diff options
Diffstat (limited to 'arch/mips/pci/pci-octeon.c')
-rw-r--r-- | arch/mips/pci/pci-octeon.c | 675 |
1 files changed, 675 insertions, 0 deletions
diff --git a/arch/mips/pci/pci-octeon.c b/arch/mips/pci/pci-octeon.c new file mode 100644 index 000000000000..9cb0c807f564 --- /dev/null +++ b/arch/mips/pci/pci-octeon.c | |||
@@ -0,0 +1,675 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2005-2009 Cavium Networks | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | #include <linux/pci.h> | ||
11 | #include <linux/interrupt.h> | ||
12 | #include <linux/time.h> | ||
13 | #include <linux/delay.h> | ||
14 | |||
15 | #include <asm/time.h> | ||
16 | |||
17 | #include <asm/octeon/octeon.h> | ||
18 | #include <asm/octeon/cvmx-npi-defs.h> | ||
19 | #include <asm/octeon/cvmx-pci-defs.h> | ||
20 | #include <asm/octeon/pci-octeon.h> | ||
21 | |||
22 | #define USE_OCTEON_INTERNAL_ARBITER | ||
23 | |||
24 | /* | ||
25 | * Octeon's PCI controller uses did=3, subdid=2 for PCI IO | ||
26 | * addresses. Use PCI endian swapping 1 so no address swapping is | ||
27 | * necessary. The Linux io routines will endian swap the data. | ||
28 | */ | ||
29 | #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull | ||
30 | #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) | ||
31 | |||
32 | /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ | ||
33 | #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) | ||
34 | |||
35 | /** | ||
36 | * This is the bit decoding used for the Octeon PCI controller addresses | ||
37 | */ | ||
38 | union octeon_pci_address { | ||
39 | uint64_t u64; | ||
40 | struct { | ||
41 | uint64_t upper:2; | ||
42 | uint64_t reserved:13; | ||
43 | uint64_t io:1; | ||
44 | uint64_t did:5; | ||
45 | uint64_t subdid:3; | ||
46 | uint64_t reserved2:4; | ||
47 | uint64_t endian_swap:2; | ||
48 | uint64_t reserved3:10; | ||
49 | uint64_t bus:8; | ||
50 | uint64_t dev:5; | ||
51 | uint64_t func:3; | ||
52 | uint64_t reg:8; | ||
53 | } s; | ||
54 | }; | ||
55 | |||
56 | int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev, | ||
57 | u8 slot, u8 pin); | ||
58 | enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; | ||
59 | |||
60 | /** | ||
61 | * Map a PCI device to the appropriate interrupt line | ||
62 | * | ||
63 | * @dev: The Linux PCI device structure for the device to map | ||
64 | * @slot: The slot number for this device on __BUS 0__. Linux | ||
65 | * enumerates through all the bridges and figures out the | ||
66 | * slot on Bus 0 where this device eventually hooks to. | ||
67 | * @pin: The PCI interrupt pin read from the device, then swizzled | ||
68 | * as it goes through each bridge. | ||
69 | * Returns Interrupt number for the device | ||
70 | */ | ||
71 | int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) | ||
72 | { | ||
73 | if (octeon_pcibios_map_irq) | ||
74 | return octeon_pcibios_map_irq(dev, slot, pin); | ||
75 | else | ||
76 | panic("octeon_pcibios_map_irq not set."); | ||
77 | } | ||
78 | |||
79 | |||
80 | /* | ||
81 | * Called to perform platform specific PCI setup | ||
82 | */ | ||
83 | int pcibios_plat_dev_init(struct pci_dev *dev) | ||
84 | { | ||
85 | uint16_t config; | ||
86 | uint32_t dconfig; | ||
87 | int pos; | ||
88 | /* | ||
89 | * Force the Cache line setting to 64 bytes. The standard | ||
90 | * Linux bus scan doesn't seem to set it. Octeon really has | ||
91 | * 128 byte lines, but Intel bridges get really upset if you | ||
92 | * try and set values above 64 bytes. Value is specified in | ||
93 | * 32bit words. | ||
94 | */ | ||
95 | pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); | ||
96 | /* Set latency timers for all devices */ | ||
97 | pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48); | ||
98 | |||
99 | /* Enable reporting System errors and parity errors on all devices */ | ||
100 | /* Enable parity checking and error reporting */ | ||
101 | pci_read_config_word(dev, PCI_COMMAND, &config); | ||
102 | config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; | ||
103 | pci_write_config_word(dev, PCI_COMMAND, config); | ||
104 | |||
105 | if (dev->subordinate) { | ||
106 | /* Set latency timers on sub bridges */ | ||
107 | pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48); | ||
108 | /* More bridge error detection */ | ||
109 | pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); | ||
110 | config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; | ||
111 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); | ||
112 | } | ||
113 | |||
114 | /* Enable the PCIe normal error reporting */ | ||
115 | pos = pci_find_capability(dev, PCI_CAP_ID_EXP); | ||
116 | if (pos) { | ||
117 | /* Update Device Control */ | ||
118 | pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config); | ||
119 | /* Correctable Error Reporting */ | ||
120 | config |= PCI_EXP_DEVCTL_CERE; | ||
121 | /* Non-Fatal Error Reporting */ | ||
122 | config |= PCI_EXP_DEVCTL_NFERE; | ||
123 | /* Fatal Error Reporting */ | ||
124 | config |= PCI_EXP_DEVCTL_FERE; | ||
125 | /* Unsupported Request */ | ||
126 | config |= PCI_EXP_DEVCTL_URRE; | ||
127 | pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config); | ||
128 | } | ||
129 | |||
130 | /* Find the Advanced Error Reporting capability */ | ||
131 | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); | ||
132 | if (pos) { | ||
133 | /* Clear Uncorrectable Error Status */ | ||
134 | pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | ||
135 | &dconfig); | ||
136 | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | ||
137 | dconfig); | ||
138 | /* Enable reporting of all uncorrectable errors */ | ||
139 | /* Uncorrectable Error Mask - turned on bits disable errors */ | ||
140 | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); | ||
141 | /* | ||
142 | * Leave severity at HW default. This only controls if | ||
143 | * errors are reported as uncorrectable or | ||
144 | * correctable, not if the error is reported. | ||
145 | */ | ||
146 | /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ | ||
147 | /* Clear Correctable Error Status */ | ||
148 | pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); | ||
149 | pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); | ||
150 | /* Enable reporting of all correctable errors */ | ||
151 | /* Correctable Error Mask - turned on bits disable errors */ | ||
152 | pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); | ||
153 | /* Advanced Error Capabilities */ | ||
154 | pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); | ||
155 | /* ECRC Generation Enable */ | ||
156 | if (config & PCI_ERR_CAP_ECRC_GENC) | ||
157 | config |= PCI_ERR_CAP_ECRC_GENE; | ||
158 | /* ECRC Check Enable */ | ||
159 | if (config & PCI_ERR_CAP_ECRC_CHKC) | ||
160 | config |= PCI_ERR_CAP_ECRC_CHKE; | ||
161 | pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); | ||
162 | /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ | ||
163 | /* Report all errors to the root complex */ | ||
164 | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, | ||
165 | PCI_ERR_ROOT_CMD_COR_EN | | ||
166 | PCI_ERR_ROOT_CMD_NONFATAL_EN | | ||
167 | PCI_ERR_ROOT_CMD_FATAL_EN); | ||
168 | /* Clear the Root status register */ | ||
169 | pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); | ||
170 | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); | ||
171 | } | ||
172 | |||
173 | return 0; | ||
174 | } | ||
175 | |||
176 | /** | ||
177 | * Return the mapping of PCI device number to IRQ line. Each | ||
178 | * character in the return string represents the interrupt | ||
179 | * line for the device at that position. Device 1 maps to the | ||
180 | * first character, etc. The characters A-D are used for PCI | ||
181 | * interrupts. | ||
182 | * | ||
183 | * Returns PCI interrupt mapping | ||
184 | */ | ||
185 | const char *octeon_get_pci_interrupts(void) | ||
186 | { | ||
187 | /* | ||
188 | * Returning an empty string causes the interrupts to be | ||
189 | * routed based on the PCI specification. From the PCI spec: | ||
190 | * | ||
191 | * INTA# of Device Number 0 is connected to IRQW on the system | ||
192 | * board. (Device Number has no significance regarding being | ||
193 | * located on the system board or in a connector.) INTA# of | ||
194 | * Device Number 1 is connected to IRQX on the system | ||
195 | * board. INTA# of Device Number 2 is connected to IRQY on the | ||
196 | * system board. INTA# of Device Number 3 is connected to IRQZ | ||
197 | * on the system board. The table below describes how each | ||
198 | * agent's INTx# lines are connected to the system board | ||
199 | * interrupt lines. The following equation can be used to | ||
200 | * determine to which INTx# signal on the system board a given | ||
201 | * device's INTx# line(s) is connected. | ||
202 | * | ||
203 | * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, | ||
204 | * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = | ||
205 | * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and | ||
206 | * INTD# = 3) | ||
207 | */ | ||
208 | switch (octeon_bootinfo->board_type) { | ||
209 | case CVMX_BOARD_TYPE_NAO38: | ||
210 | /* This is really the NAC38 */ | ||
211 | return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; | ||
212 | case CVMX_BOARD_TYPE_THUNDER: | ||
213 | return ""; | ||
214 | case CVMX_BOARD_TYPE_EBH3000: | ||
215 | return ""; | ||
216 | case CVMX_BOARD_TYPE_EBH3100: | ||
217 | case CVMX_BOARD_TYPE_CN3010_EVB_HS5: | ||
218 | case CVMX_BOARD_TYPE_CN3005_EVB_HS5: | ||
219 | return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; | ||
220 | case CVMX_BOARD_TYPE_BBGW_REF: | ||
221 | return "AABCD"; | ||
222 | default: | ||
223 | return ""; | ||
224 | } | ||
225 | } | ||
226 | |||
227 | /** | ||
228 | * Map a PCI device to the appropriate interrupt line | ||
229 | * | ||
230 | * @dev: The Linux PCI device structure for the device to map | ||
231 | * @slot: The slot number for this device on __BUS 0__. Linux | ||
232 | * enumerates through all the bridges and figures out the | ||
233 | * slot on Bus 0 where this device eventually hooks to. | ||
234 | * @pin: The PCI interrupt pin read from the device, then swizzled | ||
235 | * as it goes through each bridge. | ||
236 | * Returns Interrupt number for the device | ||
237 | */ | ||
238 | int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, | ||
239 | u8 slot, u8 pin) | ||
240 | { | ||
241 | int irq_num; | ||
242 | const char *interrupts; | ||
243 | int dev_num; | ||
244 | |||
245 | /* Get the board specific interrupt mapping */ | ||
246 | interrupts = octeon_get_pci_interrupts(); | ||
247 | |||
248 | dev_num = dev->devfn >> 3; | ||
249 | if (dev_num < strlen(interrupts)) | ||
250 | irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + | ||
251 | OCTEON_IRQ_PCI_INT0; | ||
252 | else | ||
253 | irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; | ||
254 | return irq_num; | ||
255 | } | ||
256 | |||
257 | |||
258 | /* | ||
259 | * Read a value from configuration space | ||
260 | */ | ||
261 | static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, | ||
262 | int reg, int size, u32 *val) | ||
263 | { | ||
264 | union octeon_pci_address pci_addr; | ||
265 | |||
266 | pci_addr.u64 = 0; | ||
267 | pci_addr.s.upper = 2; | ||
268 | pci_addr.s.io = 1; | ||
269 | pci_addr.s.did = 3; | ||
270 | pci_addr.s.subdid = 1; | ||
271 | pci_addr.s.endian_swap = 1; | ||
272 | pci_addr.s.bus = bus->number; | ||
273 | pci_addr.s.dev = devfn >> 3; | ||
274 | pci_addr.s.func = devfn & 0x7; | ||
275 | pci_addr.s.reg = reg; | ||
276 | |||
277 | #if PCI_CONFIG_SPACE_DELAY | ||
278 | udelay(PCI_CONFIG_SPACE_DELAY); | ||
279 | #endif | ||
280 | switch (size) { | ||
281 | case 4: | ||
282 | *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); | ||
283 | return PCIBIOS_SUCCESSFUL; | ||
284 | case 2: | ||
285 | *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); | ||
286 | return PCIBIOS_SUCCESSFUL; | ||
287 | case 1: | ||
288 | *val = cvmx_read64_uint8(pci_addr.u64); | ||
289 | return PCIBIOS_SUCCESSFUL; | ||
290 | } | ||
291 | return PCIBIOS_FUNC_NOT_SUPPORTED; | ||
292 | } | ||
293 | |||
294 | |||
295 | /* | ||
296 | * Write a value to PCI configuration space | ||
297 | */ | ||
298 | static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, | ||
299 | int reg, int size, u32 val) | ||
300 | { | ||
301 | union octeon_pci_address pci_addr; | ||
302 | |||
303 | pci_addr.u64 = 0; | ||
304 | pci_addr.s.upper = 2; | ||
305 | pci_addr.s.io = 1; | ||
306 | pci_addr.s.did = 3; | ||
307 | pci_addr.s.subdid = 1; | ||
308 | pci_addr.s.endian_swap = 1; | ||
309 | pci_addr.s.bus = bus->number; | ||
310 | pci_addr.s.dev = devfn >> 3; | ||
311 | pci_addr.s.func = devfn & 0x7; | ||
312 | pci_addr.s.reg = reg; | ||
313 | |||
314 | #if PCI_CONFIG_SPACE_DELAY | ||
315 | udelay(PCI_CONFIG_SPACE_DELAY); | ||
316 | #endif | ||
317 | switch (size) { | ||
318 | case 4: | ||
319 | cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); | ||
320 | return PCIBIOS_SUCCESSFUL; | ||
321 | case 2: | ||
322 | cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); | ||
323 | return PCIBIOS_SUCCESSFUL; | ||
324 | case 1: | ||
325 | cvmx_write64_uint8(pci_addr.u64, val); | ||
326 | return PCIBIOS_SUCCESSFUL; | ||
327 | } | ||
328 | return PCIBIOS_FUNC_NOT_SUPPORTED; | ||
329 | } | ||
330 | |||
331 | |||
332 | static struct pci_ops octeon_pci_ops = { | ||
333 | octeon_read_config, | ||
334 | octeon_write_config, | ||
335 | }; | ||
336 | |||
337 | static struct resource octeon_pci_mem_resource = { | ||
338 | .start = 0, | ||
339 | .end = 0, | ||
340 | .name = "Octeon PCI MEM", | ||
341 | .flags = IORESOURCE_MEM, | ||
342 | }; | ||
343 | |||
344 | /* | ||
345 | * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI | ||
346 | * bridge | ||
347 | */ | ||
348 | static struct resource octeon_pci_io_resource = { | ||
349 | .start = 0x4000, | ||
350 | .end = OCTEON_PCI_IOSPACE_SIZE - 1, | ||
351 | .name = "Octeon PCI IO", | ||
352 | .flags = IORESOURCE_IO, | ||
353 | }; | ||
354 | |||
355 | static struct pci_controller octeon_pci_controller = { | ||
356 | .pci_ops = &octeon_pci_ops, | ||
357 | .mem_resource = &octeon_pci_mem_resource, | ||
358 | .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, | ||
359 | .io_resource = &octeon_pci_io_resource, | ||
360 | .io_offset = 0, | ||
361 | .io_map_base = OCTEON_PCI_IOSPACE_BASE, | ||
362 | }; | ||
363 | |||
364 | |||
365 | /* | ||
366 | * Low level initialize the Octeon PCI controller | ||
367 | */ | ||
368 | static void octeon_pci_initialize(void) | ||
369 | { | ||
370 | union cvmx_pci_cfg01 cfg01; | ||
371 | union cvmx_npi_ctl_status ctl_status; | ||
372 | union cvmx_pci_ctl_status_2 ctl_status_2; | ||
373 | union cvmx_pci_cfg19 cfg19; | ||
374 | union cvmx_pci_cfg16 cfg16; | ||
375 | union cvmx_pci_cfg22 cfg22; | ||
376 | union cvmx_pci_cfg56 cfg56; | ||
377 | |||
378 | /* Reset the PCI Bus */ | ||
379 | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); | ||
380 | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | ||
381 | |||
382 | udelay(2000); /* Hold PCI reset for 2 ms */ | ||
383 | |||
384 | ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ | ||
385 | ctl_status.s.max_word = 1; | ||
386 | ctl_status.s.timer = 1; | ||
387 | cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); | ||
388 | |||
389 | /* Deassert PCI reset and advertize PCX Host Mode Device Capability | ||
390 | (64b) */ | ||
391 | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); | ||
392 | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | ||
393 | |||
394 | udelay(2000); /* Wait 2 ms after deasserting PCI reset */ | ||
395 | |||
396 | ctl_status_2.u32 = 0; | ||
397 | ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set | ||
398 | before any PCI reads. */ | ||
399 | ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ | ||
400 | ctl_status_2.s.bar2_enb = 1; | ||
401 | ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ | ||
402 | ctl_status_2.s.bar2_esx = 1; | ||
403 | ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ | ||
404 | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | ||
405 | /* BAR1 hole */ | ||
406 | ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; | ||
407 | ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ | ||
408 | ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ | ||
409 | ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ | ||
410 | ctl_status_2.s.bb1 = 1; /* BAR1 is big */ | ||
411 | ctl_status_2.s.bb0 = 1; /* BAR0 is big */ | ||
412 | } | ||
413 | |||
414 | octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); | ||
415 | udelay(2000); /* Wait 2 ms before doing PCI reads */ | ||
416 | |||
417 | ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); | ||
418 | pr_notice("PCI Status: %s %s-bit\n", | ||
419 | ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", | ||
420 | ctl_status_2.s.ap_64ad ? "64" : "32"); | ||
421 | |||
422 | if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { | ||
423 | union cvmx_pci_cnt_reg cnt_reg_start; | ||
424 | union cvmx_pci_cnt_reg cnt_reg_end; | ||
425 | unsigned long cycles, pci_clock; | ||
426 | |||
427 | cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | ||
428 | cycles = read_c0_cvmcount(); | ||
429 | udelay(1000); | ||
430 | cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | ||
431 | cycles = read_c0_cvmcount() - cycles; | ||
432 | pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / | ||
433 | (cycles / (mips_hpt_frequency / 1000000)); | ||
434 | pr_notice("PCI Clock: %lu MHz\n", pci_clock); | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 | ||
439 | * in PCI-X mode to allow four oustanding splits. Otherwise, | ||
440 | * should not change from its reset value. Don't write PCI_CFG19 | ||
441 | * in PCI mode (0x82000001 reset value), write it to 0x82000004 | ||
442 | * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. | ||
443 | * MRBCM -> must be one. | ||
444 | */ | ||
445 | if (ctl_status_2.s.ap_pcix) { | ||
446 | cfg19.u32 = 0; | ||
447 | /* | ||
448 | * Target Delayed/Split request outstanding maximum | ||
449 | * count. [1..31] and 0=32. NOTE: If the user | ||
450 | * programs these bits beyond the Designed Maximum | ||
451 | * outstanding count, then the designed maximum table | ||
452 | * depth will be used instead. No additional | ||
453 | * Deferred/Split transactions will be accepted if | ||
454 | * this outstanding maximum count is | ||
455 | * reached. Furthermore, no additional deferred/split | ||
456 | * transactions will be accepted if the I/O delay/ I/O | ||
457 | * Split Request outstanding maximum is reached. | ||
458 | */ | ||
459 | cfg19.s.tdomc = 4; | ||
460 | /* | ||
461 | * Master Deferred Read Request Outstanding Max Count | ||
462 | * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC | ||
463 | * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 | ||
464 | * 5 2 110 6 3 111 7 3 For example, if these bits are | ||
465 | * programmed to 100, the core can support 2 DAC | ||
466 | * cycles, 4 SAC cycles or a combination of 1 DAC and | ||
467 | * 2 SAC cycles. NOTE: For the PCI-X maximum | ||
468 | * outstanding split transactions, refer to | ||
469 | * CRE0[22:20]. | ||
470 | */ | ||
471 | cfg19.s.mdrrmc = 2; | ||
472 | /* | ||
473 | * Master Request (Memory Read) Byte Count/Byte Enable | ||
474 | * select. 0 = Byte Enables valid. In PCI mode, a | ||
475 | * burst transaction cannot be performed using Memory | ||
476 | * Read command=4?h6. 1 = DWORD Byte Count valid | ||
477 | * (default). In PCI Mode, the memory read byte | ||
478 | * enables are automatically generated by the | ||
479 | * core. Note: N3 Master Request transaction sizes are | ||
480 | * always determined through the | ||
481 | * am_attr[<35:32>|<7:0>] field. | ||
482 | */ | ||
483 | cfg19.s.mrbcm = 1; | ||
484 | octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); | ||
485 | } | ||
486 | |||
487 | |||
488 | cfg01.u32 = 0; | ||
489 | cfg01.s.msae = 1; /* Memory Space Access Enable */ | ||
490 | cfg01.s.me = 1; /* Master Enable */ | ||
491 | cfg01.s.pee = 1; /* PERR# Enable */ | ||
492 | cfg01.s.see = 1; /* System Error Enable */ | ||
493 | cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ | ||
494 | |||
495 | octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); | ||
496 | |||
497 | #ifdef USE_OCTEON_INTERNAL_ARBITER | ||
498 | /* | ||
499 | * When OCTEON is a PCI host, most systems will use OCTEON's | ||
500 | * internal arbiter, so must enable it before any PCI/PCI-X | ||
501 | * traffic can occur. | ||
502 | */ | ||
503 | { | ||
504 | union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; | ||
505 | |||
506 | pci_int_arb_cfg.u64 = 0; | ||
507 | pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ | ||
508 | cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); | ||
509 | } | ||
510 | #endif /* USE_OCTEON_INTERNAL_ARBITER */ | ||
511 | |||
512 | /* | ||
513 | * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE, | ||
514 | * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to | ||
515 | * 1..7. | ||
516 | */ | ||
517 | cfg16.u32 = 0; | ||
518 | cfg16.s.mltd = 1; /* Master Latency Timer Disable */ | ||
519 | octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); | ||
520 | |||
521 | /* | ||
522 | * Should be written to 0x4ff00. MTTV -> must be zero. | ||
523 | * FLUSH -> must be 1. MRV -> should be 0xFF. | ||
524 | */ | ||
525 | cfg22.u32 = 0; | ||
526 | /* Master Retry Value [1..255] and 0=infinite */ | ||
527 | cfg22.s.mrv = 0xff; | ||
528 | /* | ||
529 | * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper | ||
530 | * N3K operation. | ||
531 | */ | ||
532 | cfg22.s.flush = 1; | ||
533 | octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); | ||
534 | |||
535 | /* | ||
536 | * MOST Indicates the maximum number of outstanding splits (in -1 | ||
537 | * notation) when OCTEON is in PCI-X mode. PCI-X performance is | ||
538 | * affected by the MOST selection. Should generally be written | ||
539 | * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, | ||
540 | * depending on the desired MOST of 3, 2, 1, or 0, respectively. | ||
541 | */ | ||
542 | cfg56.u32 = 0; | ||
543 | cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ | ||
544 | cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ | ||
545 | cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ | ||
546 | cfg56.s.roe = 1; /* Relaxed Ordering Enable */ | ||
547 | cfg56.s.mmbc = 1; /* Maximum Memory Byte Count | ||
548 | [0=512B,1=1024B,2=2048B,3=4096B] */ | ||
549 | cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 | ||
550 | .. 7=32] */ | ||
551 | |||
552 | octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); | ||
553 | |||
554 | /* | ||
555 | * Affects PCI performance when OCTEON services reads to its | ||
556 | * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are | ||
557 | * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and | ||
558 | * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, | ||
559 | * these values need to be changed so they won't possibly prefetch off | ||
560 | * of the end of memory if PCI is DMAing a buffer at the end of | ||
561 | * memory. Note that these values differ from their reset values. | ||
562 | */ | ||
563 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); | ||
564 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); | ||
565 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); | ||
566 | } | ||
567 | |||
568 | |||
569 | /* | ||
570 | * Initialize the Octeon PCI controller | ||
571 | */ | ||
572 | static int __init octeon_pci_setup(void) | ||
573 | { | ||
574 | union cvmx_npi_mem_access_subidx mem_access; | ||
575 | int index; | ||
576 | |||
577 | /* Only these chips have PCI */ | ||
578 | if (octeon_has_feature(OCTEON_FEATURE_PCIE)) | ||
579 | return 0; | ||
580 | |||
581 | /* Point pcibios_map_irq() to the PCI version of it */ | ||
582 | octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; | ||
583 | |||
584 | /* Only use the big bars on chips that support it */ | ||
585 | if (OCTEON_IS_MODEL(OCTEON_CN31XX) || | ||
586 | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || | ||
587 | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) | ||
588 | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; | ||
589 | else | ||
590 | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; | ||
591 | |||
592 | /* PCI I/O and PCI MEM values */ | ||
593 | set_io_port_base(OCTEON_PCI_IOSPACE_BASE); | ||
594 | ioport_resource.start = 0; | ||
595 | ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; | ||
596 | if (!octeon_is_pci_host()) { | ||
597 | pr_notice("Not in host mode, PCI Controller not initialized\n"); | ||
598 | return 0; | ||
599 | } | ||
600 | |||
601 | pr_notice("%s Octeon big bar support\n", | ||
602 | (octeon_dma_bar_type == | ||
603 | OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); | ||
604 | |||
605 | octeon_pci_initialize(); | ||
606 | |||
607 | mem_access.u64 = 0; | ||
608 | mem_access.s.esr = 1; /* Endian-Swap on read. */ | ||
609 | mem_access.s.esw = 1; /* Endian-Swap on write. */ | ||
610 | mem_access.s.nsr = 0; /* No-Snoop on read. */ | ||
611 | mem_access.s.nsw = 0; /* No-Snoop on write. */ | ||
612 | mem_access.s.ror = 0; /* Relax Read on read. */ | ||
613 | mem_access.s.row = 0; /* Relax Order on write. */ | ||
614 | mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ | ||
615 | cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); | ||
616 | |||
617 | /* | ||
618 | * Remap the Octeon BAR 2 above all 32 bit devices | ||
619 | * (0x8000000000ul). This is done here so it is remapped | ||
620 | * before the readl()'s below. We don't want BAR2 overlapping | ||
621 | * with BAR0/BAR1 during these reads. | ||
622 | */ | ||
623 | octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0); | ||
624 | octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80); | ||
625 | |||
626 | /* Disable the BAR1 movable mappings */ | ||
627 | for (index = 0; index < 32; index++) | ||
628 | octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0); | ||
629 | |||
630 | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | ||
631 | /* Remap the Octeon BAR 0 to 0-2GB */ | ||
632 | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); | ||
633 | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | ||
634 | |||
635 | /* | ||
636 | * Remap the Octeon BAR 1 to map 2GB-4GB (minus the | ||
637 | * BAR 1 hole). | ||
638 | */ | ||
639 | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); | ||
640 | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | ||
641 | |||
642 | /* Devices go after BAR1 */ | ||
643 | octeon_pci_mem_resource.start = | ||
644 | OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - | ||
645 | (OCTEON_PCI_BAR1_HOLE_SIZE << 20); | ||
646 | octeon_pci_mem_resource.end = | ||
647 | octeon_pci_mem_resource.start + (1ul << 30); | ||
648 | } else { | ||
649 | /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ | ||
650 | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); | ||
651 | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | ||
652 | |||
653 | /* Remap the Octeon BAR 1 to map 0-128MB */ | ||
654 | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); | ||
655 | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | ||
656 | |||
657 | /* Devices go after BAR0 */ | ||
658 | octeon_pci_mem_resource.start = | ||
659 | OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + | ||
660 | (4ul << 10); | ||
661 | octeon_pci_mem_resource.end = | ||
662 | octeon_pci_mem_resource.start + (1ul << 30); | ||
663 | } | ||
664 | |||
665 | register_pci_controller(&octeon_pci_controller); | ||
666 | |||
667 | /* | ||
668 | * Clear any errors that might be pending from before the bus | ||
669 | * was setup properly. | ||
670 | */ | ||
671 | cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); | ||
672 | return 0; | ||
673 | } | ||
674 | |||
675 | arch_initcall(octeon_pci_setup); | ||