aboutsummaryrefslogtreecommitdiffstats
path: root/arch/parisc/kernel/time.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/parisc/kernel/time.c')
-rw-r--r--arch/parisc/kernel/time.c208
1 files changed, 139 insertions, 69 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c
index ab641d67f551..b3496b592a2d 100644
--- a/arch/parisc/kernel/time.c
+++ b/arch/parisc/kernel/time.c
@@ -32,8 +32,7 @@
32 32
33#include <linux/timex.h> 33#include <linux/timex.h>
34 34
35static long clocktick __read_mostly; /* timer cycles per tick */ 35static unsigned long clocktick __read_mostly; /* timer cycles per tick */
36static long halftick __read_mostly;
37 36
38#ifdef CONFIG_SMP 37#ifdef CONFIG_SMP
39extern void smp_do_timer(struct pt_regs *regs); 38extern void smp_do_timer(struct pt_regs *regs);
@@ -41,46 +40,106 @@ extern void smp_do_timer(struct pt_regs *regs);
41 40
42irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 41irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
43{ 42{
44 long now; 43 unsigned long now;
45 long next_tick; 44 unsigned long next_tick;
46 int nticks; 45 unsigned long cycles_elapsed;
47 int cpu = smp_processor_id(); 46 unsigned long cycles_remainder;
47 unsigned int cpu = smp_processor_id();
48
49 /* gcc can optimize for "read-only" case with a local clocktick */
50 unsigned long cpt = clocktick;
48 51
49 profile_tick(CPU_PROFILING, regs); 52 profile_tick(CPU_PROFILING, regs);
50 53
51 now = mfctl(16); 54 /* Initialize next_tick to the expected tick time. */
52 /* initialize next_tick to time at last clocktick */
53 next_tick = cpu_data[cpu].it_value; 55 next_tick = cpu_data[cpu].it_value;
54 56
55 /* since time passes between the interrupt and the mfctl() 57 /* Get current interval timer.
56 * above, it is never true that last_tick + clocktick == now. If we 58 * CR16 reads as 64 bits in CPU wide mode.
57 * never miss a clocktick, we could set next_tick = last_tick + clocktick 59 * CR16 reads as 32 bits in CPU narrow mode.
58 * but maybe we'll miss ticks, hence the loop.
59 *
60 * Variables are *signed*.
61 */ 60 */
61 now = mfctl(16);
62
63 cycles_elapsed = now - next_tick;
62 64
63 nticks = 0; 65 if ((cycles_elapsed >> 5) < cpt) {
64 while((next_tick - now) < halftick) { 66 /* use "cheap" math (add/subtract) instead
65 next_tick += clocktick; 67 * of the more expensive div/mul method
66 nticks++; 68 */
69 cycles_remainder = cycles_elapsed;
70 while (cycles_remainder > cpt) {
71 cycles_remainder -= cpt;
72 }
73 } else {
74 cycles_remainder = cycles_elapsed % cpt;
67 } 75 }
68 mtctl(next_tick, 16); 76
77 /* Can we differentiate between "early CR16" (aka Scenario 1) and
78 * "long delay" (aka Scenario 3)? I don't think so.
79 *
80 * We expected timer_interrupt to be delivered at least a few hundred
81 * cycles after the IT fires. But it's arbitrary how much time passes
82 * before we call it "late". I've picked one second.
83 */
84/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
85#if HZ == 1000
86 if (cycles_elapsed > (cpt << 10) )
87#elif HZ == 250
88 if (cycles_elapsed > (cpt << 8) )
89#elif HZ == 100
90 if (cycles_elapsed > (cpt << 7) )
91#else
92#warn WTF is HZ set to anyway?
93 if (cycles_elapsed > (HZ * cpt) )
94#endif
95 {
96 /* Scenario 3: very long delay? bad in any case */
97 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
98 " cycles %lX rem %lX "
99 " next/now %lX/%lX\n",
100 cpu,
101 cycles_elapsed, cycles_remainder,
102 next_tick, now );
103 }
104
105 /* convert from "division remainder" to "remainder of clock tick" */
106 cycles_remainder = cpt - cycles_remainder;
107
108 /* Determine when (in CR16 cycles) next IT interrupt will fire.
109 * We want IT to fire modulo clocktick even if we miss/skip some.
110 * But those interrupts don't in fact get delivered that regularly.
111 */
112 next_tick = now + cycles_remainder;
113
69 cpu_data[cpu].it_value = next_tick; 114 cpu_data[cpu].it_value = next_tick;
70 115
71 while (nticks--) { 116 /* Skip one clocktick on purpose if we are likely to miss next_tick.
117 * We want to avoid the new next_tick being less than CR16.
118 * If that happened, itimer wouldn't fire until CR16 wrapped.
119 * We'll catch the tick we missed on the tick after that.
120 */
121 if (!(cycles_remainder >> 13))
122 next_tick += cpt;
123
124 /* Program the IT when to deliver the next interrupt. */
125 /* Only bottom 32-bits of next_tick are written to cr16. */
126 mtctl(next_tick, 16);
127
128
129 /* Done mucking with unreliable delivery of interrupts.
130 * Go do system house keeping.
131 */
72#ifdef CONFIG_SMP 132#ifdef CONFIG_SMP
73 smp_do_timer(regs); 133 smp_do_timer(regs);
74#else 134#else
75 update_process_times(user_mode(regs)); 135 update_process_times(user_mode(regs));
76#endif 136#endif
77 if (cpu == 0) { 137 if (cpu == 0) {
78 write_seqlock(&xtime_lock); 138 write_seqlock(&xtime_lock);
79 do_timer(1); 139 do_timer(regs);
80 write_sequnlock(&xtime_lock); 140 write_sequnlock(&xtime_lock);
81 }
82 } 141 }
83 142
84 /* check soft power switch status */ 143 /* check soft power switch status */
85 if (cpu == 0 && !atomic_read(&power_tasklet.count)) 144 if (cpu == 0 && !atomic_read(&power_tasklet.count))
86 tasklet_schedule(&power_tasklet); 145 tasklet_schedule(&power_tasklet);
@@ -106,14 +165,12 @@ unsigned long profile_pc(struct pt_regs *regs)
106EXPORT_SYMBOL(profile_pc); 165EXPORT_SYMBOL(profile_pc);
107 166
108 167
109/*** converted from ia64 ***/
110/* 168/*
111 * Return the number of micro-seconds that elapsed since the last 169 * Return the number of micro-seconds that elapsed since the last
112 * update to wall time (aka xtime). The xtime_lock 170 * update to wall time (aka xtime). The xtime_lock
113 * must be at least read-locked when calling this routine. 171 * must be at least read-locked when calling this routine.
114 */ 172 */
115static inline unsigned long 173static inline unsigned long gettimeoffset (void)
116gettimeoffset (void)
117{ 174{
118#ifndef CONFIG_SMP 175#ifndef CONFIG_SMP
119 /* 176 /*
@@ -121,21 +178,44 @@ gettimeoffset (void)
121 * Once parisc-linux learns the cr16 difference between processors, 178 * Once parisc-linux learns the cr16 difference between processors,
122 * this could be made to work. 179 * this could be made to work.
123 */ 180 */
124 long last_tick; 181 unsigned long now;
125 long elapsed_cycles; 182 unsigned long prev_tick;
126 183 unsigned long next_tick;
127 /* it_value is the intended time of the next tick */ 184 unsigned long elapsed_cycles;
128 last_tick = cpu_data[smp_processor_id()].it_value; 185 unsigned long usec;
129 186 unsigned long cpuid = smp_processor_id();
130 /* Subtract one tick and account for possible difference between 187 unsigned long cpt = clocktick;
131 * when we expected the tick and when it actually arrived. 188
132 * (aka wall vs real) 189 next_tick = cpu_data[cpuid].it_value;
133 */ 190 now = mfctl(16); /* Read the hardware interval timer. */
134 last_tick -= clocktick * (jiffies - wall_jiffies + 1); 191
135 elapsed_cycles = mfctl(16) - last_tick; 192 prev_tick = next_tick - cpt;
193
194 /* Assume Scenario 1: "now" is later than prev_tick. */
195 elapsed_cycles = now - prev_tick;
196
197/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
198#if HZ == 1000
199 if (elapsed_cycles > (cpt << 10) )
200#elif HZ == 250
201 if (elapsed_cycles > (cpt << 8) )
202#elif HZ == 100
203 if (elapsed_cycles > (cpt << 7) )
204#else
205#warn WTF is HZ set to anyway?
206 if (elapsed_cycles > (HZ * cpt) )
207#endif
208 {
209 /* Scenario 3: clock ticks are missing. */
210 printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
211 " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
212 cpuid, elapsed_cycles / cpt,
213 elapsed_cycles, prev_tick, now, next_tick, cpt);
214 }
136 215
137 /* the precision of this math could be improved */ 216 /* FIXME: Can we improve the precision? Not with PAGE0. */
138 return elapsed_cycles / (PAGE0->mem_10msec / 10000); 217 usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
218 return usec;
139#else 219#else
140 return 0; 220 return 0;
141#endif 221#endif
@@ -146,6 +226,7 @@ do_gettimeofday (struct timeval *tv)
146{ 226{
147 unsigned long flags, seq, usec, sec; 227 unsigned long flags, seq, usec, sec;
148 228
229 /* Hold xtime_lock and adjust timeval. */
149 do { 230 do {
150 seq = read_seqbegin_irqsave(&xtime_lock, flags); 231 seq = read_seqbegin_irqsave(&xtime_lock, flags);
151 usec = gettimeoffset(); 232 usec = gettimeoffset();
@@ -153,25 +234,13 @@ do_gettimeofday (struct timeval *tv)
153 usec += (xtime.tv_nsec / 1000); 234 usec += (xtime.tv_nsec / 1000);
154 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 235 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
155 236
156 if (unlikely(usec > LONG_MAX)) { 237 /* Move adjusted usec's into sec's. */
157 /* This can happen if the gettimeoffset adjustment is
158 * negative and xtime.tv_nsec is smaller than the
159 * adjustment */
160 printk(KERN_ERR "do_gettimeofday() spurious xtime.tv_nsec of %ld\n", usec);
161 usec += USEC_PER_SEC;
162 --sec;
163 /* This should never happen, it means the negative
164 * time adjustment was more than a second, so there's
165 * something seriously wrong */
166 BUG_ON(usec > LONG_MAX);
167 }
168
169
170 while (usec >= USEC_PER_SEC) { 238 while (usec >= USEC_PER_SEC) {
171 usec -= USEC_PER_SEC; 239 usec -= USEC_PER_SEC;
172 ++sec; 240 ++sec;
173 } 241 }
174 242
243 /* Return adjusted result. */
175 tv->tv_sec = sec; 244 tv->tv_sec = sec;
176 tv->tv_usec = usec; 245 tv->tv_usec = usec;
177} 246}
@@ -223,22 +292,23 @@ unsigned long long sched_clock(void)
223} 292}
224 293
225 294
295void __init start_cpu_itimer(void)
296{
297 unsigned int cpu = smp_processor_id();
298 unsigned long next_tick = mfctl(16) + clocktick;
299
300 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
301
302 cpu_data[cpu].it_value = next_tick;
303}
304
226void __init time_init(void) 305void __init time_init(void)
227{ 306{
228 unsigned long next_tick;
229 static struct pdc_tod tod_data; 307 static struct pdc_tod tod_data;
230 308
231 clocktick = (100 * PAGE0->mem_10msec) / HZ; 309 clocktick = (100 * PAGE0->mem_10msec) / HZ;
232 halftick = clocktick / 2;
233 310
234 /* Setup clock interrupt timing */ 311 start_cpu_itimer(); /* get CPU 0 started */
235
236 next_tick = mfctl(16);
237 next_tick += clocktick;
238 cpu_data[smp_processor_id()].it_value = next_tick;
239
240 /* kick off Itimer (CR16) */
241 mtctl(next_tick, 16);
242 312
243 if(pdc_tod_read(&tod_data) == 0) { 313 if(pdc_tod_read(&tod_data) == 0) {
244 write_seqlock_irq(&xtime_lock); 314 write_seqlock_irq(&xtime_lock);