diff options
Diffstat (limited to 'arch/powerpc/include/asm/pte-hash64-64k.h')
-rw-r--r-- | arch/powerpc/include/asm/pte-hash64-64k.h | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/pte-hash64-64k.h b/arch/powerpc/include/asm/pte-hash64-64k.h new file mode 100644 index 000000000000..e05d26fa372f --- /dev/null +++ b/arch/powerpc/include/asm/pte-hash64-64k.h | |||
@@ -0,0 +1,115 @@ | |||
1 | /* To be include by pgtable-hash64.h only */ | ||
2 | |||
3 | /* Additional PTE bits (don't change without checking asm in hash_low.S) */ | ||
4 | #define _PAGE_SPECIAL 0x00000400 /* software: special page */ | ||
5 | #define _PAGE_HPTE_SUB 0x0ffff000 /* combo only: sub pages HPTE bits */ | ||
6 | #define _PAGE_HPTE_SUB0 0x08000000 /* combo only: first sub page */ | ||
7 | #define _PAGE_COMBO 0x10000000 /* this is a combo 4k page */ | ||
8 | #define _PAGE_4K_PFN 0x20000000 /* PFN is for a single 4k page */ | ||
9 | |||
10 | /* For 64K page, we don't have a separate _PAGE_HASHPTE bit. Instead, | ||
11 | * we set that to be the whole sub-bits mask. The C code will only | ||
12 | * test this, so a multi-bit mask will work. For combo pages, this | ||
13 | * is equivalent as effectively, the old _PAGE_HASHPTE was an OR of | ||
14 | * all the sub bits. For real 64k pages, we now have the assembly set | ||
15 | * _PAGE_HPTE_SUB0 in addition to setting the HIDX bits which overlap | ||
16 | * that mask. This is fine as long as the HIDX bits are never set on | ||
17 | * a PTE that isn't hashed, which is the case today. | ||
18 | * | ||
19 | * A little nit is for the huge page C code, which does the hashing | ||
20 | * in C, we need to provide which bit to use. | ||
21 | */ | ||
22 | #define _PAGE_HASHPTE _PAGE_HPTE_SUB | ||
23 | |||
24 | /* Note the full page bits must be in the same location as for normal | ||
25 | * 4k pages as the same asssembly will be used to insert 64K pages | ||
26 | * wether the kernel has CONFIG_PPC_64K_PAGES or not | ||
27 | */ | ||
28 | #define _PAGE_F_SECOND 0x00008000 /* full page: hidx bits */ | ||
29 | #define _PAGE_F_GIX 0x00007000 /* full page: hidx bits */ | ||
30 | |||
31 | /* PTE flags to conserve for HPTE identification */ | ||
32 | #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_COMBO) | ||
33 | |||
34 | /* Shift to put page number into pte. | ||
35 | * | ||
36 | * That gives us a max RPN of 34 bits, which means a max of 50 bits | ||
37 | * of addressable physical space, or 46 bits for the special 4k PFNs. | ||
38 | */ | ||
39 | #define PTE_RPN_SHIFT (30) | ||
40 | |||
41 | #ifndef __ASSEMBLY__ | ||
42 | |||
43 | /* | ||
44 | * With 64K pages on hash table, we have a special PTE format that | ||
45 | * uses a second "half" of the page table to encode sub-page information | ||
46 | * in order to deal with 64K made of 4K HW pages. Thus we override the | ||
47 | * generic accessors and iterators here | ||
48 | */ | ||
49 | #define __real_pte(e,p) ((real_pte_t) { \ | ||
50 | (e), pte_val(*((p) + PTRS_PER_PTE)) }) | ||
51 | #define __rpte_to_hidx(r,index) ((pte_val((r).pte) & _PAGE_COMBO) ? \ | ||
52 | (((r).hidx >> ((index)<<2)) & 0xf) : ((pte_val((r).pte) >> 12) & 0xf)) | ||
53 | #define __rpte_to_pte(r) ((r).pte) | ||
54 | #define __rpte_sub_valid(rpte, index) \ | ||
55 | (pte_val(rpte.pte) & (_PAGE_HPTE_SUB0 >> (index))) | ||
56 | |||
57 | /* Trick: we set __end to va + 64k, which happens works for | ||
58 | * a 16M page as well as we want only one iteration | ||
59 | */ | ||
60 | #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ | ||
61 | do { \ | ||
62 | unsigned long __end = va + PAGE_SIZE; \ | ||
63 | unsigned __split = (psize == MMU_PAGE_4K || \ | ||
64 | psize == MMU_PAGE_64K_AP); \ | ||
65 | shift = mmu_psize_defs[psize].shift; \ | ||
66 | for (index = 0; va < __end; index++, va += (1L << shift)) { \ | ||
67 | if (!__split || __rpte_sub_valid(rpte, index)) do { \ | ||
68 | |||
69 | #define pte_iterate_hashed_end() } while(0); } } while(0) | ||
70 | |||
71 | #define pte_pagesize_index(mm, addr, pte) \ | ||
72 | (((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) | ||
73 | |||
74 | #define remap_4k_pfn(vma, addr, pfn, prot) \ | ||
75 | remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \ | ||
76 | __pgprot(pgprot_val((prot)) | _PAGE_4K_PFN)) | ||
77 | |||
78 | |||
79 | #ifdef CONFIG_PPC_SUBPAGE_PROT | ||
80 | /* | ||
81 | * For the sub-page protection option, we extend the PGD with one of | ||
82 | * these. Basically we have a 3-level tree, with the top level being | ||
83 | * the protptrs array. To optimize speed and memory consumption when | ||
84 | * only addresses < 4GB are being protected, pointers to the first | ||
85 | * four pages of sub-page protection words are stored in the low_prot | ||
86 | * array. | ||
87 | * Each page of sub-page protection words protects 1GB (4 bytes | ||
88 | * protects 64k). For the 3-level tree, each page of pointers then | ||
89 | * protects 8TB. | ||
90 | */ | ||
91 | struct subpage_prot_table { | ||
92 | unsigned long maxaddr; /* only addresses < this are protected */ | ||
93 | unsigned int **protptrs[2]; | ||
94 | unsigned int *low_prot[4]; | ||
95 | }; | ||
96 | |||
97 | #undef PGD_TABLE_SIZE | ||
98 | #define PGD_TABLE_SIZE ((sizeof(pgd_t) << PGD_INDEX_SIZE) + \ | ||
99 | sizeof(struct subpage_prot_table)) | ||
100 | |||
101 | #define SBP_L1_BITS (PAGE_SHIFT - 2) | ||
102 | #define SBP_L2_BITS (PAGE_SHIFT - 3) | ||
103 | #define SBP_L1_COUNT (1 << SBP_L1_BITS) | ||
104 | #define SBP_L2_COUNT (1 << SBP_L2_BITS) | ||
105 | #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) | ||
106 | #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) | ||
107 | |||
108 | extern void subpage_prot_free(pgd_t *pgd); | ||
109 | |||
110 | static inline struct subpage_prot_table *pgd_subpage_prot(pgd_t *pgd) | ||
111 | { | ||
112 | return (struct subpage_prot_table *)(pgd + PTRS_PER_PGD); | ||
113 | } | ||
114 | #endif /* CONFIG_PPC_SUBPAGE_PROT */ | ||
115 | #endif /* __ASSEMBLY__ */ | ||