aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/alchemy/common/dbdma.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/alchemy/common/dbdma.c')
-rw-r--r--arch/mips/alchemy/common/dbdma.c978
1 files changed, 978 insertions, 0 deletions
diff --git a/arch/mips/alchemy/common/dbdma.c b/arch/mips/alchemy/common/dbdma.c
new file mode 100644
index 000000000000..601ee9180ee4
--- /dev/null
+++ b/arch/mips/alchemy/common/dbdma.c
@@ -0,0 +1,978 @@
1/*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
7 *
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/spinlock.h>
36#include <linux/interrupt.h>
37#include <linux/module.h>
38#include <asm/mach-au1x00/au1000.h>
39#include <asm/mach-au1x00/au1xxx_dbdma.h>
40
41#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
42
43/*
44 * The Descriptor Based DMA supports up to 16 channels.
45 *
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
48 * information.
49 *
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
52 * to the descriptors.
53 */
54static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
55
56/* I couldn't find a macro that did this... */
57#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
58
59static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
60static int dbdma_initialized;
61static void au1xxx_dbdma_init(void);
62
63static dbdev_tab_t dbdev_tab[] = {
64#ifdef CONFIG_SOC_AU1550
65 /* UARTS */
66 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
67 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
68 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
69 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
70
71 /* EXT DMA */
72 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
76
77 /* USB DEV */
78 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
79 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
82 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
84
85 /* PSC 0 */
86 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
87 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
88
89 /* PSC 1 */
90 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92
93 /* PSC 2 */
94 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
96
97 /* PSC 3 */
98 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
100
101 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
102 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
103
104 /* MAC 0 */
105 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107
108 /* MAC 1 */
109 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
111
112#endif /* CONFIG_SOC_AU1550 */
113
114#ifdef CONFIG_SOC_AU1200
115 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
116 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
117 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
118 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
119
120 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
122
123 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127
128 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
129 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
130 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
132
133 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
134 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
135
136 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
137 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139
140 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
141 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
143
144 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
145 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
146 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
147 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148
149 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
150
151#endif /* CONFIG_SOC_AU1200 */
152
153 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
154 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
155
156 /* Provide 16 user definable device types */
157 { ~0, 0, 0, 0, 0, 0, 0 },
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173};
174
175#define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
176
177static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
178
179static dbdev_tab_t *find_dbdev_id(u32 id)
180{
181 int i;
182 dbdev_tab_t *p;
183 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
184 p = &dbdev_tab[i];
185 if (p->dev_id == id)
186 return p;
187 }
188 return NULL;
189}
190
191void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
192{
193 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
194}
195EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
196
197u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
198{
199 u32 ret = 0;
200 dbdev_tab_t *p;
201 static u16 new_id = 0x1000;
202
203 p = find_dbdev_id(~0);
204 if (NULL != p) {
205 memcpy(p, dev, sizeof(dbdev_tab_t));
206 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
207 ret = p->dev_id;
208 new_id++;
209#if 0
210 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
211 p->dev_id, p->dev_flags, p->dev_physaddr);
212#endif
213 }
214
215 return ret;
216}
217EXPORT_SYMBOL(au1xxx_ddma_add_device);
218
219void au1xxx_ddma_del_device(u32 devid)
220{
221 dbdev_tab_t *p = find_dbdev_id(devid);
222
223 if (p != NULL) {
224 memset(p, 0, sizeof(dbdev_tab_t));
225 p->dev_id = ~0;
226 }
227}
228EXPORT_SYMBOL(au1xxx_ddma_del_device);
229
230/* Allocate a channel and return a non-zero descriptor if successful. */
231u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
232 void (*callback)(int, void *), void *callparam)
233{
234 unsigned long flags;
235 u32 used, chan, rv;
236 u32 dcp;
237 int i;
238 dbdev_tab_t *stp, *dtp;
239 chan_tab_t *ctp;
240 au1x_dma_chan_t *cp;
241
242 /*
243 * We do the intialization on the first channel allocation.
244 * We have to wait because of the interrupt handler initialization
245 * which can't be done successfully during board set up.
246 */
247 if (!dbdma_initialized)
248 au1xxx_dbdma_init();
249 dbdma_initialized = 1;
250
251 stp = find_dbdev_id(srcid);
252 if (stp == NULL)
253 return 0;
254 dtp = find_dbdev_id(destid);
255 if (dtp == NULL)
256 return 0;
257
258 used = 0;
259 rv = 0;
260
261 /* Check to see if we can get both channels. */
262 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
263 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
264 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
265 /* Got source */
266 stp->dev_flags |= DEV_FLAGS_INUSE;
267 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
268 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
269 /* Got destination */
270 dtp->dev_flags |= DEV_FLAGS_INUSE;
271 } else {
272 /* Can't get dest. Release src. */
273 stp->dev_flags &= ~DEV_FLAGS_INUSE;
274 used++;
275 }
276 } else
277 used++;
278 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
279
280 if (!used) {
281 /* Let's see if we can allocate a channel for it. */
282 ctp = NULL;
283 chan = 0;
284 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
285 for (i = 0; i < NUM_DBDMA_CHANS; i++)
286 if (chan_tab_ptr[i] == NULL) {
287 /*
288 * If kmalloc fails, it is caught below same
289 * as a channel not available.
290 */
291 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
292 chan_tab_ptr[i] = ctp;
293 break;
294 }
295 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
296
297 if (ctp != NULL) {
298 memset(ctp, 0, sizeof(chan_tab_t));
299 ctp->chan_index = chan = i;
300 dcp = DDMA_CHANNEL_BASE;
301 dcp += (0x0100 * chan);
302 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
303 cp = (au1x_dma_chan_t *)dcp;
304 ctp->chan_src = stp;
305 ctp->chan_dest = dtp;
306 ctp->chan_callback = callback;
307 ctp->chan_callparam = callparam;
308
309 /* Initialize channel configuration. */
310 i = 0;
311 if (stp->dev_intlevel)
312 i |= DDMA_CFG_SED;
313 if (stp->dev_intpolarity)
314 i |= DDMA_CFG_SP;
315 if (dtp->dev_intlevel)
316 i |= DDMA_CFG_DED;
317 if (dtp->dev_intpolarity)
318 i |= DDMA_CFG_DP;
319 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
320 (dtp->dev_flags & DEV_FLAGS_SYNC))
321 i |= DDMA_CFG_SYNC;
322 cp->ddma_cfg = i;
323 au_sync();
324
325 /* Return a non-zero value that can be used to
326 * find the channel information in subsequent
327 * operations.
328 */
329 rv = (u32)(&chan_tab_ptr[chan]);
330 } else {
331 /* Release devices */
332 stp->dev_flags &= ~DEV_FLAGS_INUSE;
333 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
334 }
335 }
336 return rv;
337}
338EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
339
340/*
341 * Set the device width if source or destination is a FIFO.
342 * Should be 8, 16, or 32 bits.
343 */
344u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
345{
346 u32 rv;
347 chan_tab_t *ctp;
348 dbdev_tab_t *stp, *dtp;
349
350 ctp = *((chan_tab_t **)chanid);
351 stp = ctp->chan_src;
352 dtp = ctp->chan_dest;
353 rv = 0;
354
355 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
356 rv = stp->dev_devwidth;
357 stp->dev_devwidth = bits;
358 }
359 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
360 rv = dtp->dev_devwidth;
361 dtp->dev_devwidth = bits;
362 }
363
364 return rv;
365}
366EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
367
368/* Allocate a descriptor ring, initializing as much as possible. */
369u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
370{
371 int i;
372 u32 desc_base, srcid, destid;
373 u32 cmd0, cmd1, src1, dest1;
374 u32 src0, dest0;
375 chan_tab_t *ctp;
376 dbdev_tab_t *stp, *dtp;
377 au1x_ddma_desc_t *dp;
378
379 /*
380 * I guess we could check this to be within the
381 * range of the table......
382 */
383 ctp = *((chan_tab_t **)chanid);
384 stp = ctp->chan_src;
385 dtp = ctp->chan_dest;
386
387 /*
388 * The descriptors must be 32-byte aligned. There is a
389 * possibility the allocation will give us such an address,
390 * and if we try that first we are likely to not waste larger
391 * slabs of memory.
392 */
393 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
394 GFP_KERNEL|GFP_DMA);
395 if (desc_base == 0)
396 return 0;
397
398 if (desc_base & 0x1f) {
399 /*
400 * Lost....do it again, allocate extra, and round
401 * the address base.
402 */
403 kfree((const void *)desc_base);
404 i = entries * sizeof(au1x_ddma_desc_t);
405 i += (sizeof(au1x_ddma_desc_t) - 1);
406 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
407 if (desc_base == 0)
408 return 0;
409
410 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
411 }
412 dp = (au1x_ddma_desc_t *)desc_base;
413
414 /* Keep track of the base descriptor. */
415 ctp->chan_desc_base = dp;
416
417 /* Initialize the rings with as much information as we know. */
418 srcid = stp->dev_id;
419 destid = dtp->dev_id;
420
421 cmd0 = cmd1 = src1 = dest1 = 0;
422 src0 = dest0 = 0;
423
424 cmd0 |= DSCR_CMD0_SID(srcid);
425 cmd0 |= DSCR_CMD0_DID(destid);
426 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
427 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
428
429 /* Is it mem to mem transfer? */
430 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
431 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
432 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
433 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
434 cmd0 |= DSCR_CMD0_MEM;
435
436 switch (stp->dev_devwidth) {
437 case 8:
438 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
439 break;
440 case 16:
441 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
442 break;
443 case 32:
444 default:
445 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
446 break;
447 }
448
449 switch (dtp->dev_devwidth) {
450 case 8:
451 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
452 break;
453 case 16:
454 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
455 break;
456 case 32:
457 default:
458 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
459 break;
460 }
461
462 /*
463 * If the device is marked as an in/out FIFO, ensure it is
464 * set non-coherent.
465 */
466 if (stp->dev_flags & DEV_FLAGS_IN)
467 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
468 if (dtp->dev_flags & DEV_FLAGS_OUT)
469 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
470
471 /*
472 * Set up source1. For now, assume no stride and increment.
473 * A channel attribute update can change this later.
474 */
475 switch (stp->dev_tsize) {
476 case 1:
477 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
478 break;
479 case 2:
480 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
481 break;
482 case 4:
483 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
484 break;
485 case 8:
486 default:
487 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
488 break;
489 }
490
491 /* If source input is FIFO, set static address. */
492 if (stp->dev_flags & DEV_FLAGS_IN) {
493 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
494 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
495 else
496 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
497 }
498
499 if (stp->dev_physaddr)
500 src0 = stp->dev_physaddr;
501
502 /*
503 * Set up dest1. For now, assume no stride and increment.
504 * A channel attribute update can change this later.
505 */
506 switch (dtp->dev_tsize) {
507 case 1:
508 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
509 break;
510 case 2:
511 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
512 break;
513 case 4:
514 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
515 break;
516 case 8:
517 default:
518 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
519 break;
520 }
521
522 /* If destination output is FIFO, set static address. */
523 if (dtp->dev_flags & DEV_FLAGS_OUT) {
524 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
525 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
526 else
527 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
528 }
529
530 if (dtp->dev_physaddr)
531 dest0 = dtp->dev_physaddr;
532
533#if 0
534 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
535 "source1:%x dest0:%x dest1:%x\n",
536 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
537 src1, dest0, dest1);
538#endif
539 for (i = 0; i < entries; i++) {
540 dp->dscr_cmd0 = cmd0;
541 dp->dscr_cmd1 = cmd1;
542 dp->dscr_source0 = src0;
543 dp->dscr_source1 = src1;
544 dp->dscr_dest0 = dest0;
545 dp->dscr_dest1 = dest1;
546 dp->dscr_stat = 0;
547 dp->sw_context = 0;
548 dp->sw_status = 0;
549 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
550 dp++;
551 }
552
553 /* Make last descrptor point to the first. */
554 dp--;
555 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
556 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
557
558 return (u32)ctp->chan_desc_base;
559}
560EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
561
562/*
563 * Put a source buffer into the DMA ring.
564 * This updates the source pointer and byte count. Normally used
565 * for memory to fifo transfers.
566 */
567u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
568{
569 chan_tab_t *ctp;
570 au1x_ddma_desc_t *dp;
571
572 /*
573 * I guess we could check this to be within the
574 * range of the table......
575 */
576 ctp = *(chan_tab_t **)chanid;
577
578 /*
579 * We should have multiple callers for a particular channel,
580 * an interrupt doesn't affect this pointer nor the descriptor,
581 * so no locking should be needed.
582 */
583 dp = ctp->put_ptr;
584
585 /*
586 * If the descriptor is valid, we are way ahead of the DMA
587 * engine, so just return an error condition.
588 */
589 if (dp->dscr_cmd0 & DSCR_CMD0_V)
590 return 0;
591
592 /* Load up buffer address and byte count. */
593 dp->dscr_source0 = virt_to_phys(buf);
594 dp->dscr_cmd1 = nbytes;
595 /* Check flags */
596 if (flags & DDMA_FLAGS_IE)
597 dp->dscr_cmd0 |= DSCR_CMD0_IE;
598 if (flags & DDMA_FLAGS_NOIE)
599 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
600
601 /*
602 * There is an errata on the Au1200/Au1550 parts that could result
603 * in "stale" data being DMA'ed. It has to do with the snoop logic on
604 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
605 * these parts. If it is fixed in the future, these dma_cache_inv will
606 * just be nothing more than empty macros. See io.h.
607 */
608 dma_cache_wback_inv((unsigned long)buf, nbytes);
609 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
610 au_sync();
611 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
612 ctp->chan_ptr->ddma_dbell = 0;
613
614 /* Get next descriptor pointer. */
615 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
616
617 /* Return something non-zero. */
618 return nbytes;
619}
620EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
621
622/* Put a destination buffer into the DMA ring.
623 * This updates the destination pointer and byte count. Normally used
624 * to place an empty buffer into the ring for fifo to memory transfers.
625 */
626u32
627_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
628{
629 chan_tab_t *ctp;
630 au1x_ddma_desc_t *dp;
631
632 /* I guess we could check this to be within the
633 * range of the table......
634 */
635 ctp = *((chan_tab_t **)chanid);
636
637 /* We should have multiple callers for a particular channel,
638 * an interrupt doesn't affect this pointer nor the descriptor,
639 * so no locking should be needed.
640 */
641 dp = ctp->put_ptr;
642
643 /* If the descriptor is valid, we are way ahead of the DMA
644 * engine, so just return an error condition.
645 */
646 if (dp->dscr_cmd0 & DSCR_CMD0_V)
647 return 0;
648
649 /* Load up buffer address and byte count */
650
651 /* Check flags */
652 if (flags & DDMA_FLAGS_IE)
653 dp->dscr_cmd0 |= DSCR_CMD0_IE;
654 if (flags & DDMA_FLAGS_NOIE)
655 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
656
657 dp->dscr_dest0 = virt_to_phys(buf);
658 dp->dscr_cmd1 = nbytes;
659#if 0
660 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
661 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
662 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
663#endif
664 /*
665 * There is an errata on the Au1200/Au1550 parts that could result in
666 * "stale" data being DMA'ed. It has to do with the snoop logic on the
667 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
668 * parts. If it is fixed in the future, these dma_cache_inv will just
669 * be nothing more than empty macros. See io.h.
670 */
671 dma_cache_inv((unsigned long)buf, nbytes);
672 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
673 au_sync();
674 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
675 ctp->chan_ptr->ddma_dbell = 0;
676
677 /* Get next descriptor pointer. */
678 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
679
680 /* Return something non-zero. */
681 return nbytes;
682}
683EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
684
685/*
686 * Get a destination buffer into the DMA ring.
687 * Normally used to get a full buffer from the ring during fifo
688 * to memory transfers. This does not set the valid bit, you will
689 * have to put another destination buffer to keep the DMA going.
690 */
691u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
692{
693 chan_tab_t *ctp;
694 au1x_ddma_desc_t *dp;
695 u32 rv;
696
697 /*
698 * I guess we could check this to be within the
699 * range of the table......
700 */
701 ctp = *((chan_tab_t **)chanid);
702
703 /*
704 * We should have multiple callers for a particular channel,
705 * an interrupt doesn't affect this pointer nor the descriptor,
706 * so no locking should be needed.
707 */
708 dp = ctp->get_ptr;
709
710 /*
711 * If the descriptor is valid, we are way ahead of the DMA
712 * engine, so just return an error condition.
713 */
714 if (dp->dscr_cmd0 & DSCR_CMD0_V)
715 return 0;
716
717 /* Return buffer address and byte count. */
718 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
719 *nbytes = dp->dscr_cmd1;
720 rv = dp->dscr_stat;
721
722 /* Get next descriptor pointer. */
723 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
724
725 /* Return something non-zero. */
726 return rv;
727}
728EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
729
730void au1xxx_dbdma_stop(u32 chanid)
731{
732 chan_tab_t *ctp;
733 au1x_dma_chan_t *cp;
734 int halt_timeout = 0;
735
736 ctp = *((chan_tab_t **)chanid);
737
738 cp = ctp->chan_ptr;
739 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
740 au_sync();
741 while (!(cp->ddma_stat & DDMA_STAT_H)) {
742 udelay(1);
743 halt_timeout++;
744 if (halt_timeout > 100) {
745 printk(KERN_WARNING "warning: DMA channel won't halt\n");
746 break;
747 }
748 }
749 /* clear current desc valid and doorbell */
750 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
751 au_sync();
752}
753EXPORT_SYMBOL(au1xxx_dbdma_stop);
754
755/*
756 * Start using the current descriptor pointer. If the DBDMA encounters
757 * a non-valid descriptor, it will stop. In this case, we can just
758 * continue by adding a buffer to the list and starting again.
759 */
760void au1xxx_dbdma_start(u32 chanid)
761{
762 chan_tab_t *ctp;
763 au1x_dma_chan_t *cp;
764
765 ctp = *((chan_tab_t **)chanid);
766 cp = ctp->chan_ptr;
767 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
768 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
769 au_sync();
770 cp->ddma_dbell = 0;
771 au_sync();
772}
773EXPORT_SYMBOL(au1xxx_dbdma_start);
774
775void au1xxx_dbdma_reset(u32 chanid)
776{
777 chan_tab_t *ctp;
778 au1x_ddma_desc_t *dp;
779
780 au1xxx_dbdma_stop(chanid);
781
782 ctp = *((chan_tab_t **)chanid);
783 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
784
785 /* Run through the descriptors and reset the valid indicator. */
786 dp = ctp->chan_desc_base;
787
788 do {
789 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
790 /*
791 * Reset our software status -- this is used to determine
792 * if a descriptor is in use by upper level software. Since
793 * posting can reset 'V' bit.
794 */
795 dp->sw_status = 0;
796 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
797 } while (dp != ctp->chan_desc_base);
798}
799EXPORT_SYMBOL(au1xxx_dbdma_reset);
800
801u32 au1xxx_get_dma_residue(u32 chanid)
802{
803 chan_tab_t *ctp;
804 au1x_dma_chan_t *cp;
805 u32 rv;
806
807 ctp = *((chan_tab_t **)chanid);
808 cp = ctp->chan_ptr;
809
810 /* This is only valid if the channel is stopped. */
811 rv = cp->ddma_bytecnt;
812 au_sync();
813
814 return rv;
815}
816EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
817
818void au1xxx_dbdma_chan_free(u32 chanid)
819{
820 chan_tab_t *ctp;
821 dbdev_tab_t *stp, *dtp;
822
823 ctp = *((chan_tab_t **)chanid);
824 stp = ctp->chan_src;
825 dtp = ctp->chan_dest;
826
827 au1xxx_dbdma_stop(chanid);
828
829 kfree((void *)ctp->chan_desc_base);
830
831 stp->dev_flags &= ~DEV_FLAGS_INUSE;
832 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
833 chan_tab_ptr[ctp->chan_index] = NULL;
834
835 kfree(ctp);
836}
837EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
838
839static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
840{
841 u32 intstat;
842 u32 chan_index;
843 chan_tab_t *ctp;
844 au1x_ddma_desc_t *dp;
845 au1x_dma_chan_t *cp;
846
847 intstat = dbdma_gptr->ddma_intstat;
848 au_sync();
849 chan_index = __ffs(intstat);
850
851 ctp = chan_tab_ptr[chan_index];
852 cp = ctp->chan_ptr;
853 dp = ctp->cur_ptr;
854
855 /* Reset interrupt. */
856 cp->ddma_irq = 0;
857 au_sync();
858
859 if (ctp->chan_callback)
860 ctp->chan_callback(irq, ctp->chan_callparam);
861
862 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
863 return IRQ_RETVAL(1);
864}
865
866static void au1xxx_dbdma_init(void)
867{
868 int irq_nr;
869
870 dbdma_gptr->ddma_config = 0;
871 dbdma_gptr->ddma_throttle = 0;
872 dbdma_gptr->ddma_inten = 0xffff;
873 au_sync();
874
875#if defined(CONFIG_SOC_AU1550)
876 irq_nr = AU1550_DDMA_INT;
877#elif defined(CONFIG_SOC_AU1200)
878 irq_nr = AU1200_DDMA_INT;
879#else
880 #error Unknown Au1x00 SOC
881#endif
882
883 if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
884 "Au1xxx dbdma", (void *)dbdma_gptr))
885 printk(KERN_ERR "Can't get 1550 dbdma irq");
886}
887
888void au1xxx_dbdma_dump(u32 chanid)
889{
890 chan_tab_t *ctp;
891 au1x_ddma_desc_t *dp;
892 dbdev_tab_t *stp, *dtp;
893 au1x_dma_chan_t *cp;
894 u32 i = 0;
895
896 ctp = *((chan_tab_t **)chanid);
897 stp = ctp->chan_src;
898 dtp = ctp->chan_dest;
899 cp = ctp->chan_ptr;
900
901 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
902 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
903 dtp - dbdev_tab);
904 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
905 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
906 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
907
908 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
909 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
910 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
911 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
912 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
913 cp->ddma_bytecnt);
914
915 /* Run through the descriptors */
916 dp = ctp->chan_desc_base;
917
918 do {
919 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
920 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
921 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
922 dp->dscr_source0, dp->dscr_source1,
923 dp->dscr_dest0, dp->dscr_dest1);
924 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
925 dp->dscr_stat, dp->dscr_nxtptr);
926 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
927 } while (dp != ctp->chan_desc_base);
928}
929
930/* Put a descriptor into the DMA ring.
931 * This updates the source/destination pointers and byte count.
932 */
933u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
934{
935 chan_tab_t *ctp;
936 au1x_ddma_desc_t *dp;
937 u32 nbytes = 0;
938
939 /*
940 * I guess we could check this to be within the
941 * range of the table......
942 */
943 ctp = *((chan_tab_t **)chanid);
944
945 /*
946 * We should have multiple callers for a particular channel,
947 * an interrupt doesn't affect this pointer nor the descriptor,
948 * so no locking should be needed.
949 */
950 dp = ctp->put_ptr;
951
952 /*
953 * If the descriptor is valid, we are way ahead of the DMA
954 * engine, so just return an error condition.
955 */
956 if (dp->dscr_cmd0 & DSCR_CMD0_V)
957 return 0;
958
959 /* Load up buffer addresses and byte count. */
960 dp->dscr_dest0 = dscr->dscr_dest0;
961 dp->dscr_source0 = dscr->dscr_source0;
962 dp->dscr_dest1 = dscr->dscr_dest1;
963 dp->dscr_source1 = dscr->dscr_source1;
964 dp->dscr_cmd1 = dscr->dscr_cmd1;
965 nbytes = dscr->dscr_cmd1;
966 /* Allow the caller to specifiy if an interrupt is generated */
967 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
968 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
969 ctp->chan_ptr->ddma_dbell = 0;
970
971 /* Get next descriptor pointer. */
972 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
973
974 /* Return something non-zero. */
975 return nbytes;
976}
977
978#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */