diff options
Diffstat (limited to 'arch/powerpc/kernel/perf_counter.c')
-rw-r--r-- | arch/powerpc/kernel/perf_counter.c | 1306 |
1 files changed, 1306 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/perf_counter.c b/arch/powerpc/kernel/perf_counter.c new file mode 100644 index 000000000000..809fdf94b95f --- /dev/null +++ b/arch/powerpc/kernel/perf_counter.c | |||
@@ -0,0 +1,1306 @@ | |||
1 | /* | ||
2 | * Performance counter support - powerpc architecture code | ||
3 | * | ||
4 | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the License, or (at your option) any later version. | ||
10 | */ | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/sched.h> | ||
13 | #include <linux/perf_counter.h> | ||
14 | #include <linux/percpu.h> | ||
15 | #include <linux/hardirq.h> | ||
16 | #include <asm/reg.h> | ||
17 | #include <asm/pmc.h> | ||
18 | #include <asm/machdep.h> | ||
19 | #include <asm/firmware.h> | ||
20 | #include <asm/ptrace.h> | ||
21 | |||
22 | struct cpu_hw_counters { | ||
23 | int n_counters; | ||
24 | int n_percpu; | ||
25 | int disabled; | ||
26 | int n_added; | ||
27 | int n_limited; | ||
28 | u8 pmcs_enabled; | ||
29 | struct perf_counter *counter[MAX_HWCOUNTERS]; | ||
30 | u64 events[MAX_HWCOUNTERS]; | ||
31 | unsigned int flags[MAX_HWCOUNTERS]; | ||
32 | unsigned long mmcr[3]; | ||
33 | struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS]; | ||
34 | u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; | ||
35 | }; | ||
36 | DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); | ||
37 | |||
38 | struct power_pmu *ppmu; | ||
39 | |||
40 | /* | ||
41 | * Normally, to ignore kernel events we set the FCS (freeze counters | ||
42 | * in supervisor mode) bit in MMCR0, but if the kernel runs with the | ||
43 | * hypervisor bit set in the MSR, or if we are running on a processor | ||
44 | * where the hypervisor bit is forced to 1 (as on Apple G5 processors), | ||
45 | * then we need to use the FCHV bit to ignore kernel events. | ||
46 | */ | ||
47 | static unsigned int freeze_counters_kernel = MMCR0_FCS; | ||
48 | |||
49 | /* | ||
50 | * 32-bit doesn't have MMCRA but does have an MMCR2, | ||
51 | * and a few other names are different. | ||
52 | */ | ||
53 | #ifdef CONFIG_PPC32 | ||
54 | |||
55 | #define MMCR0_FCHV 0 | ||
56 | #define MMCR0_PMCjCE MMCR0_PMCnCE | ||
57 | |||
58 | #define SPRN_MMCRA SPRN_MMCR2 | ||
59 | #define MMCRA_SAMPLE_ENABLE 0 | ||
60 | |||
61 | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | ||
62 | { | ||
63 | return 0; | ||
64 | } | ||
65 | static inline void perf_set_pmu_inuse(int inuse) { } | ||
66 | static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } | ||
67 | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | ||
68 | { | ||
69 | return 0; | ||
70 | } | ||
71 | static inline void perf_read_regs(struct pt_regs *regs) { } | ||
72 | static inline int perf_intr_is_nmi(struct pt_regs *regs) | ||
73 | { | ||
74 | return 0; | ||
75 | } | ||
76 | |||
77 | #endif /* CONFIG_PPC32 */ | ||
78 | |||
79 | /* | ||
80 | * Things that are specific to 64-bit implementations. | ||
81 | */ | ||
82 | #ifdef CONFIG_PPC64 | ||
83 | |||
84 | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | ||
85 | { | ||
86 | unsigned long mmcra = regs->dsisr; | ||
87 | |||
88 | if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) { | ||
89 | unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; | ||
90 | if (slot > 1) | ||
91 | return 4 * (slot - 1); | ||
92 | } | ||
93 | return 0; | ||
94 | } | ||
95 | |||
96 | static inline void perf_set_pmu_inuse(int inuse) | ||
97 | { | ||
98 | get_lppaca()->pmcregs_in_use = inuse; | ||
99 | } | ||
100 | |||
101 | /* | ||
102 | * The user wants a data address recorded. | ||
103 | * If we're not doing instruction sampling, give them the SDAR | ||
104 | * (sampled data address). If we are doing instruction sampling, then | ||
105 | * only give them the SDAR if it corresponds to the instruction | ||
106 | * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC | ||
107 | * bit in MMCRA. | ||
108 | */ | ||
109 | static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) | ||
110 | { | ||
111 | unsigned long mmcra = regs->dsisr; | ||
112 | unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ? | ||
113 | POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC; | ||
114 | |||
115 | if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync)) | ||
116 | *addrp = mfspr(SPRN_SDAR); | ||
117 | } | ||
118 | |||
119 | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | ||
120 | { | ||
121 | unsigned long mmcra = regs->dsisr; | ||
122 | |||
123 | if (TRAP(regs) != 0xf00) | ||
124 | return 0; /* not a PMU interrupt */ | ||
125 | |||
126 | if (ppmu->flags & PPMU_ALT_SIPR) { | ||
127 | if (mmcra & POWER6_MMCRA_SIHV) | ||
128 | return PERF_EVENT_MISC_HYPERVISOR; | ||
129 | return (mmcra & POWER6_MMCRA_SIPR) ? | ||
130 | PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL; | ||
131 | } | ||
132 | if (mmcra & MMCRA_SIHV) | ||
133 | return PERF_EVENT_MISC_HYPERVISOR; | ||
134 | return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER : | ||
135 | PERF_EVENT_MISC_KERNEL; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * Overload regs->dsisr to store MMCRA so we only need to read it once | ||
140 | * on each interrupt. | ||
141 | */ | ||
142 | static inline void perf_read_regs(struct pt_regs *regs) | ||
143 | { | ||
144 | regs->dsisr = mfspr(SPRN_MMCRA); | ||
145 | } | ||
146 | |||
147 | /* | ||
148 | * If interrupts were soft-disabled when a PMU interrupt occurs, treat | ||
149 | * it as an NMI. | ||
150 | */ | ||
151 | static inline int perf_intr_is_nmi(struct pt_regs *regs) | ||
152 | { | ||
153 | return !regs->softe; | ||
154 | } | ||
155 | |||
156 | #endif /* CONFIG_PPC64 */ | ||
157 | |||
158 | static void perf_counter_interrupt(struct pt_regs *regs); | ||
159 | |||
160 | void perf_counter_print_debug(void) | ||
161 | { | ||
162 | } | ||
163 | |||
164 | /* | ||
165 | * Read one performance monitor counter (PMC). | ||
166 | */ | ||
167 | static unsigned long read_pmc(int idx) | ||
168 | { | ||
169 | unsigned long val; | ||
170 | |||
171 | switch (idx) { | ||
172 | case 1: | ||
173 | val = mfspr(SPRN_PMC1); | ||
174 | break; | ||
175 | case 2: | ||
176 | val = mfspr(SPRN_PMC2); | ||
177 | break; | ||
178 | case 3: | ||
179 | val = mfspr(SPRN_PMC3); | ||
180 | break; | ||
181 | case 4: | ||
182 | val = mfspr(SPRN_PMC4); | ||
183 | break; | ||
184 | case 5: | ||
185 | val = mfspr(SPRN_PMC5); | ||
186 | break; | ||
187 | case 6: | ||
188 | val = mfspr(SPRN_PMC6); | ||
189 | break; | ||
190 | #ifdef CONFIG_PPC64 | ||
191 | case 7: | ||
192 | val = mfspr(SPRN_PMC7); | ||
193 | break; | ||
194 | case 8: | ||
195 | val = mfspr(SPRN_PMC8); | ||
196 | break; | ||
197 | #endif /* CONFIG_PPC64 */ | ||
198 | default: | ||
199 | printk(KERN_ERR "oops trying to read PMC%d\n", idx); | ||
200 | val = 0; | ||
201 | } | ||
202 | return val; | ||
203 | } | ||
204 | |||
205 | /* | ||
206 | * Write one PMC. | ||
207 | */ | ||
208 | static void write_pmc(int idx, unsigned long val) | ||
209 | { | ||
210 | switch (idx) { | ||
211 | case 1: | ||
212 | mtspr(SPRN_PMC1, val); | ||
213 | break; | ||
214 | case 2: | ||
215 | mtspr(SPRN_PMC2, val); | ||
216 | break; | ||
217 | case 3: | ||
218 | mtspr(SPRN_PMC3, val); | ||
219 | break; | ||
220 | case 4: | ||
221 | mtspr(SPRN_PMC4, val); | ||
222 | break; | ||
223 | case 5: | ||
224 | mtspr(SPRN_PMC5, val); | ||
225 | break; | ||
226 | case 6: | ||
227 | mtspr(SPRN_PMC6, val); | ||
228 | break; | ||
229 | #ifdef CONFIG_PPC64 | ||
230 | case 7: | ||
231 | mtspr(SPRN_PMC7, val); | ||
232 | break; | ||
233 | case 8: | ||
234 | mtspr(SPRN_PMC8, val); | ||
235 | break; | ||
236 | #endif /* CONFIG_PPC64 */ | ||
237 | default: | ||
238 | printk(KERN_ERR "oops trying to write PMC%d\n", idx); | ||
239 | } | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * Check if a set of events can all go on the PMU at once. | ||
244 | * If they can't, this will look at alternative codes for the events | ||
245 | * and see if any combination of alternative codes is feasible. | ||
246 | * The feasible set is returned in event[]. | ||
247 | */ | ||
248 | static int power_check_constraints(u64 event[], unsigned int cflags[], | ||
249 | int n_ev) | ||
250 | { | ||
251 | unsigned long mask, value, nv; | ||
252 | u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
253 | unsigned long amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
254 | unsigned long avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
255 | unsigned long smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; | ||
256 | int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; | ||
257 | int i, j; | ||
258 | unsigned long addf = ppmu->add_fields; | ||
259 | unsigned long tadd = ppmu->test_adder; | ||
260 | |||
261 | if (n_ev > ppmu->n_counter) | ||
262 | return -1; | ||
263 | |||
264 | /* First see if the events will go on as-is */ | ||
265 | for (i = 0; i < n_ev; ++i) { | ||
266 | if ((cflags[i] & PPMU_LIMITED_PMC_REQD) | ||
267 | && !ppmu->limited_pmc_event(event[i])) { | ||
268 | ppmu->get_alternatives(event[i], cflags[i], | ||
269 | alternatives[i]); | ||
270 | event[i] = alternatives[i][0]; | ||
271 | } | ||
272 | if (ppmu->get_constraint(event[i], &amasks[i][0], | ||
273 | &avalues[i][0])) | ||
274 | return -1; | ||
275 | } | ||
276 | value = mask = 0; | ||
277 | for (i = 0; i < n_ev; ++i) { | ||
278 | nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); | ||
279 | if ((((nv + tadd) ^ value) & mask) != 0 || | ||
280 | (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) | ||
281 | break; | ||
282 | value = nv; | ||
283 | mask |= amasks[i][0]; | ||
284 | } | ||
285 | if (i == n_ev) | ||
286 | return 0; /* all OK */ | ||
287 | |||
288 | /* doesn't work, gather alternatives... */ | ||
289 | if (!ppmu->get_alternatives) | ||
290 | return -1; | ||
291 | for (i = 0; i < n_ev; ++i) { | ||
292 | choice[i] = 0; | ||
293 | n_alt[i] = ppmu->get_alternatives(event[i], cflags[i], | ||
294 | alternatives[i]); | ||
295 | for (j = 1; j < n_alt[i]; ++j) | ||
296 | ppmu->get_constraint(alternatives[i][j], | ||
297 | &amasks[i][j], &avalues[i][j]); | ||
298 | } | ||
299 | |||
300 | /* enumerate all possibilities and see if any will work */ | ||
301 | i = 0; | ||
302 | j = -1; | ||
303 | value = mask = nv = 0; | ||
304 | while (i < n_ev) { | ||
305 | if (j >= 0) { | ||
306 | /* we're backtracking, restore context */ | ||
307 | value = svalues[i]; | ||
308 | mask = smasks[i]; | ||
309 | j = choice[i]; | ||
310 | } | ||
311 | /* | ||
312 | * See if any alternative k for event i, | ||
313 | * where k > j, will satisfy the constraints. | ||
314 | */ | ||
315 | while (++j < n_alt[i]) { | ||
316 | nv = (value | avalues[i][j]) + | ||
317 | (value & avalues[i][j] & addf); | ||
318 | if ((((nv + tadd) ^ value) & mask) == 0 && | ||
319 | (((nv + tadd) ^ avalues[i][j]) | ||
320 | & amasks[i][j]) == 0) | ||
321 | break; | ||
322 | } | ||
323 | if (j >= n_alt[i]) { | ||
324 | /* | ||
325 | * No feasible alternative, backtrack | ||
326 | * to event i-1 and continue enumerating its | ||
327 | * alternatives from where we got up to. | ||
328 | */ | ||
329 | if (--i < 0) | ||
330 | return -1; | ||
331 | } else { | ||
332 | /* | ||
333 | * Found a feasible alternative for event i, | ||
334 | * remember where we got up to with this event, | ||
335 | * go on to the next event, and start with | ||
336 | * the first alternative for it. | ||
337 | */ | ||
338 | choice[i] = j; | ||
339 | svalues[i] = value; | ||
340 | smasks[i] = mask; | ||
341 | value = nv; | ||
342 | mask |= amasks[i][j]; | ||
343 | ++i; | ||
344 | j = -1; | ||
345 | } | ||
346 | } | ||
347 | |||
348 | /* OK, we have a feasible combination, tell the caller the solution */ | ||
349 | for (i = 0; i < n_ev; ++i) | ||
350 | event[i] = alternatives[i][choice[i]]; | ||
351 | return 0; | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * Check if newly-added counters have consistent settings for | ||
356 | * exclude_{user,kernel,hv} with each other and any previously | ||
357 | * added counters. | ||
358 | */ | ||
359 | static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[], | ||
360 | int n_prev, int n_new) | ||
361 | { | ||
362 | int eu = 0, ek = 0, eh = 0; | ||
363 | int i, n, first; | ||
364 | struct perf_counter *counter; | ||
365 | |||
366 | n = n_prev + n_new; | ||
367 | if (n <= 1) | ||
368 | return 0; | ||
369 | |||
370 | first = 1; | ||
371 | for (i = 0; i < n; ++i) { | ||
372 | if (cflags[i] & PPMU_LIMITED_PMC_OK) { | ||
373 | cflags[i] &= ~PPMU_LIMITED_PMC_REQD; | ||
374 | continue; | ||
375 | } | ||
376 | counter = ctrs[i]; | ||
377 | if (first) { | ||
378 | eu = counter->attr.exclude_user; | ||
379 | ek = counter->attr.exclude_kernel; | ||
380 | eh = counter->attr.exclude_hv; | ||
381 | first = 0; | ||
382 | } else if (counter->attr.exclude_user != eu || | ||
383 | counter->attr.exclude_kernel != ek || | ||
384 | counter->attr.exclude_hv != eh) { | ||
385 | return -EAGAIN; | ||
386 | } | ||
387 | } | ||
388 | |||
389 | if (eu || ek || eh) | ||
390 | for (i = 0; i < n; ++i) | ||
391 | if (cflags[i] & PPMU_LIMITED_PMC_OK) | ||
392 | cflags[i] |= PPMU_LIMITED_PMC_REQD; | ||
393 | |||
394 | return 0; | ||
395 | } | ||
396 | |||
397 | static void power_pmu_read(struct perf_counter *counter) | ||
398 | { | ||
399 | s64 val, delta, prev; | ||
400 | |||
401 | if (!counter->hw.idx) | ||
402 | return; | ||
403 | /* | ||
404 | * Performance monitor interrupts come even when interrupts | ||
405 | * are soft-disabled, as long as interrupts are hard-enabled. | ||
406 | * Therefore we treat them like NMIs. | ||
407 | */ | ||
408 | do { | ||
409 | prev = atomic64_read(&counter->hw.prev_count); | ||
410 | barrier(); | ||
411 | val = read_pmc(counter->hw.idx); | ||
412 | } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); | ||
413 | |||
414 | /* The counters are only 32 bits wide */ | ||
415 | delta = (val - prev) & 0xfffffffful; | ||
416 | atomic64_add(delta, &counter->count); | ||
417 | atomic64_sub(delta, &counter->hw.period_left); | ||
418 | } | ||
419 | |||
420 | /* | ||
421 | * On some machines, PMC5 and PMC6 can't be written, don't respect | ||
422 | * the freeze conditions, and don't generate interrupts. This tells | ||
423 | * us if `counter' is using such a PMC. | ||
424 | */ | ||
425 | static int is_limited_pmc(int pmcnum) | ||
426 | { | ||
427 | return (ppmu->flags & PPMU_LIMITED_PMC5_6) | ||
428 | && (pmcnum == 5 || pmcnum == 6); | ||
429 | } | ||
430 | |||
431 | static void freeze_limited_counters(struct cpu_hw_counters *cpuhw, | ||
432 | unsigned long pmc5, unsigned long pmc6) | ||
433 | { | ||
434 | struct perf_counter *counter; | ||
435 | u64 val, prev, delta; | ||
436 | int i; | ||
437 | |||
438 | for (i = 0; i < cpuhw->n_limited; ++i) { | ||
439 | counter = cpuhw->limited_counter[i]; | ||
440 | if (!counter->hw.idx) | ||
441 | continue; | ||
442 | val = (counter->hw.idx == 5) ? pmc5 : pmc6; | ||
443 | prev = atomic64_read(&counter->hw.prev_count); | ||
444 | counter->hw.idx = 0; | ||
445 | delta = (val - prev) & 0xfffffffful; | ||
446 | atomic64_add(delta, &counter->count); | ||
447 | } | ||
448 | } | ||
449 | |||
450 | static void thaw_limited_counters(struct cpu_hw_counters *cpuhw, | ||
451 | unsigned long pmc5, unsigned long pmc6) | ||
452 | { | ||
453 | struct perf_counter *counter; | ||
454 | u64 val; | ||
455 | int i; | ||
456 | |||
457 | for (i = 0; i < cpuhw->n_limited; ++i) { | ||
458 | counter = cpuhw->limited_counter[i]; | ||
459 | counter->hw.idx = cpuhw->limited_hwidx[i]; | ||
460 | val = (counter->hw.idx == 5) ? pmc5 : pmc6; | ||
461 | atomic64_set(&counter->hw.prev_count, val); | ||
462 | perf_counter_update_userpage(counter); | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * Since limited counters don't respect the freeze conditions, we | ||
468 | * have to read them immediately after freezing or unfreezing the | ||
469 | * other counters. We try to keep the values from the limited | ||
470 | * counters as consistent as possible by keeping the delay (in | ||
471 | * cycles and instructions) between freezing/unfreezing and reading | ||
472 | * the limited counters as small and consistent as possible. | ||
473 | * Therefore, if any limited counters are in use, we read them | ||
474 | * both, and always in the same order, to minimize variability, | ||
475 | * and do it inside the same asm that writes MMCR0. | ||
476 | */ | ||
477 | static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0) | ||
478 | { | ||
479 | unsigned long pmc5, pmc6; | ||
480 | |||
481 | if (!cpuhw->n_limited) { | ||
482 | mtspr(SPRN_MMCR0, mmcr0); | ||
483 | return; | ||
484 | } | ||
485 | |||
486 | /* | ||
487 | * Write MMCR0, then read PMC5 and PMC6 immediately. | ||
488 | * To ensure we don't get a performance monitor interrupt | ||
489 | * between writing MMCR0 and freezing/thawing the limited | ||
490 | * counters, we first write MMCR0 with the counter overflow | ||
491 | * interrupt enable bits turned off. | ||
492 | */ | ||
493 | asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" | ||
494 | : "=&r" (pmc5), "=&r" (pmc6) | ||
495 | : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), | ||
496 | "i" (SPRN_MMCR0), | ||
497 | "i" (SPRN_PMC5), "i" (SPRN_PMC6)); | ||
498 | |||
499 | if (mmcr0 & MMCR0_FC) | ||
500 | freeze_limited_counters(cpuhw, pmc5, pmc6); | ||
501 | else | ||
502 | thaw_limited_counters(cpuhw, pmc5, pmc6); | ||
503 | |||
504 | /* | ||
505 | * Write the full MMCR0 including the counter overflow interrupt | ||
506 | * enable bits, if necessary. | ||
507 | */ | ||
508 | if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) | ||
509 | mtspr(SPRN_MMCR0, mmcr0); | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * Disable all counters to prevent PMU interrupts and to allow | ||
514 | * counters to be added or removed. | ||
515 | */ | ||
516 | void hw_perf_disable(void) | ||
517 | { | ||
518 | struct cpu_hw_counters *cpuhw; | ||
519 | unsigned long flags; | ||
520 | |||
521 | local_irq_save(flags); | ||
522 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
523 | |||
524 | if (!cpuhw->disabled) { | ||
525 | cpuhw->disabled = 1; | ||
526 | cpuhw->n_added = 0; | ||
527 | |||
528 | /* | ||
529 | * Check if we ever enabled the PMU on this cpu. | ||
530 | */ | ||
531 | if (!cpuhw->pmcs_enabled) { | ||
532 | if (ppc_md.enable_pmcs) | ||
533 | ppc_md.enable_pmcs(); | ||
534 | cpuhw->pmcs_enabled = 1; | ||
535 | } | ||
536 | |||
537 | /* | ||
538 | * Disable instruction sampling if it was enabled | ||
539 | */ | ||
540 | if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | ||
541 | mtspr(SPRN_MMCRA, | ||
542 | cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | ||
543 | mb(); | ||
544 | } | ||
545 | |||
546 | /* | ||
547 | * Set the 'freeze counters' bit. | ||
548 | * The barrier is to make sure the mtspr has been | ||
549 | * executed and the PMU has frozen the counters | ||
550 | * before we return. | ||
551 | */ | ||
552 | write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC); | ||
553 | mb(); | ||
554 | } | ||
555 | local_irq_restore(flags); | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * Re-enable all counters if disable == 0. | ||
560 | * If we were previously disabled and counters were added, then | ||
561 | * put the new config on the PMU. | ||
562 | */ | ||
563 | void hw_perf_enable(void) | ||
564 | { | ||
565 | struct perf_counter *counter; | ||
566 | struct cpu_hw_counters *cpuhw; | ||
567 | unsigned long flags; | ||
568 | long i; | ||
569 | unsigned long val; | ||
570 | s64 left; | ||
571 | unsigned int hwc_index[MAX_HWCOUNTERS]; | ||
572 | int n_lim; | ||
573 | int idx; | ||
574 | |||
575 | local_irq_save(flags); | ||
576 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
577 | if (!cpuhw->disabled) { | ||
578 | local_irq_restore(flags); | ||
579 | return; | ||
580 | } | ||
581 | cpuhw->disabled = 0; | ||
582 | |||
583 | /* | ||
584 | * If we didn't change anything, or only removed counters, | ||
585 | * no need to recalculate MMCR* settings and reset the PMCs. | ||
586 | * Just reenable the PMU with the current MMCR* settings | ||
587 | * (possibly updated for removal of counters). | ||
588 | */ | ||
589 | if (!cpuhw->n_added) { | ||
590 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | ||
591 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | ||
592 | if (cpuhw->n_counters == 0) | ||
593 | perf_set_pmu_inuse(0); | ||
594 | goto out_enable; | ||
595 | } | ||
596 | |||
597 | /* | ||
598 | * Compute MMCR* values for the new set of counters | ||
599 | */ | ||
600 | if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, | ||
601 | cpuhw->mmcr)) { | ||
602 | /* shouldn't ever get here */ | ||
603 | printk(KERN_ERR "oops compute_mmcr failed\n"); | ||
604 | goto out; | ||
605 | } | ||
606 | |||
607 | /* | ||
608 | * Add in MMCR0 freeze bits corresponding to the | ||
609 | * attr.exclude_* bits for the first counter. | ||
610 | * We have already checked that all counters have the | ||
611 | * same values for these bits as the first counter. | ||
612 | */ | ||
613 | counter = cpuhw->counter[0]; | ||
614 | if (counter->attr.exclude_user) | ||
615 | cpuhw->mmcr[0] |= MMCR0_FCP; | ||
616 | if (counter->attr.exclude_kernel) | ||
617 | cpuhw->mmcr[0] |= freeze_counters_kernel; | ||
618 | if (counter->attr.exclude_hv) | ||
619 | cpuhw->mmcr[0] |= MMCR0_FCHV; | ||
620 | |||
621 | /* | ||
622 | * Write the new configuration to MMCR* with the freeze | ||
623 | * bit set and set the hardware counters to their initial values. | ||
624 | * Then unfreeze the counters. | ||
625 | */ | ||
626 | perf_set_pmu_inuse(1); | ||
627 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | ||
628 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | ||
629 | mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | ||
630 | | MMCR0_FC); | ||
631 | |||
632 | /* | ||
633 | * Read off any pre-existing counters that need to move | ||
634 | * to another PMC. | ||
635 | */ | ||
636 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
637 | counter = cpuhw->counter[i]; | ||
638 | if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { | ||
639 | power_pmu_read(counter); | ||
640 | write_pmc(counter->hw.idx, 0); | ||
641 | counter->hw.idx = 0; | ||
642 | } | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * Initialize the PMCs for all the new and moved counters. | ||
647 | */ | ||
648 | cpuhw->n_limited = n_lim = 0; | ||
649 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
650 | counter = cpuhw->counter[i]; | ||
651 | if (counter->hw.idx) | ||
652 | continue; | ||
653 | idx = hwc_index[i] + 1; | ||
654 | if (is_limited_pmc(idx)) { | ||
655 | cpuhw->limited_counter[n_lim] = counter; | ||
656 | cpuhw->limited_hwidx[n_lim] = idx; | ||
657 | ++n_lim; | ||
658 | continue; | ||
659 | } | ||
660 | val = 0; | ||
661 | if (counter->hw.sample_period) { | ||
662 | left = atomic64_read(&counter->hw.period_left); | ||
663 | if (left < 0x80000000L) | ||
664 | val = 0x80000000L - left; | ||
665 | } | ||
666 | atomic64_set(&counter->hw.prev_count, val); | ||
667 | counter->hw.idx = idx; | ||
668 | write_pmc(idx, val); | ||
669 | perf_counter_update_userpage(counter); | ||
670 | } | ||
671 | cpuhw->n_limited = n_lim; | ||
672 | cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; | ||
673 | |||
674 | out_enable: | ||
675 | mb(); | ||
676 | write_mmcr0(cpuhw, cpuhw->mmcr[0]); | ||
677 | |||
678 | /* | ||
679 | * Enable instruction sampling if necessary | ||
680 | */ | ||
681 | if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | ||
682 | mb(); | ||
683 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); | ||
684 | } | ||
685 | |||
686 | out: | ||
687 | local_irq_restore(flags); | ||
688 | } | ||
689 | |||
690 | static int collect_events(struct perf_counter *group, int max_count, | ||
691 | struct perf_counter *ctrs[], u64 *events, | ||
692 | unsigned int *flags) | ||
693 | { | ||
694 | int n = 0; | ||
695 | struct perf_counter *counter; | ||
696 | |||
697 | if (!is_software_counter(group)) { | ||
698 | if (n >= max_count) | ||
699 | return -1; | ||
700 | ctrs[n] = group; | ||
701 | flags[n] = group->hw.counter_base; | ||
702 | events[n++] = group->hw.config; | ||
703 | } | ||
704 | list_for_each_entry(counter, &group->sibling_list, list_entry) { | ||
705 | if (!is_software_counter(counter) && | ||
706 | counter->state != PERF_COUNTER_STATE_OFF) { | ||
707 | if (n >= max_count) | ||
708 | return -1; | ||
709 | ctrs[n] = counter; | ||
710 | flags[n] = counter->hw.counter_base; | ||
711 | events[n++] = counter->hw.config; | ||
712 | } | ||
713 | } | ||
714 | return n; | ||
715 | } | ||
716 | |||
717 | static void counter_sched_in(struct perf_counter *counter, int cpu) | ||
718 | { | ||
719 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
720 | counter->oncpu = cpu; | ||
721 | counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped; | ||
722 | if (is_software_counter(counter)) | ||
723 | counter->pmu->enable(counter); | ||
724 | } | ||
725 | |||
726 | /* | ||
727 | * Called to enable a whole group of counters. | ||
728 | * Returns 1 if the group was enabled, or -EAGAIN if it could not be. | ||
729 | * Assumes the caller has disabled interrupts and has | ||
730 | * frozen the PMU with hw_perf_save_disable. | ||
731 | */ | ||
732 | int hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
733 | struct perf_cpu_context *cpuctx, | ||
734 | struct perf_counter_context *ctx, int cpu) | ||
735 | { | ||
736 | struct cpu_hw_counters *cpuhw; | ||
737 | long i, n, n0; | ||
738 | struct perf_counter *sub; | ||
739 | |||
740 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
741 | n0 = cpuhw->n_counters; | ||
742 | n = collect_events(group_leader, ppmu->n_counter - n0, | ||
743 | &cpuhw->counter[n0], &cpuhw->events[n0], | ||
744 | &cpuhw->flags[n0]); | ||
745 | if (n < 0) | ||
746 | return -EAGAIN; | ||
747 | if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n)) | ||
748 | return -EAGAIN; | ||
749 | i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0); | ||
750 | if (i < 0) | ||
751 | return -EAGAIN; | ||
752 | cpuhw->n_counters = n0 + n; | ||
753 | cpuhw->n_added += n; | ||
754 | |||
755 | /* | ||
756 | * OK, this group can go on; update counter states etc., | ||
757 | * and enable any software counters | ||
758 | */ | ||
759 | for (i = n0; i < n0 + n; ++i) | ||
760 | cpuhw->counter[i]->hw.config = cpuhw->events[i]; | ||
761 | cpuctx->active_oncpu += n; | ||
762 | n = 1; | ||
763 | counter_sched_in(group_leader, cpu); | ||
764 | list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { | ||
765 | if (sub->state != PERF_COUNTER_STATE_OFF) { | ||
766 | counter_sched_in(sub, cpu); | ||
767 | ++n; | ||
768 | } | ||
769 | } | ||
770 | ctx->nr_active += n; | ||
771 | |||
772 | return 1; | ||
773 | } | ||
774 | |||
775 | /* | ||
776 | * Add a counter to the PMU. | ||
777 | * If all counters are not already frozen, then we disable and | ||
778 | * re-enable the PMU in order to get hw_perf_enable to do the | ||
779 | * actual work of reconfiguring the PMU. | ||
780 | */ | ||
781 | static int power_pmu_enable(struct perf_counter *counter) | ||
782 | { | ||
783 | struct cpu_hw_counters *cpuhw; | ||
784 | unsigned long flags; | ||
785 | int n0; | ||
786 | int ret = -EAGAIN; | ||
787 | |||
788 | local_irq_save(flags); | ||
789 | perf_disable(); | ||
790 | |||
791 | /* | ||
792 | * Add the counter to the list (if there is room) | ||
793 | * and check whether the total set is still feasible. | ||
794 | */ | ||
795 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
796 | n0 = cpuhw->n_counters; | ||
797 | if (n0 >= ppmu->n_counter) | ||
798 | goto out; | ||
799 | cpuhw->counter[n0] = counter; | ||
800 | cpuhw->events[n0] = counter->hw.config; | ||
801 | cpuhw->flags[n0] = counter->hw.counter_base; | ||
802 | if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1)) | ||
803 | goto out; | ||
804 | if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1)) | ||
805 | goto out; | ||
806 | |||
807 | counter->hw.config = cpuhw->events[n0]; | ||
808 | ++cpuhw->n_counters; | ||
809 | ++cpuhw->n_added; | ||
810 | |||
811 | ret = 0; | ||
812 | out: | ||
813 | perf_enable(); | ||
814 | local_irq_restore(flags); | ||
815 | return ret; | ||
816 | } | ||
817 | |||
818 | /* | ||
819 | * Remove a counter from the PMU. | ||
820 | */ | ||
821 | static void power_pmu_disable(struct perf_counter *counter) | ||
822 | { | ||
823 | struct cpu_hw_counters *cpuhw; | ||
824 | long i; | ||
825 | unsigned long flags; | ||
826 | |||
827 | local_irq_save(flags); | ||
828 | perf_disable(); | ||
829 | |||
830 | power_pmu_read(counter); | ||
831 | |||
832 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
833 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
834 | if (counter == cpuhw->counter[i]) { | ||
835 | while (++i < cpuhw->n_counters) | ||
836 | cpuhw->counter[i-1] = cpuhw->counter[i]; | ||
837 | --cpuhw->n_counters; | ||
838 | ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); | ||
839 | if (counter->hw.idx) { | ||
840 | write_pmc(counter->hw.idx, 0); | ||
841 | counter->hw.idx = 0; | ||
842 | } | ||
843 | perf_counter_update_userpage(counter); | ||
844 | break; | ||
845 | } | ||
846 | } | ||
847 | for (i = 0; i < cpuhw->n_limited; ++i) | ||
848 | if (counter == cpuhw->limited_counter[i]) | ||
849 | break; | ||
850 | if (i < cpuhw->n_limited) { | ||
851 | while (++i < cpuhw->n_limited) { | ||
852 | cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; | ||
853 | cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; | ||
854 | } | ||
855 | --cpuhw->n_limited; | ||
856 | } | ||
857 | if (cpuhw->n_counters == 0) { | ||
858 | /* disable exceptions if no counters are running */ | ||
859 | cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); | ||
860 | } | ||
861 | |||
862 | perf_enable(); | ||
863 | local_irq_restore(flags); | ||
864 | } | ||
865 | |||
866 | /* | ||
867 | * Re-enable interrupts on a counter after they were throttled | ||
868 | * because they were coming too fast. | ||
869 | */ | ||
870 | static void power_pmu_unthrottle(struct perf_counter *counter) | ||
871 | { | ||
872 | s64 val, left; | ||
873 | unsigned long flags; | ||
874 | |||
875 | if (!counter->hw.idx || !counter->hw.sample_period) | ||
876 | return; | ||
877 | local_irq_save(flags); | ||
878 | perf_disable(); | ||
879 | power_pmu_read(counter); | ||
880 | left = counter->hw.sample_period; | ||
881 | counter->hw.last_period = left; | ||
882 | val = 0; | ||
883 | if (left < 0x80000000L) | ||
884 | val = 0x80000000L - left; | ||
885 | write_pmc(counter->hw.idx, val); | ||
886 | atomic64_set(&counter->hw.prev_count, val); | ||
887 | atomic64_set(&counter->hw.period_left, left); | ||
888 | perf_counter_update_userpage(counter); | ||
889 | perf_enable(); | ||
890 | local_irq_restore(flags); | ||
891 | } | ||
892 | |||
893 | struct pmu power_pmu = { | ||
894 | .enable = power_pmu_enable, | ||
895 | .disable = power_pmu_disable, | ||
896 | .read = power_pmu_read, | ||
897 | .unthrottle = power_pmu_unthrottle, | ||
898 | }; | ||
899 | |||
900 | /* | ||
901 | * Return 1 if we might be able to put counter on a limited PMC, | ||
902 | * or 0 if not. | ||
903 | * A counter can only go on a limited PMC if it counts something | ||
904 | * that a limited PMC can count, doesn't require interrupts, and | ||
905 | * doesn't exclude any processor mode. | ||
906 | */ | ||
907 | static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev, | ||
908 | unsigned int flags) | ||
909 | { | ||
910 | int n; | ||
911 | u64 alt[MAX_EVENT_ALTERNATIVES]; | ||
912 | |||
913 | if (counter->attr.exclude_user | ||
914 | || counter->attr.exclude_kernel | ||
915 | || counter->attr.exclude_hv | ||
916 | || counter->attr.sample_period) | ||
917 | return 0; | ||
918 | |||
919 | if (ppmu->limited_pmc_event(ev)) | ||
920 | return 1; | ||
921 | |||
922 | /* | ||
923 | * The requested event isn't on a limited PMC already; | ||
924 | * see if any alternative code goes on a limited PMC. | ||
925 | */ | ||
926 | if (!ppmu->get_alternatives) | ||
927 | return 0; | ||
928 | |||
929 | flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; | ||
930 | n = ppmu->get_alternatives(ev, flags, alt); | ||
931 | |||
932 | return n > 0; | ||
933 | } | ||
934 | |||
935 | /* | ||
936 | * Find an alternative event that goes on a normal PMC, if possible, | ||
937 | * and return the event code, or 0 if there is no such alternative. | ||
938 | * (Note: event code 0 is "don't count" on all machines.) | ||
939 | */ | ||
940 | static u64 normal_pmc_alternative(u64 ev, unsigned long flags) | ||
941 | { | ||
942 | u64 alt[MAX_EVENT_ALTERNATIVES]; | ||
943 | int n; | ||
944 | |||
945 | flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); | ||
946 | n = ppmu->get_alternatives(ev, flags, alt); | ||
947 | if (!n) | ||
948 | return 0; | ||
949 | return alt[0]; | ||
950 | } | ||
951 | |||
952 | /* Number of perf_counters counting hardware events */ | ||
953 | static atomic_t num_counters; | ||
954 | /* Used to avoid races in calling reserve/release_pmc_hardware */ | ||
955 | static DEFINE_MUTEX(pmc_reserve_mutex); | ||
956 | |||
957 | /* | ||
958 | * Release the PMU if this is the last perf_counter. | ||
959 | */ | ||
960 | static void hw_perf_counter_destroy(struct perf_counter *counter) | ||
961 | { | ||
962 | if (!atomic_add_unless(&num_counters, -1, 1)) { | ||
963 | mutex_lock(&pmc_reserve_mutex); | ||
964 | if (atomic_dec_return(&num_counters) == 0) | ||
965 | release_pmc_hardware(); | ||
966 | mutex_unlock(&pmc_reserve_mutex); | ||
967 | } | ||
968 | } | ||
969 | |||
970 | /* | ||
971 | * Translate a generic cache event config to a raw event code. | ||
972 | */ | ||
973 | static int hw_perf_cache_event(u64 config, u64 *eventp) | ||
974 | { | ||
975 | unsigned long type, op, result; | ||
976 | int ev; | ||
977 | |||
978 | if (!ppmu->cache_events) | ||
979 | return -EINVAL; | ||
980 | |||
981 | /* unpack config */ | ||
982 | type = config & 0xff; | ||
983 | op = (config >> 8) & 0xff; | ||
984 | result = (config >> 16) & 0xff; | ||
985 | |||
986 | if (type >= PERF_COUNT_HW_CACHE_MAX || | ||
987 | op >= PERF_COUNT_HW_CACHE_OP_MAX || | ||
988 | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | ||
989 | return -EINVAL; | ||
990 | |||
991 | ev = (*ppmu->cache_events)[type][op][result]; | ||
992 | if (ev == 0) | ||
993 | return -EOPNOTSUPP; | ||
994 | if (ev == -1) | ||
995 | return -EINVAL; | ||
996 | *eventp = ev; | ||
997 | return 0; | ||
998 | } | ||
999 | |||
1000 | const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
1001 | { | ||
1002 | u64 ev; | ||
1003 | unsigned long flags; | ||
1004 | struct perf_counter *ctrs[MAX_HWCOUNTERS]; | ||
1005 | u64 events[MAX_HWCOUNTERS]; | ||
1006 | unsigned int cflags[MAX_HWCOUNTERS]; | ||
1007 | int n; | ||
1008 | int err; | ||
1009 | |||
1010 | if (!ppmu) | ||
1011 | return ERR_PTR(-ENXIO); | ||
1012 | switch (counter->attr.type) { | ||
1013 | case PERF_TYPE_HARDWARE: | ||
1014 | ev = counter->attr.config; | ||
1015 | if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) | ||
1016 | return ERR_PTR(-EOPNOTSUPP); | ||
1017 | ev = ppmu->generic_events[ev]; | ||
1018 | break; | ||
1019 | case PERF_TYPE_HW_CACHE: | ||
1020 | err = hw_perf_cache_event(counter->attr.config, &ev); | ||
1021 | if (err) | ||
1022 | return ERR_PTR(err); | ||
1023 | break; | ||
1024 | case PERF_TYPE_RAW: | ||
1025 | ev = counter->attr.config; | ||
1026 | break; | ||
1027 | default: | ||
1028 | return ERR_PTR(-EINVAL); | ||
1029 | } | ||
1030 | counter->hw.config_base = ev; | ||
1031 | counter->hw.idx = 0; | ||
1032 | |||
1033 | /* | ||
1034 | * If we are not running on a hypervisor, force the | ||
1035 | * exclude_hv bit to 0 so that we don't care what | ||
1036 | * the user set it to. | ||
1037 | */ | ||
1038 | if (!firmware_has_feature(FW_FEATURE_LPAR)) | ||
1039 | counter->attr.exclude_hv = 0; | ||
1040 | |||
1041 | /* | ||
1042 | * If this is a per-task counter, then we can use | ||
1043 | * PM_RUN_* events interchangeably with their non RUN_* | ||
1044 | * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. | ||
1045 | * XXX we should check if the task is an idle task. | ||
1046 | */ | ||
1047 | flags = 0; | ||
1048 | if (counter->ctx->task) | ||
1049 | flags |= PPMU_ONLY_COUNT_RUN; | ||
1050 | |||
1051 | /* | ||
1052 | * If this machine has limited counters, check whether this | ||
1053 | * event could go on a limited counter. | ||
1054 | */ | ||
1055 | if (ppmu->flags & PPMU_LIMITED_PMC5_6) { | ||
1056 | if (can_go_on_limited_pmc(counter, ev, flags)) { | ||
1057 | flags |= PPMU_LIMITED_PMC_OK; | ||
1058 | } else if (ppmu->limited_pmc_event(ev)) { | ||
1059 | /* | ||
1060 | * The requested event is on a limited PMC, | ||
1061 | * but we can't use a limited PMC; see if any | ||
1062 | * alternative goes on a normal PMC. | ||
1063 | */ | ||
1064 | ev = normal_pmc_alternative(ev, flags); | ||
1065 | if (!ev) | ||
1066 | return ERR_PTR(-EINVAL); | ||
1067 | } | ||
1068 | } | ||
1069 | |||
1070 | /* | ||
1071 | * If this is in a group, check if it can go on with all the | ||
1072 | * other hardware counters in the group. We assume the counter | ||
1073 | * hasn't been linked into its leader's sibling list at this point. | ||
1074 | */ | ||
1075 | n = 0; | ||
1076 | if (counter->group_leader != counter) { | ||
1077 | n = collect_events(counter->group_leader, ppmu->n_counter - 1, | ||
1078 | ctrs, events, cflags); | ||
1079 | if (n < 0) | ||
1080 | return ERR_PTR(-EINVAL); | ||
1081 | } | ||
1082 | events[n] = ev; | ||
1083 | ctrs[n] = counter; | ||
1084 | cflags[n] = flags; | ||
1085 | if (check_excludes(ctrs, cflags, n, 1)) | ||
1086 | return ERR_PTR(-EINVAL); | ||
1087 | if (power_check_constraints(events, cflags, n + 1)) | ||
1088 | return ERR_PTR(-EINVAL); | ||
1089 | |||
1090 | counter->hw.config = events[n]; | ||
1091 | counter->hw.counter_base = cflags[n]; | ||
1092 | counter->hw.last_period = counter->hw.sample_period; | ||
1093 | atomic64_set(&counter->hw.period_left, counter->hw.last_period); | ||
1094 | |||
1095 | /* | ||
1096 | * See if we need to reserve the PMU. | ||
1097 | * If no counters are currently in use, then we have to take a | ||
1098 | * mutex to ensure that we don't race with another task doing | ||
1099 | * reserve_pmc_hardware or release_pmc_hardware. | ||
1100 | */ | ||
1101 | err = 0; | ||
1102 | if (!atomic_inc_not_zero(&num_counters)) { | ||
1103 | mutex_lock(&pmc_reserve_mutex); | ||
1104 | if (atomic_read(&num_counters) == 0 && | ||
1105 | reserve_pmc_hardware(perf_counter_interrupt)) | ||
1106 | err = -EBUSY; | ||
1107 | else | ||
1108 | atomic_inc(&num_counters); | ||
1109 | mutex_unlock(&pmc_reserve_mutex); | ||
1110 | } | ||
1111 | counter->destroy = hw_perf_counter_destroy; | ||
1112 | |||
1113 | if (err) | ||
1114 | return ERR_PTR(err); | ||
1115 | return &power_pmu; | ||
1116 | } | ||
1117 | |||
1118 | /* | ||
1119 | * A counter has overflowed; update its count and record | ||
1120 | * things if requested. Note that interrupts are hard-disabled | ||
1121 | * here so there is no possibility of being interrupted. | ||
1122 | */ | ||
1123 | static void record_and_restart(struct perf_counter *counter, unsigned long val, | ||
1124 | struct pt_regs *regs, int nmi) | ||
1125 | { | ||
1126 | u64 period = counter->hw.sample_period; | ||
1127 | s64 prev, delta, left; | ||
1128 | int record = 0; | ||
1129 | |||
1130 | /* we don't have to worry about interrupts here */ | ||
1131 | prev = atomic64_read(&counter->hw.prev_count); | ||
1132 | delta = (val - prev) & 0xfffffffful; | ||
1133 | atomic64_add(delta, &counter->count); | ||
1134 | |||
1135 | /* | ||
1136 | * See if the total period for this counter has expired, | ||
1137 | * and update for the next period. | ||
1138 | */ | ||
1139 | val = 0; | ||
1140 | left = atomic64_read(&counter->hw.period_left) - delta; | ||
1141 | if (period) { | ||
1142 | if (left <= 0) { | ||
1143 | left += period; | ||
1144 | if (left <= 0) | ||
1145 | left = period; | ||
1146 | record = 1; | ||
1147 | } | ||
1148 | if (left < 0x80000000LL) | ||
1149 | val = 0x80000000LL - left; | ||
1150 | } | ||
1151 | |||
1152 | /* | ||
1153 | * Finally record data if requested. | ||
1154 | */ | ||
1155 | if (record) { | ||
1156 | struct perf_sample_data data = { | ||
1157 | .regs = regs, | ||
1158 | .addr = 0, | ||
1159 | .period = counter->hw.last_period, | ||
1160 | }; | ||
1161 | |||
1162 | if (counter->attr.sample_type & PERF_SAMPLE_ADDR) | ||
1163 | perf_get_data_addr(regs, &data.addr); | ||
1164 | |||
1165 | if (perf_counter_overflow(counter, nmi, &data)) { | ||
1166 | /* | ||
1167 | * Interrupts are coming too fast - throttle them | ||
1168 | * by setting the counter to 0, so it will be | ||
1169 | * at least 2^30 cycles until the next interrupt | ||
1170 | * (assuming each counter counts at most 2 counts | ||
1171 | * per cycle). | ||
1172 | */ | ||
1173 | val = 0; | ||
1174 | left = ~0ULL >> 1; | ||
1175 | } | ||
1176 | } | ||
1177 | |||
1178 | write_pmc(counter->hw.idx, val); | ||
1179 | atomic64_set(&counter->hw.prev_count, val); | ||
1180 | atomic64_set(&counter->hw.period_left, left); | ||
1181 | perf_counter_update_userpage(counter); | ||
1182 | } | ||
1183 | |||
1184 | /* | ||
1185 | * Called from generic code to get the misc flags (i.e. processor mode) | ||
1186 | * for an event. | ||
1187 | */ | ||
1188 | unsigned long perf_misc_flags(struct pt_regs *regs) | ||
1189 | { | ||
1190 | u32 flags = perf_get_misc_flags(regs); | ||
1191 | |||
1192 | if (flags) | ||
1193 | return flags; | ||
1194 | return user_mode(regs) ? PERF_EVENT_MISC_USER : | ||
1195 | PERF_EVENT_MISC_KERNEL; | ||
1196 | } | ||
1197 | |||
1198 | /* | ||
1199 | * Called from generic code to get the instruction pointer | ||
1200 | * for an event. | ||
1201 | */ | ||
1202 | unsigned long perf_instruction_pointer(struct pt_regs *regs) | ||
1203 | { | ||
1204 | unsigned long ip; | ||
1205 | |||
1206 | if (TRAP(regs) != 0xf00) | ||
1207 | return regs->nip; /* not a PMU interrupt */ | ||
1208 | |||
1209 | ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs); | ||
1210 | return ip; | ||
1211 | } | ||
1212 | |||
1213 | /* | ||
1214 | * Performance monitor interrupt stuff | ||
1215 | */ | ||
1216 | static void perf_counter_interrupt(struct pt_regs *regs) | ||
1217 | { | ||
1218 | int i; | ||
1219 | struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
1220 | struct perf_counter *counter; | ||
1221 | unsigned long val; | ||
1222 | int found = 0; | ||
1223 | int nmi; | ||
1224 | |||
1225 | if (cpuhw->n_limited) | ||
1226 | freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), | ||
1227 | mfspr(SPRN_PMC6)); | ||
1228 | |||
1229 | perf_read_regs(regs); | ||
1230 | |||
1231 | nmi = perf_intr_is_nmi(regs); | ||
1232 | if (nmi) | ||
1233 | nmi_enter(); | ||
1234 | else | ||
1235 | irq_enter(); | ||
1236 | |||
1237 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
1238 | counter = cpuhw->counter[i]; | ||
1239 | if (!counter->hw.idx || is_limited_pmc(counter->hw.idx)) | ||
1240 | continue; | ||
1241 | val = read_pmc(counter->hw.idx); | ||
1242 | if ((int)val < 0) { | ||
1243 | /* counter has overflowed */ | ||
1244 | found = 1; | ||
1245 | record_and_restart(counter, val, regs, nmi); | ||
1246 | } | ||
1247 | } | ||
1248 | |||
1249 | /* | ||
1250 | * In case we didn't find and reset the counter that caused | ||
1251 | * the interrupt, scan all counters and reset any that are | ||
1252 | * negative, to avoid getting continual interrupts. | ||
1253 | * Any that we processed in the previous loop will not be negative. | ||
1254 | */ | ||
1255 | if (!found) { | ||
1256 | for (i = 0; i < ppmu->n_counter; ++i) { | ||
1257 | if (is_limited_pmc(i + 1)) | ||
1258 | continue; | ||
1259 | val = read_pmc(i + 1); | ||
1260 | if ((int)val < 0) | ||
1261 | write_pmc(i + 1, 0); | ||
1262 | } | ||
1263 | } | ||
1264 | |||
1265 | /* | ||
1266 | * Reset MMCR0 to its normal value. This will set PMXE and | ||
1267 | * clear FC (freeze counters) and PMAO (perf mon alert occurred) | ||
1268 | * and thus allow interrupts to occur again. | ||
1269 | * XXX might want to use MSR.PM to keep the counters frozen until | ||
1270 | * we get back out of this interrupt. | ||
1271 | */ | ||
1272 | write_mmcr0(cpuhw, cpuhw->mmcr[0]); | ||
1273 | |||
1274 | if (nmi) | ||
1275 | nmi_exit(); | ||
1276 | else | ||
1277 | irq_exit(); | ||
1278 | } | ||
1279 | |||
1280 | void hw_perf_counter_setup(int cpu) | ||
1281 | { | ||
1282 | struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu); | ||
1283 | |||
1284 | memset(cpuhw, 0, sizeof(*cpuhw)); | ||
1285 | cpuhw->mmcr[0] = MMCR0_FC; | ||
1286 | } | ||
1287 | |||
1288 | int register_power_pmu(struct power_pmu *pmu) | ||
1289 | { | ||
1290 | if (ppmu) | ||
1291 | return -EBUSY; /* something's already registered */ | ||
1292 | |||
1293 | ppmu = pmu; | ||
1294 | pr_info("%s performance monitor hardware support registered\n", | ||
1295 | pmu->name); | ||
1296 | |||
1297 | #ifdef MSR_HV | ||
1298 | /* | ||
1299 | * Use FCHV to ignore kernel events if MSR.HV is set. | ||
1300 | */ | ||
1301 | if (mfmsr() & MSR_HV) | ||
1302 | freeze_counters_kernel = MMCR0_FCHV; | ||
1303 | #endif /* CONFIG_PPC64 */ | ||
1304 | |||
1305 | return 0; | ||
1306 | } | ||