local_irq_save(flags);
831 perf_disable();
832
833 power_pmu_read(event);
834
835 cpuhw = &__get_cpu_var(cpu_hw_events);
836 for (i = 0; i < cpuhw->n_events; ++i) {
837 if (event == cpuhw->event[i]) {
838 while (++i < cpuhw->n_events)
839 cpuhw->event[i-1] = cpuhw->event[i];
840 --cpuhw->n_events;
841 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
842 if (event->hw.idx) {
843 write_pmc(event->hw.idx, 0);
844 event->hw.idx = 0;
845 }
846 perf_event_update_userpage(event);
847 break;
848 }
849 }
850 for (i = 0; i < cpuhw->n_limited; ++i)
851 if (event == cpuhw->limited_event[i])
852 break;
853 if (i < cpuhw->n_limited) {
854 while (++i < cpuhw->n_limited) {
855 cpuhw->limited_event[i-1] = cpuhw->limited_event[i];
856 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
857 }
858 --cpuhw->n_limited;
859 }
860 if (cpuhw->n_events == 0) {
861 /* disable exceptions if no events are running */
862 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
863 }
864
865 perf_enable();
866 local_irq_restore(flags);
867}
868
869/*
870 * Re-enable interrupts on a event after they were throttled
871 * because they were coming too fast.
872 */
873static void power_pmu_unthrottle(struct perf_event *event)
874{
875 s64 val, left;
876 unsigned long flags;
877
878 if (!event->hw.idx || !event->hw.sample_period)
879 return;
880 local_irq_save(flags);
881 perf_disable();
882 power_pmu_read(event);
883 left = event->hw.sample_period;
884 event->hw.last_period = left;
885 val = 0;
886 if (left < 0x80000000L)
887 val = 0x80000000L - left;
888 write_pmc(event->hw.idx, val);
889 atomic64_set(&event->hw.prev_count, val);
890 atomic64_set(&event->hw.period_left, left);
891 perf_event_update_userpage(event);
892 perf_enable();
893 local_irq_restore(flags);
894}
895
896struct pmu power_pmu = {
897 .enable = power_pmu_enable,
898 .disable = power_pmu_disable,
899 .read = power_pmu_read,
900 .unthrottle = power_pmu_unthrottle,
901};
902
903/*
904 * Return 1 if we might be able to put event on a limited PMC,
905 * or 0 if not.
906 * A event can only go on a limited PMC if it counts something
907 * that a limited PMC can count, doesn't require interrupts, and
908 * doesn't exclude any processor mode.
909 */
910static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
911 unsigned int flags)
912{
913 int n;
914 u64 alt[MAX_EVENT_ALTERNATIVES];
915
916 if (event->attr.exclude_user
917 || event->attr.exclude_kernel
918 || event->attr.exclude_hv
919 || event->attr.sample_period)
920 return 0;
921
922 if (ppmu->limited_pmc_event(ev))
923 return 1;
924
925 /*
926 * The requested event_id isn't on a limited PMC already;
927 * see if any alternative code goes on a limited PMC.
928 */
929 if (!ppmu->get_alternatives)
930 return 0;
931
932 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
933 n = ppmu->get_alternatives(ev, flags, alt);
934
935 return n > 0;
936}
937
938/*
939 * Find an alternative event_id that goes on a normal PMC, if possible,
940 * and return the event_id code, or 0 if there is no such alternative.
941 * (Note: event_id code 0 is "don't count" on all machines.)
942 */
943static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
944{
945 u64 alt[MAX_EVENT_ALTERNATIVES];
946 int n;
947
948 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
949 n = ppmu->get_alternatives(ev, flags, alt);
950 if (!n)
951 return 0;
952 return alt[0];
953}
954
955/* Number of perf_events counting hardware events */
956static atomic_t num_events;
957/* Used to avoid races in calling reserve/release_pmc_hardware */
958static DEFINE_MUTEX(pmc_reserve_mutex);
959
960/*
961 * Release the PMU if this is the last perf_event.
962 */
963static void hw_perf_event_destroy(struct perf_event *event)
964{
965 if (!atomic_add_unless(&num_events, -1, 1)) {
966 mutex_lock(&pmc_reserve_mutex);
967 if (atomic_dec_return(&num_events) == 0)
968 release_pmc_hardware();
969 mutex_unlock(&pmc_reserve_mutex);
970 }
971}
972
973/*
974 * Translate a generic cache event_id config to a raw event_id code.
975 */
976static int hw_perf_cache_event(u64 config, u64 *eventp)
977{
978 unsigned long type, op, result;
979 int ev;
980
981 if (!ppmu->cache_events)
982 return -EINVAL;
983
984 /* unpack config */
985 type = config & 0xff;
986 op = (config >> 8) & 0xff;
987 result = (config >> 16) & 0xff;
988
989 if (type >= PERF_COUNT_HW_CACHE_MAX ||
990 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
991 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
992 return -EINVAL;
993
994 ev = (*ppmu->cache_events)[type][op][result];
995 if (ev == 0)
996 return -EOPNOTSUPP;
997 if (ev == -1)
998 return -EINVAL;
999 *eventp = ev;
1000 return 0;
1001}
1002
1003const struct pmu *hw_perf_event_init(struct perf_event *event)
1004{
1005 u64 ev;
1006 unsigned long flags;
1007 struct perf_event *ctrs[MAX_HWEVENTS];
1008 u64 events[MAX_HWEVENTS];
1009 unsigned int cflags[MAX_HWEVENTS];
1010 int n;
1011 int err;
1012 struct cpu_hw_events *cpuhw;
1013
1014 if (!ppmu)
1015 return ERR_PTR(-ENXIO);
1016 switch (event->attr.type) {
1017 case PERF_TYPE_HARDWARE:
1018 ev = event->attr.config;
1019 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1020 return ERR_PTR(-EOPNOTSUPP);
1021 ev = ppmu->generic_events[ev];
1022 break;
1023 case PERF_TYPE_HW_CACHE:
1024 err = hw_perf_cache_event(event->attr.config, &ev);
1025 if (err)
1026 return ERR_PTR(err);
1027 break;
1028 case PERF_TYPE_RAW:
1029 ev = event->attr.config;
1030 break;
1031 default:
1032 return ERR_PTR(-EINVAL);
1033 }
1034 event->hw.config_base = ev;
1035 event->hw.idx = 0;
1036
1037 /*
1038 * If we are not running on a hypervisor, force the
1039 * exclude_hv bit to 0 so that we don't care what
1040 * the user set it to.
1041 */
1042 if (!firmware_has_feature(FW_FEATURE_LPAR))
1043 event->attr.exclude_hv = 0;
1044
1045 /*
1046 * If this is a per-task event, then we can use
1047 * PM_RUN_* events interchangeably with their non RUN_*
1048 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1049 * XXX we should check if the task is an idle task.
1050 */
1051 flags = 0;
1052 if (event->ctx->task)
1053 flags |= PPMU_ONLY_COUNT_RUN;
1054
1055 /*
1056 * If this machine has limited events, check whether this
1057 * event_id could go on a limited event.
1058 */
1059 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1060 if (can_go_on_limited_pmc(event, ev, flags)) {
1061 flags |= PPMU_LIMITED_PMC_OK;
1062 } else if (ppmu->limited_pmc_event(ev)) {
1063 /*
1064 * The requested event_id is on a limited PMC,
1065 * but we can't use a limited PMC; see if any
1066 * alternative goes on a normal PMC.
1067 */
1068 ev = normal_pmc_alternative(ev, flags);
1069 if (!ev)
1070 return ERR_PTR(-EINVAL);
1071 }
1072 }
1073
1074 /*
1075 * If this is in a group, check if it can go on with all the
1076 * other hardware events in the group. We assume the event
1077 * hasn't been linked into its leader's sibling list at this point.
1078 */
1079 n = 0;
1080 if (event->group_leader != event) {
1081 n = collect_events(event->group_leader, ppmu->n_event - 1,
1082 ctrs, events, cflags);
1083 if (n < 0)
1084 return ERR_PTR(-EINVAL);
1085 }
1086 events[n] = ev;
1087 ctrs[n] = event;
1088 cflags[n] = flags;
1089 if (check_excludes(ctrs, cflags, n, 1))
1090 return ERR_PTR(-EINVAL);
1091
1092 cpuhw = &get_cpu_var(cpu_hw_events);
1093 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1094 put_cpu_var(cpu_hw_events);
1095 if (err)
1096 return ERR_PTR(-EINVAL);
1097
1098 event->hw.config = events[n];
1099 event->hw.event_base = cflags[n];
1100 event->hw.last_period = event->hw.sample_period;
1101 atomic64_set(&event->hw.period_left, event->hw.last_period);
1102
1103 /*
1104 * See if we need to reserve the PMU.
1105 * If no events are currently in use, then we have to take a
1106 * mutex to ensure that we don't race with another task doing
1107 * reserve_pmc_hardware or release_pmc_hardware.
1108 */
1109 err = 0;
1110 if (!atomic_inc_not_zero(&num_events)) {
1111 mutex_lock(&pmc_reserve_mutex);
1112 if (atomic_read(&num_events) == 0 &&
1113 reserve_pmc_hardware(perf_event_interrupt))
1114 err = -EBUSY;
1115 else
1116 atomic_inc(&num_events);
1117 mutex_unlock(&pmc_reserve_mutex);
1118 }
1119 event->destroy = hw_perf_event_destroy;
1120
1121 if (err)
1122 return ERR_PTR(err);
1123 return &power_pmu;
1124}
1125
1126/*
1127 * A event has overflowed; update its count and record
1128 * things if requested. Note that interrupts are hard-disabled
1129 * here so there is no possibility of being interrupted.
1130 */
1131static void record_and_restart(struct perf_event *event, unsigned long val,
1132 struct pt_regs *regs, int nmi)
1133{
1134 u64 period = event->hw.sample_period;
1135 s64 prev, delta, left;
1136 int record = 0;
1137
1138 /* we don't have to worry about interrupts here */
1139 prev = atomic64_read(&event->hw.prev_count);
1140 delta = (val - prev) & 0xfffffffful;
1141 atomic64_add(delta, &event->count);
1142
1143 /*
1144 * See if the total period for this event has expired,
1145 * and update for the next period.
1146 */
1147 val = 0;
1148 left = atomic64_read(&event->hw.period_left) - delta;
1149 if (period) {
1150 if (left <= 0) {
1151 left += period;
1152 if (left <= 0)
1153 left = period;
1154 record = 1;
1155 }
1156 if (left < 0x80000000LL)
1157 val = 0x80000000LL - left;
1158 }
1159
1160 /*
1161 * Finally record data if requested.
1162 */
1163 if (record) {
1164 struct perf_sample_data data = {
1165 .addr = 0,
1166 .period = event->hw.last_period,
1167 };
1168
1169 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1170 perf_get_data_addr(regs, &data.addr);
1171
1172 if (perf_event_overflow(event, nmi, &data, regs)) {
1173 /*
1174 * Interrupts are coming too fast - throttle them
1175 * by setting the event to 0, so it will be
1176 * at least 2^30 cycles until the next interrupt
1177 * (assuming each event counts at most 2 counts
1178 * per cycle).
1179 */
1180 val = 0;
1181 left = ~0ULL >> 1;
1182 }
1183 }
1184
1185 write_pmc(event->hw.idx, val);
1186 atomic64_set(&event->hw.prev_count, val);
1187 atomic64_set(&event->hw.period_left, left);
1188 perf_event_update_userpage(event);
1189}
1190
1191/*
1192 * Called from generic code to get the misc flags (i.e. processor mode)
1193 * for an event_id.
1194 */
1195unsigned long perf_misc_flags(struct pt_regs *regs)
1196{
1197 u32 flags = perf_get_misc_flags(regs);
1198
1199 if (flags)
1200 return flags;
1201 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1202 PERF_RECORD_MISC_KERNEL;
1203}
1204
1205/*
1206 * Called from generic code to get the instruction pointer
1207 * for an event_id.
1208 */
1209unsigned long perf_instruction_pointer(struct pt_regs *regs)
1210{
1211 unsigned long ip;
1212
1213 if (TRAP(regs) != 0xf00)
1214 return regs->nip; /* not a PMU interrupt */
1215
1216 ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1217 return ip;
1218}
1219
1220/*
1221 * Performance monitor interrupt stuff
1222 */
1223static void perf_event_interrupt(struct pt_regs *regs)
1224{
1225 int i;
1226 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1227 struct perf_event *event;
1228 unsigned long val;
1229 int found = 0;
1230 int nmi;
1231
1232 if (cpuhw->n_limited)
1233 freeze_limited_events(cpuhw, mfspr(SPRN_PMC5),
1234 mfspr(SPRN_PMC6));
1235
1236 perf_read_regs(regs);
1237
1238 nmi = perf_intr_is_nmi(regs);
1239 if (nmi)
1240 nmi_enter();
1241 else
1242 irq_enter();
1243
1244 for (i = 0; i < cpuhw->n_events; ++i) {
1245 event = cpuhw->event[i];
1246 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1247 continue;
1248 val = read_pmc(event->hw.idx);
1249 if ((int)val < 0) {
1250 /* event has overflowed */
1251 found = 1;
1252 record_and_restart(event, val, regs, nmi);
1253 }
1254 }
1255
1256 /*
1257 * In case we didn't find and reset the event that caused
1258 * the interrupt, scan all events and reset any that are
1259 * negative, to avoid getting continual interrupts.
1260 * Any that we processed in the previous loop will not be negative.
1261 */
1262 if (!found) {
1263 for (i = 0; i < ppmu->n_event; ++i) {
1264 if (is_limited_pmc(i + 1))
1265 continue;
1266 val = read_pmc(i + 1);
1267 if ((int)val < 0)
1268 write_pmc(i + 1, 0);
1269 }
1270 }
1271
1272 /*
1273 * Reset MMCR0 to its normal value. This will set PMXE and
1274 * clear FC (freeze events) and PMAO (perf mon alert occurred)
1275 * and thus allow interrupts to occur again.
1276 * XXX might want to use MSR.PM to keep the events frozen until
1277 * we get back out of this interrupt.
1278 */
1279 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1280
1281 if (nmi)
1282 nmi_exit();
1283 else
1284 irq_exit();
1285}
1286
1287void hw_perf_event_setup(int cpu)
1288{
1289 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1290
1291 if (!ppmu)
1292 return;
1293 memset(cpuhw, 0, sizeof(*cpuhw));
1294 cpuhw->mmcr[0] = MMCR0_FC;
1295}
1296
1297int register_power_pmu(struct power_pmu *pmu)
1298{
1299 if (ppmu)
1300 return -EBUSY; /* something's already registered */
1301
1302 ppmu = pmu;
1303 pr_info("%s performance monitor hardware support registered\n",
1304 pmu->name);
1305
1306#ifdef MSR_HV
1307 /*
1308 * Use FCHV to ignore kernel events if MSR.HV is set.
1309 */
1310 if (mfmsr() & MSR_HV)
1311 freeze_events_kernel = MMCR0_FCHV;
1312#endif /* CONFIG_PPC64 */
1313
1314 return 0;
1315}