diff options
Diffstat (limited to 'arch/parisc/mm/fault.c')
-rw-r--r-- | arch/parisc/mm/fault.c | 271 |
1 files changed, 271 insertions, 0 deletions
diff --git a/arch/parisc/mm/fault.c b/arch/parisc/mm/fault.c new file mode 100644 index 000000000000..eaa701479f5f --- /dev/null +++ b/arch/parisc/mm/fault.c | |||
@@ -0,0 +1,271 @@ | |||
1 | /* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $ | ||
2 | * | ||
3 | * This file is subject to the terms and conditions of the GNU General Public | ||
4 | * License. See the file "COPYING" in the main directory of this archive | ||
5 | * for more details. | ||
6 | * | ||
7 | * | ||
8 | * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle | ||
9 | * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) | ||
10 | * Copyright 1999 Hewlett Packard Co. | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/mm.h> | ||
15 | #include <linux/ptrace.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/module.h> | ||
19 | |||
20 | #include <asm/uaccess.h> | ||
21 | #include <asm/traps.h> | ||
22 | |||
23 | #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */ | ||
24 | /* dumped to the console via printk) */ | ||
25 | |||
26 | |||
27 | /* Defines for parisc_acctyp() */ | ||
28 | #define READ 0 | ||
29 | #define WRITE 1 | ||
30 | |||
31 | /* Various important other fields */ | ||
32 | #define bit22set(x) (x & 0x00000200) | ||
33 | #define bits23_25set(x) (x & 0x000001c0) | ||
34 | #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80) | ||
35 | /* extended opcode is 0x6a */ | ||
36 | |||
37 | #define BITSSET 0x1c0 /* for identifying LDCW */ | ||
38 | |||
39 | |||
40 | DEFINE_PER_CPU(struct exception_data, exception_data); | ||
41 | |||
42 | /* | ||
43 | * parisc_acctyp(unsigned int inst) -- | ||
44 | * Given a PA-RISC memory access instruction, determine if the | ||
45 | * the instruction would perform a memory read or memory write | ||
46 | * operation. | ||
47 | * | ||
48 | * This function assumes that the given instruction is a memory access | ||
49 | * instruction (i.e. you should really only call it if you know that | ||
50 | * the instruction has generated some sort of a memory access fault). | ||
51 | * | ||
52 | * Returns: | ||
53 | * VM_READ if read operation | ||
54 | * VM_WRITE if write operation | ||
55 | * VM_EXEC if execute operation | ||
56 | */ | ||
57 | static unsigned long | ||
58 | parisc_acctyp(unsigned long code, unsigned int inst) | ||
59 | { | ||
60 | if (code == 6 || code == 16) | ||
61 | return VM_EXEC; | ||
62 | |||
63 | switch (inst & 0xf0000000) { | ||
64 | case 0x40000000: /* load */ | ||
65 | case 0x50000000: /* new load */ | ||
66 | return VM_READ; | ||
67 | |||
68 | case 0x60000000: /* store */ | ||
69 | case 0x70000000: /* new store */ | ||
70 | return VM_WRITE; | ||
71 | |||
72 | case 0x20000000: /* coproc */ | ||
73 | case 0x30000000: /* coproc2 */ | ||
74 | if (bit22set(inst)) | ||
75 | return VM_WRITE; | ||
76 | |||
77 | case 0x0: /* indexed/memory management */ | ||
78 | if (bit22set(inst)) { | ||
79 | /* | ||
80 | * Check for the 'Graphics Flush Read' instruction. | ||
81 | * It resembles an FDC instruction, except for bits | ||
82 | * 20 and 21. Any combination other than zero will | ||
83 | * utilize the block mover functionality on some | ||
84 | * older PA-RISC platforms. The case where a block | ||
85 | * move is performed from VM to graphics IO space | ||
86 | * should be treated as a READ. | ||
87 | * | ||
88 | * The significance of bits 20,21 in the FDC | ||
89 | * instruction is: | ||
90 | * | ||
91 | * 00 Flush data cache (normal instruction behavior) | ||
92 | * 01 Graphics flush write (IO space -> VM) | ||
93 | * 10 Graphics flush read (VM -> IO space) | ||
94 | * 11 Graphics flush read/write (VM <-> IO space) | ||
95 | */ | ||
96 | if (isGraphicsFlushRead(inst)) | ||
97 | return VM_READ; | ||
98 | return VM_WRITE; | ||
99 | } else { | ||
100 | /* | ||
101 | * Check for LDCWX and LDCWS (semaphore instructions). | ||
102 | * If bits 23 through 25 are all 1's it is one of | ||
103 | * the above two instructions and is a write. | ||
104 | * | ||
105 | * Note: With the limited bits we are looking at, | ||
106 | * this will also catch PROBEW and PROBEWI. However, | ||
107 | * these should never get in here because they don't | ||
108 | * generate exceptions of the type: | ||
109 | * Data TLB miss fault/data page fault | ||
110 | * Data memory protection trap | ||
111 | */ | ||
112 | if (bits23_25set(inst) == BITSSET) | ||
113 | return VM_WRITE; | ||
114 | } | ||
115 | return VM_READ; /* Default */ | ||
116 | } | ||
117 | return VM_READ; /* Default */ | ||
118 | } | ||
119 | |||
120 | #undef bit22set | ||
121 | #undef bits23_25set | ||
122 | #undef isGraphicsFlushRead | ||
123 | #undef BITSSET | ||
124 | |||
125 | |||
126 | #if 0 | ||
127 | /* This is the treewalk to find a vma which is the highest that has | ||
128 | * a start < addr. We're using find_vma_prev instead right now, but | ||
129 | * we might want to use this at some point in the future. Probably | ||
130 | * not, but I want it committed to CVS so I don't lose it :-) | ||
131 | */ | ||
132 | while (tree != vm_avl_empty) { | ||
133 | if (tree->vm_start > addr) { | ||
134 | tree = tree->vm_avl_left; | ||
135 | } else { | ||
136 | prev = tree; | ||
137 | if (prev->vm_next == NULL) | ||
138 | break; | ||
139 | if (prev->vm_next->vm_start > addr) | ||
140 | break; | ||
141 | tree = tree->vm_avl_right; | ||
142 | } | ||
143 | } | ||
144 | #endif | ||
145 | |||
146 | void do_page_fault(struct pt_regs *regs, unsigned long code, | ||
147 | unsigned long address) | ||
148 | { | ||
149 | struct vm_area_struct *vma, *prev_vma; | ||
150 | struct task_struct *tsk = current; | ||
151 | struct mm_struct *mm = tsk->mm; | ||
152 | const struct exception_table_entry *fix; | ||
153 | unsigned long acc_type; | ||
154 | |||
155 | if (in_interrupt() || !mm) | ||
156 | goto no_context; | ||
157 | |||
158 | down_read(&mm->mmap_sem); | ||
159 | vma = find_vma_prev(mm, address, &prev_vma); | ||
160 | if (!vma || address < vma->vm_start) | ||
161 | goto check_expansion; | ||
162 | /* | ||
163 | * Ok, we have a good vm_area for this memory access. We still need to | ||
164 | * check the access permissions. | ||
165 | */ | ||
166 | |||
167 | good_area: | ||
168 | |||
169 | acc_type = parisc_acctyp(code,regs->iir); | ||
170 | |||
171 | if ((vma->vm_flags & acc_type) != acc_type) | ||
172 | goto bad_area; | ||
173 | |||
174 | /* | ||
175 | * If for any reason at all we couldn't handle the fault, make | ||
176 | * sure we exit gracefully rather than endlessly redo the | ||
177 | * fault. | ||
178 | */ | ||
179 | |||
180 | switch (handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0)) { | ||
181 | case 1: | ||
182 | ++current->min_flt; | ||
183 | break; | ||
184 | case 2: | ||
185 | ++current->maj_flt; | ||
186 | break; | ||
187 | case 0: | ||
188 | /* | ||
189 | * We ran out of memory, or some other thing happened | ||
190 | * to us that made us unable to handle the page fault | ||
191 | * gracefully. | ||
192 | */ | ||
193 | goto bad_area; | ||
194 | default: | ||
195 | goto out_of_memory; | ||
196 | } | ||
197 | up_read(&mm->mmap_sem); | ||
198 | return; | ||
199 | |||
200 | check_expansion: | ||
201 | vma = prev_vma; | ||
202 | if (vma && (expand_stack(vma, address) == 0)) | ||
203 | goto good_area; | ||
204 | |||
205 | /* | ||
206 | * Something tried to access memory that isn't in our memory map.. | ||
207 | */ | ||
208 | bad_area: | ||
209 | up_read(&mm->mmap_sem); | ||
210 | |||
211 | if (user_mode(regs)) { | ||
212 | struct siginfo si; | ||
213 | |||
214 | #ifdef PRINT_USER_FAULTS | ||
215 | printk(KERN_DEBUG "\n"); | ||
216 | printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n", | ||
217 | tsk->pid, tsk->comm, code, address); | ||
218 | if (vma) { | ||
219 | printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n", | ||
220 | vma->vm_start, vma->vm_end); | ||
221 | } | ||
222 | show_regs(regs); | ||
223 | #endif | ||
224 | /* FIXME: actually we need to get the signo and code correct */ | ||
225 | si.si_signo = SIGSEGV; | ||
226 | si.si_errno = 0; | ||
227 | si.si_code = SEGV_MAPERR; | ||
228 | si.si_addr = (void __user *) address; | ||
229 | force_sig_info(SIGSEGV, &si, current); | ||
230 | return; | ||
231 | } | ||
232 | |||
233 | no_context: | ||
234 | |||
235 | if (!user_mode(regs)) { | ||
236 | fix = search_exception_tables(regs->iaoq[0]); | ||
237 | |||
238 | if (fix) { | ||
239 | struct exception_data *d; | ||
240 | |||
241 | d = &__get_cpu_var(exception_data); | ||
242 | d->fault_ip = regs->iaoq[0]; | ||
243 | d->fault_space = regs->isr; | ||
244 | d->fault_addr = regs->ior; | ||
245 | |||
246 | regs->iaoq[0] = ((fix->fixup) & ~3); | ||
247 | |||
248 | /* | ||
249 | * NOTE: In some cases the faulting instruction | ||
250 | * may be in the delay slot of a branch. We | ||
251 | * don't want to take the branch, so we don't | ||
252 | * increment iaoq[1], instead we set it to be | ||
253 | * iaoq[0]+4, and clear the B bit in the PSW | ||
254 | */ | ||
255 | |||
256 | regs->iaoq[1] = regs->iaoq[0] + 4; | ||
257 | regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */ | ||
258 | |||
259 | return; | ||
260 | } | ||
261 | } | ||
262 | |||
263 | parisc_terminate("Bad Address (null pointer deref?)", regs, code, address); | ||
264 | |||
265 | out_of_memory: | ||
266 | up_read(&mm->mmap_sem); | ||
267 | printk(KERN_CRIT "VM: killing process %s\n", current->comm); | ||
268 | if (user_mode(regs)) | ||
269 | do_exit(SIGKILL); | ||
270 | goto no_context; | ||
271 | } | ||