diff options
Diffstat (limited to 'arch/mips/au1000/common/dbdma.c')
-rw-r--r-- | arch/mips/au1000/common/dbdma.c | 836 |
1 files changed, 836 insertions, 0 deletions
diff --git a/arch/mips/au1000/common/dbdma.c b/arch/mips/au1000/common/dbdma.c new file mode 100644 index 000000000000..adfc3172aace --- /dev/null +++ b/arch/mips/au1000/common/dbdma.c | |||
@@ -0,0 +1,836 @@ | |||
1 | /* | ||
2 | * | ||
3 | * BRIEF MODULE DESCRIPTION | ||
4 | * The Descriptor Based DMA channel manager that first appeared | ||
5 | * on the Au1550. I started with dma.c, but I think all that is | ||
6 | * left is this initial comment :-) | ||
7 | * | ||
8 | * Copyright 2004 Embedded Edge, LLC | ||
9 | * dan@embeddededge.com | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify it | ||
12 | * under the terms of the GNU General Public License as published by the | ||
13 | * Free Software Foundation; either version 2 of the License, or (at your | ||
14 | * option) any later version. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | ||
17 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | ||
18 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN | ||
19 | * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | ||
20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | ||
22 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | ||
23 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | ||
25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | * | ||
27 | * You should have received a copy of the GNU General Public License along | ||
28 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
29 | * 675 Mass Ave, Cambridge, MA 02139, USA. | ||
30 | * | ||
31 | */ | ||
32 | #include <linux/config.h> | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/errno.h> | ||
35 | #include <linux/sched.h> | ||
36 | #include <linux/slab.h> | ||
37 | #include <linux/spinlock.h> | ||
38 | #include <linux/string.h> | ||
39 | #include <linux/delay.h> | ||
40 | #include <linux/interrupt.h> | ||
41 | #include <asm/mach-au1x00/au1000.h> | ||
42 | #include <asm/mach-au1x00/au1xxx_dbdma.h> | ||
43 | #include <asm/system.h> | ||
44 | |||
45 | #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) | ||
46 | |||
47 | /* | ||
48 | * The Descriptor Based DMA supports up to 16 channels. | ||
49 | * | ||
50 | * There are 32 devices defined. We keep an internal structure | ||
51 | * of devices using these channels, along with additional | ||
52 | * information. | ||
53 | * | ||
54 | * We allocate the descriptors and allow access to them through various | ||
55 | * functions. The drivers allocate the data buffers and assign them | ||
56 | * to the descriptors. | ||
57 | */ | ||
58 | static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); | ||
59 | |||
60 | /* I couldn't find a macro that did this...... | ||
61 | */ | ||
62 | #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) | ||
63 | |||
64 | static volatile dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; | ||
65 | static int dbdma_initialized; | ||
66 | static void au1xxx_dbdma_init(void); | ||
67 | |||
68 | typedef struct dbdma_device_table { | ||
69 | u32 dev_id; | ||
70 | u32 dev_flags; | ||
71 | u32 dev_tsize; | ||
72 | u32 dev_devwidth; | ||
73 | u32 dev_physaddr; /* If FIFO */ | ||
74 | u32 dev_intlevel; | ||
75 | u32 dev_intpolarity; | ||
76 | } dbdev_tab_t; | ||
77 | |||
78 | typedef struct dbdma_chan_config { | ||
79 | u32 chan_flags; | ||
80 | u32 chan_index; | ||
81 | dbdev_tab_t *chan_src; | ||
82 | dbdev_tab_t *chan_dest; | ||
83 | au1x_dma_chan_t *chan_ptr; | ||
84 | au1x_ddma_desc_t *chan_desc_base; | ||
85 | au1x_ddma_desc_t *get_ptr, *put_ptr, *cur_ptr; | ||
86 | void *chan_callparam; | ||
87 | void (*chan_callback)(int, void *, struct pt_regs *); | ||
88 | } chan_tab_t; | ||
89 | |||
90 | #define DEV_FLAGS_INUSE (1 << 0) | ||
91 | #define DEV_FLAGS_ANYUSE (1 << 1) | ||
92 | #define DEV_FLAGS_OUT (1 << 2) | ||
93 | #define DEV_FLAGS_IN (1 << 3) | ||
94 | |||
95 | static dbdev_tab_t dbdev_tab[] = { | ||
96 | #ifdef CONFIG_SOC_AU1550 | ||
97 | /* UARTS */ | ||
98 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | ||
99 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | ||
100 | { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, | ||
101 | { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, | ||
102 | |||
103 | /* EXT DMA */ | ||
104 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | ||
105 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | ||
106 | { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, | ||
107 | { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, | ||
108 | |||
109 | /* USB DEV */ | ||
110 | { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, | ||
111 | { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, | ||
112 | { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, | ||
113 | { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, | ||
114 | { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, | ||
115 | { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, | ||
116 | |||
117 | /* PSC 0 */ | ||
118 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | ||
119 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | ||
120 | |||
121 | /* PSC 1 */ | ||
122 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | ||
123 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | ||
124 | |||
125 | /* PSC 2 */ | ||
126 | { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, | ||
127 | { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, | ||
128 | |||
129 | /* PSC 3 */ | ||
130 | { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, | ||
131 | { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, | ||
132 | |||
133 | { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ | ||
134 | { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ | ||
135 | |||
136 | /* MAC 0 */ | ||
137 | { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
138 | { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
139 | |||
140 | /* MAC 1 */ | ||
141 | { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
142 | { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
143 | |||
144 | #endif /* CONFIG_SOC_AU1550 */ | ||
145 | |||
146 | #ifdef CONFIG_SOC_AU1200 | ||
147 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | ||
148 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | ||
149 | { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, | ||
150 | { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, | ||
151 | |||
152 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | ||
153 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | ||
154 | |||
155 | { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
156 | { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
157 | { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
158 | { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
159 | |||
160 | { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
161 | { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
162 | { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
163 | { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
164 | |||
165 | { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
166 | { DSCR_CMD0_AES_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
167 | |||
168 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | ||
169 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | ||
170 | { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
171 | |||
172 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | ||
173 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | ||
174 | { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
175 | |||
176 | { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
177 | { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
178 | { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
179 | { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
180 | |||
181 | { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
182 | |||
183 | #endif // CONFIG_SOC_AU1200 | ||
184 | |||
185 | { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
186 | { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
187 | }; | ||
188 | |||
189 | #define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t)) | ||
190 | |||
191 | static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; | ||
192 | |||
193 | static dbdev_tab_t * | ||
194 | find_dbdev_id (u32 id) | ||
195 | { | ||
196 | int i; | ||
197 | dbdev_tab_t *p; | ||
198 | for (i = 0; i < DBDEV_TAB_SIZE; ++i) { | ||
199 | p = &dbdev_tab[i]; | ||
200 | if (p->dev_id == id) | ||
201 | return p; | ||
202 | } | ||
203 | return NULL; | ||
204 | } | ||
205 | |||
206 | /* Allocate a channel and return a non-zero descriptor if successful. | ||
207 | */ | ||
208 | u32 | ||
209 | au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, | ||
210 | void (*callback)(int, void *, struct pt_regs *), void *callparam) | ||
211 | { | ||
212 | unsigned long flags; | ||
213 | u32 used, chan, rv; | ||
214 | u32 dcp; | ||
215 | int i; | ||
216 | dbdev_tab_t *stp, *dtp; | ||
217 | chan_tab_t *ctp; | ||
218 | volatile au1x_dma_chan_t *cp; | ||
219 | |||
220 | /* We do the intialization on the first channel allocation. | ||
221 | * We have to wait because of the interrupt handler initialization | ||
222 | * which can't be done successfully during board set up. | ||
223 | */ | ||
224 | if (!dbdma_initialized) | ||
225 | au1xxx_dbdma_init(); | ||
226 | dbdma_initialized = 1; | ||
227 | |||
228 | if ((srcid > DSCR_NDEV_IDS) || (destid > DSCR_NDEV_IDS)) | ||
229 | return 0; | ||
230 | |||
231 | if ((stp = find_dbdev_id(srcid)) == NULL) return 0; | ||
232 | if ((dtp = find_dbdev_id(destid)) == NULL) return 0; | ||
233 | |||
234 | used = 0; | ||
235 | rv = 0; | ||
236 | |||
237 | /* Check to see if we can get both channels. | ||
238 | */ | ||
239 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | ||
240 | if (!(stp->dev_flags & DEV_FLAGS_INUSE) || | ||
241 | (stp->dev_flags & DEV_FLAGS_ANYUSE)) { | ||
242 | /* Got source */ | ||
243 | stp->dev_flags |= DEV_FLAGS_INUSE; | ||
244 | if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || | ||
245 | (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { | ||
246 | /* Got destination */ | ||
247 | dtp->dev_flags |= DEV_FLAGS_INUSE; | ||
248 | } | ||
249 | else { | ||
250 | /* Can't get dest. Release src. | ||
251 | */ | ||
252 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
253 | used++; | ||
254 | } | ||
255 | } | ||
256 | else { | ||
257 | used++; | ||
258 | } | ||
259 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | ||
260 | |||
261 | if (!used) { | ||
262 | /* Let's see if we can allocate a channel for it. | ||
263 | */ | ||
264 | ctp = NULL; | ||
265 | chan = 0; | ||
266 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | ||
267 | for (i=0; i<NUM_DBDMA_CHANS; i++) { | ||
268 | if (chan_tab_ptr[i] == NULL) { | ||
269 | /* If kmalloc fails, it is caught below same | ||
270 | * as a channel not available. | ||
271 | */ | ||
272 | ctp = kmalloc(sizeof(chan_tab_t), GFP_KERNEL); | ||
273 | chan_tab_ptr[i] = ctp; | ||
274 | ctp->chan_index = chan = i; | ||
275 | break; | ||
276 | } | ||
277 | } | ||
278 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | ||
279 | |||
280 | if (ctp != NULL) { | ||
281 | memset(ctp, 0, sizeof(chan_tab_t)); | ||
282 | dcp = DDMA_CHANNEL_BASE; | ||
283 | dcp += (0x0100 * chan); | ||
284 | ctp->chan_ptr = (au1x_dma_chan_t *)dcp; | ||
285 | cp = (volatile au1x_dma_chan_t *)dcp; | ||
286 | ctp->chan_src = stp; | ||
287 | ctp->chan_dest = dtp; | ||
288 | ctp->chan_callback = callback; | ||
289 | ctp->chan_callparam = callparam; | ||
290 | |||
291 | /* Initialize channel configuration. | ||
292 | */ | ||
293 | i = 0; | ||
294 | if (stp->dev_intlevel) | ||
295 | i |= DDMA_CFG_SED; | ||
296 | if (stp->dev_intpolarity) | ||
297 | i |= DDMA_CFG_SP; | ||
298 | if (dtp->dev_intlevel) | ||
299 | i |= DDMA_CFG_DED; | ||
300 | if (dtp->dev_intpolarity) | ||
301 | i |= DDMA_CFG_DP; | ||
302 | cp->ddma_cfg = i; | ||
303 | au_sync(); | ||
304 | |||
305 | /* Return a non-zero value that can be used to | ||
306 | * find the channel information in subsequent | ||
307 | * operations. | ||
308 | */ | ||
309 | rv = (u32)(&chan_tab_ptr[chan]); | ||
310 | } | ||
311 | else { | ||
312 | /* Release devices. | ||
313 | */ | ||
314 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
315 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
316 | } | ||
317 | } | ||
318 | return rv; | ||
319 | } | ||
320 | |||
321 | /* Set the device width if source or destination is a FIFO. | ||
322 | * Should be 8, 16, or 32 bits. | ||
323 | */ | ||
324 | u32 | ||
325 | au1xxx_dbdma_set_devwidth(u32 chanid, int bits) | ||
326 | { | ||
327 | u32 rv; | ||
328 | chan_tab_t *ctp; | ||
329 | dbdev_tab_t *stp, *dtp; | ||
330 | |||
331 | ctp = *((chan_tab_t **)chanid); | ||
332 | stp = ctp->chan_src; | ||
333 | dtp = ctp->chan_dest; | ||
334 | rv = 0; | ||
335 | |||
336 | if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ | ||
337 | rv = stp->dev_devwidth; | ||
338 | stp->dev_devwidth = bits; | ||
339 | } | ||
340 | if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ | ||
341 | rv = dtp->dev_devwidth; | ||
342 | dtp->dev_devwidth = bits; | ||
343 | } | ||
344 | |||
345 | return rv; | ||
346 | } | ||
347 | |||
348 | /* Allocate a descriptor ring, initializing as much as possible. | ||
349 | */ | ||
350 | u32 | ||
351 | au1xxx_dbdma_ring_alloc(u32 chanid, int entries) | ||
352 | { | ||
353 | int i; | ||
354 | u32 desc_base, srcid, destid; | ||
355 | u32 cmd0, cmd1, src1, dest1; | ||
356 | u32 src0, dest0; | ||
357 | chan_tab_t *ctp; | ||
358 | dbdev_tab_t *stp, *dtp; | ||
359 | au1x_ddma_desc_t *dp; | ||
360 | |||
361 | /* I guess we could check this to be within the | ||
362 | * range of the table...... | ||
363 | */ | ||
364 | ctp = *((chan_tab_t **)chanid); | ||
365 | stp = ctp->chan_src; | ||
366 | dtp = ctp->chan_dest; | ||
367 | |||
368 | /* The descriptors must be 32-byte aligned. There is a | ||
369 | * possibility the allocation will give us such an address, | ||
370 | * and if we try that first we are likely to not waste larger | ||
371 | * slabs of memory. | ||
372 | */ | ||
373 | desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL); | ||
374 | if (desc_base == 0) | ||
375 | return 0; | ||
376 | |||
377 | if (desc_base & 0x1f) { | ||
378 | /* Lost....do it again, allocate extra, and round | ||
379 | * the address base. | ||
380 | */ | ||
381 | kfree((const void *)desc_base); | ||
382 | i = entries * sizeof(au1x_ddma_desc_t); | ||
383 | i += (sizeof(au1x_ddma_desc_t) - 1); | ||
384 | if ((desc_base = (u32)kmalloc(i, GFP_KERNEL)) == 0) | ||
385 | return 0; | ||
386 | |||
387 | desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); | ||
388 | } | ||
389 | dp = (au1x_ddma_desc_t *)desc_base; | ||
390 | |||
391 | /* Keep track of the base descriptor. | ||
392 | */ | ||
393 | ctp->chan_desc_base = dp; | ||
394 | |||
395 | /* Initialize the rings with as much information as we know. | ||
396 | */ | ||
397 | srcid = stp->dev_id; | ||
398 | destid = dtp->dev_id; | ||
399 | |||
400 | cmd0 = cmd1 = src1 = dest1 = 0; | ||
401 | src0 = dest0 = 0; | ||
402 | |||
403 | cmd0 |= DSCR_CMD0_SID(srcid); | ||
404 | cmd0 |= DSCR_CMD0_DID(destid); | ||
405 | cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; | ||
406 | cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT); | ||
407 | |||
408 | switch (stp->dev_devwidth) { | ||
409 | case 8: | ||
410 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); | ||
411 | break; | ||
412 | case 16: | ||
413 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); | ||
414 | break; | ||
415 | case 32: | ||
416 | default: | ||
417 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); | ||
418 | break; | ||
419 | } | ||
420 | |||
421 | switch (dtp->dev_devwidth) { | ||
422 | case 8: | ||
423 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); | ||
424 | break; | ||
425 | case 16: | ||
426 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); | ||
427 | break; | ||
428 | case 32: | ||
429 | default: | ||
430 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); | ||
431 | break; | ||
432 | } | ||
433 | |||
434 | /* If the device is marked as an in/out FIFO, ensure it is | ||
435 | * set non-coherent. | ||
436 | */ | ||
437 | if (stp->dev_flags & DEV_FLAGS_IN) | ||
438 | cmd0 |= DSCR_CMD0_SN; /* Source in fifo */ | ||
439 | if (dtp->dev_flags & DEV_FLAGS_OUT) | ||
440 | cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */ | ||
441 | |||
442 | /* Set up source1. For now, assume no stride and increment. | ||
443 | * A channel attribute update can change this later. | ||
444 | */ | ||
445 | switch (stp->dev_tsize) { | ||
446 | case 1: | ||
447 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); | ||
448 | break; | ||
449 | case 2: | ||
450 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); | ||
451 | break; | ||
452 | case 4: | ||
453 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); | ||
454 | break; | ||
455 | case 8: | ||
456 | default: | ||
457 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); | ||
458 | break; | ||
459 | } | ||
460 | |||
461 | /* If source input is fifo, set static address. | ||
462 | */ | ||
463 | if (stp->dev_flags & DEV_FLAGS_IN) { | ||
464 | src0 = stp->dev_physaddr; | ||
465 | src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); | ||
466 | } | ||
467 | |||
468 | /* Set up dest1. For now, assume no stride and increment. | ||
469 | * A channel attribute update can change this later. | ||
470 | */ | ||
471 | switch (dtp->dev_tsize) { | ||
472 | case 1: | ||
473 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); | ||
474 | break; | ||
475 | case 2: | ||
476 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); | ||
477 | break; | ||
478 | case 4: | ||
479 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); | ||
480 | break; | ||
481 | case 8: | ||
482 | default: | ||
483 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); | ||
484 | break; | ||
485 | } | ||
486 | |||
487 | /* If destination output is fifo, set static address. | ||
488 | */ | ||
489 | if (dtp->dev_flags & DEV_FLAGS_OUT) { | ||
490 | dest0 = dtp->dev_physaddr; | ||
491 | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); | ||
492 | } | ||
493 | |||
494 | for (i=0; i<entries; i++) { | ||
495 | dp->dscr_cmd0 = cmd0; | ||
496 | dp->dscr_cmd1 = cmd1; | ||
497 | dp->dscr_source0 = src0; | ||
498 | dp->dscr_source1 = src1; | ||
499 | dp->dscr_dest0 = dest0; | ||
500 | dp->dscr_dest1 = dest1; | ||
501 | dp->dscr_stat = 0; | ||
502 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); | ||
503 | dp++; | ||
504 | } | ||
505 | |||
506 | /* Make last descrptor point to the first. | ||
507 | */ | ||
508 | dp--; | ||
509 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); | ||
510 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | ||
511 | |||
512 | return (u32)(ctp->chan_desc_base); | ||
513 | } | ||
514 | |||
515 | /* Put a source buffer into the DMA ring. | ||
516 | * This updates the source pointer and byte count. Normally used | ||
517 | * for memory to fifo transfers. | ||
518 | */ | ||
519 | u32 | ||
520 | au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes) | ||
521 | { | ||
522 | chan_tab_t *ctp; | ||
523 | au1x_ddma_desc_t *dp; | ||
524 | |||
525 | /* I guess we could check this to be within the | ||
526 | * range of the table...... | ||
527 | */ | ||
528 | ctp = *((chan_tab_t **)chanid); | ||
529 | |||
530 | /* We should have multiple callers for a particular channel, | ||
531 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
532 | * so no locking should be needed. | ||
533 | */ | ||
534 | dp = ctp->put_ptr; | ||
535 | |||
536 | /* If the descriptor is valid, we are way ahead of the DMA | ||
537 | * engine, so just return an error condition. | ||
538 | */ | ||
539 | if (dp->dscr_cmd0 & DSCR_CMD0_V) { | ||
540 | return 0; | ||
541 | } | ||
542 | |||
543 | /* Load up buffer address and byte count. | ||
544 | */ | ||
545 | dp->dscr_source0 = virt_to_phys(buf); | ||
546 | dp->dscr_cmd1 = nbytes; | ||
547 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ | ||
548 | ctp->chan_ptr->ddma_dbell = 0xffffffff; /* Make it go */ | ||
549 | |||
550 | /* Get next descriptor pointer. | ||
551 | */ | ||
552 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
553 | |||
554 | /* return something not zero. | ||
555 | */ | ||
556 | return nbytes; | ||
557 | } | ||
558 | |||
559 | /* Put a destination buffer into the DMA ring. | ||
560 | * This updates the destination pointer and byte count. Normally used | ||
561 | * to place an empty buffer into the ring for fifo to memory transfers. | ||
562 | */ | ||
563 | u32 | ||
564 | au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes) | ||
565 | { | ||
566 | chan_tab_t *ctp; | ||
567 | au1x_ddma_desc_t *dp; | ||
568 | |||
569 | /* I guess we could check this to be within the | ||
570 | * range of the table...... | ||
571 | */ | ||
572 | ctp = *((chan_tab_t **)chanid); | ||
573 | |||
574 | /* We should have multiple callers for a particular channel, | ||
575 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
576 | * so no locking should be needed. | ||
577 | */ | ||
578 | dp = ctp->put_ptr; | ||
579 | |||
580 | /* If the descriptor is valid, we are way ahead of the DMA | ||
581 | * engine, so just return an error condition. | ||
582 | */ | ||
583 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
584 | return 0; | ||
585 | |||
586 | /* Load up buffer address and byte count. | ||
587 | */ | ||
588 | dp->dscr_dest0 = virt_to_phys(buf); | ||
589 | dp->dscr_cmd1 = nbytes; | ||
590 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ | ||
591 | |||
592 | /* Get next descriptor pointer. | ||
593 | */ | ||
594 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
595 | |||
596 | /* return something not zero. | ||
597 | */ | ||
598 | return nbytes; | ||
599 | } | ||
600 | |||
601 | /* Get a destination buffer into the DMA ring. | ||
602 | * Normally used to get a full buffer from the ring during fifo | ||
603 | * to memory transfers. This does not set the valid bit, you will | ||
604 | * have to put another destination buffer to keep the DMA going. | ||
605 | */ | ||
606 | u32 | ||
607 | au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) | ||
608 | { | ||
609 | chan_tab_t *ctp; | ||
610 | au1x_ddma_desc_t *dp; | ||
611 | u32 rv; | ||
612 | |||
613 | /* I guess we could check this to be within the | ||
614 | * range of the table...... | ||
615 | */ | ||
616 | ctp = *((chan_tab_t **)chanid); | ||
617 | |||
618 | /* We should have multiple callers for a particular channel, | ||
619 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
620 | * so no locking should be needed. | ||
621 | */ | ||
622 | dp = ctp->get_ptr; | ||
623 | |||
624 | /* If the descriptor is valid, we are way ahead of the DMA | ||
625 | * engine, so just return an error condition. | ||
626 | */ | ||
627 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
628 | return 0; | ||
629 | |||
630 | /* Return buffer address and byte count. | ||
631 | */ | ||
632 | *buf = (void *)(phys_to_virt(dp->dscr_dest0)); | ||
633 | *nbytes = dp->dscr_cmd1; | ||
634 | rv = dp->dscr_stat; | ||
635 | |||
636 | /* Get next descriptor pointer. | ||
637 | */ | ||
638 | ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
639 | |||
640 | /* return something not zero. | ||
641 | */ | ||
642 | return rv; | ||
643 | } | ||
644 | |||
645 | void | ||
646 | au1xxx_dbdma_stop(u32 chanid) | ||
647 | { | ||
648 | chan_tab_t *ctp; | ||
649 | volatile au1x_dma_chan_t *cp; | ||
650 | int halt_timeout = 0; | ||
651 | |||
652 | ctp = *((chan_tab_t **)chanid); | ||
653 | |||
654 | cp = ctp->chan_ptr; | ||
655 | cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ | ||
656 | au_sync(); | ||
657 | while (!(cp->ddma_stat & DDMA_STAT_H)) { | ||
658 | udelay(1); | ||
659 | halt_timeout++; | ||
660 | if (halt_timeout > 100) { | ||
661 | printk("warning: DMA channel won't halt\n"); | ||
662 | break; | ||
663 | } | ||
664 | } | ||
665 | /* clear current desc valid and doorbell */ | ||
666 | cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); | ||
667 | au_sync(); | ||
668 | } | ||
669 | |||
670 | /* Start using the current descriptor pointer. If the dbdma encounters | ||
671 | * a not valid descriptor, it will stop. In this case, we can just | ||
672 | * continue by adding a buffer to the list and starting again. | ||
673 | */ | ||
674 | void | ||
675 | au1xxx_dbdma_start(u32 chanid) | ||
676 | { | ||
677 | chan_tab_t *ctp; | ||
678 | volatile au1x_dma_chan_t *cp; | ||
679 | |||
680 | ctp = *((chan_tab_t **)chanid); | ||
681 | |||
682 | cp = ctp->chan_ptr; | ||
683 | cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); | ||
684 | cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ | ||
685 | au_sync(); | ||
686 | cp->ddma_dbell = 0xffffffff; /* Make it go */ | ||
687 | au_sync(); | ||
688 | } | ||
689 | |||
690 | void | ||
691 | au1xxx_dbdma_reset(u32 chanid) | ||
692 | { | ||
693 | chan_tab_t *ctp; | ||
694 | au1x_ddma_desc_t *dp; | ||
695 | |||
696 | au1xxx_dbdma_stop(chanid); | ||
697 | |||
698 | ctp = *((chan_tab_t **)chanid); | ||
699 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | ||
700 | |||
701 | /* Run through the descriptors and reset the valid indicator. | ||
702 | */ | ||
703 | dp = ctp->chan_desc_base; | ||
704 | |||
705 | do { | ||
706 | dp->dscr_cmd0 &= ~DSCR_CMD0_V; | ||
707 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
708 | } while (dp != ctp->chan_desc_base); | ||
709 | } | ||
710 | |||
711 | u32 | ||
712 | au1xxx_get_dma_residue(u32 chanid) | ||
713 | { | ||
714 | chan_tab_t *ctp; | ||
715 | volatile au1x_dma_chan_t *cp; | ||
716 | u32 rv; | ||
717 | |||
718 | ctp = *((chan_tab_t **)chanid); | ||
719 | cp = ctp->chan_ptr; | ||
720 | |||
721 | /* This is only valid if the channel is stopped. | ||
722 | */ | ||
723 | rv = cp->ddma_bytecnt; | ||
724 | au_sync(); | ||
725 | |||
726 | return rv; | ||
727 | } | ||
728 | |||
729 | void | ||
730 | au1xxx_dbdma_chan_free(u32 chanid) | ||
731 | { | ||
732 | chan_tab_t *ctp; | ||
733 | dbdev_tab_t *stp, *dtp; | ||
734 | |||
735 | ctp = *((chan_tab_t **)chanid); | ||
736 | stp = ctp->chan_src; | ||
737 | dtp = ctp->chan_dest; | ||
738 | |||
739 | au1xxx_dbdma_stop(chanid); | ||
740 | |||
741 | if (ctp->chan_desc_base != NULL) | ||
742 | kfree(ctp->chan_desc_base); | ||
743 | |||
744 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
745 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
746 | chan_tab_ptr[ctp->chan_index] = NULL; | ||
747 | |||
748 | kfree(ctp); | ||
749 | } | ||
750 | |||
751 | static irqreturn_t | ||
752 | dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
753 | { | ||
754 | u32 intstat; | ||
755 | u32 chan_index; | ||
756 | chan_tab_t *ctp; | ||
757 | au1x_ddma_desc_t *dp; | ||
758 | volatile au1x_dma_chan_t *cp; | ||
759 | |||
760 | intstat = dbdma_gptr->ddma_intstat; | ||
761 | au_sync(); | ||
762 | chan_index = au_ffs(intstat) - 1; | ||
763 | |||
764 | ctp = chan_tab_ptr[chan_index]; | ||
765 | cp = ctp->chan_ptr; | ||
766 | dp = ctp->cur_ptr; | ||
767 | |||
768 | /* Reset interrupt. | ||
769 | */ | ||
770 | cp->ddma_irq = 0; | ||
771 | au_sync(); | ||
772 | |||
773 | if (ctp->chan_callback) | ||
774 | (ctp->chan_callback)(irq, ctp->chan_callparam, regs); | ||
775 | |||
776 | ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
777 | |||
778 | return IRQ_HANDLED; | ||
779 | } | ||
780 | |||
781 | static void | ||
782 | au1xxx_dbdma_init(void) | ||
783 | { | ||
784 | dbdma_gptr->ddma_config = 0; | ||
785 | dbdma_gptr->ddma_throttle = 0; | ||
786 | dbdma_gptr->ddma_inten = 0xffff; | ||
787 | au_sync(); | ||
788 | |||
789 | if (request_irq(AU1550_DDMA_INT, dbdma_interrupt, SA_INTERRUPT, | ||
790 | "Au1xxx dbdma", (void *)dbdma_gptr)) | ||
791 | printk("Can't get 1550 dbdma irq"); | ||
792 | } | ||
793 | |||
794 | void | ||
795 | au1xxx_dbdma_dump(u32 chanid) | ||
796 | { | ||
797 | chan_tab_t *ctp; | ||
798 | au1x_ddma_desc_t *dp; | ||
799 | dbdev_tab_t *stp, *dtp; | ||
800 | volatile au1x_dma_chan_t *cp; | ||
801 | |||
802 | ctp = *((chan_tab_t **)chanid); | ||
803 | stp = ctp->chan_src; | ||
804 | dtp = ctp->chan_dest; | ||
805 | cp = ctp->chan_ptr; | ||
806 | |||
807 | printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n", | ||
808 | (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab); | ||
809 | printk("desc base %x, get %x, put %x, cur %x\n", | ||
810 | (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), | ||
811 | (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); | ||
812 | |||
813 | printk("dbdma chan %x\n", (u32)cp); | ||
814 | printk("cfg %08x, desptr %08x, statptr %08x\n", | ||
815 | cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); | ||
816 | printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", | ||
817 | cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt); | ||
818 | |||
819 | |||
820 | /* Run through the descriptors | ||
821 | */ | ||
822 | dp = ctp->chan_desc_base; | ||
823 | |||
824 | do { | ||
825 | printk("dp %08x, cmd0 %08x, cmd1 %08x\n", | ||
826 | (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); | ||
827 | printk("src0 %08x, src1 %08x, dest0 %08x\n", | ||
828 | dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0); | ||
829 | printk("dest1 %08x, stat %08x, nxtptr %08x\n", | ||
830 | dp->dscr_dest1, dp->dscr_stat, dp->dscr_nxtptr); | ||
831 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
832 | } while (dp != ctp->chan_desc_base); | ||
833 | } | ||
834 | |||
835 | #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ | ||
836 | |||