aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/mm/c-sb1.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/mm/c-sb1.c')
-rw-r--r--arch/mips/mm/c-sb1.c535
1 files changed, 0 insertions, 535 deletions
diff --git a/arch/mips/mm/c-sb1.c b/arch/mips/mm/c-sb1.c
deleted file mode 100644
index 85ce2842d0da..000000000000
--- a/arch/mips/mm/c-sb1.c
+++ /dev/null
@@ -1,535 +0,0 @@
1/*
2 * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
3 * Copyright (C) 1997, 2001 Ralf Baechle (ralf@gnu.org)
4 * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
5 * Copyright (C) 2004 Maciej W. Rozycki
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21#include <linux/init.h>
22#include <linux/hardirq.h>
23
24#include <asm/asm.h>
25#include <asm/bootinfo.h>
26#include <asm/cacheops.h>
27#include <asm/cpu.h>
28#include <asm/mipsregs.h>
29#include <asm/mmu_context.h>
30#include <asm/uaccess.h>
31
32extern void sb1_dma_init(void);
33
34/* These are probed at ld_mmu time */
35static unsigned long icache_size;
36static unsigned long dcache_size;
37
38static unsigned short icache_line_size;
39static unsigned short dcache_line_size;
40
41static unsigned int icache_index_mask;
42static unsigned int dcache_index_mask;
43
44static unsigned short icache_assoc;
45static unsigned short dcache_assoc;
46
47static unsigned short icache_sets;
48static unsigned short dcache_sets;
49
50static unsigned int icache_range_cutoff;
51static unsigned int dcache_range_cutoff;
52
53static inline void sb1_on_each_cpu(void (*func) (void *info), void *info,
54 int retry, int wait)
55{
56 preempt_disable();
57 smp_call_function(func, info, retry, wait);
58 func(info);
59 preempt_enable();
60}
61
62/*
63 * The dcache is fully coherent to the system, with one
64 * big caveat: the instruction stream. In other words,
65 * if we miss in the icache, and have dirty data in the
66 * L1 dcache, then we'll go out to memory (or the L2) and
67 * get the not-as-recent data.
68 *
69 * So the only time we have to flush the dcache is when
70 * we're flushing the icache. Since the L2 is fully
71 * coherent to everything, including I/O, we never have
72 * to flush it
73 */
74
75#define cache_set_op(op, addr) \
76 __asm__ __volatile__( \
77 " .set noreorder \n" \
78 " .set mips64\n\t \n" \
79 " cache %0, (0<<13)(%1) \n" \
80 " cache %0, (1<<13)(%1) \n" \
81 " cache %0, (2<<13)(%1) \n" \
82 " cache %0, (3<<13)(%1) \n" \
83 " .set mips0 \n" \
84 " .set reorder" \
85 : \
86 : "i" (op), "r" (addr))
87
88#define sync() \
89 __asm__ __volatile( \
90 " .set mips64\n\t \n" \
91 " sync \n" \
92 " .set mips0")
93
94#define mispredict() \
95 __asm__ __volatile__( \
96 " bnezl $0, 1f \n" /* Force mispredict */ \
97 "1: \n");
98
99/*
100 * Writeback and invalidate the entire dcache
101 */
102static inline void __sb1_writeback_inv_dcache_all(void)
103{
104 unsigned long addr = 0;
105
106 while (addr < dcache_line_size * dcache_sets) {
107 cache_set_op(Index_Writeback_Inv_D, addr);
108 addr += dcache_line_size;
109 }
110}
111
112/*
113 * Writeback and invalidate a range of the dcache. The addresses are
114 * virtual, and since we're using index ops and bit 12 is part of both
115 * the virtual frame and physical index, we have to clear both sets
116 * (bit 12 set and cleared).
117 */
118static inline void __sb1_writeback_inv_dcache_range(unsigned long start,
119 unsigned long end)
120{
121 unsigned long index;
122
123 start &= ~(dcache_line_size - 1);
124 end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1);
125
126 while (start != end) {
127 index = start & dcache_index_mask;
128 cache_set_op(Index_Writeback_Inv_D, index);
129 cache_set_op(Index_Writeback_Inv_D, index ^ (1<<12));
130 start += dcache_line_size;
131 }
132 sync();
133}
134
135/*
136 * Writeback and invalidate a range of the dcache. With physical
137 * addresseses, we don't have to worry about possible bit 12 aliasing.
138 * XXXKW is it worth turning on KX and using hit ops with xkphys?
139 */
140static inline void __sb1_writeback_inv_dcache_phys_range(unsigned long start,
141 unsigned long end)
142{
143 start &= ~(dcache_line_size - 1);
144 end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1);
145
146 while (start != end) {
147 cache_set_op(Index_Writeback_Inv_D, start & dcache_index_mask);
148 start += dcache_line_size;
149 }
150 sync();
151}
152
153
154/*
155 * Invalidate the entire icache
156 */
157static inline void __sb1_flush_icache_all(void)
158{
159 unsigned long addr = 0;
160
161 while (addr < icache_line_size * icache_sets) {
162 cache_set_op(Index_Invalidate_I, addr);
163 addr += icache_line_size;
164 }
165}
166
167/*
168 * Invalidate a range of the icache. The addresses are virtual, and
169 * the cache is virtually indexed and tagged. However, we don't
170 * necessarily have the right ASID context, so use index ops instead
171 * of hit ops.
172 */
173static inline void __sb1_flush_icache_range(unsigned long start,
174 unsigned long end)
175{
176 start &= ~(icache_line_size - 1);
177 end = (end + icache_line_size - 1) & ~(icache_line_size - 1);
178
179 while (start != end) {
180 cache_set_op(Index_Invalidate_I, start & icache_index_mask);
181 start += icache_line_size;
182 }
183 mispredict();
184 sync();
185}
186
187/*
188 * Flush the icache for a given physical page. Need to writeback the
189 * dcache first, then invalidate the icache. If the page isn't
190 * executable, nothing is required.
191 */
192static void local_sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
193{
194 int cpu = smp_processor_id();
195
196#ifndef CONFIG_SMP
197 if (!(vma->vm_flags & VM_EXEC))
198 return;
199#endif
200
201 __sb1_writeback_inv_dcache_range(addr, addr + PAGE_SIZE);
202
203 /*
204 * Bumping the ASID is probably cheaper than the flush ...
205 */
206 if (vma->vm_mm == current->active_mm) {
207 if (cpu_context(cpu, vma->vm_mm) != 0)
208 drop_mmu_context(vma->vm_mm, cpu);
209 } else
210 __sb1_flush_icache_range(addr, addr + PAGE_SIZE);
211}
212
213#ifdef CONFIG_SMP
214struct flush_cache_page_args {
215 struct vm_area_struct *vma;
216 unsigned long addr;
217 unsigned long pfn;
218};
219
220static void sb1_flush_cache_page_ipi(void *info)
221{
222 struct flush_cache_page_args *args = info;
223
224 local_sb1_flush_cache_page(args->vma, args->addr, args->pfn);
225}
226
227/* Dirty dcache could be on another CPU, so do the IPIs */
228static void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
229{
230 struct flush_cache_page_args args;
231
232 if (!(vma->vm_flags & VM_EXEC))
233 return;
234
235 addr &= PAGE_MASK;
236 args.vma = vma;
237 args.addr = addr;
238 args.pfn = pfn;
239 sb1_on_each_cpu(sb1_flush_cache_page_ipi, (void *) &args, 1, 1);
240}
241#else
242void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
243 __attribute__((alias("local_sb1_flush_cache_page")));
244#endif
245
246#ifdef CONFIG_SMP
247static void sb1_flush_cache_data_page_ipi(void *info)
248{
249 unsigned long start = (unsigned long)info;
250
251 __sb1_writeback_inv_dcache_range(start, start + PAGE_SIZE);
252}
253
254static void sb1_flush_cache_data_page(unsigned long addr)
255{
256 if (in_atomic())
257 __sb1_writeback_inv_dcache_range(addr, addr + PAGE_SIZE);
258 else
259 on_each_cpu(sb1_flush_cache_data_page_ipi, (void *) addr, 1, 1);
260}
261#else
262
263static void local_sb1_flush_cache_data_page(unsigned long addr)
264{
265 __sb1_writeback_inv_dcache_range(addr, addr + PAGE_SIZE);
266}
267
268void sb1_flush_cache_data_page(unsigned long)
269 __attribute__((alias("local_sb1_flush_cache_data_page")));
270#endif
271
272/*
273 * Invalidate all caches on this CPU
274 */
275static void __used local_sb1___flush_cache_all(void)
276{
277 __sb1_writeback_inv_dcache_all();
278 __sb1_flush_icache_all();
279}
280
281#ifdef CONFIG_SMP
282void sb1___flush_cache_all_ipi(void *ignored)
283 __attribute__((alias("local_sb1___flush_cache_all")));
284
285static void sb1___flush_cache_all(void)
286{
287 sb1_on_each_cpu(sb1___flush_cache_all_ipi, 0, 1, 1);
288}
289#else
290void sb1___flush_cache_all(void)
291 __attribute__((alias("local_sb1___flush_cache_all")));
292#endif
293
294/*
295 * When flushing a range in the icache, we have to first writeback
296 * the dcache for the same range, so new ifetches will see any
297 * data that was dirty in the dcache.
298 *
299 * The start/end arguments are Kseg addresses (possibly mapped Kseg).
300 */
301
302static void local_sb1_flush_icache_range(unsigned long start,
303 unsigned long end)
304{
305 /* Just wb-inv the whole dcache if the range is big enough */
306 if ((end - start) > dcache_range_cutoff)
307 __sb1_writeback_inv_dcache_all();
308 else
309 __sb1_writeback_inv_dcache_range(start, end);
310
311 /* Just flush the whole icache if the range is big enough */
312 if ((end - start) > icache_range_cutoff)
313 __sb1_flush_icache_all();
314 else
315 __sb1_flush_icache_range(start, end);
316}
317
318#ifdef CONFIG_SMP
319struct flush_icache_range_args {
320 unsigned long start;
321 unsigned long end;
322};
323
324static void sb1_flush_icache_range_ipi(void *info)
325{
326 struct flush_icache_range_args *args = info;
327
328 local_sb1_flush_icache_range(args->start, args->end);
329}
330
331void sb1_flush_icache_range(unsigned long start, unsigned long end)
332{
333 struct flush_icache_range_args args;
334
335 args.start = start;
336 args.end = end;
337 sb1_on_each_cpu(sb1_flush_icache_range_ipi, &args, 1, 1);
338}
339#else
340void sb1_flush_icache_range(unsigned long start, unsigned long end)
341 __attribute__((alias("local_sb1_flush_icache_range")));
342#endif
343
344/*
345 * A signal trampoline must fit into a single cacheline.
346 */
347static void local_sb1_flush_cache_sigtramp(unsigned long addr)
348{
349 cache_set_op(Index_Writeback_Inv_D, addr & dcache_index_mask);
350 cache_set_op(Index_Writeback_Inv_D, (addr ^ (1<<12)) & dcache_index_mask);
351 cache_set_op(Index_Invalidate_I, addr & icache_index_mask);
352 mispredict();
353}
354
355#ifdef CONFIG_SMP
356static void sb1_flush_cache_sigtramp_ipi(void *info)
357{
358 unsigned long iaddr = (unsigned long) info;
359 local_sb1_flush_cache_sigtramp(iaddr);
360}
361
362static void sb1_flush_cache_sigtramp(unsigned long addr)
363{
364 sb1_on_each_cpu(sb1_flush_cache_sigtramp_ipi, (void *) addr, 1, 1);
365}
366#else
367void sb1_flush_cache_sigtramp(unsigned long addr)
368 __attribute__((alias("local_sb1_flush_cache_sigtramp")));
369#endif
370
371
372/*
373 * Anything that just flushes dcache state can be ignored, as we're always
374 * coherent in dcache space. This is just a dummy function that all the
375 * nop'ed routines point to
376 */
377static void sb1_nop(void)
378{
379}
380
381/*
382 * Cache set values (from the mips64 spec)
383 * 0 - 64
384 * 1 - 128
385 * 2 - 256
386 * 3 - 512
387 * 4 - 1024
388 * 5 - 2048
389 * 6 - 4096
390 * 7 - Reserved
391 */
392
393static unsigned int decode_cache_sets(unsigned int config_field)
394{
395 if (config_field == 7) {
396 /* JDCXXX - Find a graceful way to abort. */
397 return 0;
398 }
399 return (1<<(config_field + 6));
400}
401
402/*
403 * Cache line size values (from the mips64 spec)
404 * 0 - No cache present.
405 * 1 - 4 bytes
406 * 2 - 8 bytes
407 * 3 - 16 bytes
408 * 4 - 32 bytes
409 * 5 - 64 bytes
410 * 6 - 128 bytes
411 * 7 - Reserved
412 */
413
414static unsigned int decode_cache_line_size(unsigned int config_field)
415{
416 if (config_field == 0) {
417 return 0;
418 } else if (config_field == 7) {
419 /* JDCXXX - Find a graceful way to abort. */
420 return 0;
421 }
422 return (1<<(config_field + 1));
423}
424
425/*
426 * Relevant bits of the config1 register format (from the MIPS32/MIPS64 specs)
427 *
428 * 24:22 Icache sets per way
429 * 21:19 Icache line size
430 * 18:16 Icache Associativity
431 * 15:13 Dcache sets per way
432 * 12:10 Dcache line size
433 * 9:7 Dcache Associativity
434 */
435
436static char *way_string[] = {
437 "direct mapped", "2-way", "3-way", "4-way",
438 "5-way", "6-way", "7-way", "8-way",
439};
440
441static __init void probe_cache_sizes(void)
442{
443 u32 config1;
444
445 config1 = read_c0_config1();
446 icache_line_size = decode_cache_line_size((config1 >> 19) & 0x7);
447 dcache_line_size = decode_cache_line_size((config1 >> 10) & 0x7);
448 icache_sets = decode_cache_sets((config1 >> 22) & 0x7);
449 dcache_sets = decode_cache_sets((config1 >> 13) & 0x7);
450 icache_assoc = ((config1 >> 16) & 0x7) + 1;
451 dcache_assoc = ((config1 >> 7) & 0x7) + 1;
452 icache_size = icache_line_size * icache_sets * icache_assoc;
453 dcache_size = dcache_line_size * dcache_sets * dcache_assoc;
454 /* Need to remove non-index bits for index ops */
455 icache_index_mask = (icache_sets - 1) * icache_line_size;
456 dcache_index_mask = (dcache_sets - 1) * dcache_line_size;
457 /*
458 * These are for choosing range (index ops) versus all.
459 * icache flushes all ways for each set, so drop icache_assoc.
460 * dcache flushes all ways and each setting of bit 12 for each
461 * index, so drop dcache_assoc and halve the dcache_sets.
462 */
463 icache_range_cutoff = icache_sets * icache_line_size;
464 dcache_range_cutoff = (dcache_sets / 2) * icache_line_size;
465
466 printk("Primary instruction cache %ldkB, %s, linesize %d bytes.\n",
467 icache_size >> 10, way_string[icache_assoc - 1],
468 icache_line_size);
469 printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
470 dcache_size >> 10, way_string[dcache_assoc - 1],
471 dcache_line_size);
472}
473
474/*
475 * This is called from cache.c. We have to set up all the
476 * memory management function pointers, as well as initialize
477 * the caches and tlbs
478 */
479void __init sb1_cache_init(void)
480{
481 extern char except_vec2_sb1;
482
483 /* Special cache error handler for SB1 */
484 set_uncached_handler (0x100, &except_vec2_sb1, 0x80);
485
486 probe_cache_sizes();
487
488#ifdef CONFIG_SIBYTE_DMA_PAGEOPS
489 sb1_dma_init();
490#endif
491
492 /*
493 * None of these are needed for the SB1 - the Dcache is
494 * physically indexed and tagged, so no virtual aliasing can
495 * occur
496 */
497 flush_cache_range = (void *) sb1_nop;
498 flush_cache_mm = (void (*)(struct mm_struct *))sb1_nop;
499 flush_cache_all = sb1_nop;
500
501 /* These routines are for Icache coherence with the Dcache */
502 flush_icache_range = sb1_flush_icache_range;
503 flush_icache_all = __sb1_flush_icache_all; /* local only */
504
505 /* This implies an Icache flush too, so can't be nop'ed */
506 flush_cache_page = sb1_flush_cache_page;
507
508 flush_cache_sigtramp = sb1_flush_cache_sigtramp;
509 local_flush_data_cache_page = (void *) sb1_nop;
510 flush_data_cache_page = sb1_flush_cache_data_page;
511
512 /* Full flush */
513 __flush_cache_all = sb1___flush_cache_all;
514
515 change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
516
517 /*
518 * This is the only way to force the update of K0 to complete
519 * before subsequent instruction fetch.
520 */
521 __asm__ __volatile__(
522 ".set push \n"
523 " .set noat \n"
524 " .set noreorder \n"
525 " .set mips3 \n"
526 " " STR(PTR_LA) " $1, 1f \n"
527 " " STR(MTC0) " $1, $14 \n"
528 " eret \n"
529 "1: .set pop"
530 :
531 :
532 : "memory");
533
534 local_sb1___flush_cache_all();
535}