aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/cavium-octeon/pci.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/cavium-octeon/pci.c')
-rw-r--r--arch/mips/cavium-octeon/pci.c568
1 files changed, 568 insertions, 0 deletions
diff --git a/arch/mips/cavium-octeon/pci.c b/arch/mips/cavium-octeon/pci.c
new file mode 100644
index 000000000000..67c0ff5e92f1
--- /dev/null
+++ b/arch/mips/cavium-octeon/pci.c
@@ -0,0 +1,568 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2007 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14
15#include <asm/time.h>
16
17#include <asm/octeon/octeon.h>
18#include <asm/octeon/cvmx-npi-defs.h>
19#include <asm/octeon/cvmx-pci-defs.h>
20
21#include "pci-common.h"
22
23#define USE_OCTEON_INTERNAL_ARBITER
24
25/*
26 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
27 * addresses. Use PCI endian swapping 1 so no address swapping is
28 * necessary. The Linux io routines will endian swap the data.
29 */
30#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
31#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
32
33/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
34#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
35
36/**
37 * This is the bit decoding used for the Octeon PCI controller addresses
38 */
39union octeon_pci_address {
40 uint64_t u64;
41 struct {
42 uint64_t upper:2;
43 uint64_t reserved:13;
44 uint64_t io:1;
45 uint64_t did:5;
46 uint64_t subdid:3;
47 uint64_t reserved2:4;
48 uint64_t endian_swap:2;
49 uint64_t reserved3:10;
50 uint64_t bus:8;
51 uint64_t dev:5;
52 uint64_t func:3;
53 uint64_t reg:8;
54 } s;
55};
56
57/**
58 * Return the mapping of PCI device number to IRQ line. Each
59 * character in the return string represents the interrupt
60 * line for the device at that position. Device 1 maps to the
61 * first character, etc. The characters A-D are used for PCI
62 * interrupts.
63 *
64 * Returns PCI interrupt mapping
65 */
66const char *octeon_get_pci_interrupts(void)
67{
68 /*
69 * Returning an empty string causes the interrupts to be
70 * routed based on the PCI specification. From the PCI spec:
71 *
72 * INTA# of Device Number 0 is connected to IRQW on the system
73 * board. (Device Number has no significance regarding being
74 * located on the system board or in a connector.) INTA# of
75 * Device Number 1 is connected to IRQX on the system
76 * board. INTA# of Device Number 2 is connected to IRQY on the
77 * system board. INTA# of Device Number 3 is connected to IRQZ
78 * on the system board. The table below describes how each
79 * agent's INTx# lines are connected to the system board
80 * interrupt lines. The following equation can be used to
81 * determine to which INTx# signal on the system board a given
82 * device's INTx# line(s) is connected.
83 *
84 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
85 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
86 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
87 * INTD# = 3)
88 */
89 switch (octeon_bootinfo->board_type) {
90 case CVMX_BOARD_TYPE_NAO38:
91 /* This is really the NAC38 */
92 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
93 case CVMX_BOARD_TYPE_THUNDER:
94 return "";
95 case CVMX_BOARD_TYPE_EBH3000:
96 return "";
97 case CVMX_BOARD_TYPE_EBH3100:
98 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
99 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
100 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
101 case CVMX_BOARD_TYPE_BBGW_REF:
102 return "AABCD";
103 default:
104 return "";
105 }
106}
107
108/**
109 * Map a PCI device to the appropriate interrupt line
110 *
111 * @dev: The Linux PCI device structure for the device to map
112 * @slot: The slot number for this device on __BUS 0__. Linux
113 * enumerates through all the bridges and figures out the
114 * slot on Bus 0 where this device eventually hooks to.
115 * @pin: The PCI interrupt pin read from the device, then swizzled
116 * as it goes through each bridge.
117 * Returns Interrupt number for the device
118 */
119int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
120 u8 slot, u8 pin)
121{
122 int irq_num;
123 const char *interrupts;
124 int dev_num;
125
126 /* Get the board specific interrupt mapping */
127 interrupts = octeon_get_pci_interrupts();
128
129 dev_num = dev->devfn >> 3;
130 if (dev_num < strlen(interrupts))
131 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
132 OCTEON_IRQ_PCI_INT0;
133 else
134 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
135 return irq_num;
136}
137
138
139/**
140 * Read a value from configuration space
141 *
142 */
143static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
144 int reg, int size, u32 *val)
145{
146 union octeon_pci_address pci_addr;
147
148 pci_addr.u64 = 0;
149 pci_addr.s.upper = 2;
150 pci_addr.s.io = 1;
151 pci_addr.s.did = 3;
152 pci_addr.s.subdid = 1;
153 pci_addr.s.endian_swap = 1;
154 pci_addr.s.bus = bus->number;
155 pci_addr.s.dev = devfn >> 3;
156 pci_addr.s.func = devfn & 0x7;
157 pci_addr.s.reg = reg;
158
159#if PCI_CONFIG_SPACE_DELAY
160 udelay(PCI_CONFIG_SPACE_DELAY);
161#endif
162 switch (size) {
163 case 4:
164 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
165 return PCIBIOS_SUCCESSFUL;
166 case 2:
167 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
168 return PCIBIOS_SUCCESSFUL;
169 case 1:
170 *val = cvmx_read64_uint8(pci_addr.u64);
171 return PCIBIOS_SUCCESSFUL;
172 }
173 return PCIBIOS_FUNC_NOT_SUPPORTED;
174}
175
176
177/**
178 * Write a value to PCI configuration space
179 *
180 * @bus:
181 * @devfn:
182 * @reg:
183 * @size:
184 * @val:
185 * Returns
186 */
187static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
188 int reg, int size, u32 val)
189{
190 union octeon_pci_address pci_addr;
191
192 pci_addr.u64 = 0;
193 pci_addr.s.upper = 2;
194 pci_addr.s.io = 1;
195 pci_addr.s.did = 3;
196 pci_addr.s.subdid = 1;
197 pci_addr.s.endian_swap = 1;
198 pci_addr.s.bus = bus->number;
199 pci_addr.s.dev = devfn >> 3;
200 pci_addr.s.func = devfn & 0x7;
201 pci_addr.s.reg = reg;
202
203#if PCI_CONFIG_SPACE_DELAY
204 udelay(PCI_CONFIG_SPACE_DELAY);
205#endif
206 switch (size) {
207 case 4:
208 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
209 return PCIBIOS_SUCCESSFUL;
210 case 2:
211 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
212 return PCIBIOS_SUCCESSFUL;
213 case 1:
214 cvmx_write64_uint8(pci_addr.u64, val);
215 return PCIBIOS_SUCCESSFUL;
216 }
217 return PCIBIOS_FUNC_NOT_SUPPORTED;
218}
219
220
221static struct pci_ops octeon_pci_ops = {
222 octeon_read_config,
223 octeon_write_config,
224};
225
226static struct resource octeon_pci_mem_resource = {
227 .start = 0,
228 .end = 0,
229 .name = "Octeon PCI MEM",
230 .flags = IORESOURCE_MEM,
231};
232
233/*
234 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
235 * bridge
236 */
237static struct resource octeon_pci_io_resource = {
238 .start = 0x4000,
239 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
240 .name = "Octeon PCI IO",
241 .flags = IORESOURCE_IO,
242};
243
244static struct pci_controller octeon_pci_controller = {
245 .pci_ops = &octeon_pci_ops,
246 .mem_resource = &octeon_pci_mem_resource,
247 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
248 .io_resource = &octeon_pci_io_resource,
249 .io_offset = 0,
250 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
251};
252
253
254/**
255 * Low level initialize the Octeon PCI controller
256 *
257 * Returns
258 */
259static void octeon_pci_initialize(void)
260{
261 union cvmx_pci_cfg01 cfg01;
262 union cvmx_npi_ctl_status ctl_status;
263 union cvmx_pci_ctl_status_2 ctl_status_2;
264 union cvmx_pci_cfg19 cfg19;
265 union cvmx_pci_cfg16 cfg16;
266 union cvmx_pci_cfg22 cfg22;
267 union cvmx_pci_cfg56 cfg56;
268
269 /* Reset the PCI Bus */
270 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
271 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
272
273 udelay(2000); /* Hold PCI reset for 2 ms */
274
275 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
276 ctl_status.s.max_word = 1;
277 ctl_status.s.timer = 1;
278 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
279
280 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
281 (64b) */
282 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
283 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
284
285 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
286
287 ctl_status_2.u32 = 0;
288 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
289 before any PCI reads. */
290 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
291 ctl_status_2.s.bar2_enb = 1;
292 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
293 ctl_status_2.s.bar2_esx = 1;
294 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
295 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
296 /* BAR1 hole */
297 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
298 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
299 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
300 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
301 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
302 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
303 }
304
305 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
306 udelay(2000); /* Wait 2 ms before doing PCI reads */
307
308 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
309 pr_notice("PCI Status: %s %s-bit\n",
310 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
311 ctl_status_2.s.ap_64ad ? "64" : "32");
312
313 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
314 union cvmx_pci_cnt_reg cnt_reg_start;
315 union cvmx_pci_cnt_reg cnt_reg_end;
316 unsigned long cycles, pci_clock;
317
318 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
319 cycles = read_c0_cvmcount();
320 udelay(1000);
321 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
322 cycles = read_c0_cvmcount() - cycles;
323 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
324 (cycles / (mips_hpt_frequency / 1000000));
325 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
326 }
327
328 /*
329 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
330 * in PCI-X mode to allow four oustanding splits. Otherwise,
331 * should not change from its reset value. Don't write PCI_CFG19
332 * in PCI mode (0x82000001 reset value), write it to 0x82000004
333 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
334 * MRBCM -> must be one.
335 */
336 if (ctl_status_2.s.ap_pcix) {
337 cfg19.u32 = 0;
338 /*
339 * Target Delayed/Split request outstanding maximum
340 * count. [1..31] and 0=32. NOTE: If the user
341 * programs these bits beyond the Designed Maximum
342 * outstanding count, then the designed maximum table
343 * depth will be used instead. No additional
344 * Deferred/Split transactions will be accepted if
345 * this outstanding maximum count is
346 * reached. Furthermore, no additional deferred/split
347 * transactions will be accepted if the I/O delay/ I/O
348 * Split Request outstanding maximum is reached.
349 */
350 cfg19.s.tdomc = 4;
351 /*
352 * Master Deferred Read Request Outstanding Max Count
353 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
354 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
355 * 5 2 110 6 3 111 7 3 For example, if these bits are
356 * programmed to 100, the core can support 2 DAC
357 * cycles, 4 SAC cycles or a combination of 1 DAC and
358 * 2 SAC cycles. NOTE: For the PCI-X maximum
359 * outstanding split transactions, refer to
360 * CRE0[22:20].
361 */
362 cfg19.s.mdrrmc = 2;
363 /*
364 * Master Request (Memory Read) Byte Count/Byte Enable
365 * select. 0 = Byte Enables valid. In PCI mode, a
366 * burst transaction cannot be performed using Memory
367 * Read command=4?h6. 1 = DWORD Byte Count valid
368 * (default). In PCI Mode, the memory read byte
369 * enables are automatically generated by the
370 * core. Note: N3 Master Request transaction sizes are
371 * always determined through the
372 * am_attr[<35:32>|<7:0>] field.
373 */
374 cfg19.s.mrbcm = 1;
375 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
376 }
377
378
379 cfg01.u32 = 0;
380 cfg01.s.msae = 1; /* Memory Space Access Enable */
381 cfg01.s.me = 1; /* Master Enable */
382 cfg01.s.pee = 1; /* PERR# Enable */
383 cfg01.s.see = 1; /* System Error Enable */
384 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
385
386 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
387
388#ifdef USE_OCTEON_INTERNAL_ARBITER
389 /*
390 * When OCTEON is a PCI host, most systems will use OCTEON's
391 * internal arbiter, so must enable it before any PCI/PCI-X
392 * traffic can occur.
393 */
394 {
395 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
396
397 pci_int_arb_cfg.u64 = 0;
398 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
399 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
400 }
401#endif /* USE_OCTEON_INTERNAL_ARBITER */
402
403 /*
404 * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
405 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
406 * 1..7.
407 */
408 cfg16.u32 = 0;
409 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
410 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
411
412 /*
413 * Should be written to 0x4ff00. MTTV -> must be zero.
414 * FLUSH -> must be 1. MRV -> should be 0xFF.
415 */
416 cfg22.u32 = 0;
417 /* Master Retry Value [1..255] and 0=infinite */
418 cfg22.s.mrv = 0xff;
419 /*
420 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
421 * N3K operation.
422 */
423 cfg22.s.flush = 1;
424 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
425
426 /*
427 * MOST Indicates the maximum number of outstanding splits (in -1
428 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
429 * affected by the MOST selection. Should generally be written
430 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
431 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
432 */
433 cfg56.u32 = 0;
434 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
435 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
436 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
437 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
438 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
439 [0=512B,1=1024B,2=2048B,3=4096B] */
440 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
441 .. 7=32] */
442
443 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
444
445 /*
446 * Affects PCI performance when OCTEON services reads to its
447 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
448 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
449 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
450 * these values need to be changed so they won't possibly prefetch off
451 * of the end of memory if PCI is DMAing a buffer at the end of
452 * memory. Note that these values differ from their reset values.
453 */
454 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
455 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
456 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
457}
458
459
460/**
461 * Initialize the Octeon PCI controller
462 *
463 * Returns
464 */
465static int __init octeon_pci_setup(void)
466{
467 union cvmx_npi_mem_access_subidx mem_access;
468 int index;
469
470 /* Only these chips have PCI */
471 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
472 return 0;
473
474 /* Point pcibios_map_irq() to the PCI version of it */
475 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
476
477 /* Only use the big bars on chips that support it */
478 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
479 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
480 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
481 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
482 else
483 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
484
485 /* PCI I/O and PCI MEM values */
486 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
487 ioport_resource.start = 0;
488 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
489 if (!octeon_is_pci_host()) {
490 pr_notice("Not in host mode, PCI Controller not initialized\n");
491 return 0;
492 }
493
494 pr_notice("%s Octeon big bar support\n",
495 (octeon_dma_bar_type ==
496 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
497
498 octeon_pci_initialize();
499
500 mem_access.u64 = 0;
501 mem_access.s.esr = 1; /* Endian-Swap on read. */
502 mem_access.s.esw = 1; /* Endian-Swap on write. */
503 mem_access.s.nsr = 0; /* No-Snoop on read. */
504 mem_access.s.nsw = 0; /* No-Snoop on write. */
505 mem_access.s.ror = 0; /* Relax Read on read. */
506 mem_access.s.row = 0; /* Relax Order on write. */
507 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
508 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
509
510 /*
511 * Remap the Octeon BAR 2 above all 32 bit devices
512 * (0x8000000000ul). This is done here so it is remapped
513 * before the readl()'s below. We don't want BAR2 overlapping
514 * with BAR0/BAR1 during these reads.
515 */
516 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0);
517 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80);
518
519 /* Disable the BAR1 movable mappings */
520 for (index = 0; index < 32; index++)
521 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
522
523 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
524 /* Remap the Octeon BAR 0 to 0-2GB */
525 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
526 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
527
528 /*
529 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
530 * BAR 1 hole).
531 */
532 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
533 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
534
535 /* Devices go after BAR1 */
536 octeon_pci_mem_resource.start =
537 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
538 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
539 octeon_pci_mem_resource.end =
540 octeon_pci_mem_resource.start + (1ul << 30);
541 } else {
542 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
543 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
544 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
545
546 /* Remap the Octeon BAR 1 to map 0-128MB */
547 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
548 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
549
550 /* Devices go after BAR0 */
551 octeon_pci_mem_resource.start =
552 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
553 (4ul << 10);
554 octeon_pci_mem_resource.end =
555 octeon_pci_mem_resource.start + (1ul << 30);
556 }
557
558 register_pci_controller(&octeon_pci_controller);
559
560 /*
561 * Clear any errors that might be pending from before the bus
562 * was setup properly.
563 */
564 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
565 return 0;
566}
567
568arch_initcall(octeon_pci_setup);