diff options
Diffstat (limited to 'arch/m68k/ifpsp060/src/fpsp.S')
-rw-r--r-- | arch/m68k/ifpsp060/src/fpsp.S | 24785 |
1 files changed, 24785 insertions, 0 deletions
diff --git a/arch/m68k/ifpsp060/src/fpsp.S b/arch/m68k/ifpsp060/src/fpsp.S new file mode 100644 index 000000000000..3b597a9bbf43 --- /dev/null +++ b/arch/m68k/ifpsp060/src/fpsp.S | |||
@@ -0,0 +1,24785 @@ | |||
1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
2 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP | ||
3 | M68000 Hi-Performance Microprocessor Division | ||
4 | M68060 Software Package | ||
5 | Production Release P1.00 -- October 10, 1994 | ||
6 | |||
7 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. | ||
8 | |||
9 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. | ||
10 | To the maximum extent permitted by applicable law, | ||
11 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, | ||
12 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE | ||
13 | and any warranty against infringement with regard to the SOFTWARE | ||
14 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. | ||
15 | |||
16 | To the maximum extent permitted by applicable law, | ||
17 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER | ||
18 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, | ||
19 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) | ||
20 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. | ||
21 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. | ||
22 | |||
23 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE | ||
24 | so long as this entire notice is retained without alteration in any modified and/or | ||
25 | redistributed versions, and that such modified versions are clearly identified as such. | ||
26 | No licenses are granted by implication, estoppel or otherwise under any patents | ||
27 | or trademarks of Motorola, Inc. | ||
28 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
29 | # | ||
30 | # freal.s: | ||
31 | # This file is appended to the top of the 060FPSP package | ||
32 | # and contains the entry points into the package. The user, in | ||
33 | # effect, branches to one of the branch table entries located | ||
34 | # after _060FPSP_TABLE. | ||
35 | # Also, subroutine stubs exist in this file (_fpsp_done for | ||
36 | # example) that are referenced by the FPSP package itself in order | ||
37 | # to call a given routine. The stub routine actually performs the | ||
38 | # callout. The FPSP code does a "bsr" to the stub routine. This | ||
39 | # extra layer of hierarchy adds a slight performance penalty but | ||
40 | # it makes the FPSP code easier to read and more mainatinable. | ||
41 | # | ||
42 | |||
43 | set _off_bsun, 0x00 | ||
44 | set _off_snan, 0x04 | ||
45 | set _off_operr, 0x08 | ||
46 | set _off_ovfl, 0x0c | ||
47 | set _off_unfl, 0x10 | ||
48 | set _off_dz, 0x14 | ||
49 | set _off_inex, 0x18 | ||
50 | set _off_fline, 0x1c | ||
51 | set _off_fpu_dis, 0x20 | ||
52 | set _off_trap, 0x24 | ||
53 | set _off_trace, 0x28 | ||
54 | set _off_access, 0x2c | ||
55 | set _off_done, 0x30 | ||
56 | |||
57 | set _off_imr, 0x40 | ||
58 | set _off_dmr, 0x44 | ||
59 | set _off_dmw, 0x48 | ||
60 | set _off_irw, 0x4c | ||
61 | set _off_irl, 0x50 | ||
62 | set _off_drb, 0x54 | ||
63 | set _off_drw, 0x58 | ||
64 | set _off_drl, 0x5c | ||
65 | set _off_dwb, 0x60 | ||
66 | set _off_dww, 0x64 | ||
67 | set _off_dwl, 0x68 | ||
68 | |||
69 | _060FPSP_TABLE: | ||
70 | |||
71 | ############################################################### | ||
72 | |||
73 | # Here's the table of ENTRY POINTS for those linking the package. | ||
74 | bra.l _fpsp_snan | ||
75 | short 0x0000 | ||
76 | bra.l _fpsp_operr | ||
77 | short 0x0000 | ||
78 | bra.l _fpsp_ovfl | ||
79 | short 0x0000 | ||
80 | bra.l _fpsp_unfl | ||
81 | short 0x0000 | ||
82 | bra.l _fpsp_dz | ||
83 | short 0x0000 | ||
84 | bra.l _fpsp_inex | ||
85 | short 0x0000 | ||
86 | bra.l _fpsp_fline | ||
87 | short 0x0000 | ||
88 | bra.l _fpsp_unsupp | ||
89 | short 0x0000 | ||
90 | bra.l _fpsp_effadd | ||
91 | short 0x0000 | ||
92 | |||
93 | space 56 | ||
94 | |||
95 | ############################################################### | ||
96 | global _fpsp_done | ||
97 | _fpsp_done: | ||
98 | mov.l %d0,-(%sp) | ||
99 | mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 | ||
100 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
101 | mov.l 0x4(%sp),%d0 | ||
102 | rtd &0x4 | ||
103 | |||
104 | global _real_ovfl | ||
105 | _real_ovfl: | ||
106 | mov.l %d0,-(%sp) | ||
107 | mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 | ||
108 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
109 | mov.l 0x4(%sp),%d0 | ||
110 | rtd &0x4 | ||
111 | |||
112 | global _real_unfl | ||
113 | _real_unfl: | ||
114 | mov.l %d0,-(%sp) | ||
115 | mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 | ||
116 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
117 | mov.l 0x4(%sp),%d0 | ||
118 | rtd &0x4 | ||
119 | |||
120 | global _real_inex | ||
121 | _real_inex: | ||
122 | mov.l %d0,-(%sp) | ||
123 | mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 | ||
124 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
125 | mov.l 0x4(%sp),%d0 | ||
126 | rtd &0x4 | ||
127 | |||
128 | global _real_bsun | ||
129 | _real_bsun: | ||
130 | mov.l %d0,-(%sp) | ||
131 | mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 | ||
132 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
133 | mov.l 0x4(%sp),%d0 | ||
134 | rtd &0x4 | ||
135 | |||
136 | global _real_operr | ||
137 | _real_operr: | ||
138 | mov.l %d0,-(%sp) | ||
139 | mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 | ||
140 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
141 | mov.l 0x4(%sp),%d0 | ||
142 | rtd &0x4 | ||
143 | |||
144 | global _real_snan | ||
145 | _real_snan: | ||
146 | mov.l %d0,-(%sp) | ||
147 | mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 | ||
148 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
149 | mov.l 0x4(%sp),%d0 | ||
150 | rtd &0x4 | ||
151 | |||
152 | global _real_dz | ||
153 | _real_dz: | ||
154 | mov.l %d0,-(%sp) | ||
155 | mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 | ||
156 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
157 | mov.l 0x4(%sp),%d0 | ||
158 | rtd &0x4 | ||
159 | |||
160 | global _real_fline | ||
161 | _real_fline: | ||
162 | mov.l %d0,-(%sp) | ||
163 | mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 | ||
164 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
165 | mov.l 0x4(%sp),%d0 | ||
166 | rtd &0x4 | ||
167 | |||
168 | global _real_fpu_disabled | ||
169 | _real_fpu_disabled: | ||
170 | mov.l %d0,-(%sp) | ||
171 | mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 | ||
172 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
173 | mov.l 0x4(%sp),%d0 | ||
174 | rtd &0x4 | ||
175 | |||
176 | global _real_trap | ||
177 | _real_trap: | ||
178 | mov.l %d0,-(%sp) | ||
179 | mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 | ||
180 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
181 | mov.l 0x4(%sp),%d0 | ||
182 | rtd &0x4 | ||
183 | |||
184 | global _real_trace | ||
185 | _real_trace: | ||
186 | mov.l %d0,-(%sp) | ||
187 | mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 | ||
188 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
189 | mov.l 0x4(%sp),%d0 | ||
190 | rtd &0x4 | ||
191 | |||
192 | global _real_access | ||
193 | _real_access: | ||
194 | mov.l %d0,-(%sp) | ||
195 | mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 | ||
196 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
197 | mov.l 0x4(%sp),%d0 | ||
198 | rtd &0x4 | ||
199 | |||
200 | ####################################### | ||
201 | |||
202 | global _imem_read | ||
203 | _imem_read: | ||
204 | mov.l %d0,-(%sp) | ||
205 | mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 | ||
206 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
207 | mov.l 0x4(%sp),%d0 | ||
208 | rtd &0x4 | ||
209 | |||
210 | global _dmem_read | ||
211 | _dmem_read: | ||
212 | mov.l %d0,-(%sp) | ||
213 | mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 | ||
214 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
215 | mov.l 0x4(%sp),%d0 | ||
216 | rtd &0x4 | ||
217 | |||
218 | global _dmem_write | ||
219 | _dmem_write: | ||
220 | mov.l %d0,-(%sp) | ||
221 | mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 | ||
222 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
223 | mov.l 0x4(%sp),%d0 | ||
224 | rtd &0x4 | ||
225 | |||
226 | global _imem_read_word | ||
227 | _imem_read_word: | ||
228 | mov.l %d0,-(%sp) | ||
229 | mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 | ||
230 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
231 | mov.l 0x4(%sp),%d0 | ||
232 | rtd &0x4 | ||
233 | |||
234 | global _imem_read_long | ||
235 | _imem_read_long: | ||
236 | mov.l %d0,-(%sp) | ||
237 | mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 | ||
238 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
239 | mov.l 0x4(%sp),%d0 | ||
240 | rtd &0x4 | ||
241 | |||
242 | global _dmem_read_byte | ||
243 | _dmem_read_byte: | ||
244 | mov.l %d0,-(%sp) | ||
245 | mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 | ||
246 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
247 | mov.l 0x4(%sp),%d0 | ||
248 | rtd &0x4 | ||
249 | |||
250 | global _dmem_read_word | ||
251 | _dmem_read_word: | ||
252 | mov.l %d0,-(%sp) | ||
253 | mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 | ||
254 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
255 | mov.l 0x4(%sp),%d0 | ||
256 | rtd &0x4 | ||
257 | |||
258 | global _dmem_read_long | ||
259 | _dmem_read_long: | ||
260 | mov.l %d0,-(%sp) | ||
261 | mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 | ||
262 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
263 | mov.l 0x4(%sp),%d0 | ||
264 | rtd &0x4 | ||
265 | |||
266 | global _dmem_write_byte | ||
267 | _dmem_write_byte: | ||
268 | mov.l %d0,-(%sp) | ||
269 | mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 | ||
270 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
271 | mov.l 0x4(%sp),%d0 | ||
272 | rtd &0x4 | ||
273 | |||
274 | global _dmem_write_word | ||
275 | _dmem_write_word: | ||
276 | mov.l %d0,-(%sp) | ||
277 | mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 | ||
278 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
279 | mov.l 0x4(%sp),%d0 | ||
280 | rtd &0x4 | ||
281 | |||
282 | global _dmem_write_long | ||
283 | _dmem_write_long: | ||
284 | mov.l %d0,-(%sp) | ||
285 | mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 | ||
286 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) | ||
287 | mov.l 0x4(%sp),%d0 | ||
288 | rtd &0x4 | ||
289 | |||
290 | # | ||
291 | # This file contains a set of define statements for constants | ||
292 | # in order to promote readability within the corecode itself. | ||
293 | # | ||
294 | |||
295 | set LOCAL_SIZE, 192 # stack frame size(bytes) | ||
296 | set LV, -LOCAL_SIZE # stack offset | ||
297 | |||
298 | set EXC_SR, 0x4 # stack status register | ||
299 | set EXC_PC, 0x6 # stack pc | ||
300 | set EXC_VOFF, 0xa # stacked vector offset | ||
301 | set EXC_EA, 0xc # stacked <ea> | ||
302 | |||
303 | set EXC_FP, 0x0 # frame pointer | ||
304 | |||
305 | set EXC_AREGS, -68 # offset of all address regs | ||
306 | set EXC_DREGS, -100 # offset of all data regs | ||
307 | set EXC_FPREGS, -36 # offset of all fp regs | ||
308 | |||
309 | set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 | ||
310 | set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 | ||
311 | set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 | ||
312 | set EXC_A5, EXC_AREGS+(5*4) | ||
313 | set EXC_A4, EXC_AREGS+(4*4) | ||
314 | set EXC_A3, EXC_AREGS+(3*4) | ||
315 | set EXC_A2, EXC_AREGS+(2*4) | ||
316 | set EXC_A1, EXC_AREGS+(1*4) | ||
317 | set EXC_A0, EXC_AREGS+(0*4) | ||
318 | set EXC_D7, EXC_DREGS+(7*4) | ||
319 | set EXC_D6, EXC_DREGS+(6*4) | ||
320 | set EXC_D5, EXC_DREGS+(5*4) | ||
321 | set EXC_D4, EXC_DREGS+(4*4) | ||
322 | set EXC_D3, EXC_DREGS+(3*4) | ||
323 | set EXC_D2, EXC_DREGS+(2*4) | ||
324 | set EXC_D1, EXC_DREGS+(1*4) | ||
325 | set EXC_D0, EXC_DREGS+(0*4) | ||
326 | |||
327 | set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 | ||
328 | set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 | ||
329 | set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) | ||
330 | |||
331 | set FP_SCR1, LV+80 # fp scratch 1 | ||
332 | set FP_SCR1_EX, FP_SCR1+0 | ||
333 | set FP_SCR1_SGN, FP_SCR1+2 | ||
334 | set FP_SCR1_HI, FP_SCR1+4 | ||
335 | set FP_SCR1_LO, FP_SCR1+8 | ||
336 | |||
337 | set FP_SCR0, LV+68 # fp scratch 0 | ||
338 | set FP_SCR0_EX, FP_SCR0+0 | ||
339 | set FP_SCR0_SGN, FP_SCR0+2 | ||
340 | set FP_SCR0_HI, FP_SCR0+4 | ||
341 | set FP_SCR0_LO, FP_SCR0+8 | ||
342 | |||
343 | set FP_DST, LV+56 # fp destination operand | ||
344 | set FP_DST_EX, FP_DST+0 | ||
345 | set FP_DST_SGN, FP_DST+2 | ||
346 | set FP_DST_HI, FP_DST+4 | ||
347 | set FP_DST_LO, FP_DST+8 | ||
348 | |||
349 | set FP_SRC, LV+44 # fp source operand | ||
350 | set FP_SRC_EX, FP_SRC+0 | ||
351 | set FP_SRC_SGN, FP_SRC+2 | ||
352 | set FP_SRC_HI, FP_SRC+4 | ||
353 | set FP_SRC_LO, FP_SRC+8 | ||
354 | |||
355 | set USER_FPIAR, LV+40 # FP instr address register | ||
356 | |||
357 | set USER_FPSR, LV+36 # FP status register | ||
358 | set FPSR_CC, USER_FPSR+0 # FPSR condition codes | ||
359 | set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte | ||
360 | set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte | ||
361 | set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte | ||
362 | |||
363 | set USER_FPCR, LV+32 # FP control register | ||
364 | set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable | ||
365 | set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control | ||
366 | |||
367 | set L_SCR3, LV+28 # integer scratch 3 | ||
368 | set L_SCR2, LV+24 # integer scratch 2 | ||
369 | set L_SCR1, LV+20 # integer scratch 1 | ||
370 | |||
371 | set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) | ||
372 | |||
373 | set EXC_TEMP2, LV+24 # temporary space | ||
374 | set EXC_TEMP, LV+16 # temporary space | ||
375 | |||
376 | set DTAG, LV+15 # destination operand type | ||
377 | set STAG, LV+14 # source operand type | ||
378 | |||
379 | set SPCOND_FLG, LV+10 # flag: special case (see below) | ||
380 | |||
381 | set EXC_CC, LV+8 # saved condition codes | ||
382 | set EXC_EXTWPTR, LV+4 # saved current PC (active) | ||
383 | set EXC_EXTWORD, LV+2 # saved extension word | ||
384 | set EXC_CMDREG, LV+2 # saved extension word | ||
385 | set EXC_OPWORD, LV+0 # saved operation word | ||
386 | |||
387 | ################################ | ||
388 | |||
389 | # Helpful macros | ||
390 | |||
391 | set FTEMP, 0 # offsets within an | ||
392 | set FTEMP_EX, 0 # extended precision | ||
393 | set FTEMP_SGN, 2 # value saved in memory. | ||
394 | set FTEMP_HI, 4 | ||
395 | set FTEMP_LO, 8 | ||
396 | set FTEMP_GRS, 12 | ||
397 | |||
398 | set LOCAL, 0 # offsets within an | ||
399 | set LOCAL_EX, 0 # extended precision | ||
400 | set LOCAL_SGN, 2 # value saved in memory. | ||
401 | set LOCAL_HI, 4 | ||
402 | set LOCAL_LO, 8 | ||
403 | set LOCAL_GRS, 12 | ||
404 | |||
405 | set DST, 0 # offsets within an | ||
406 | set DST_EX, 0 # extended precision | ||
407 | set DST_HI, 4 # value saved in memory. | ||
408 | set DST_LO, 8 | ||
409 | |||
410 | set SRC, 0 # offsets within an | ||
411 | set SRC_EX, 0 # extended precision | ||
412 | set SRC_HI, 4 # value saved in memory. | ||
413 | set SRC_LO, 8 | ||
414 | |||
415 | set SGL_LO, 0x3f81 # min sgl prec exponent | ||
416 | set SGL_HI, 0x407e # max sgl prec exponent | ||
417 | set DBL_LO, 0x3c01 # min dbl prec exponent | ||
418 | set DBL_HI, 0x43fe # max dbl prec exponent | ||
419 | set EXT_LO, 0x0 # min ext prec exponent | ||
420 | set EXT_HI, 0x7ffe # max ext prec exponent | ||
421 | |||
422 | set EXT_BIAS, 0x3fff # extended precision bias | ||
423 | set SGL_BIAS, 0x007f # single precision bias | ||
424 | set DBL_BIAS, 0x03ff # double precision bias | ||
425 | |||
426 | set NORM, 0x00 # operand type for STAG/DTAG | ||
427 | set ZERO, 0x01 # operand type for STAG/DTAG | ||
428 | set INF, 0x02 # operand type for STAG/DTAG | ||
429 | set QNAN, 0x03 # operand type for STAG/DTAG | ||
430 | set DENORM, 0x04 # operand type for STAG/DTAG | ||
431 | set SNAN, 0x05 # operand type for STAG/DTAG | ||
432 | set UNNORM, 0x06 # operand type for STAG/DTAG | ||
433 | |||
434 | ################## | ||
435 | # FPSR/FPCR bits # | ||
436 | ################## | ||
437 | set neg_bit, 0x3 # negative result | ||
438 | set z_bit, 0x2 # zero result | ||
439 | set inf_bit, 0x1 # infinite result | ||
440 | set nan_bit, 0x0 # NAN result | ||
441 | |||
442 | set q_sn_bit, 0x7 # sign bit of quotient byte | ||
443 | |||
444 | set bsun_bit, 7 # branch on unordered | ||
445 | set snan_bit, 6 # signalling NAN | ||
446 | set operr_bit, 5 # operand error | ||
447 | set ovfl_bit, 4 # overflow | ||
448 | set unfl_bit, 3 # underflow | ||
449 | set dz_bit, 2 # divide by zero | ||
450 | set inex2_bit, 1 # inexact result 2 | ||
451 | set inex1_bit, 0 # inexact result 1 | ||
452 | |||
453 | set aiop_bit, 7 # accrued inexact operation bit | ||
454 | set aovfl_bit, 6 # accrued overflow bit | ||
455 | set aunfl_bit, 5 # accrued underflow bit | ||
456 | set adz_bit, 4 # accrued dz bit | ||
457 | set ainex_bit, 3 # accrued inexact bit | ||
458 | |||
459 | ############################# | ||
460 | # FPSR individual bit masks # | ||
461 | ############################# | ||
462 | set neg_mask, 0x08000000 # negative bit mask (lw) | ||
463 | set inf_mask, 0x02000000 # infinity bit mask (lw) | ||
464 | set z_mask, 0x04000000 # zero bit mask (lw) | ||
465 | set nan_mask, 0x01000000 # nan bit mask (lw) | ||
466 | |||
467 | set neg_bmask, 0x08 # negative bit mask (byte) | ||
468 | set inf_bmask, 0x02 # infinity bit mask (byte) | ||
469 | set z_bmask, 0x04 # zero bit mask (byte) | ||
470 | set nan_bmask, 0x01 # nan bit mask (byte) | ||
471 | |||
472 | set bsun_mask, 0x00008000 # bsun exception mask | ||
473 | set snan_mask, 0x00004000 # snan exception mask | ||
474 | set operr_mask, 0x00002000 # operr exception mask | ||
475 | set ovfl_mask, 0x00001000 # overflow exception mask | ||
476 | set unfl_mask, 0x00000800 # underflow exception mask | ||
477 | set dz_mask, 0x00000400 # dz exception mask | ||
478 | set inex2_mask, 0x00000200 # inex2 exception mask | ||
479 | set inex1_mask, 0x00000100 # inex1 exception mask | ||
480 | |||
481 | set aiop_mask, 0x00000080 # accrued illegal operation | ||
482 | set aovfl_mask, 0x00000040 # accrued overflow | ||
483 | set aunfl_mask, 0x00000020 # accrued underflow | ||
484 | set adz_mask, 0x00000010 # accrued divide by zero | ||
485 | set ainex_mask, 0x00000008 # accrued inexact | ||
486 | |||
487 | ###################################### | ||
488 | # FPSR combinations used in the FPSP # | ||
489 | ###################################### | ||
490 | set dzinf_mask, inf_mask+dz_mask+adz_mask | ||
491 | set opnan_mask, nan_mask+operr_mask+aiop_mask | ||
492 | set nzi_mask, 0x01ffffff #clears N, Z, and I | ||
493 | set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask | ||
494 | set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask | ||
495 | set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask | ||
496 | set inx1a_mask, inex1_mask+ainex_mask | ||
497 | set inx2a_mask, inex2_mask+ainex_mask | ||
498 | set snaniop_mask, nan_mask+snan_mask+aiop_mask | ||
499 | set snaniop2_mask, snan_mask+aiop_mask | ||
500 | set naniop_mask, nan_mask+aiop_mask | ||
501 | set neginf_mask, neg_mask+inf_mask | ||
502 | set infaiop_mask, inf_mask+aiop_mask | ||
503 | set negz_mask, neg_mask+z_mask | ||
504 | set opaop_mask, operr_mask+aiop_mask | ||
505 | set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask | ||
506 | set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask | ||
507 | |||
508 | ######### | ||
509 | # misc. # | ||
510 | ######### | ||
511 | set rnd_stky_bit, 29 # stky bit pos in longword | ||
512 | |||
513 | set sign_bit, 0x7 # sign bit | ||
514 | set signan_bit, 0x6 # signalling nan bit | ||
515 | |||
516 | set sgl_thresh, 0x3f81 # minimum sgl exponent | ||
517 | set dbl_thresh, 0x3c01 # minimum dbl exponent | ||
518 | |||
519 | set x_mode, 0x0 # extended precision | ||
520 | set s_mode, 0x4 # single precision | ||
521 | set d_mode, 0x8 # double precision | ||
522 | |||
523 | set rn_mode, 0x0 # round-to-nearest | ||
524 | set rz_mode, 0x1 # round-to-zero | ||
525 | set rm_mode, 0x2 # round-tp-minus-infinity | ||
526 | set rp_mode, 0x3 # round-to-plus-infinity | ||
527 | |||
528 | set mantissalen, 64 # length of mantissa in bits | ||
529 | |||
530 | set BYTE, 1 # len(byte) == 1 byte | ||
531 | set WORD, 2 # len(word) == 2 bytes | ||
532 | set LONG, 4 # len(longword) == 2 bytes | ||
533 | |||
534 | set BSUN_VEC, 0xc0 # bsun vector offset | ||
535 | set INEX_VEC, 0xc4 # inexact vector offset | ||
536 | set DZ_VEC, 0xc8 # dz vector offset | ||
537 | set UNFL_VEC, 0xcc # unfl vector offset | ||
538 | set OPERR_VEC, 0xd0 # operr vector offset | ||
539 | set OVFL_VEC, 0xd4 # ovfl vector offset | ||
540 | set SNAN_VEC, 0xd8 # snan vector offset | ||
541 | |||
542 | ########################### | ||
543 | # SPecial CONDition FLaGs # | ||
544 | ########################### | ||
545 | set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception | ||
546 | set fbsun_flg, 0x02 # flag bit: bsun exception | ||
547 | set mia7_flg, 0x04 # flag bit: (a7)+ <ea> | ||
548 | set mda7_flg, 0x08 # flag bit: -(a7) <ea> | ||
549 | set fmovm_flg, 0x40 # flag bit: fmovm instruction | ||
550 | set immed_flg, 0x80 # flag bit: &<data> <ea> | ||
551 | |||
552 | set ftrapcc_bit, 0x0 | ||
553 | set fbsun_bit, 0x1 | ||
554 | set mia7_bit, 0x2 | ||
555 | set mda7_bit, 0x3 | ||
556 | set immed_bit, 0x7 | ||
557 | |||
558 | ################################## | ||
559 | # TRANSCENDENTAL "LAST-OP" FLAGS # | ||
560 | ################################## | ||
561 | set FMUL_OP, 0x0 # fmul instr performed last | ||
562 | set FDIV_OP, 0x1 # fdiv performed last | ||
563 | set FADD_OP, 0x2 # fadd performed last | ||
564 | set FMOV_OP, 0x3 # fmov performed last | ||
565 | |||
566 | ############# | ||
567 | # CONSTANTS # | ||
568 | ############# | ||
569 | T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD | ||
570 | T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL | ||
571 | |||
572 | PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 | ||
573 | PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | ||
574 | |||
575 | TWOBYPI: | ||
576 | long 0x3FE45F30,0x6DC9C883 | ||
577 | |||
578 | ######################################################################### | ||
579 | # XDEF **************************************************************** # | ||
580 | # _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # | ||
581 | # # | ||
582 | # This handler should be the first code executed upon taking the # | ||
583 | # FP Overflow exception in an operating system. # | ||
584 | # # | ||
585 | # XREF **************************************************************** # | ||
586 | # _imem_read_long() - read instruction longword # | ||
587 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
588 | # set_tag_x() - determine optype of src/dst operands # | ||
589 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
590 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # | ||
591 | # load_fpn2() - load dst operand from FP regfile # | ||
592 | # fout() - emulate an opclass 3 instruction # | ||
593 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # | ||
594 | # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # | ||
595 | # _real_ovfl() - "callout" for Overflow exception enabled code # | ||
596 | # _real_inex() - "callout" for Inexact exception enabled code # | ||
597 | # _real_trace() - "callout" for Trace exception code # | ||
598 | # # | ||
599 | # INPUT *************************************************************** # | ||
600 | # - The system stack contains the FP Ovfl exception stack frame # | ||
601 | # - The fsave frame contains the source operand # | ||
602 | # # | ||
603 | # OUTPUT ************************************************************** # | ||
604 | # Overflow Exception enabled: # | ||
605 | # - The system stack is unchanged # | ||
606 | # - The fsave frame contains the adjusted src op for opclass 0,2 # | ||
607 | # Overflow Exception disabled: # | ||
608 | # - The system stack is unchanged # | ||
609 | # - The "exception present" flag in the fsave frame is cleared # | ||
610 | # # | ||
611 | # ALGORITHM *********************************************************** # | ||
612 | # On the 060, if an FP overflow is present as the result of any # | ||
613 | # instruction, the 060 will take an overflow exception whether the # | ||
614 | # exception is enabled or disabled in the FPCR. For the disabled case, # | ||
615 | # This handler emulates the instruction to determine what the correct # | ||
616 | # default result should be for the operation. This default result is # | ||
617 | # then stored in either the FP regfile, data regfile, or memory. # | ||
618 | # Finally, the handler exits through the "callout" _fpsp_done() # | ||
619 | # denoting that no exceptional conditions exist within the machine. # | ||
620 | # If the exception is enabled, then this handler must create the # | ||
621 | # exceptional operand and plave it in the fsave state frame, and store # | ||
622 | # the default result (only if the instruction is opclass 3). For # | ||
623 | # exceptions enabled, this handler must exit through the "callout" # | ||
624 | # _real_ovfl() so that the operating system enabled overflow handler # | ||
625 | # can handle this case. # | ||
626 | # Two other conditions exist. First, if overflow was disabled # | ||
627 | # but the inexact exception was enabled, this handler must exit # | ||
628 | # through the "callout" _real_inex() regardless of whether the result # | ||
629 | # was inexact. # | ||
630 | # Also, in the case of an opclass three instruction where # | ||
631 | # overflow was disabled and the trace exception was enabled, this # | ||
632 | # handler must exit through the "callout" _real_trace(). # | ||
633 | # # | ||
634 | ######################################################################### | ||
635 | |||
636 | global _fpsp_ovfl | ||
637 | _fpsp_ovfl: | ||
638 | |||
639 | #$# sub.l &24,%sp # make room for src/dst | ||
640 | |||
641 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
642 | |||
643 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
644 | |||
645 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
646 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
647 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
648 | |||
649 | # the FPIAR holds the "current PC" of the faulting instruction | ||
650 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
651 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
652 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
653 | bsr.l _imem_read_long # fetch the instruction words | ||
654 | mov.l %d0,EXC_OPWORD(%a6) | ||
655 | |||
656 | ############################################################################## | ||
657 | |||
658 | btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? | ||
659 | bne.w fovfl_out | ||
660 | |||
661 | |||
662 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
663 | bsr.l fix_skewed_ops # fix src op | ||
664 | |||
665 | # since, I believe, only NORMs and DENORMs can come through here, | ||
666 | # maybe we can avoid the subroutine call. | ||
667 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
668 | bsr.l set_tag_x # tag the operand type | ||
669 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM | ||
670 | |||
671 | # bit five of the fp extension word separates the monadic and dyadic operations | ||
672 | # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos | ||
673 | # will never take this exception. | ||
674 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? | ||
675 | beq.b fovfl_extract # monadic | ||
676 | |||
677 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
678 | bsr.l load_fpn2 # load dst into FP_DST | ||
679 | |||
680 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
681 | bsr.l set_tag_x # tag the operand type | ||
682 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
683 | bne.b fovfl_op2_done # no | ||
684 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
685 | fovfl_op2_done: | ||
686 | mov.b %d0,DTAG(%a6) # save dst optype tag | ||
687 | |||
688 | fovfl_extract: | ||
689 | |||
690 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | ||
691 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | ||
692 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | ||
693 | #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | ||
694 | #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | ||
695 | #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | ||
696 | |||
697 | clr.l %d0 | ||
698 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode | ||
699 | |||
700 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
701 | andi.w &0x007f,%d1 # extract extension | ||
702 | |||
703 | andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | ||
704 | |||
705 | fmov.l &0x0,%fpcr # zero current control regs | ||
706 | fmov.l &0x0,%fpsr | ||
707 | |||
708 | lea FP_SRC(%a6),%a0 | ||
709 | lea FP_DST(%a6),%a1 | ||
710 | |||
711 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | ||
712 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | ||
713 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
714 | |||
715 | # the operation has been emulated. the result is in fp0. | ||
716 | # the EXOP, if an exception occurred, is in fp1. | ||
717 | # we must save the default result regardless of whether | ||
718 | # traps are enabled or disabled. | ||
719 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 | ||
720 | bsr.l store_fpreg | ||
721 | |||
722 | # the exceptional possibilities we have left ourselves with are ONLY overflow | ||
723 | # and inexact. and, the inexact is such that overflow occurred and was disabled | ||
724 | # but inexact was enabled. | ||
725 | btst &ovfl_bit,FPCR_ENABLE(%a6) | ||
726 | bne.b fovfl_ovfl_on | ||
727 | |||
728 | btst &inex2_bit,FPCR_ENABLE(%a6) | ||
729 | bne.b fovfl_inex_on | ||
730 | |||
731 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
732 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
733 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
734 | |||
735 | unlk %a6 | ||
736 | #$# add.l &24,%sp | ||
737 | bra.l _fpsp_done | ||
738 | |||
739 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | ||
740 | # in fp1. now, simply jump to _real_ovfl()! | ||
741 | fovfl_ovfl_on: | ||
742 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack | ||
743 | |||
744 | mov.w &0xe005,2+FP_SRC(%a6) # save exc status | ||
745 | |||
746 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
747 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
748 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
749 | |||
750 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! | ||
751 | |||
752 | unlk %a6 | ||
753 | |||
754 | bra.l _real_ovfl | ||
755 | |||
756 | # overflow occurred but is disabled. meanwhile, inexact is enabled. therefore, | ||
757 | # we must jump to real_inex(). | ||
758 | fovfl_inex_on: | ||
759 | |||
760 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack | ||
761 | |||
762 | mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 | ||
763 | mov.w &0xe001,2+FP_SRC(%a6) # save exc status | ||
764 | |||
765 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
766 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
767 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
768 | |||
769 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! | ||
770 | |||
771 | unlk %a6 | ||
772 | |||
773 | bra.l _real_inex | ||
774 | |||
775 | ######################################################################## | ||
776 | fovfl_out: | ||
777 | |||
778 | |||
779 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | ||
780 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | ||
781 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | ||
782 | |||
783 | # the src operand is definitely a NORM(!), so tag it as such | ||
784 | mov.b &NORM,STAG(%a6) # set src optype tag | ||
785 | |||
786 | clr.l %d0 | ||
787 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode | ||
788 | |||
789 | and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field | ||
790 | |||
791 | fmov.l &0x0,%fpcr # zero current control regs | ||
792 | fmov.l &0x0,%fpsr | ||
793 | |||
794 | lea FP_SRC(%a6),%a0 # pass ptr to src operand | ||
795 | |||
796 | bsr.l fout | ||
797 | |||
798 | btst &ovfl_bit,FPCR_ENABLE(%a6) | ||
799 | bne.w fovfl_ovfl_on | ||
800 | |||
801 | btst &inex2_bit,FPCR_ENABLE(%a6) | ||
802 | bne.w fovfl_inex_on | ||
803 | |||
804 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
805 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
806 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
807 | |||
808 | unlk %a6 | ||
809 | #$# add.l &24,%sp | ||
810 | |||
811 | btst &0x7,(%sp) # is trace on? | ||
812 | beq.l _fpsp_done # no | ||
813 | |||
814 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR | ||
815 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 | ||
816 | bra.l _real_trace | ||
817 | |||
818 | ######################################################################### | ||
819 | # XDEF **************************************************************** # | ||
820 | # _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # | ||
821 | # # | ||
822 | # This handler should be the first code executed upon taking the # | ||
823 | # FP Underflow exception in an operating system. # | ||
824 | # # | ||
825 | # XREF **************************************************************** # | ||
826 | # _imem_read_long() - read instruction longword # | ||
827 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
828 | # set_tag_x() - determine optype of src/dst operands # | ||
829 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
830 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # | ||
831 | # load_fpn2() - load dst operand from FP regfile # | ||
832 | # fout() - emulate an opclass 3 instruction # | ||
833 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # | ||
834 | # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # | ||
835 | # _real_ovfl() - "callout" for Overflow exception enabled code # | ||
836 | # _real_inex() - "callout" for Inexact exception enabled code # | ||
837 | # _real_trace() - "callout" for Trace exception code # | ||
838 | # # | ||
839 | # INPUT *************************************************************** # | ||
840 | # - The system stack contains the FP Unfl exception stack frame # | ||
841 | # - The fsave frame contains the source operand # | ||
842 | # # | ||
843 | # OUTPUT ************************************************************** # | ||
844 | # Underflow Exception enabled: # | ||
845 | # - The system stack is unchanged # | ||
846 | # - The fsave frame contains the adjusted src op for opclass 0,2 # | ||
847 | # Underflow Exception disabled: # | ||
848 | # - The system stack is unchanged # | ||
849 | # - The "exception present" flag in the fsave frame is cleared # | ||
850 | # # | ||
851 | # ALGORITHM *********************************************************** # | ||
852 | # On the 060, if an FP underflow is present as the result of any # | ||
853 | # instruction, the 060 will take an underflow exception whether the # | ||
854 | # exception is enabled or disabled in the FPCR. For the disabled case, # | ||
855 | # This handler emulates the instruction to determine what the correct # | ||
856 | # default result should be for the operation. This default result is # | ||
857 | # then stored in either the FP regfile, data regfile, or memory. # | ||
858 | # Finally, the handler exits through the "callout" _fpsp_done() # | ||
859 | # denoting that no exceptional conditions exist within the machine. # | ||
860 | # If the exception is enabled, then this handler must create the # | ||
861 | # exceptional operand and plave it in the fsave state frame, and store # | ||
862 | # the default result (only if the instruction is opclass 3). For # | ||
863 | # exceptions enabled, this handler must exit through the "callout" # | ||
864 | # _real_unfl() so that the operating system enabled overflow handler # | ||
865 | # can handle this case. # | ||
866 | # Two other conditions exist. First, if underflow was disabled # | ||
867 | # but the inexact exception was enabled and the result was inexact, # | ||
868 | # this handler must exit through the "callout" _real_inex(). # | ||
869 | # was inexact. # | ||
870 | # Also, in the case of an opclass three instruction where # | ||
871 | # underflow was disabled and the trace exception was enabled, this # | ||
872 | # handler must exit through the "callout" _real_trace(). # | ||
873 | # # | ||
874 | ######################################################################### | ||
875 | |||
876 | global _fpsp_unfl | ||
877 | _fpsp_unfl: | ||
878 | |||
879 | #$# sub.l &24,%sp # make room for src/dst | ||
880 | |||
881 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
882 | |||
883 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
884 | |||
885 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
886 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
887 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
888 | |||
889 | # the FPIAR holds the "current PC" of the faulting instruction | ||
890 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
891 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
892 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
893 | bsr.l _imem_read_long # fetch the instruction words | ||
894 | mov.l %d0,EXC_OPWORD(%a6) | ||
895 | |||
896 | ############################################################################## | ||
897 | |||
898 | btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? | ||
899 | bne.w funfl_out | ||
900 | |||
901 | |||
902 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
903 | bsr.l fix_skewed_ops # fix src op | ||
904 | |||
905 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
906 | bsr.l set_tag_x # tag the operand type | ||
907 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM | ||
908 | |||
909 | # bit five of the fp ext word separates the monadic and dyadic operations | ||
910 | # that can pass through fpsp_unfl(). remember that fcmp, and ftst | ||
911 | # will never take this exception. | ||
912 | btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? | ||
913 | beq.b funfl_extract # monadic | ||
914 | |||
915 | # now, what's left that's not dyadic is fsincos. we can distinguish it | ||
916 | # from all dyadics by the '0110xxx pattern | ||
917 | btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? | ||
918 | bne.b funfl_extract # yes | ||
919 | |||
920 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
921 | bsr.l load_fpn2 # load dst into FP_DST | ||
922 | |||
923 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
924 | bsr.l set_tag_x # tag the operand type | ||
925 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
926 | bne.b funfl_op2_done # no | ||
927 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
928 | funfl_op2_done: | ||
929 | mov.b %d0,DTAG(%a6) # save dst optype tag | ||
930 | |||
931 | funfl_extract: | ||
932 | |||
933 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | ||
934 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | ||
935 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | ||
936 | #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | ||
937 | #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | ||
938 | #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | ||
939 | |||
940 | clr.l %d0 | ||
941 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode | ||
942 | |||
943 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
944 | andi.w &0x007f,%d1 # extract extension | ||
945 | |||
946 | andi.l &0x00ff01ff,USER_FPSR(%a6) | ||
947 | |||
948 | fmov.l &0x0,%fpcr # zero current control regs | ||
949 | fmov.l &0x0,%fpsr | ||
950 | |||
951 | lea FP_SRC(%a6),%a0 | ||
952 | lea FP_DST(%a6),%a1 | ||
953 | |||
954 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | ||
955 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | ||
956 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
957 | |||
958 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 | ||
959 | bsr.l store_fpreg | ||
960 | |||
961 | # The `060 FPU multiplier hardware is such that if the result of a | ||
962 | # multiply operation is the smallest possible normalized number | ||
963 | # (0x00000000_80000000_00000000), then the machine will take an | ||
964 | # underflow exception. Since this is incorrect, we need to check | ||
965 | # if our emulation, after re-doing the operation, decided that | ||
966 | # no underflow was called for. We do these checks only in | ||
967 | # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this | ||
968 | # special case will simply exit gracefully with the correct result. | ||
969 | |||
970 | # the exceptional possibilities we have left ourselves with are ONLY overflow | ||
971 | # and inexact. and, the inexact is such that overflow occurred and was disabled | ||
972 | # but inexact was enabled. | ||
973 | btst &unfl_bit,FPCR_ENABLE(%a6) | ||
974 | bne.b funfl_unfl_on | ||
975 | |||
976 | funfl_chkinex: | ||
977 | btst &inex2_bit,FPCR_ENABLE(%a6) | ||
978 | bne.b funfl_inex_on | ||
979 | |||
980 | funfl_exit: | ||
981 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
982 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
983 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
984 | |||
985 | unlk %a6 | ||
986 | #$# add.l &24,%sp | ||
987 | bra.l _fpsp_done | ||
988 | |||
989 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | ||
990 | # in fp1 (don't forget to save fp0). what to do now? | ||
991 | # well, we simply have to get to go to _real_unfl()! | ||
992 | funfl_unfl_on: | ||
993 | |||
994 | # The `060 FPU multiplier hardware is such that if the result of a | ||
995 | # multiply operation is the smallest possible normalized number | ||
996 | # (0x00000000_80000000_00000000), then the machine will take an | ||
997 | # underflow exception. Since this is incorrect, we check here to see | ||
998 | # if our emulation, after re-doing the operation, decided that | ||
999 | # no underflow was called for. | ||
1000 | btst &unfl_bit,FPSR_EXCEPT(%a6) | ||
1001 | beq.w funfl_chkinex | ||
1002 | |||
1003 | funfl_unfl_on2: | ||
1004 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack | ||
1005 | |||
1006 | mov.w &0xe003,2+FP_SRC(%a6) # save exc status | ||
1007 | |||
1008 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
1009 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1010 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1011 | |||
1012 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! | ||
1013 | |||
1014 | unlk %a6 | ||
1015 | |||
1016 | bra.l _real_unfl | ||
1017 | |||
1018 | # undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore, | ||
1019 | # we must jump to real_inex(). | ||
1020 | funfl_inex_on: | ||
1021 | |||
1022 | # The `060 FPU multiplier hardware is such that if the result of a | ||
1023 | # multiply operation is the smallest possible normalized number | ||
1024 | # (0x00000000_80000000_00000000), then the machine will take an | ||
1025 | # underflow exception. | ||
1026 | # But, whether bogus or not, if inexact is enabled AND it occurred, | ||
1027 | # then we have to branch to real_inex. | ||
1028 | |||
1029 | btst &inex2_bit,FPSR_EXCEPT(%a6) | ||
1030 | beq.w funfl_exit | ||
1031 | |||
1032 | funfl_inex_on2: | ||
1033 | |||
1034 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack | ||
1035 | |||
1036 | mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 | ||
1037 | mov.w &0xe001,2+FP_SRC(%a6) # save exc status | ||
1038 | |||
1039 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
1040 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1041 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1042 | |||
1043 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! | ||
1044 | |||
1045 | unlk %a6 | ||
1046 | |||
1047 | bra.l _real_inex | ||
1048 | |||
1049 | ####################################################################### | ||
1050 | funfl_out: | ||
1051 | |||
1052 | |||
1053 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | ||
1054 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | ||
1055 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | ||
1056 | |||
1057 | # the src operand is definitely a NORM(!), so tag it as such | ||
1058 | mov.b &NORM,STAG(%a6) # set src optype tag | ||
1059 | |||
1060 | clr.l %d0 | ||
1061 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode | ||
1062 | |||
1063 | and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field | ||
1064 | |||
1065 | fmov.l &0x0,%fpcr # zero current control regs | ||
1066 | fmov.l &0x0,%fpsr | ||
1067 | |||
1068 | lea FP_SRC(%a6),%a0 # pass ptr to src operand | ||
1069 | |||
1070 | bsr.l fout | ||
1071 | |||
1072 | btst &unfl_bit,FPCR_ENABLE(%a6) | ||
1073 | bne.w funfl_unfl_on2 | ||
1074 | |||
1075 | btst &inex2_bit,FPCR_ENABLE(%a6) | ||
1076 | bne.w funfl_inex_on2 | ||
1077 | |||
1078 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
1079 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1080 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1081 | |||
1082 | unlk %a6 | ||
1083 | #$# add.l &24,%sp | ||
1084 | |||
1085 | btst &0x7,(%sp) # is trace on? | ||
1086 | beq.l _fpsp_done # no | ||
1087 | |||
1088 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR | ||
1089 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 | ||
1090 | bra.l _real_trace | ||
1091 | |||
1092 | ######################################################################### | ||
1093 | # XDEF **************************************************************** # | ||
1094 | # _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # | ||
1095 | # Data Type" exception. # | ||
1096 | # # | ||
1097 | # This handler should be the first code executed upon taking the # | ||
1098 | # FP Unimplemented Data Type exception in an operating system. # | ||
1099 | # # | ||
1100 | # XREF **************************************************************** # | ||
1101 | # _imem_read_{word,long}() - read instruction word/longword # | ||
1102 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
1103 | # set_tag_x() - determine optype of src/dst operands # | ||
1104 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
1105 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # | ||
1106 | # load_fpn2() - load dst operand from FP regfile # | ||
1107 | # load_fpn1() - load src operand from FP regfile # | ||
1108 | # fout() - emulate an opclass 3 instruction # | ||
1109 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # | ||
1110 | # _real_inex() - "callout" to operating system inexact handler # | ||
1111 | # _fpsp_done() - "callout" for exit; work all done # | ||
1112 | # _real_trace() - "callout" for Trace enabled exception # | ||
1113 | # funimp_skew() - adjust fsave src ops to "incorrect" value # | ||
1114 | # _real_snan() - "callout" for SNAN exception # | ||
1115 | # _real_operr() - "callout" for OPERR exception # | ||
1116 | # _real_ovfl() - "callout" for OVFL exception # | ||
1117 | # _real_unfl() - "callout" for UNFL exception # | ||
1118 | # get_packed() - fetch packed operand from memory # | ||
1119 | # # | ||
1120 | # INPUT *************************************************************** # | ||
1121 | # - The system stack contains the "Unimp Data Type" stk frame # | ||
1122 | # - The fsave frame contains the ssrc op (for UNNORM/DENORM) # | ||
1123 | # # | ||
1124 | # OUTPUT ************************************************************** # | ||
1125 | # If Inexact exception (opclass 3): # | ||
1126 | # - The system stack is changed to an Inexact exception stk frame # | ||
1127 | # If SNAN exception (opclass 3): # | ||
1128 | # - The system stack is changed to an SNAN exception stk frame # | ||
1129 | # If OPERR exception (opclass 3): # | ||
1130 | # - The system stack is changed to an OPERR exception stk frame # | ||
1131 | # If OVFL exception (opclass 3): # | ||
1132 | # - The system stack is changed to an OVFL exception stk frame # | ||
1133 | # If UNFL exception (opclass 3): # | ||
1134 | # - The system stack is changed to an UNFL exception stack frame # | ||
1135 | # If Trace exception enabled: # | ||
1136 | # - The system stack is changed to a Trace exception stack frame # | ||
1137 | # Else: (normal case) # | ||
1138 | # - Correct result has been stored as appropriate # | ||
1139 | # # | ||
1140 | # ALGORITHM *********************************************************** # | ||
1141 | # Two main instruction types can enter here: (1) DENORM or UNNORM # | ||
1142 | # unimplemented data types. These can be either opclass 0,2 or 3 # | ||
1143 | # instructions, and (2) PACKED unimplemented data format instructions # | ||
1144 | # also of opclasses 0,2, or 3. # | ||
1145 | # For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # | ||
1146 | # operand from the fsave state frame and the dst operand (if dyadic) # | ||
1147 | # from the FP register file. The instruction is then emulated by # | ||
1148 | # choosing an emulation routine from a table of routines indexed by # | ||
1149 | # instruction type. Once the instruction has been emulated and result # | ||
1150 | # saved, then we check to see if any enabled exceptions resulted from # | ||
1151 | # instruction emulation. If none, then we exit through the "callout" # | ||
1152 | # _fpsp_done(). If there is an enabled FP exception, then we insert # | ||
1153 | # this exception into the FPU in the fsave state frame and then exit # | ||
1154 | # through _fpsp_done(). # | ||
1155 | # PACKED opclass 0 and 2 is similar in how the instruction is # | ||
1156 | # emulated and exceptions handled. The differences occur in how the # | ||
1157 | # handler loads the packed op (by calling get_packed() routine) and # | ||
1158 | # by the fact that a Trace exception could be pending for PACKED ops. # | ||
1159 | # If a Trace exception is pending, then the current exception stack # | ||
1160 | # frame is changed to a Trace exception stack frame and an exit is # | ||
1161 | # made through _real_trace(). # | ||
1162 | # For UNNORM/DENORM opclass 3, the actual move out to memory is # | ||
1163 | # performed by calling the routine fout(). If no exception should occur # | ||
1164 | # as the result of emulation, then an exit either occurs through # | ||
1165 | # _fpsp_done() or through _real_trace() if a Trace exception is pending # | ||
1166 | # (a Trace stack frame must be created here, too). If an FP exception # | ||
1167 | # should occur, then we must create an exception stack frame of that # | ||
1168 | # type and jump to either _real_snan(), _real_operr(), _real_inex(), # | ||
1169 | # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # | ||
1170 | # emulation is performed in a similar manner. # | ||
1171 | # # | ||
1172 | ######################################################################### | ||
1173 | |||
1174 | # | ||
1175 | # (1) DENORM and UNNORM (unimplemented) data types: | ||
1176 | # | ||
1177 | # post-instruction | ||
1178 | # ***************** | ||
1179 | # * EA * | ||
1180 | # pre-instruction * * | ||
1181 | # ***************** ***************** | ||
1182 | # * 0x0 * 0x0dc * * 0x3 * 0x0dc * | ||
1183 | # ***************** ***************** | ||
1184 | # * Next * * Next * | ||
1185 | # * PC * * PC * | ||
1186 | # ***************** ***************** | ||
1187 | # * SR * * SR * | ||
1188 | # ***************** ***************** | ||
1189 | # | ||
1190 | # (2) PACKED format (unsupported) opclasses two and three: | ||
1191 | # ***************** | ||
1192 | # * EA * | ||
1193 | # * * | ||
1194 | # ***************** | ||
1195 | # * 0x2 * 0x0dc * | ||
1196 | # ***************** | ||
1197 | # * Next * | ||
1198 | # * PC * | ||
1199 | # ***************** | ||
1200 | # * SR * | ||
1201 | # ***************** | ||
1202 | # | ||
1203 | global _fpsp_unsupp | ||
1204 | _fpsp_unsupp: | ||
1205 | |||
1206 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
1207 | |||
1208 | fsave FP_SRC(%a6) # save fp state | ||
1209 | |||
1210 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
1211 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
1212 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
1213 | |||
1214 | btst &0x5,EXC_SR(%a6) # user or supervisor mode? | ||
1215 | bne.b fu_s | ||
1216 | fu_u: | ||
1217 | mov.l %usp,%a0 # fetch user stack pointer | ||
1218 | mov.l %a0,EXC_A7(%a6) # save on stack | ||
1219 | bra.b fu_cont | ||
1220 | # if the exception is an opclass zero or two unimplemented data type | ||
1221 | # exception, then the a7' calculated here is wrong since it doesn't | ||
1222 | # stack an ea. however, we don't need an a7' for this case anyways. | ||
1223 | fu_s: | ||
1224 | lea 0x4+EXC_EA(%a6),%a0 # load old a7' | ||
1225 | mov.l %a0,EXC_A7(%a6) # save on stack | ||
1226 | |||
1227 | fu_cont: | ||
1228 | |||
1229 | # the FPIAR holds the "current PC" of the faulting instruction | ||
1230 | # the FPIAR should be set correctly for ALL exceptions passing through | ||
1231 | # this point. | ||
1232 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
1233 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
1234 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
1235 | bsr.l _imem_read_long # fetch the instruction words | ||
1236 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD | ||
1237 | |||
1238 | ############################ | ||
1239 | |||
1240 | clr.b SPCOND_FLG(%a6) # clear special condition flag | ||
1241 | |||
1242 | # Separate opclass three (fpn-to-mem) ops since they have a different | ||
1243 | # stack frame and protocol. | ||
1244 | btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? | ||
1245 | bne.w fu_out # yes | ||
1246 | |||
1247 | # Separate packed opclass two instructions. | ||
1248 | bfextu EXC_CMDREG(%a6){&0:&6},%d0 | ||
1249 | cmpi.b %d0,&0x13 | ||
1250 | beq.w fu_in_pack | ||
1251 | |||
1252 | |||
1253 | # I'm not sure at this point what FPSR bits are valid for this instruction. | ||
1254 | # so, since the emulation routines re-create them anyways, zero exception field | ||
1255 | andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field | ||
1256 | |||
1257 | fmov.l &0x0,%fpcr # zero current control regs | ||
1258 | fmov.l &0x0,%fpsr | ||
1259 | |||
1260 | # Opclass two w/ memory-to-fpn operation will have an incorrect extended | ||
1261 | # precision format if the src format was single or double and the | ||
1262 | # source data type was an INF, NAN, DENORM, or UNNORM | ||
1263 | lea FP_SRC(%a6),%a0 # pass ptr to input | ||
1264 | bsr.l fix_skewed_ops | ||
1265 | |||
1266 | # we don't know whether the src operand or the dst operand (or both) is the | ||
1267 | # UNNORM or DENORM. call the function that tags the operand type. if the | ||
1268 | # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. | ||
1269 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
1270 | bsr.l set_tag_x # tag the operand type | ||
1271 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
1272 | bne.b fu_op2 # no | ||
1273 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
1274 | |||
1275 | fu_op2: | ||
1276 | mov.b %d0,STAG(%a6) # save src optype tag | ||
1277 | |||
1278 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
1279 | |||
1280 | # bit five of the fp extension word separates the monadic and dyadic operations | ||
1281 | # at this point | ||
1282 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? | ||
1283 | beq.b fu_extract # monadic | ||
1284 | cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? | ||
1285 | beq.b fu_extract # yes, so it's monadic, too | ||
1286 | |||
1287 | bsr.l load_fpn2 # load dst into FP_DST | ||
1288 | |||
1289 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
1290 | bsr.l set_tag_x # tag the operand type | ||
1291 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
1292 | bne.b fu_op2_done # no | ||
1293 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
1294 | fu_op2_done: | ||
1295 | mov.b %d0,DTAG(%a6) # save dst optype tag | ||
1296 | |||
1297 | fu_extract: | ||
1298 | clr.l %d0 | ||
1299 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec | ||
1300 | |||
1301 | bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | ||
1302 | |||
1303 | lea FP_SRC(%a6),%a0 | ||
1304 | lea FP_DST(%a6),%a1 | ||
1305 | |||
1306 | mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | ||
1307 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
1308 | |||
1309 | # | ||
1310 | # Exceptions in order of precedence: | ||
1311 | # BSUN : none | ||
1312 | # SNAN : all dyadic ops | ||
1313 | # OPERR : fsqrt(-NORM) | ||
1314 | # OVFL : all except ftst,fcmp | ||
1315 | # UNFL : all except ftst,fcmp | ||
1316 | # DZ : fdiv | ||
1317 | # INEX2 : all except ftst,fcmp | ||
1318 | # INEX1 : none (packed doesn't go through here) | ||
1319 | # | ||
1320 | |||
1321 | # we determine the highest priority exception(if any) set by the | ||
1322 | # emulation routine that has also been enabled by the user. | ||
1323 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set | ||
1324 | bne.b fu_in_ena # some are enabled | ||
1325 | |||
1326 | fu_in_cont: | ||
1327 | # fcmp and ftst do not store any result. | ||
1328 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension | ||
1329 | andi.b &0x38,%d0 # extract bits 3-5 | ||
1330 | cmpi.b %d0,&0x38 # is instr fcmp or ftst? | ||
1331 | beq.b fu_in_exit # yes | ||
1332 | |||
1333 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
1334 | bsr.l store_fpreg # store the result | ||
1335 | |||
1336 | fu_in_exit: | ||
1337 | |||
1338 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1339 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1340 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1341 | |||
1342 | unlk %a6 | ||
1343 | |||
1344 | bra.l _fpsp_done | ||
1345 | |||
1346 | fu_in_ena: | ||
1347 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled | ||
1348 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
1349 | bne.b fu_in_exc # there is at least one set | ||
1350 | |||
1351 | # | ||
1352 | # No exceptions occurred that were also enabled. Now: | ||
1353 | # | ||
1354 | # if (OVFL && ovfl_disabled && inexact_enabled) { | ||
1355 | # branch to _real_inex() (even if the result was exact!); | ||
1356 | # } else { | ||
1357 | # save the result in the proper fp reg (unless the op is fcmp or ftst); | ||
1358 | # return; | ||
1359 | # } | ||
1360 | # | ||
1361 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | ||
1362 | beq.b fu_in_cont # no | ||
1363 | |||
1364 | fu_in_ovflchk: | ||
1365 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | ||
1366 | beq.b fu_in_cont # no | ||
1367 | bra.w fu_in_exc_ovfl # go insert overflow frame | ||
1368 | |||
1369 | # | ||
1370 | # An exception occurred and that exception was enabled: | ||
1371 | # | ||
1372 | # shift enabled exception field into lo byte of d0; | ||
1373 | # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | ||
1374 | # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | ||
1375 | # /* | ||
1376 | # * this is the case where we must call _real_inex() now or else | ||
1377 | # * there will be no other way to pass it the exceptional operand | ||
1378 | # */ | ||
1379 | # call _real_inex(); | ||
1380 | # } else { | ||
1381 | # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | ||
1382 | # } | ||
1383 | # | ||
1384 | fu_in_exc: | ||
1385 | subi.l &24,%d0 # fix offset to be 0-8 | ||
1386 | cmpi.b %d0,&0x6 # is exception INEX? (6) | ||
1387 | bne.b fu_in_exc_exit # no | ||
1388 | |||
1389 | # the enabled exception was inexact | ||
1390 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | ||
1391 | bne.w fu_in_exc_unfl # yes | ||
1392 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | ||
1393 | bne.w fu_in_exc_ovfl # yes | ||
1394 | |||
1395 | # here, we insert the correct fsave status value into the fsave frame for the | ||
1396 | # corresponding exception. the operand in the fsave frame should be the original | ||
1397 | # src operand. | ||
1398 | fu_in_exc_exit: | ||
1399 | mov.l %d0,-(%sp) # save d0 | ||
1400 | bsr.l funimp_skew # skew sgl or dbl inputs | ||
1401 | mov.l (%sp)+,%d0 # restore d0 | ||
1402 | |||
1403 | mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status | ||
1404 | |||
1405 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1406 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1407 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1408 | |||
1409 | frestore FP_SRC(%a6) # restore src op | ||
1410 | |||
1411 | unlk %a6 | ||
1412 | |||
1413 | bra.l _fpsp_done | ||
1414 | |||
1415 | tbl_except: | ||
1416 | short 0xe000,0xe006,0xe004,0xe005 | ||
1417 | short 0xe003,0xe002,0xe001,0xe001 | ||
1418 | |||
1419 | fu_in_exc_unfl: | ||
1420 | mov.w &0x4,%d0 | ||
1421 | bra.b fu_in_exc_exit | ||
1422 | fu_in_exc_ovfl: | ||
1423 | mov.w &0x03,%d0 | ||
1424 | bra.b fu_in_exc_exit | ||
1425 | |||
1426 | # If the input operand to this operation was opclass two and a single | ||
1427 | # or double precision denorm, inf, or nan, the operand needs to be | ||
1428 | # "corrected" in order to have the proper equivalent extended precision | ||
1429 | # number. | ||
1430 | global fix_skewed_ops | ||
1431 | fix_skewed_ops: | ||
1432 | bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt | ||
1433 | cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? | ||
1434 | beq.b fso_sgl # yes | ||
1435 | cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? | ||
1436 | beq.b fso_dbl # yes | ||
1437 | rts # no | ||
1438 | |||
1439 | fso_sgl: | ||
1440 | mov.w LOCAL_EX(%a0),%d0 # fetch src exponent | ||
1441 | andi.w &0x7fff,%d0 # strip sign | ||
1442 | cmpi.w %d0,&0x3f80 # is |exp| == $3f80? | ||
1443 | beq.b fso_sgl_dnrm_zero # yes | ||
1444 | cmpi.w %d0,&0x407f # no; is |exp| == $407f? | ||
1445 | beq.b fso_infnan # yes | ||
1446 | rts # no | ||
1447 | |||
1448 | fso_sgl_dnrm_zero: | ||
1449 | andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit | ||
1450 | beq.b fso_zero # it's a skewed zero | ||
1451 | fso_sgl_dnrm: | ||
1452 | # here, we count on norm not to alter a0... | ||
1453 | bsr.l norm # normalize mantissa | ||
1454 | neg.w %d0 # -shft amt | ||
1455 | addi.w &0x3f81,%d0 # adjust new exponent | ||
1456 | andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent | ||
1457 | or.w %d0,LOCAL_EX(%a0) # insert new exponent | ||
1458 | rts | ||
1459 | |||
1460 | fso_zero: | ||
1461 | andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent | ||
1462 | rts | ||
1463 | |||
1464 | fso_infnan: | ||
1465 | andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit | ||
1466 | ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff | ||
1467 | rts | ||
1468 | |||
1469 | fso_dbl: | ||
1470 | mov.w LOCAL_EX(%a0),%d0 # fetch src exponent | ||
1471 | andi.w &0x7fff,%d0 # strip sign | ||
1472 | cmpi.w %d0,&0x3c00 # is |exp| == $3c00? | ||
1473 | beq.b fso_dbl_dnrm_zero # yes | ||
1474 | cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? | ||
1475 | beq.b fso_infnan # yes | ||
1476 | rts # no | ||
1477 | |||
1478 | fso_dbl_dnrm_zero: | ||
1479 | andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit | ||
1480 | bne.b fso_dbl_dnrm # it's a skewed denorm | ||
1481 | tst.l LOCAL_LO(%a0) # is it a zero? | ||
1482 | beq.b fso_zero # yes | ||
1483 | fso_dbl_dnrm: | ||
1484 | # here, we count on norm not to alter a0... | ||
1485 | bsr.l norm # normalize mantissa | ||
1486 | neg.w %d0 # -shft amt | ||
1487 | addi.w &0x3c01,%d0 # adjust new exponent | ||
1488 | andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent | ||
1489 | or.w %d0,LOCAL_EX(%a0) # insert new exponent | ||
1490 | rts | ||
1491 | |||
1492 | ################################################################# | ||
1493 | |||
1494 | # fmove out took an unimplemented data type exception. | ||
1495 | # the src operand is in FP_SRC. Call _fout() to write out the result and | ||
1496 | # to determine which exceptions, if any, to take. | ||
1497 | fu_out: | ||
1498 | |||
1499 | # Separate packed move outs from the UNNORM and DENORM move outs. | ||
1500 | bfextu EXC_CMDREG(%a6){&3:&3},%d0 | ||
1501 | cmpi.b %d0,&0x3 | ||
1502 | beq.w fu_out_pack | ||
1503 | cmpi.b %d0,&0x7 | ||
1504 | beq.w fu_out_pack | ||
1505 | |||
1506 | |||
1507 | # I'm not sure at this point what FPSR bits are valid for this instruction. | ||
1508 | # so, since the emulation routines re-create them anyways, zero exception field. | ||
1509 | # fmove out doesn't affect ccodes. | ||
1510 | and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field | ||
1511 | |||
1512 | fmov.l &0x0,%fpcr # zero current control regs | ||
1513 | fmov.l &0x0,%fpsr | ||
1514 | |||
1515 | # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine | ||
1516 | # call here. just figure out what it is... | ||
1517 | mov.w FP_SRC_EX(%a6),%d0 # get exponent | ||
1518 | andi.w &0x7fff,%d0 # strip sign | ||
1519 | beq.b fu_out_denorm # it's a DENORM | ||
1520 | |||
1521 | lea FP_SRC(%a6),%a0 | ||
1522 | bsr.l unnorm_fix # yes; fix it | ||
1523 | |||
1524 | mov.b %d0,STAG(%a6) | ||
1525 | |||
1526 | bra.b fu_out_cont | ||
1527 | fu_out_denorm: | ||
1528 | mov.b &DENORM,STAG(%a6) | ||
1529 | fu_out_cont: | ||
1530 | |||
1531 | clr.l %d0 | ||
1532 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec | ||
1533 | |||
1534 | lea FP_SRC(%a6),%a0 # pass ptr to src operand | ||
1535 | |||
1536 | mov.l (%a6),EXC_A6(%a6) # in case a6 changes | ||
1537 | bsr.l fout # call fmove out routine | ||
1538 | |||
1539 | # Exceptions in order of precedence: | ||
1540 | # BSUN : none | ||
1541 | # SNAN : none | ||
1542 | # OPERR : fmove.{b,w,l} out of large UNNORM | ||
1543 | # OVFL : fmove.{s,d} | ||
1544 | # UNFL : fmove.{s,d,x} | ||
1545 | # DZ : none | ||
1546 | # INEX2 : all | ||
1547 | # INEX1 : none (packed doesn't travel through here) | ||
1548 | |||
1549 | # determine the highest priority exception(if any) set by the | ||
1550 | # emulation routine that has also been enabled by the user. | ||
1551 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled | ||
1552 | bne.w fu_out_ena # some are enabled | ||
1553 | |||
1554 | fu_out_done: | ||
1555 | |||
1556 | mov.l EXC_A6(%a6),(%a6) # in case a6 changed | ||
1557 | |||
1558 | # on extended precision opclass three instructions using pre-decrement or | ||
1559 | # post-increment addressing mode, the address register is not updated. is the | ||
1560 | # address register was the stack pointer used from user mode, then let's update | ||
1561 | # it here. if it was used from supervisor mode, then we have to handle this | ||
1562 | # as a special case. | ||
1563 | btst &0x5,EXC_SR(%a6) | ||
1564 | bne.b fu_out_done_s | ||
1565 | |||
1566 | mov.l EXC_A7(%a6),%a0 # restore a7 | ||
1567 | mov.l %a0,%usp | ||
1568 | |||
1569 | fu_out_done_cont: | ||
1570 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1571 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1572 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1573 | |||
1574 | unlk %a6 | ||
1575 | |||
1576 | btst &0x7,(%sp) # is trace on? | ||
1577 | bne.b fu_out_trace # yes | ||
1578 | |||
1579 | bra.l _fpsp_done | ||
1580 | |||
1581 | # is the ea mode pre-decrement of the stack pointer from supervisor mode? | ||
1582 | # ("fmov.x fpm,-(a7)") if so, | ||
1583 | fu_out_done_s: | ||
1584 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
1585 | bne.b fu_out_done_cont | ||
1586 | |||
1587 | # the extended precision result is still in fp0. but, we need to save it | ||
1588 | # somewhere on the stack until we can copy it to its final resting place. | ||
1589 | # here, we're counting on the top of the stack to be the old place-holders | ||
1590 | # for fp0/fp1 which have already been restored. that way, we can write | ||
1591 | # over those destinations with the shifted stack frame. | ||
1592 | fmovm.x &0x80,FP_SRC(%a6) # put answer on stack | ||
1593 | |||
1594 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1595 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1596 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1597 | |||
1598 | mov.l (%a6),%a6 # restore frame pointer | ||
1599 | |||
1600 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
1601 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
1602 | |||
1603 | # now, copy the result to the proper place on the stack | ||
1604 | mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | ||
1605 | mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | ||
1606 | mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | ||
1607 | |||
1608 | add.l &LOCAL_SIZE-0x8,%sp | ||
1609 | |||
1610 | btst &0x7,(%sp) | ||
1611 | bne.b fu_out_trace | ||
1612 | |||
1613 | bra.l _fpsp_done | ||
1614 | |||
1615 | fu_out_ena: | ||
1616 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled | ||
1617 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
1618 | bne.b fu_out_exc # there is at least one set | ||
1619 | |||
1620 | # no exceptions were set. | ||
1621 | # if a disabled overflow occurred and inexact was enabled but the result | ||
1622 | # was exact, then a branch to _real_inex() is made. | ||
1623 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | ||
1624 | beq.w fu_out_done # no | ||
1625 | |||
1626 | fu_out_ovflchk: | ||
1627 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | ||
1628 | beq.w fu_out_done # no | ||
1629 | bra.w fu_inex # yes | ||
1630 | |||
1631 | # | ||
1632 | # The fp move out that took the "Unimplemented Data Type" exception was | ||
1633 | # being traced. Since the stack frames are similar, get the "current" PC | ||
1634 | # from FPIAR and put it in the trace stack frame then jump to _real_trace(). | ||
1635 | # | ||
1636 | # UNSUPP FRAME TRACE FRAME | ||
1637 | # ***************** ***************** | ||
1638 | # * EA * * Current * | ||
1639 | # * * * PC * | ||
1640 | # ***************** ***************** | ||
1641 | # * 0x3 * 0x0dc * * 0x2 * 0x024 * | ||
1642 | # ***************** ***************** | ||
1643 | # * Next * * Next * | ||
1644 | # * PC * * PC * | ||
1645 | # ***************** ***************** | ||
1646 | # * SR * * SR * | ||
1647 | # ***************** ***************** | ||
1648 | # | ||
1649 | fu_out_trace: | ||
1650 | mov.w &0x2024,0x6(%sp) | ||
1651 | fmov.l %fpiar,0x8(%sp) | ||
1652 | bra.l _real_trace | ||
1653 | |||
1654 | # an exception occurred and that exception was enabled. | ||
1655 | fu_out_exc: | ||
1656 | subi.l &24,%d0 # fix offset to be 0-8 | ||
1657 | |||
1658 | # we don't mess with the existing fsave frame. just re-insert it and | ||
1659 | # jump to the "_real_{}()" handler... | ||
1660 | mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 | ||
1661 | jmp (tbl_fu_out.b,%pc,%d0.w*1) | ||
1662 | |||
1663 | swbeg &0x8 | ||
1664 | tbl_fu_out: | ||
1665 | short tbl_fu_out - tbl_fu_out # BSUN can't happen | ||
1666 | short tbl_fu_out - tbl_fu_out # SNAN can't happen | ||
1667 | short fu_operr - tbl_fu_out # OPERR | ||
1668 | short fu_ovfl - tbl_fu_out # OVFL | ||
1669 | short fu_unfl - tbl_fu_out # UNFL | ||
1670 | short tbl_fu_out - tbl_fu_out # DZ can't happen | ||
1671 | short fu_inex - tbl_fu_out # INEX2 | ||
1672 | short tbl_fu_out - tbl_fu_out # INEX1 won't make it here | ||
1673 | |||
1674 | # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just | ||
1675 | # frestore it. | ||
1676 | fu_snan: | ||
1677 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1678 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1679 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1680 | |||
1681 | mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 | ||
1682 | mov.w &0xe006,2+FP_SRC(%a6) | ||
1683 | |||
1684 | frestore FP_SRC(%a6) | ||
1685 | |||
1686 | unlk %a6 | ||
1687 | |||
1688 | |||
1689 | bra.l _real_snan | ||
1690 | |||
1691 | fu_operr: | ||
1692 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1693 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1694 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1695 | |||
1696 | mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 | ||
1697 | mov.w &0xe004,2+FP_SRC(%a6) | ||
1698 | |||
1699 | frestore FP_SRC(%a6) | ||
1700 | |||
1701 | unlk %a6 | ||
1702 | |||
1703 | |||
1704 | bra.l _real_operr | ||
1705 | |||
1706 | fu_ovfl: | ||
1707 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack | ||
1708 | |||
1709 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1710 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1711 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1712 | |||
1713 | mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 | ||
1714 | mov.w &0xe005,2+FP_SRC(%a6) | ||
1715 | |||
1716 | frestore FP_SRC(%a6) # restore EXOP | ||
1717 | |||
1718 | unlk %a6 | ||
1719 | |||
1720 | bra.l _real_ovfl | ||
1721 | |||
1722 | # underflow can happen for extended precision. extended precision opclass | ||
1723 | # three instruction exceptions don't update the stack pointer. so, if the | ||
1724 | # exception occurred from user mode, then simply update a7 and exit normally. | ||
1725 | # if the exception occurred from supervisor mode, check if | ||
1726 | fu_unfl: | ||
1727 | mov.l EXC_A6(%a6),(%a6) # restore a6 | ||
1728 | |||
1729 | btst &0x5,EXC_SR(%a6) | ||
1730 | bne.w fu_unfl_s | ||
1731 | |||
1732 | mov.l EXC_A7(%a6),%a0 # restore a7 whether we need | ||
1733 | mov.l %a0,%usp # to or not... | ||
1734 | |||
1735 | fu_unfl_cont: | ||
1736 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack | ||
1737 | |||
1738 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1739 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1740 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1741 | |||
1742 | mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc | ||
1743 | mov.w &0xe003,2+FP_SRC(%a6) | ||
1744 | |||
1745 | frestore FP_SRC(%a6) # restore EXOP | ||
1746 | |||
1747 | unlk %a6 | ||
1748 | |||
1749 | bra.l _real_unfl | ||
1750 | |||
1751 | fu_unfl_s: | ||
1752 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? | ||
1753 | bne.b fu_unfl_cont | ||
1754 | |||
1755 | # the extended precision result is still in fp0. but, we need to save it | ||
1756 | # somewhere on the stack until we can copy it to its final resting place | ||
1757 | # (where the exc frame is currently). make sure it's not at the top of the | ||
1758 | # frame or it will get overwritten when the exc stack frame is shifted "down". | ||
1759 | fmovm.x &0x80,FP_SRC(%a6) # put answer on stack | ||
1760 | fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack | ||
1761 | |||
1762 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1763 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1764 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1765 | |||
1766 | mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc | ||
1767 | mov.w &0xe003,2+FP_DST(%a6) | ||
1768 | |||
1769 | frestore FP_DST(%a6) # restore EXOP | ||
1770 | |||
1771 | mov.l (%a6),%a6 # restore frame pointer | ||
1772 | |||
1773 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
1774 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
1775 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | ||
1776 | |||
1777 | # now, copy the result to the proper place on the stack | ||
1778 | mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | ||
1779 | mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | ||
1780 | mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | ||
1781 | |||
1782 | add.l &LOCAL_SIZE-0x8,%sp | ||
1783 | |||
1784 | bra.l _real_unfl | ||
1785 | |||
1786 | # fmove in and out enter here. | ||
1787 | fu_inex: | ||
1788 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack | ||
1789 | |||
1790 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1791 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1792 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1793 | |||
1794 | mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 | ||
1795 | mov.w &0xe001,2+FP_SRC(%a6) | ||
1796 | |||
1797 | frestore FP_SRC(%a6) # restore EXOP | ||
1798 | |||
1799 | unlk %a6 | ||
1800 | |||
1801 | |||
1802 | bra.l _real_inex | ||
1803 | |||
1804 | ######################################################################### | ||
1805 | ######################################################################### | ||
1806 | fu_in_pack: | ||
1807 | |||
1808 | |||
1809 | # I'm not sure at this point what FPSR bits are valid for this instruction. | ||
1810 | # so, since the emulation routines re-create them anyways, zero exception field | ||
1811 | andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field | ||
1812 | |||
1813 | fmov.l &0x0,%fpcr # zero current control regs | ||
1814 | fmov.l &0x0,%fpsr | ||
1815 | |||
1816 | bsr.l get_packed # fetch packed src operand | ||
1817 | |||
1818 | lea FP_SRC(%a6),%a0 # pass ptr to src | ||
1819 | bsr.l set_tag_x # set src optype tag | ||
1820 | |||
1821 | mov.b %d0,STAG(%a6) # save src optype tag | ||
1822 | |||
1823 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
1824 | |||
1825 | # bit five of the fp extension word separates the monadic and dyadic operations | ||
1826 | # at this point | ||
1827 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? | ||
1828 | beq.b fu_extract_p # monadic | ||
1829 | cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? | ||
1830 | beq.b fu_extract_p # yes, so it's monadic, too | ||
1831 | |||
1832 | bsr.l load_fpn2 # load dst into FP_DST | ||
1833 | |||
1834 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
1835 | bsr.l set_tag_x # tag the operand type | ||
1836 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
1837 | bne.b fu_op2_done_p # no | ||
1838 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
1839 | fu_op2_done_p: | ||
1840 | mov.b %d0,DTAG(%a6) # save dst optype tag | ||
1841 | |||
1842 | fu_extract_p: | ||
1843 | clr.l %d0 | ||
1844 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec | ||
1845 | |||
1846 | bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | ||
1847 | |||
1848 | lea FP_SRC(%a6),%a0 | ||
1849 | lea FP_DST(%a6),%a1 | ||
1850 | |||
1851 | mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | ||
1852 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
1853 | |||
1854 | # | ||
1855 | # Exceptions in order of precedence: | ||
1856 | # BSUN : none | ||
1857 | # SNAN : all dyadic ops | ||
1858 | # OPERR : fsqrt(-NORM) | ||
1859 | # OVFL : all except ftst,fcmp | ||
1860 | # UNFL : all except ftst,fcmp | ||
1861 | # DZ : fdiv | ||
1862 | # INEX2 : all except ftst,fcmp | ||
1863 | # INEX1 : all | ||
1864 | # | ||
1865 | |||
1866 | # we determine the highest priority exception(if any) set by the | ||
1867 | # emulation routine that has also been enabled by the user. | ||
1868 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled | ||
1869 | bne.w fu_in_ena_p # some are enabled | ||
1870 | |||
1871 | fu_in_cont_p: | ||
1872 | # fcmp and ftst do not store any result. | ||
1873 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension | ||
1874 | andi.b &0x38,%d0 # extract bits 3-5 | ||
1875 | cmpi.b %d0,&0x38 # is instr fcmp or ftst? | ||
1876 | beq.b fu_in_exit_p # yes | ||
1877 | |||
1878 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
1879 | bsr.l store_fpreg # store the result | ||
1880 | |||
1881 | fu_in_exit_p: | ||
1882 | |||
1883 | btst &0x5,EXC_SR(%a6) # user or supervisor? | ||
1884 | bne.w fu_in_exit_s_p # supervisor | ||
1885 | |||
1886 | mov.l EXC_A7(%a6),%a0 # update user a7 | ||
1887 | mov.l %a0,%usp | ||
1888 | |||
1889 | fu_in_exit_cont_p: | ||
1890 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1891 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1892 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1893 | |||
1894 | unlk %a6 # unravel stack frame | ||
1895 | |||
1896 | btst &0x7,(%sp) # is trace on? | ||
1897 | bne.w fu_trace_p # yes | ||
1898 | |||
1899 | bra.l _fpsp_done # exit to os | ||
1900 | |||
1901 | # the exception occurred in supervisor mode. check to see if the | ||
1902 | # addressing mode was (a7)+. if so, we'll need to shift the | ||
1903 | # stack frame "up". | ||
1904 | fu_in_exit_s_p: | ||
1905 | btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ | ||
1906 | beq.b fu_in_exit_cont_p # no | ||
1907 | |||
1908 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1909 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1910 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1911 | |||
1912 | unlk %a6 # unravel stack frame | ||
1913 | |||
1914 | # shift the stack frame "up". we don't really care about the <ea> field. | ||
1915 | mov.l 0x4(%sp),0x10(%sp) | ||
1916 | mov.l 0x0(%sp),0xc(%sp) | ||
1917 | add.l &0xc,%sp | ||
1918 | |||
1919 | btst &0x7,(%sp) # is trace on? | ||
1920 | bne.w fu_trace_p # yes | ||
1921 | |||
1922 | bra.l _fpsp_done # exit to os | ||
1923 | |||
1924 | fu_in_ena_p: | ||
1925 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set | ||
1926 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
1927 | bne.b fu_in_exc_p # at least one was set | ||
1928 | |||
1929 | # | ||
1930 | # No exceptions occurred that were also enabled. Now: | ||
1931 | # | ||
1932 | # if (OVFL && ovfl_disabled && inexact_enabled) { | ||
1933 | # branch to _real_inex() (even if the result was exact!); | ||
1934 | # } else { | ||
1935 | # save the result in the proper fp reg (unless the op is fcmp or ftst); | ||
1936 | # return; | ||
1937 | # } | ||
1938 | # | ||
1939 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | ||
1940 | beq.w fu_in_cont_p # no | ||
1941 | |||
1942 | fu_in_ovflchk_p: | ||
1943 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | ||
1944 | beq.w fu_in_cont_p # no | ||
1945 | bra.w fu_in_exc_ovfl_p # do _real_inex() now | ||
1946 | |||
1947 | # | ||
1948 | # An exception occurred and that exception was enabled: | ||
1949 | # | ||
1950 | # shift enabled exception field into lo byte of d0; | ||
1951 | # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | ||
1952 | # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | ||
1953 | # /* | ||
1954 | # * this is the case where we must call _real_inex() now or else | ||
1955 | # * there will be no other way to pass it the exceptional operand | ||
1956 | # */ | ||
1957 | # call _real_inex(); | ||
1958 | # } else { | ||
1959 | # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | ||
1960 | # } | ||
1961 | # | ||
1962 | fu_in_exc_p: | ||
1963 | subi.l &24,%d0 # fix offset to be 0-8 | ||
1964 | cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) | ||
1965 | blt.b fu_in_exc_exit_p # no | ||
1966 | |||
1967 | # the enabled exception was inexact | ||
1968 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | ||
1969 | bne.w fu_in_exc_unfl_p # yes | ||
1970 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | ||
1971 | bne.w fu_in_exc_ovfl_p # yes | ||
1972 | |||
1973 | # here, we insert the correct fsave status value into the fsave frame for the | ||
1974 | # corresponding exception. the operand in the fsave frame should be the original | ||
1975 | # src operand. | ||
1976 | # as a reminder for future predicted pain and agony, we are passing in fsave the | ||
1977 | # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. | ||
1978 | # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! | ||
1979 | fu_in_exc_exit_p: | ||
1980 | btst &0x5,EXC_SR(%a6) # user or supervisor? | ||
1981 | bne.w fu_in_exc_exit_s_p # supervisor | ||
1982 | |||
1983 | mov.l EXC_A7(%a6),%a0 # update user a7 | ||
1984 | mov.l %a0,%usp | ||
1985 | |||
1986 | fu_in_exc_exit_cont_p: | ||
1987 | mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | ||
1988 | |||
1989 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
1990 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
1991 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
1992 | |||
1993 | frestore FP_SRC(%a6) # restore src op | ||
1994 | |||
1995 | unlk %a6 | ||
1996 | |||
1997 | btst &0x7,(%sp) # is trace enabled? | ||
1998 | bne.w fu_trace_p # yes | ||
1999 | |||
2000 | bra.l _fpsp_done | ||
2001 | |||
2002 | tbl_except_p: | ||
2003 | short 0xe000,0xe006,0xe004,0xe005 | ||
2004 | short 0xe003,0xe002,0xe001,0xe001 | ||
2005 | |||
2006 | fu_in_exc_ovfl_p: | ||
2007 | mov.w &0x3,%d0 | ||
2008 | bra.w fu_in_exc_exit_p | ||
2009 | |||
2010 | fu_in_exc_unfl_p: | ||
2011 | mov.w &0x4,%d0 | ||
2012 | bra.w fu_in_exc_exit_p | ||
2013 | |||
2014 | fu_in_exc_exit_s_p: | ||
2015 | btst &mia7_bit,SPCOND_FLG(%a6) | ||
2016 | beq.b fu_in_exc_exit_cont_p | ||
2017 | |||
2018 | mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | ||
2019 | |||
2020 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2021 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2022 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2023 | |||
2024 | frestore FP_SRC(%a6) # restore src op | ||
2025 | |||
2026 | unlk %a6 # unravel stack frame | ||
2027 | |||
2028 | # shift stack frame "up". who cares about <ea> field. | ||
2029 | mov.l 0x4(%sp),0x10(%sp) | ||
2030 | mov.l 0x0(%sp),0xc(%sp) | ||
2031 | add.l &0xc,%sp | ||
2032 | |||
2033 | btst &0x7,(%sp) # is trace on? | ||
2034 | bne.b fu_trace_p # yes | ||
2035 | |||
2036 | bra.l _fpsp_done # exit to os | ||
2037 | |||
2038 | # | ||
2039 | # The opclass two PACKED instruction that took an "Unimplemented Data Type" | ||
2040 | # exception was being traced. Make the "current" PC the FPIAR and put it in the | ||
2041 | # trace stack frame then jump to _real_trace(). | ||
2042 | # | ||
2043 | # UNSUPP FRAME TRACE FRAME | ||
2044 | # ***************** ***************** | ||
2045 | # * EA * * Current * | ||
2046 | # * * * PC * | ||
2047 | # ***************** ***************** | ||
2048 | # * 0x2 * 0x0dc * * 0x2 * 0x024 * | ||
2049 | # ***************** ***************** | ||
2050 | # * Next * * Next * | ||
2051 | # * PC * * PC * | ||
2052 | # ***************** ***************** | ||
2053 | # * SR * * SR * | ||
2054 | # ***************** ***************** | ||
2055 | fu_trace_p: | ||
2056 | mov.w &0x2024,0x6(%sp) | ||
2057 | fmov.l %fpiar,0x8(%sp) | ||
2058 | |||
2059 | bra.l _real_trace | ||
2060 | |||
2061 | ######################################################### | ||
2062 | ######################################################### | ||
2063 | fu_out_pack: | ||
2064 | |||
2065 | |||
2066 | # I'm not sure at this point what FPSR bits are valid for this instruction. | ||
2067 | # so, since the emulation routines re-create them anyways, zero exception field. | ||
2068 | # fmove out doesn't affect ccodes. | ||
2069 | and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field | ||
2070 | |||
2071 | fmov.l &0x0,%fpcr # zero current control regs | ||
2072 | fmov.l &0x0,%fpsr | ||
2073 | |||
2074 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 | ||
2075 | bsr.l load_fpn1 | ||
2076 | |||
2077 | # unlike other opclass 3, unimplemented data type exceptions, packed must be | ||
2078 | # able to detect all operand types. | ||
2079 | lea FP_SRC(%a6),%a0 | ||
2080 | bsr.l set_tag_x # tag the operand type | ||
2081 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
2082 | bne.b fu_op2_p # no | ||
2083 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
2084 | |||
2085 | fu_op2_p: | ||
2086 | mov.b %d0,STAG(%a6) # save src optype tag | ||
2087 | |||
2088 | clr.l %d0 | ||
2089 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec | ||
2090 | |||
2091 | lea FP_SRC(%a6),%a0 # pass ptr to src operand | ||
2092 | |||
2093 | mov.l (%a6),EXC_A6(%a6) # in case a6 changes | ||
2094 | bsr.l fout # call fmove out routine | ||
2095 | |||
2096 | # Exceptions in order of precedence: | ||
2097 | # BSUN : no | ||
2098 | # SNAN : yes | ||
2099 | # OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) | ||
2100 | # OVFL : no | ||
2101 | # UNFL : no | ||
2102 | # DZ : no | ||
2103 | # INEX2 : yes | ||
2104 | # INEX1 : no | ||
2105 | |||
2106 | # determine the highest priority exception(if any) set by the | ||
2107 | # emulation routine that has also been enabled by the user. | ||
2108 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled | ||
2109 | bne.w fu_out_ena_p # some are enabled | ||
2110 | |||
2111 | fu_out_exit_p: | ||
2112 | mov.l EXC_A6(%a6),(%a6) # restore a6 | ||
2113 | |||
2114 | btst &0x5,EXC_SR(%a6) # user or supervisor? | ||
2115 | bne.b fu_out_exit_s_p # supervisor | ||
2116 | |||
2117 | mov.l EXC_A7(%a6),%a0 # update user a7 | ||
2118 | mov.l %a0,%usp | ||
2119 | |||
2120 | fu_out_exit_cont_p: | ||
2121 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2122 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2123 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2124 | |||
2125 | unlk %a6 # unravel stack frame | ||
2126 | |||
2127 | btst &0x7,(%sp) # is trace on? | ||
2128 | bne.w fu_trace_p # yes | ||
2129 | |||
2130 | bra.l _fpsp_done # exit to os | ||
2131 | |||
2132 | # the exception occurred in supervisor mode. check to see if the | ||
2133 | # addressing mode was -(a7). if so, we'll need to shift the | ||
2134 | # stack frame "down". | ||
2135 | fu_out_exit_s_p: | ||
2136 | btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) | ||
2137 | beq.b fu_out_exit_cont_p # no | ||
2138 | |||
2139 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2140 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2141 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2142 | |||
2143 | mov.l (%a6),%a6 # restore frame pointer | ||
2144 | |||
2145 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
2146 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
2147 | |||
2148 | # now, copy the result to the proper place on the stack | ||
2149 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | ||
2150 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | ||
2151 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | ||
2152 | |||
2153 | add.l &LOCAL_SIZE-0x8,%sp | ||
2154 | |||
2155 | btst &0x7,(%sp) | ||
2156 | bne.w fu_trace_p | ||
2157 | |||
2158 | bra.l _fpsp_done | ||
2159 | |||
2160 | fu_out_ena_p: | ||
2161 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled | ||
2162 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
2163 | beq.w fu_out_exit_p | ||
2164 | |||
2165 | mov.l EXC_A6(%a6),(%a6) # restore a6 | ||
2166 | |||
2167 | # an exception occurred and that exception was enabled. | ||
2168 | # the only exception possible on packed move out are INEX, OPERR, and SNAN. | ||
2169 | fu_out_exc_p: | ||
2170 | cmpi.b %d0,&0x1a | ||
2171 | bgt.w fu_inex_p2 | ||
2172 | beq.w fu_operr_p | ||
2173 | |||
2174 | fu_snan_p: | ||
2175 | btst &0x5,EXC_SR(%a6) | ||
2176 | bne.b fu_snan_s_p | ||
2177 | |||
2178 | mov.l EXC_A7(%a6),%a0 | ||
2179 | mov.l %a0,%usp | ||
2180 | bra.w fu_snan | ||
2181 | |||
2182 | fu_snan_s_p: | ||
2183 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
2184 | bne.w fu_snan | ||
2185 | |||
2186 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | ||
2187 | # the strategy is to move the exception frame "down" 12 bytes. then, we | ||
2188 | # can store the default result where the exception frame was. | ||
2189 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2190 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2191 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2192 | |||
2193 | mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 | ||
2194 | mov.w &0xe006,2+FP_SRC(%a6) # set fsave status | ||
2195 | |||
2196 | frestore FP_SRC(%a6) # restore src operand | ||
2197 | |||
2198 | mov.l (%a6),%a6 # restore frame pointer | ||
2199 | |||
2200 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
2201 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
2202 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | ||
2203 | |||
2204 | # now, we copy the default result to its proper location | ||
2205 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | ||
2206 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | ||
2207 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | ||
2208 | |||
2209 | add.l &LOCAL_SIZE-0x8,%sp | ||
2210 | |||
2211 | |||
2212 | bra.l _real_snan | ||
2213 | |||
2214 | fu_operr_p: | ||
2215 | btst &0x5,EXC_SR(%a6) | ||
2216 | bne.w fu_operr_p_s | ||
2217 | |||
2218 | mov.l EXC_A7(%a6),%a0 | ||
2219 | mov.l %a0,%usp | ||
2220 | bra.w fu_operr | ||
2221 | |||
2222 | fu_operr_p_s: | ||
2223 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
2224 | bne.w fu_operr | ||
2225 | |||
2226 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | ||
2227 | # the strategy is to move the exception frame "down" 12 bytes. then, we | ||
2228 | # can store the default result where the exception frame was. | ||
2229 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2230 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2231 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2232 | |||
2233 | mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 | ||
2234 | mov.w &0xe004,2+FP_SRC(%a6) # set fsave status | ||
2235 | |||
2236 | frestore FP_SRC(%a6) # restore src operand | ||
2237 | |||
2238 | mov.l (%a6),%a6 # restore frame pointer | ||
2239 | |||
2240 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
2241 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
2242 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | ||
2243 | |||
2244 | # now, we copy the default result to its proper location | ||
2245 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | ||
2246 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | ||
2247 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | ||
2248 | |||
2249 | add.l &LOCAL_SIZE-0x8,%sp | ||
2250 | |||
2251 | |||
2252 | bra.l _real_operr | ||
2253 | |||
2254 | fu_inex_p2: | ||
2255 | btst &0x5,EXC_SR(%a6) | ||
2256 | bne.w fu_inex_s_p2 | ||
2257 | |||
2258 | mov.l EXC_A7(%a6),%a0 | ||
2259 | mov.l %a0,%usp | ||
2260 | bra.w fu_inex | ||
2261 | |||
2262 | fu_inex_s_p2: | ||
2263 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
2264 | bne.w fu_inex | ||
2265 | |||
2266 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | ||
2267 | # the strategy is to move the exception frame "down" 12 bytes. then, we | ||
2268 | # can store the default result where the exception frame was. | ||
2269 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 | ||
2270 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2271 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2272 | |||
2273 | mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 | ||
2274 | mov.w &0xe001,2+FP_SRC(%a6) # set fsave status | ||
2275 | |||
2276 | frestore FP_SRC(%a6) # restore src operand | ||
2277 | |||
2278 | mov.l (%a6),%a6 # restore frame pointer | ||
2279 | |||
2280 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
2281 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | ||
2282 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | ||
2283 | |||
2284 | # now, we copy the default result to its proper location | ||
2285 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | ||
2286 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | ||
2287 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | ||
2288 | |||
2289 | add.l &LOCAL_SIZE-0x8,%sp | ||
2290 | |||
2291 | |||
2292 | bra.l _real_inex | ||
2293 | |||
2294 | ######################################################################### | ||
2295 | |||
2296 | # | ||
2297 | # if we're stuffing a source operand back into an fsave frame then we | ||
2298 | # have to make sure that for single or double source operands that the | ||
2299 | # format stuffed is as weird as the hardware usually makes it. | ||
2300 | # | ||
2301 | global funimp_skew | ||
2302 | funimp_skew: | ||
2303 | bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier | ||
2304 | cmpi.b %d0,&0x1 # was src sgl? | ||
2305 | beq.b funimp_skew_sgl # yes | ||
2306 | cmpi.b %d0,&0x5 # was src dbl? | ||
2307 | beq.b funimp_skew_dbl # yes | ||
2308 | rts | ||
2309 | |||
2310 | funimp_skew_sgl: | ||
2311 | mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent | ||
2312 | andi.w &0x7fff,%d0 # strip sign | ||
2313 | beq.b funimp_skew_sgl_not | ||
2314 | cmpi.w %d0,&0x3f80 | ||
2315 | bgt.b funimp_skew_sgl_not | ||
2316 | neg.w %d0 # make exponent negative | ||
2317 | addi.w &0x3f81,%d0 # find amt to shift | ||
2318 | mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) | ||
2319 | lsr.l %d0,%d1 # shift it | ||
2320 | bset &31,%d1 # set j-bit | ||
2321 | mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) | ||
2322 | andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent | ||
2323 | ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent | ||
2324 | funimp_skew_sgl_not: | ||
2325 | rts | ||
2326 | |||
2327 | funimp_skew_dbl: | ||
2328 | mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent | ||
2329 | andi.w &0x7fff,%d0 # strip sign | ||
2330 | beq.b funimp_skew_dbl_not | ||
2331 | cmpi.w %d0,&0x3c00 | ||
2332 | bgt.b funimp_skew_dbl_not | ||
2333 | |||
2334 | tst.b FP_SRC_EX(%a6) # make "internal format" | ||
2335 | smi.b 0x2+FP_SRC(%a6) | ||
2336 | mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign | ||
2337 | clr.l %d0 # clear g,r,s | ||
2338 | lea FP_SRC(%a6),%a0 # pass ptr to src op | ||
2339 | mov.w &0x3c01,%d1 # pass denorm threshold | ||
2340 | bsr.l dnrm_lp # denorm it | ||
2341 | mov.w &0x3c00,%d0 # new exponent | ||
2342 | tst.b 0x2+FP_SRC(%a6) # is sign set? | ||
2343 | beq.b fss_dbl_denorm_done # no | ||
2344 | bset &15,%d0 # set sign | ||
2345 | fss_dbl_denorm_done: | ||
2346 | bset &0x7,FP_SRC_HI(%a6) # set j-bit | ||
2347 | mov.w %d0,FP_SRC_EX(%a6) # insert new exponent | ||
2348 | funimp_skew_dbl_not: | ||
2349 | rts | ||
2350 | |||
2351 | ######################################################################### | ||
2352 | global _mem_write2 | ||
2353 | _mem_write2: | ||
2354 | btst &0x5,EXC_SR(%a6) | ||
2355 | beq.l _dmem_write | ||
2356 | mov.l 0x0(%a0),FP_DST_EX(%a6) | ||
2357 | mov.l 0x4(%a0),FP_DST_HI(%a6) | ||
2358 | mov.l 0x8(%a0),FP_DST_LO(%a6) | ||
2359 | clr.l %d1 | ||
2360 | rts | ||
2361 | |||
2362 | ######################################################################### | ||
2363 | # XDEF **************************************************************** # | ||
2364 | # _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # | ||
2365 | # effective address" exception. # | ||
2366 | # # | ||
2367 | # This handler should be the first code executed upon taking the # | ||
2368 | # FP Unimplemented Effective Address exception in an operating # | ||
2369 | # system. # | ||
2370 | # # | ||
2371 | # XREF **************************************************************** # | ||
2372 | # _imem_read_long() - read instruction longword # | ||
2373 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
2374 | # set_tag_x() - determine optype of src/dst operands # | ||
2375 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
2376 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # | ||
2377 | # load_fpn2() - load dst operand from FP regfile # | ||
2378 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # | ||
2379 | # decbin() - convert packed data to FP binary data # | ||
2380 | # _real_fpu_disabled() - "callout" for "FPU disabled" exception # | ||
2381 | # _real_access() - "callout" for access error exception # | ||
2382 | # _mem_read() - read extended immediate operand from memory # | ||
2383 | # _fpsp_done() - "callout" for exit; work all done # | ||
2384 | # _real_trace() - "callout" for Trace enabled exception # | ||
2385 | # fmovm_dynamic() - emulate dynamic fmovm instruction # | ||
2386 | # fmovm_ctrl() - emulate fmovm control instruction # | ||
2387 | # # | ||
2388 | # INPUT *************************************************************** # | ||
2389 | # - The system stack contains the "Unimplemented <ea>" stk frame # | ||
2390 | # # | ||
2391 | # OUTPUT ************************************************************** # | ||
2392 | # If access error: # | ||
2393 | # - The system stack is changed to an access error stack frame # | ||
2394 | # If FPU disabled: # | ||
2395 | # - The system stack is changed to an FPU disabled stack frame # | ||
2396 | # If Trace exception enabled: # | ||
2397 | # - The system stack is changed to a Trace exception stack frame # | ||
2398 | # Else: (normal case) # | ||
2399 | # - None (correct result has been stored as appropriate) # | ||
2400 | # # | ||
2401 | # ALGORITHM *********************************************************** # | ||
2402 | # This exception handles 3 types of operations: # | ||
2403 | # (1) FP Instructions using extended precision or packed immediate # | ||
2404 | # addressing mode. # | ||
2405 | # (2) The "fmovm.x" instruction w/ dynamic register specification. # | ||
2406 | # (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # | ||
2407 | # # | ||
2408 | # For immediate data operations, the data is read in w/ a # | ||
2409 | # _mem_read() "callout", converted to FP binary (if packed), and used # | ||
2410 | # as the source operand to the instruction specified by the instruction # | ||
2411 | # word. If no FP exception should be reported ads a result of the # | ||
2412 | # emulation, then the result is stored to the destination register and # | ||
2413 | # the handler exits through _fpsp_done(). If an enabled exc has been # | ||
2414 | # signalled as a result of emulation, then an fsave state frame # | ||
2415 | # corresponding to the FP exception type must be entered into the 060 # | ||
2416 | # FPU before exiting. In either the enabled or disabled cases, we # | ||
2417 | # must also check if a Trace exception is pending, in which case, we # | ||
2418 | # must create a Trace exception stack frame from the current exception # | ||
2419 | # stack frame. If no Trace is pending, we simply exit through # | ||
2420 | # _fpsp_done(). # | ||
2421 | # For "fmovm.x", call the routine fmovm_dynamic() which will # | ||
2422 | # decode and emulate the instruction. No FP exceptions can be pending # | ||
2423 | # as a result of this operation emulation. A Trace exception can be # | ||
2424 | # pending, though, which means the current stack frame must be changed # | ||
2425 | # to a Trace stack frame and an exit made through _real_trace(). # | ||
2426 | # For the case of "fmovm.x Dn,-(a7)", where the offending instruction # | ||
2427 | # was executed from supervisor mode, this handler must store the FP # | ||
2428 | # register file values to the system stack by itself since # | ||
2429 | # fmovm_dynamic() can't handle this. A normal exit is made through # | ||
2430 | # fpsp_done(). # | ||
2431 | # For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # | ||
2432 | # Again, a Trace exception may be pending and an exit made through # | ||
2433 | # _real_trace(). Else, a normal exit is made through _fpsp_done(). # | ||
2434 | # # | ||
2435 | # Before any of the above is attempted, it must be checked to # | ||
2436 | # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # | ||
2437 | # before the "FPU disabled" exception, but the "FPU disabled" exception # | ||
2438 | # has higher priority, we check the disabled bit in the PCR. If set, # | ||
2439 | # then we must create an 8 word "FPU disabled" exception stack frame # | ||
2440 | # from the current 4 word exception stack frame. This includes # | ||
2441 | # reproducing the effective address of the instruction to put on the # | ||
2442 | # new stack frame. # | ||
2443 | # # | ||
2444 | # In the process of all emulation work, if a _mem_read() # | ||
2445 | # "callout" returns a failing result indicating an access error, then # | ||
2446 | # we must create an access error stack frame from the current stack # | ||
2447 | # frame. This information includes a faulting address and a fault- # | ||
2448 | # status-longword. These are created within this handler. # | ||
2449 | # # | ||
2450 | ######################################################################### | ||
2451 | |||
2452 | global _fpsp_effadd | ||
2453 | _fpsp_effadd: | ||
2454 | |||
2455 | # This exception type takes priority over the "Line F Emulator" | ||
2456 | # exception. Therefore, the FPU could be disabled when entering here. | ||
2457 | # So, we must check to see if it's disabled and handle that case separately. | ||
2458 | mov.l %d0,-(%sp) # save d0 | ||
2459 | movc %pcr,%d0 # load proc cr | ||
2460 | btst &0x1,%d0 # is FPU disabled? | ||
2461 | bne.w iea_disabled # yes | ||
2462 | mov.l (%sp)+,%d0 # restore d0 | ||
2463 | |||
2464 | link %a6,&-LOCAL_SIZE # init stack frame | ||
2465 | |||
2466 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
2467 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
2468 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
2469 | |||
2470 | # PC of instruction that took the exception is the PC in the frame | ||
2471 | mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) | ||
2472 | |||
2473 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
2474 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
2475 | bsr.l _imem_read_long # fetch the instruction words | ||
2476 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD | ||
2477 | |||
2478 | ######################################################################### | ||
2479 | |||
2480 | tst.w %d0 # is operation fmovem? | ||
2481 | bmi.w iea_fmovm # yes | ||
2482 | |||
2483 | # | ||
2484 | # here, we will have: | ||
2485 | # fabs fdabs fsabs facos fmod | ||
2486 | # fadd fdadd fsadd fasin frem | ||
2487 | # fcmp fatan fscale | ||
2488 | # fdiv fddiv fsdiv fatanh fsin | ||
2489 | # fint fcos fsincos | ||
2490 | # fintrz fcosh fsinh | ||
2491 | # fmove fdmove fsmove fetox ftan | ||
2492 | # fmul fdmul fsmul fetoxm1 ftanh | ||
2493 | # fneg fdneg fsneg fgetexp ftentox | ||
2494 | # fsgldiv fgetman ftwotox | ||
2495 | # fsglmul flog10 | ||
2496 | # fsqrt flog2 | ||
2497 | # fsub fdsub fssub flogn | ||
2498 | # ftst flognp1 | ||
2499 | # which can all use f<op>.{x,p} | ||
2500 | # so, now it's immediate data extended precision AND PACKED FORMAT! | ||
2501 | # | ||
2502 | iea_op: | ||
2503 | andi.l &0x00ff00ff,USER_FPSR(%a6) | ||
2504 | |||
2505 | btst &0xa,%d0 # is src fmt x or p? | ||
2506 | bne.b iea_op_pack # packed | ||
2507 | |||
2508 | |||
2509 | mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> | ||
2510 | lea FP_SRC(%a6),%a1 # pass: ptr to super addr | ||
2511 | mov.l &0xc,%d0 # pass: 12 bytes | ||
2512 | bsr.l _imem_read # read extended immediate | ||
2513 | |||
2514 | tst.l %d1 # did ifetch fail? | ||
2515 | bne.w iea_iacc # yes | ||
2516 | |||
2517 | bra.b iea_op_setsrc | ||
2518 | |||
2519 | iea_op_pack: | ||
2520 | |||
2521 | mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> | ||
2522 | lea FP_SRC(%a6),%a1 # pass: ptr to super dst | ||
2523 | mov.l &0xc,%d0 # pass: 12 bytes | ||
2524 | bsr.l _imem_read # read packed operand | ||
2525 | |||
2526 | tst.l %d1 # did ifetch fail? | ||
2527 | bne.w iea_iacc # yes | ||
2528 | |||
2529 | # The packed operand is an INF or a NAN if the exponent field is all ones. | ||
2530 | bfextu FP_SRC(%a6){&1:&15},%d0 # get exp | ||
2531 | cmpi.w %d0,&0x7fff # INF or NAN? | ||
2532 | beq.b iea_op_setsrc # operand is an INF or NAN | ||
2533 | |||
2534 | # The packed operand is a zero if the mantissa is all zero, else it's | ||
2535 | # a normal packed op. | ||
2536 | mov.b 3+FP_SRC(%a6),%d0 # get byte 4 | ||
2537 | andi.b &0x0f,%d0 # clear all but last nybble | ||
2538 | bne.b iea_op_gp_not_spec # not a zero | ||
2539 | tst.l FP_SRC_HI(%a6) # is lw 2 zero? | ||
2540 | bne.b iea_op_gp_not_spec # not a zero | ||
2541 | tst.l FP_SRC_LO(%a6) # is lw 3 zero? | ||
2542 | beq.b iea_op_setsrc # operand is a ZERO | ||
2543 | iea_op_gp_not_spec: | ||
2544 | lea FP_SRC(%a6),%a0 # pass: ptr to packed op | ||
2545 | bsr.l decbin # convert to extended | ||
2546 | fmovm.x &0x80,FP_SRC(%a6) # make this the srcop | ||
2547 | |||
2548 | iea_op_setsrc: | ||
2549 | addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer | ||
2550 | |||
2551 | # FP_SRC now holds the src operand. | ||
2552 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
2553 | bsr.l set_tag_x # tag the operand type | ||
2554 | mov.b %d0,STAG(%a6) # could be ANYTHING!!! | ||
2555 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
2556 | bne.b iea_op_getdst # no | ||
2557 | bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO | ||
2558 | mov.b %d0,STAG(%a6) # set new optype tag | ||
2559 | iea_op_getdst: | ||
2560 | clr.b STORE_FLG(%a6) # clear "store result" boolean | ||
2561 | |||
2562 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? | ||
2563 | beq.b iea_op_extract # monadic | ||
2564 | btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? | ||
2565 | bne.b iea_op_spec # yes | ||
2566 | |||
2567 | iea_op_loaddst: | ||
2568 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | ||
2569 | bsr.l load_fpn2 # load dst operand | ||
2570 | |||
2571 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
2572 | bsr.l set_tag_x # tag the operand type | ||
2573 | mov.b %d0,DTAG(%a6) # could be ANYTHING!!! | ||
2574 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
2575 | bne.b iea_op_extract # no | ||
2576 | bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO | ||
2577 | mov.b %d0,DTAG(%a6) # set new optype tag | ||
2578 | bra.b iea_op_extract | ||
2579 | |||
2580 | # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic | ||
2581 | iea_op_spec: | ||
2582 | btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? | ||
2583 | beq.b iea_op_extract # yes | ||
2584 | # now, we're left with ftst and fcmp. so, first let's tag them so that they don't | ||
2585 | # store a result. then, only fcmp will branch back and pick up a dst operand. | ||
2586 | st STORE_FLG(%a6) # don't store a final result | ||
2587 | btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? | ||
2588 | beq.b iea_op_loaddst # yes | ||
2589 | |||
2590 | iea_op_extract: | ||
2591 | clr.l %d0 | ||
2592 | mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec | ||
2593 | |||
2594 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
2595 | andi.w &0x007f,%d1 # extract extension | ||
2596 | |||
2597 | fmov.l &0x0,%fpcr | ||
2598 | fmov.l &0x0,%fpsr | ||
2599 | |||
2600 | lea FP_SRC(%a6),%a0 | ||
2601 | lea FP_DST(%a6),%a1 | ||
2602 | |||
2603 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | ||
2604 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
2605 | |||
2606 | # | ||
2607 | # Exceptions in order of precedence: | ||
2608 | # BSUN : none | ||
2609 | # SNAN : all operations | ||
2610 | # OPERR : all reg-reg or mem-reg operations that can normally operr | ||
2611 | # OVFL : same as OPERR | ||
2612 | # UNFL : same as OPERR | ||
2613 | # DZ : same as OPERR | ||
2614 | # INEX2 : same as OPERR | ||
2615 | # INEX1 : all packed immediate operations | ||
2616 | # | ||
2617 | |||
2618 | # we determine the highest priority exception(if any) set by the | ||
2619 | # emulation routine that has also been enabled by the user. | ||
2620 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled | ||
2621 | bne.b iea_op_ena # some are enabled | ||
2622 | |||
2623 | # now, we save the result, unless, of course, the operation was ftst or fcmp. | ||
2624 | # these don't save results. | ||
2625 | iea_op_save: | ||
2626 | tst.b STORE_FLG(%a6) # does this op store a result? | ||
2627 | bne.b iea_op_exit1 # exit with no frestore | ||
2628 | |||
2629 | iea_op_store: | ||
2630 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | ||
2631 | bsr.l store_fpreg # store the result | ||
2632 | |||
2633 | iea_op_exit1: | ||
2634 | mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | ||
2635 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | ||
2636 | |||
2637 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
2638 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2639 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2640 | |||
2641 | unlk %a6 # unravel the frame | ||
2642 | |||
2643 | btst &0x7,(%sp) # is trace on? | ||
2644 | bne.w iea_op_trace # yes | ||
2645 | |||
2646 | bra.l _fpsp_done # exit to os | ||
2647 | |||
2648 | iea_op_ena: | ||
2649 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set | ||
2650 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
2651 | bne.b iea_op_exc # at least one was set | ||
2652 | |||
2653 | # no exception occurred. now, did a disabled, exact overflow occur with inexact | ||
2654 | # enabled? if so, then we have to stuff an overflow frame into the FPU. | ||
2655 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | ||
2656 | beq.b iea_op_save | ||
2657 | |||
2658 | iea_op_ovfl: | ||
2659 | btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | ||
2660 | beq.b iea_op_store # no | ||
2661 | bra.b iea_op_exc_ovfl # yes | ||
2662 | |||
2663 | # an enabled exception occurred. we have to insert the exception type back into | ||
2664 | # the machine. | ||
2665 | iea_op_exc: | ||
2666 | subi.l &24,%d0 # fix offset to be 0-8 | ||
2667 | cmpi.b %d0,&0x6 # is exception INEX? | ||
2668 | bne.b iea_op_exc_force # no | ||
2669 | |||
2670 | # the enabled exception was inexact. so, if it occurs with an overflow | ||
2671 | # or underflow that was disabled, then we have to force an overflow or | ||
2672 | # underflow frame. | ||
2673 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | ||
2674 | bne.b iea_op_exc_ovfl # yes | ||
2675 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | ||
2676 | bne.b iea_op_exc_unfl # yes | ||
2677 | |||
2678 | iea_op_exc_force: | ||
2679 | mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | ||
2680 | bra.b iea_op_exit2 # exit with frestore | ||
2681 | |||
2682 | tbl_iea_except: | ||
2683 | short 0xe002, 0xe006, 0xe004, 0xe005 | ||
2684 | short 0xe003, 0xe002, 0xe001, 0xe001 | ||
2685 | |||
2686 | iea_op_exc_ovfl: | ||
2687 | mov.w &0xe005,2+FP_SRC(%a6) | ||
2688 | bra.b iea_op_exit2 | ||
2689 | |||
2690 | iea_op_exc_unfl: | ||
2691 | mov.w &0xe003,2+FP_SRC(%a6) | ||
2692 | |||
2693 | iea_op_exit2: | ||
2694 | mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | ||
2695 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | ||
2696 | |||
2697 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
2698 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2699 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2700 | |||
2701 | frestore FP_SRC(%a6) # restore exceptional state | ||
2702 | |||
2703 | unlk %a6 # unravel the frame | ||
2704 | |||
2705 | btst &0x7,(%sp) # is trace on? | ||
2706 | bne.b iea_op_trace # yes | ||
2707 | |||
2708 | bra.l _fpsp_done # exit to os | ||
2709 | |||
2710 | # | ||
2711 | # The opclass two instruction that took an "Unimplemented Effective Address" | ||
2712 | # exception was being traced. Make the "current" PC the FPIAR and put it in | ||
2713 | # the trace stack frame then jump to _real_trace(). | ||
2714 | # | ||
2715 | # UNIMP EA FRAME TRACE FRAME | ||
2716 | # ***************** ***************** | ||
2717 | # * 0x0 * 0x0f0 * * Current * | ||
2718 | # ***************** * PC * | ||
2719 | # * Current * ***************** | ||
2720 | # * PC * * 0x2 * 0x024 * | ||
2721 | # ***************** ***************** | ||
2722 | # * SR * * Next * | ||
2723 | # ***************** * PC * | ||
2724 | # ***************** | ||
2725 | # * SR * | ||
2726 | # ***************** | ||
2727 | iea_op_trace: | ||
2728 | mov.l (%sp),-(%sp) # shift stack frame "down" | ||
2729 | mov.w 0x8(%sp),0x4(%sp) | ||
2730 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 | ||
2731 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR | ||
2732 | |||
2733 | bra.l _real_trace | ||
2734 | |||
2735 | ######################################################################### | ||
2736 | iea_fmovm: | ||
2737 | btst &14,%d0 # ctrl or data reg | ||
2738 | beq.w iea_fmovm_ctrl | ||
2739 | |||
2740 | iea_fmovm_data: | ||
2741 | |||
2742 | btst &0x5,EXC_SR(%a6) # user or supervisor mode | ||
2743 | bne.b iea_fmovm_data_s | ||
2744 | |||
2745 | iea_fmovm_data_u: | ||
2746 | mov.l %usp,%a0 | ||
2747 | mov.l %a0,EXC_A7(%a6) # store current a7 | ||
2748 | bsr.l fmovm_dynamic # do dynamic fmovm | ||
2749 | mov.l EXC_A7(%a6),%a0 # load possibly new a7 | ||
2750 | mov.l %a0,%usp # update usp | ||
2751 | bra.w iea_fmovm_exit | ||
2752 | |||
2753 | iea_fmovm_data_s: | ||
2754 | clr.b SPCOND_FLG(%a6) | ||
2755 | lea 0x2+EXC_VOFF(%a6),%a0 | ||
2756 | mov.l %a0,EXC_A7(%a6) | ||
2757 | bsr.l fmovm_dynamic # do dynamic fmovm | ||
2758 | |||
2759 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
2760 | beq.w iea_fmovm_data_predec | ||
2761 | cmpi.b SPCOND_FLG(%a6),&mia7_flg | ||
2762 | bne.w iea_fmovm_exit | ||
2763 | |||
2764 | # right now, d0 = the size. | ||
2765 | # the data has been fetched from the supervisor stack, but we have not | ||
2766 | # incremented the stack pointer by the appropriate number of bytes. | ||
2767 | # do it here. | ||
2768 | iea_fmovm_data_postinc: | ||
2769 | btst &0x7,EXC_SR(%a6) | ||
2770 | bne.b iea_fmovm_data_pi_trace | ||
2771 | |||
2772 | mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) | ||
2773 | mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) | ||
2774 | mov.w &0x00f0,(EXC_VOFF,%a6,%d0) | ||
2775 | |||
2776 | lea (EXC_SR,%a6,%d0),%a0 | ||
2777 | mov.l %a0,EXC_SR(%a6) | ||
2778 | |||
2779 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
2780 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2781 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2782 | |||
2783 | unlk %a6 | ||
2784 | mov.l (%sp)+,%sp | ||
2785 | bra.l _fpsp_done | ||
2786 | |||
2787 | iea_fmovm_data_pi_trace: | ||
2788 | mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | ||
2789 | mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) | ||
2790 | mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) | ||
2791 | mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) | ||
2792 | |||
2793 | lea (EXC_SR-0x4,%a6,%d0),%a0 | ||
2794 | mov.l %a0,EXC_SR(%a6) | ||
2795 | |||
2796 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
2797 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2798 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2799 | |||
2800 | unlk %a6 | ||
2801 | mov.l (%sp)+,%sp | ||
2802 | bra.l _real_trace | ||
2803 | |||
2804 | # right now, d1 = size and d0 = the strg. | ||
2805 | iea_fmovm_data_predec: | ||
2806 | mov.b %d1,EXC_VOFF(%a6) # store strg | ||
2807 | mov.b %d0,0x1+EXC_VOFF(%a6) # store size | ||
2808 | |||
2809 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
2810 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2811 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2812 | |||
2813 | mov.l (%a6),-(%sp) # make a copy of a6 | ||
2814 | mov.l %d0,-(%sp) # save d0 | ||
2815 | mov.l %d1,-(%sp) # save d1 | ||
2816 | mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC | ||
2817 | |||
2818 | clr.l %d0 | ||
2819 | mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size | ||
2820 | neg.l %d0 # get negative of size | ||
2821 | |||
2822 | btst &0x7,EXC_SR(%a6) # is trace enabled? | ||
2823 | beq.b iea_fmovm_data_p2 | ||
2824 | |||
2825 | mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | ||
2826 | mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) | ||
2827 | mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) | ||
2828 | mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) | ||
2829 | |||
2830 | pea (%a6,%d0) # create final sp | ||
2831 | bra.b iea_fmovm_data_p3 | ||
2832 | |||
2833 | iea_fmovm_data_p2: | ||
2834 | mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) | ||
2835 | mov.l (%sp)+,(EXC_PC,%a6,%d0) | ||
2836 | mov.w &0x00f0,(EXC_VOFF,%a6,%d0) | ||
2837 | |||
2838 | pea (0x4,%a6,%d0) # create final sp | ||
2839 | |||
2840 | iea_fmovm_data_p3: | ||
2841 | clr.l %d1 | ||
2842 | mov.b EXC_VOFF(%a6),%d1 # fetch strg | ||
2843 | |||
2844 | tst.b %d1 | ||
2845 | bpl.b fm_1 | ||
2846 | fmovm.x &0x80,(0x4+0x8,%a6,%d0) | ||
2847 | addi.l &0xc,%d0 | ||
2848 | fm_1: | ||
2849 | lsl.b &0x1,%d1 | ||
2850 | bpl.b fm_2 | ||
2851 | fmovm.x &0x40,(0x4+0x8,%a6,%d0) | ||
2852 | addi.l &0xc,%d0 | ||
2853 | fm_2: | ||
2854 | lsl.b &0x1,%d1 | ||
2855 | bpl.b fm_3 | ||
2856 | fmovm.x &0x20,(0x4+0x8,%a6,%d0) | ||
2857 | addi.l &0xc,%d0 | ||
2858 | fm_3: | ||
2859 | lsl.b &0x1,%d1 | ||
2860 | bpl.b fm_4 | ||
2861 | fmovm.x &0x10,(0x4+0x8,%a6,%d0) | ||
2862 | addi.l &0xc,%d0 | ||
2863 | fm_4: | ||
2864 | lsl.b &0x1,%d1 | ||
2865 | bpl.b fm_5 | ||
2866 | fmovm.x &0x08,(0x4+0x8,%a6,%d0) | ||
2867 | addi.l &0xc,%d0 | ||
2868 | fm_5: | ||
2869 | lsl.b &0x1,%d1 | ||
2870 | bpl.b fm_6 | ||
2871 | fmovm.x &0x04,(0x4+0x8,%a6,%d0) | ||
2872 | addi.l &0xc,%d0 | ||
2873 | fm_6: | ||
2874 | lsl.b &0x1,%d1 | ||
2875 | bpl.b fm_7 | ||
2876 | fmovm.x &0x02,(0x4+0x8,%a6,%d0) | ||
2877 | addi.l &0xc,%d0 | ||
2878 | fm_7: | ||
2879 | lsl.b &0x1,%d1 | ||
2880 | bpl.b fm_end | ||
2881 | fmovm.x &0x01,(0x4+0x8,%a6,%d0) | ||
2882 | fm_end: | ||
2883 | mov.l 0x4(%sp),%d1 | ||
2884 | mov.l 0x8(%sp),%d0 | ||
2885 | mov.l 0xc(%sp),%a6 | ||
2886 | mov.l (%sp)+,%sp | ||
2887 | |||
2888 | btst &0x7,(%sp) # is trace enabled? | ||
2889 | beq.l _fpsp_done | ||
2890 | bra.l _real_trace | ||
2891 | |||
2892 | ######################################################################### | ||
2893 | iea_fmovm_ctrl: | ||
2894 | |||
2895 | bsr.l fmovm_ctrl # load ctrl regs | ||
2896 | |||
2897 | iea_fmovm_exit: | ||
2898 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
2899 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
2900 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2901 | |||
2902 | btst &0x7,EXC_SR(%a6) # is trace on? | ||
2903 | bne.b iea_fmovm_trace # yes | ||
2904 | |||
2905 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC | ||
2906 | |||
2907 | unlk %a6 # unravel the frame | ||
2908 | |||
2909 | bra.l _fpsp_done # exit to os | ||
2910 | |||
2911 | # | ||
2912 | # The control reg instruction that took an "Unimplemented Effective Address" | ||
2913 | # exception was being traced. The "Current PC" for the trace frame is the | ||
2914 | # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. | ||
2915 | # After fixing the stack frame, jump to _real_trace(). | ||
2916 | # | ||
2917 | # UNIMP EA FRAME TRACE FRAME | ||
2918 | # ***************** ***************** | ||
2919 | # * 0x0 * 0x0f0 * * Current * | ||
2920 | # ***************** * PC * | ||
2921 | # * Current * ***************** | ||
2922 | # * PC * * 0x2 * 0x024 * | ||
2923 | # ***************** ***************** | ||
2924 | # * SR * * Next * | ||
2925 | # ***************** * PC * | ||
2926 | # ***************** | ||
2927 | # * SR * | ||
2928 | # ***************** | ||
2929 | # this ain't a pretty solution, but it works: | ||
2930 | # -restore a6 (not with unlk) | ||
2931 | # -shift stack frame down over where old a6 used to be | ||
2932 | # -add LOCAL_SIZE to stack pointer | ||
2933 | iea_fmovm_trace: | ||
2934 | mov.l (%a6),%a6 # restore frame pointer | ||
2935 | mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) | ||
2936 | mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) | ||
2937 | mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) | ||
2938 | mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 | ||
2939 | add.l &LOCAL_SIZE,%sp # clear stack frame | ||
2940 | |||
2941 | bra.l _real_trace | ||
2942 | |||
2943 | ######################################################################### | ||
2944 | # The FPU is disabled and so we should really have taken the "Line | ||
2945 | # F Emulator" exception. So, here we create an 8-word stack frame | ||
2946 | # from our 4-word stack frame. This means we must calculate the length | ||
2947 | # the faulting instruction to get the "next PC". This is trivial for | ||
2948 | # immediate operands but requires some extra work for fmovm dynamic | ||
2949 | # which can use most addressing modes. | ||
2950 | iea_disabled: | ||
2951 | mov.l (%sp)+,%d0 # restore d0 | ||
2952 | |||
2953 | link %a6,&-LOCAL_SIZE # init stack frame | ||
2954 | |||
2955 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
2956 | |||
2957 | # PC of instruction that took the exception is the PC in the frame | ||
2958 | mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) | ||
2959 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
2960 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
2961 | bsr.l _imem_read_long # fetch the instruction words | ||
2962 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD | ||
2963 | |||
2964 | tst.w %d0 # is instr fmovm? | ||
2965 | bmi.b iea_dis_fmovm # yes | ||
2966 | # instruction is using an extended precision immediate operand. therefore, | ||
2967 | # the total instruction length is 16 bytes. | ||
2968 | iea_dis_immed: | ||
2969 | mov.l &0x10,%d0 # 16 bytes of instruction | ||
2970 | bra.b iea_dis_cont | ||
2971 | iea_dis_fmovm: | ||
2972 | btst &0xe,%d0 # is instr fmovm ctrl | ||
2973 | bne.b iea_dis_fmovm_data # no | ||
2974 | # the instruction is a fmovm.l with 2 or 3 registers. | ||
2975 | bfextu %d0{&19:&3},%d1 | ||
2976 | mov.l &0xc,%d0 | ||
2977 | cmpi.b %d1,&0x7 # move all regs? | ||
2978 | bne.b iea_dis_cont | ||
2979 | addq.l &0x4,%d0 | ||
2980 | bra.b iea_dis_cont | ||
2981 | # the instruction is an fmovm.x dynamic which can use many addressing | ||
2982 | # modes and thus can have several different total instruction lengths. | ||
2983 | # call fmovm_calc_ea which will go through the ea calc process and, | ||
2984 | # as a by-product, will tell us how long the instruction is. | ||
2985 | iea_dis_fmovm_data: | ||
2986 | clr.l %d0 | ||
2987 | bsr.l fmovm_calc_ea | ||
2988 | mov.l EXC_EXTWPTR(%a6),%d0 | ||
2989 | sub.l EXC_PC(%a6),%d0 | ||
2990 | iea_dis_cont: | ||
2991 | mov.w %d0,EXC_VOFF(%a6) # store stack shift value | ||
2992 | |||
2993 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
2994 | |||
2995 | unlk %a6 | ||
2996 | |||
2997 | # here, we actually create the 8-word frame from the 4-word frame, | ||
2998 | # with the "next PC" as additional info. | ||
2999 | # the <ea> field is let as undefined. | ||
3000 | subq.l &0x8,%sp # make room for new stack | ||
3001 | mov.l %d0,-(%sp) # save d0 | ||
3002 | mov.w 0xc(%sp),0x4(%sp) # move SR | ||
3003 | mov.l 0xe(%sp),0x6(%sp) # move Current PC | ||
3004 | clr.l %d0 | ||
3005 | mov.w 0x12(%sp),%d0 | ||
3006 | mov.l 0x6(%sp),0x10(%sp) # move Current PC | ||
3007 | add.l %d0,0x6(%sp) # make Next PC | ||
3008 | mov.w &0x402c,0xa(%sp) # insert offset,frame format | ||
3009 | mov.l (%sp)+,%d0 # restore d0 | ||
3010 | |||
3011 | bra.l _real_fpu_disabled | ||
3012 | |||
3013 | ########## | ||
3014 | |||
3015 | iea_iacc: | ||
3016 | movc %pcr,%d0 | ||
3017 | btst &0x1,%d0 | ||
3018 | bne.b iea_iacc_cont | ||
3019 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3020 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack | ||
3021 | iea_iacc_cont: | ||
3022 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3023 | |||
3024 | unlk %a6 | ||
3025 | |||
3026 | subq.w &0x8,%sp # make stack frame bigger | ||
3027 | mov.l 0x8(%sp),(%sp) # store SR,hi(PC) | ||
3028 | mov.w 0xc(%sp),0x4(%sp) # store lo(PC) | ||
3029 | mov.w &0x4008,0x6(%sp) # store voff | ||
3030 | mov.l 0x2(%sp),0x8(%sp) # store ea | ||
3031 | mov.l &0x09428001,0xc(%sp) # store fslw | ||
3032 | |||
3033 | iea_acc_done: | ||
3034 | btst &0x5,(%sp) # user or supervisor mode? | ||
3035 | beq.b iea_acc_done2 # user | ||
3036 | bset &0x2,0xd(%sp) # set supervisor TM bit | ||
3037 | |||
3038 | iea_acc_done2: | ||
3039 | bra.l _real_access | ||
3040 | |||
3041 | iea_dacc: | ||
3042 | lea -LOCAL_SIZE(%a6),%sp | ||
3043 | |||
3044 | movc %pcr,%d1 | ||
3045 | btst &0x1,%d1 | ||
3046 | bne.b iea_dacc_cont | ||
3047 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack | ||
3048 | fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3049 | iea_dacc_cont: | ||
3050 | mov.l (%a6),%a6 | ||
3051 | |||
3052 | mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) | ||
3053 | mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) | ||
3054 | mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) | ||
3055 | mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) | ||
3056 | mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) | ||
3057 | mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) | ||
3058 | |||
3059 | movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 | ||
3060 | add.w &LOCAL_SIZE-0x4,%sp | ||
3061 | |||
3062 | bra.b iea_acc_done | ||
3063 | |||
3064 | ######################################################################### | ||
3065 | # XDEF **************************************************************** # | ||
3066 | # _fpsp_operr(): 060FPSP entry point for FP Operr exception. # | ||
3067 | # # | ||
3068 | # This handler should be the first code executed upon taking the # | ||
3069 | # FP Operand Error exception in an operating system. # | ||
3070 | # # | ||
3071 | # XREF **************************************************************** # | ||
3072 | # _imem_read_long() - read instruction longword # | ||
3073 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
3074 | # _real_operr() - "callout" to operating system operr handler # | ||
3075 | # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # | ||
3076 | # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # | ||
3077 | # facc_out_{b,w,l}() - store to memory took access error (opcl 3) # | ||
3078 | # # | ||
3079 | # INPUT *************************************************************** # | ||
3080 | # - The system stack contains the FP Operr exception frame # | ||
3081 | # - The fsave frame contains the source operand # | ||
3082 | # # | ||
3083 | # OUTPUT ************************************************************** # | ||
3084 | # No access error: # | ||
3085 | # - The system stack is unchanged # | ||
3086 | # - The fsave frame contains the adjusted src op for opclass 0,2 # | ||
3087 | # # | ||
3088 | # ALGORITHM *********************************************************** # | ||
3089 | # In a system where the FP Operr exception is enabled, the goal # | ||
3090 | # is to get to the handler specified at _real_operr(). But, on the 060, # | ||
3091 | # for opclass zero and two instruction taking this exception, the # | ||
3092 | # input operand in the fsave frame may be incorrect for some cases # | ||
3093 | # and needs to be corrected. This handler calls fix_skewed_ops() to # | ||
3094 | # do just this and then exits through _real_operr(). # | ||
3095 | # For opclass 3 instructions, the 060 doesn't store the default # | ||
3096 | # operr result out to memory or data register file as it should. # | ||
3097 | # This code must emulate the move out before finally exiting through # | ||
3098 | # _real_inex(). The move out, if to memory, is performed using # | ||
3099 | # _mem_write() "callout" routines that may return a failing result. # | ||
3100 | # In this special case, the handler must exit through facc_out() # | ||
3101 | # which creates an access error stack frame from the current operr # | ||
3102 | # stack frame. # | ||
3103 | # # | ||
3104 | ######################################################################### | ||
3105 | |||
3106 | global _fpsp_operr | ||
3107 | _fpsp_operr: | ||
3108 | |||
3109 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
3110 | |||
3111 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
3112 | |||
3113 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
3114 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
3115 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
3116 | |||
3117 | # the FPIAR holds the "current PC" of the faulting instruction | ||
3118 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
3119 | |||
3120 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
3121 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
3122 | bsr.l _imem_read_long # fetch the instruction words | ||
3123 | mov.l %d0,EXC_OPWORD(%a6) | ||
3124 | |||
3125 | ############################################################################## | ||
3126 | |||
3127 | btst &13,%d0 # is instr an fmove out? | ||
3128 | bne.b foperr_out # fmove out | ||
3129 | |||
3130 | |||
3131 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | ||
3132 | # this would be the case for opclass two operations with a source infinity or | ||
3133 | # denorm operand in the sgl or dbl format. NANs also become skewed, but can't | ||
3134 | # cause an operr so we don't need to check for them here. | ||
3135 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
3136 | bsr.l fix_skewed_ops # fix src op | ||
3137 | |||
3138 | foperr_exit: | ||
3139 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
3140 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3141 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3142 | |||
3143 | frestore FP_SRC(%a6) | ||
3144 | |||
3145 | unlk %a6 | ||
3146 | bra.l _real_operr | ||
3147 | |||
3148 | ######################################################################## | ||
3149 | |||
3150 | # | ||
3151 | # the hardware does not save the default result to memory on enabled | ||
3152 | # operand error exceptions. we do this here before passing control to | ||
3153 | # the user operand error handler. | ||
3154 | # | ||
3155 | # byte, word, and long destination format operations can pass | ||
3156 | # through here. we simply need to test the sign of the src | ||
3157 | # operand and save the appropriate minimum or maximum integer value | ||
3158 | # to the effective address as pointed to by the stacked effective address. | ||
3159 | # | ||
3160 | # although packed opclass three operations can take operand error | ||
3161 | # exceptions, they won't pass through here since they are caught | ||
3162 | # first by the unsupported data format exception handler. that handler | ||
3163 | # sends them directly to _real_operr() if necessary. | ||
3164 | # | ||
3165 | foperr_out: | ||
3166 | |||
3167 | mov.w FP_SRC_EX(%a6),%d1 # fetch exponent | ||
3168 | andi.w &0x7fff,%d1 | ||
3169 | cmpi.w %d1,&0x7fff | ||
3170 | bne.b foperr_out_not_qnan | ||
3171 | # the operand is either an infinity or a QNAN. | ||
3172 | tst.l FP_SRC_LO(%a6) | ||
3173 | bne.b foperr_out_qnan | ||
3174 | mov.l FP_SRC_HI(%a6),%d1 | ||
3175 | andi.l &0x7fffffff,%d1 | ||
3176 | beq.b foperr_out_not_qnan | ||
3177 | foperr_out_qnan: | ||
3178 | mov.l FP_SRC_HI(%a6),L_SCR1(%a6) | ||
3179 | bra.b foperr_out_jmp | ||
3180 | |||
3181 | foperr_out_not_qnan: | ||
3182 | mov.l &0x7fffffff,%d1 | ||
3183 | tst.b FP_SRC_EX(%a6) | ||
3184 | bpl.b foperr_out_not_qnan2 | ||
3185 | addq.l &0x1,%d1 | ||
3186 | foperr_out_not_qnan2: | ||
3187 | mov.l %d1,L_SCR1(%a6) | ||
3188 | |||
3189 | foperr_out_jmp: | ||
3190 | bfextu %d0{&19:&3},%d0 # extract dst format field | ||
3191 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg | ||
3192 | mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 | ||
3193 | jmp (tbl_operr.b,%pc,%a0) | ||
3194 | |||
3195 | tbl_operr: | ||
3196 | short foperr_out_l - tbl_operr # long word integer | ||
3197 | short tbl_operr - tbl_operr # sgl prec shouldn't happen | ||
3198 | short tbl_operr - tbl_operr # ext prec shouldn't happen | ||
3199 | short foperr_exit - tbl_operr # packed won't enter here | ||
3200 | short foperr_out_w - tbl_operr # word integer | ||
3201 | short tbl_operr - tbl_operr # dbl prec shouldn't happen | ||
3202 | short foperr_out_b - tbl_operr # byte integer | ||
3203 | short tbl_operr - tbl_operr # packed won't enter here | ||
3204 | |||
3205 | foperr_out_b: | ||
3206 | mov.b L_SCR1(%a6),%d0 # load positive default result | ||
3207 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3208 | ble.b foperr_out_b_save_dn # yes | ||
3209 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3210 | bsr.l _dmem_write_byte # write the default result | ||
3211 | |||
3212 | tst.l %d1 # did dstore fail? | ||
3213 | bne.l facc_out_b # yes | ||
3214 | |||
3215 | bra.w foperr_exit | ||
3216 | foperr_out_b_save_dn: | ||
3217 | andi.w &0x0007,%d1 | ||
3218 | bsr.l store_dreg_b # store result to regfile | ||
3219 | bra.w foperr_exit | ||
3220 | |||
3221 | foperr_out_w: | ||
3222 | mov.w L_SCR1(%a6),%d0 # load positive default result | ||
3223 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3224 | ble.b foperr_out_w_save_dn # yes | ||
3225 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3226 | bsr.l _dmem_write_word # write the default result | ||
3227 | |||
3228 | tst.l %d1 # did dstore fail? | ||
3229 | bne.l facc_out_w # yes | ||
3230 | |||
3231 | bra.w foperr_exit | ||
3232 | foperr_out_w_save_dn: | ||
3233 | andi.w &0x0007,%d1 | ||
3234 | bsr.l store_dreg_w # store result to regfile | ||
3235 | bra.w foperr_exit | ||
3236 | |||
3237 | foperr_out_l: | ||
3238 | mov.l L_SCR1(%a6),%d0 # load positive default result | ||
3239 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3240 | ble.b foperr_out_l_save_dn # yes | ||
3241 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3242 | bsr.l _dmem_write_long # write the default result | ||
3243 | |||
3244 | tst.l %d1 # did dstore fail? | ||
3245 | bne.l facc_out_l # yes | ||
3246 | |||
3247 | bra.w foperr_exit | ||
3248 | foperr_out_l_save_dn: | ||
3249 | andi.w &0x0007,%d1 | ||
3250 | bsr.l store_dreg_l # store result to regfile | ||
3251 | bra.w foperr_exit | ||
3252 | |||
3253 | ######################################################################### | ||
3254 | # XDEF **************************************************************** # | ||
3255 | # _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # | ||
3256 | # # | ||
3257 | # This handler should be the first code executed upon taking the # | ||
3258 | # FP Signalling NAN exception in an operating system. # | ||
3259 | # # | ||
3260 | # XREF **************************************************************** # | ||
3261 | # _imem_read_long() - read instruction longword # | ||
3262 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
3263 | # _real_snan() - "callout" to operating system SNAN handler # | ||
3264 | # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # | ||
3265 | # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # | ||
3266 | # facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # | ||
3267 | # _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # | ||
3268 | # # | ||
3269 | # INPUT *************************************************************** # | ||
3270 | # - The system stack contains the FP SNAN exception frame # | ||
3271 | # - The fsave frame contains the source operand # | ||
3272 | # # | ||
3273 | # OUTPUT ************************************************************** # | ||
3274 | # No access error: # | ||
3275 | # - The system stack is unchanged # | ||
3276 | # - The fsave frame contains the adjusted src op for opclass 0,2 # | ||
3277 | # # | ||
3278 | # ALGORITHM *********************************************************** # | ||
3279 | # In a system where the FP SNAN exception is enabled, the goal # | ||
3280 | # is to get to the handler specified at _real_snan(). But, on the 060, # | ||
3281 | # for opclass zero and two instructions taking this exception, the # | ||
3282 | # input operand in the fsave frame may be incorrect for some cases # | ||
3283 | # and needs to be corrected. This handler calls fix_skewed_ops() to # | ||
3284 | # do just this and then exits through _real_snan(). # | ||
3285 | # For opclass 3 instructions, the 060 doesn't store the default # | ||
3286 | # SNAN result out to memory or data register file as it should. # | ||
3287 | # This code must emulate the move out before finally exiting through # | ||
3288 | # _real_snan(). The move out, if to memory, is performed using # | ||
3289 | # _mem_write() "callout" routines that may return a failing result. # | ||
3290 | # In this special case, the handler must exit through facc_out() # | ||
3291 | # which creates an access error stack frame from the current SNAN # | ||
3292 | # stack frame. # | ||
3293 | # For the case of an extended precision opclass 3 instruction, # | ||
3294 | # if the effective addressing mode was -() or ()+, then the address # | ||
3295 | # register must get updated by calling _calc_ea_fout(). If the <ea> # | ||
3296 | # was -(a7) from supervisor mode, then the exception frame currently # | ||
3297 | # on the system stack must be carefully moved "down" to make room # | ||
3298 | # for the operand being moved. # | ||
3299 | # # | ||
3300 | ######################################################################### | ||
3301 | |||
3302 | global _fpsp_snan | ||
3303 | _fpsp_snan: | ||
3304 | |||
3305 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
3306 | |||
3307 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
3308 | |||
3309 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
3310 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
3311 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
3312 | |||
3313 | # the FPIAR holds the "current PC" of the faulting instruction | ||
3314 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
3315 | |||
3316 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
3317 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
3318 | bsr.l _imem_read_long # fetch the instruction words | ||
3319 | mov.l %d0,EXC_OPWORD(%a6) | ||
3320 | |||
3321 | ############################################################################## | ||
3322 | |||
3323 | btst &13,%d0 # is instr an fmove out? | ||
3324 | bne.w fsnan_out # fmove out | ||
3325 | |||
3326 | |||
3327 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | ||
3328 | # this would be the case for opclass two operations with a source infinity or | ||
3329 | # denorm operand in the sgl or dbl format. NANs also become skewed and must be | ||
3330 | # fixed here. | ||
3331 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
3332 | bsr.l fix_skewed_ops # fix src op | ||
3333 | |||
3334 | fsnan_exit: | ||
3335 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
3336 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3337 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3338 | |||
3339 | frestore FP_SRC(%a6) | ||
3340 | |||
3341 | unlk %a6 | ||
3342 | bra.l _real_snan | ||
3343 | |||
3344 | ######################################################################## | ||
3345 | |||
3346 | # | ||
3347 | # the hardware does not save the default result to memory on enabled | ||
3348 | # snan exceptions. we do this here before passing control to | ||
3349 | # the user snan handler. | ||
3350 | # | ||
3351 | # byte, word, long, and packed destination format operations can pass | ||
3352 | # through here. since packed format operations already were handled by | ||
3353 | # fpsp_unsupp(), then we need to do nothing else for them here. | ||
3354 | # for byte, word, and long, we simply need to test the sign of the src | ||
3355 | # operand and save the appropriate minimum or maximum integer value | ||
3356 | # to the effective address as pointed to by the stacked effective address. | ||
3357 | # | ||
3358 | fsnan_out: | ||
3359 | |||
3360 | bfextu %d0{&19:&3},%d0 # extract dst format field | ||
3361 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg | ||
3362 | mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 | ||
3363 | jmp (tbl_snan.b,%pc,%a0) | ||
3364 | |||
3365 | tbl_snan: | ||
3366 | short fsnan_out_l - tbl_snan # long word integer | ||
3367 | short fsnan_out_s - tbl_snan # sgl prec shouldn't happen | ||
3368 | short fsnan_out_x - tbl_snan # ext prec shouldn't happen | ||
3369 | short tbl_snan - tbl_snan # packed needs no help | ||
3370 | short fsnan_out_w - tbl_snan # word integer | ||
3371 | short fsnan_out_d - tbl_snan # dbl prec shouldn't happen | ||
3372 | short fsnan_out_b - tbl_snan # byte integer | ||
3373 | short tbl_snan - tbl_snan # packed needs no help | ||
3374 | |||
3375 | fsnan_out_b: | ||
3376 | mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN | ||
3377 | bset &6,%d0 # set SNAN bit | ||
3378 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3379 | ble.b fsnan_out_b_dn # yes | ||
3380 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3381 | bsr.l _dmem_write_byte # write the default result | ||
3382 | |||
3383 | tst.l %d1 # did dstore fail? | ||
3384 | bne.l facc_out_b # yes | ||
3385 | |||
3386 | bra.w fsnan_exit | ||
3387 | fsnan_out_b_dn: | ||
3388 | andi.w &0x0007,%d1 | ||
3389 | bsr.l store_dreg_b # store result to regfile | ||
3390 | bra.w fsnan_exit | ||
3391 | |||
3392 | fsnan_out_w: | ||
3393 | mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN | ||
3394 | bset &14,%d0 # set SNAN bit | ||
3395 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3396 | ble.b fsnan_out_w_dn # yes | ||
3397 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3398 | bsr.l _dmem_write_word # write the default result | ||
3399 | |||
3400 | tst.l %d1 # did dstore fail? | ||
3401 | bne.l facc_out_w # yes | ||
3402 | |||
3403 | bra.w fsnan_exit | ||
3404 | fsnan_out_w_dn: | ||
3405 | andi.w &0x0007,%d1 | ||
3406 | bsr.l store_dreg_w # store result to regfile | ||
3407 | bra.w fsnan_exit | ||
3408 | |||
3409 | fsnan_out_l: | ||
3410 | mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN | ||
3411 | bset &30,%d0 # set SNAN bit | ||
3412 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3413 | ble.b fsnan_out_l_dn # yes | ||
3414 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3415 | bsr.l _dmem_write_long # write the default result | ||
3416 | |||
3417 | tst.l %d1 # did dstore fail? | ||
3418 | bne.l facc_out_l # yes | ||
3419 | |||
3420 | bra.w fsnan_exit | ||
3421 | fsnan_out_l_dn: | ||
3422 | andi.w &0x0007,%d1 | ||
3423 | bsr.l store_dreg_l # store result to regfile | ||
3424 | bra.w fsnan_exit | ||
3425 | |||
3426 | fsnan_out_s: | ||
3427 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? | ||
3428 | ble.b fsnan_out_d_dn # yes | ||
3429 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign | ||
3430 | andi.l &0x80000000,%d0 # keep sign | ||
3431 | ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit | ||
3432 | mov.l FP_SRC_HI(%a6),%d1 # load mantissa | ||
3433 | lsr.l &0x8,%d1 # shift mantissa for sgl | ||
3434 | or.l %d1,%d0 # create sgl SNAN | ||
3435 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result | ||
3436 | bsr.l _dmem_write_long # write the default result | ||
3437 | |||
3438 | tst.l %d1 # did dstore fail? | ||
3439 | bne.l facc_out_l # yes | ||
3440 | |||
3441 | bra.w fsnan_exit | ||
3442 | fsnan_out_d_dn: | ||
3443 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign | ||
3444 | andi.l &0x80000000,%d0 # keep sign | ||
3445 | ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit | ||
3446 | mov.l %d1,-(%sp) | ||
3447 | mov.l FP_SRC_HI(%a6),%d1 # load mantissa | ||
3448 | lsr.l &0x8,%d1 # shift mantissa for sgl | ||
3449 | or.l %d1,%d0 # create sgl SNAN | ||
3450 | mov.l (%sp)+,%d1 | ||
3451 | andi.w &0x0007,%d1 | ||
3452 | bsr.l store_dreg_l # store result to regfile | ||
3453 | bra.w fsnan_exit | ||
3454 | |||
3455 | fsnan_out_d: | ||
3456 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign | ||
3457 | andi.l &0x80000000,%d0 # keep sign | ||
3458 | ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit | ||
3459 | mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa | ||
3460 | mov.l %d0,FP_SCR0_EX(%a6) # store to temp space | ||
3461 | mov.l &11,%d0 # load shift amt | ||
3462 | lsr.l %d0,%d1 | ||
3463 | or.l %d1,FP_SCR0_EX(%a6) # create dbl hi | ||
3464 | mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa | ||
3465 | andi.l &0x000007ff,%d1 | ||
3466 | ror.l %d0,%d1 | ||
3467 | mov.l %d1,FP_SCR0_HI(%a6) # store to temp space | ||
3468 | mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa | ||
3469 | lsr.l %d0,%d1 | ||
3470 | or.l %d1,FP_SCR0_HI(%a6) # create dbl lo | ||
3471 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
3472 | mov.l EXC_EA(%a6),%a1 # pass: dst addr | ||
3473 | movq.l &0x8,%d0 # pass: size of 8 bytes | ||
3474 | bsr.l _dmem_write # write the default result | ||
3475 | |||
3476 | tst.l %d1 # did dstore fail? | ||
3477 | bne.l facc_out_d # yes | ||
3478 | |||
3479 | bra.w fsnan_exit | ||
3480 | |||
3481 | # for extended precision, if the addressing mode is pre-decrement or | ||
3482 | # post-increment, then the address register did not get updated. | ||
3483 | # in addition, for pre-decrement, the stacked <ea> is incorrect. | ||
3484 | fsnan_out_x: | ||
3485 | clr.b SPCOND_FLG(%a6) # clear special case flag | ||
3486 | |||
3487 | mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) | ||
3488 | clr.w 2+FP_SCR0(%a6) | ||
3489 | mov.l FP_SRC_HI(%a6),%d0 | ||
3490 | bset &30,%d0 | ||
3491 | mov.l %d0,FP_SCR0_HI(%a6) | ||
3492 | mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) | ||
3493 | |||
3494 | btst &0x5,EXC_SR(%a6) # supervisor mode exception? | ||
3495 | bne.b fsnan_out_x_s # yes | ||
3496 | |||
3497 | mov.l %usp,%a0 # fetch user stack pointer | ||
3498 | mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() | ||
3499 | mov.l (%a6),EXC_A6(%a6) | ||
3500 | |||
3501 | bsr.l _calc_ea_fout # find the correct ea,update An | ||
3502 | mov.l %a0,%a1 | ||
3503 | mov.l %a0,EXC_EA(%a6) # stack correct <ea> | ||
3504 | |||
3505 | mov.l EXC_A7(%a6),%a0 | ||
3506 | mov.l %a0,%usp # restore user stack pointer | ||
3507 | mov.l EXC_A6(%a6),(%a6) | ||
3508 | |||
3509 | fsnan_out_x_save: | ||
3510 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
3511 | movq.l &0xc,%d0 # pass: size of extended | ||
3512 | bsr.l _dmem_write # write the default result | ||
3513 | |||
3514 | tst.l %d1 # did dstore fail? | ||
3515 | bne.l facc_out_x # yes | ||
3516 | |||
3517 | bra.w fsnan_exit | ||
3518 | |||
3519 | fsnan_out_x_s: | ||
3520 | mov.l (%a6),EXC_A6(%a6) | ||
3521 | |||
3522 | bsr.l _calc_ea_fout # find the correct ea,update An | ||
3523 | mov.l %a0,%a1 | ||
3524 | mov.l %a0,EXC_EA(%a6) # stack correct <ea> | ||
3525 | |||
3526 | mov.l EXC_A6(%a6),(%a6) | ||
3527 | |||
3528 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | ||
3529 | bne.b fsnan_out_x_save # no | ||
3530 | |||
3531 | # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. | ||
3532 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
3533 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3534 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3535 | |||
3536 | frestore FP_SRC(%a6) | ||
3537 | |||
3538 | mov.l EXC_A6(%a6),%a6 # restore frame pointer | ||
3539 | |||
3540 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | ||
3541 | mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) | ||
3542 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | ||
3543 | |||
3544 | mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) | ||
3545 | mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) | ||
3546 | mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) | ||
3547 | |||
3548 | add.l &LOCAL_SIZE-0x8,%sp | ||
3549 | |||
3550 | bra.l _real_snan | ||
3551 | |||
3552 | ######################################################################### | ||
3553 | # XDEF **************************************************************** # | ||
3554 | # _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # | ||
3555 | # # | ||
3556 | # This handler should be the first code executed upon taking the # | ||
3557 | # FP Inexact exception in an operating system. # | ||
3558 | # # | ||
3559 | # XREF **************************************************************** # | ||
3560 | # _imem_read_long() - read instruction longword # | ||
3561 | # fix_skewed_ops() - adjust src operand in fsave frame # | ||
3562 | # set_tag_x() - determine optype of src/dst operands # | ||
3563 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
3564 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # | ||
3565 | # load_fpn2() - load dst operand from FP regfile # | ||
3566 | # smovcr() - emulate an "fmovcr" instruction # | ||
3567 | # fout() - emulate an opclass 3 instruction # | ||
3568 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # | ||
3569 | # _real_inex() - "callout" to operating system inexact handler # | ||
3570 | # # | ||
3571 | # INPUT *************************************************************** # | ||
3572 | # - The system stack contains the FP Inexact exception frame # | ||
3573 | # - The fsave frame contains the source operand # | ||
3574 | # # | ||
3575 | # OUTPUT ************************************************************** # | ||
3576 | # - The system stack is unchanged # | ||
3577 | # - The fsave frame contains the adjusted src op for opclass 0,2 # | ||
3578 | # # | ||
3579 | # ALGORITHM *********************************************************** # | ||
3580 | # In a system where the FP Inexact exception is enabled, the goal # | ||
3581 | # is to get to the handler specified at _real_inex(). But, on the 060, # | ||
3582 | # for opclass zero and two instruction taking this exception, the # | ||
3583 | # hardware doesn't store the correct result to the destination FP # | ||
3584 | # register as did the '040 and '881/2. This handler must emulate the # | ||
3585 | # instruction in order to get this value and then store it to the # | ||
3586 | # correct register before calling _real_inex(). # | ||
3587 | # For opclass 3 instructions, the 060 doesn't store the default # | ||
3588 | # inexact result out to memory or data register file as it should. # | ||
3589 | # This code must emulate the move out by calling fout() before finally # | ||
3590 | # exiting through _real_inex(). # | ||
3591 | # # | ||
3592 | ######################################################################### | ||
3593 | |||
3594 | global _fpsp_inex | ||
3595 | _fpsp_inex: | ||
3596 | |||
3597 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
3598 | |||
3599 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
3600 | |||
3601 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
3602 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
3603 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
3604 | |||
3605 | # the FPIAR holds the "current PC" of the faulting instruction | ||
3606 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
3607 | |||
3608 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
3609 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
3610 | bsr.l _imem_read_long # fetch the instruction words | ||
3611 | mov.l %d0,EXC_OPWORD(%a6) | ||
3612 | |||
3613 | ############################################################################## | ||
3614 | |||
3615 | btst &13,%d0 # is instr an fmove out? | ||
3616 | bne.w finex_out # fmove out | ||
3617 | |||
3618 | |||
3619 | # the hardware, for "fabs" and "fneg" w/ a long source format, puts the | ||
3620 | # longword integer directly into the upper longword of the mantissa along | ||
3621 | # w/ an exponent value of 0x401e. we convert this to extended precision here. | ||
3622 | bfextu %d0{&19:&3},%d0 # fetch instr size | ||
3623 | bne.b finex_cont # instr size is not long | ||
3624 | cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? | ||
3625 | bne.b finex_cont # no | ||
3626 | fmov.l &0x0,%fpcr | ||
3627 | fmov.l FP_SRC_HI(%a6),%fp0 # load integer src | ||
3628 | fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision | ||
3629 | mov.w &0xe001,0x2+FP_SRC(%a6) | ||
3630 | |||
3631 | finex_cont: | ||
3632 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
3633 | bsr.l fix_skewed_ops # fix src op | ||
3634 | |||
3635 | # Here, we zero the ccode and exception byte field since we're going to | ||
3636 | # emulate the whole instruction. Notice, though, that we don't kill the | ||
3637 | # INEX1 bit. This is because a packed op has long since been converted | ||
3638 | # to extended before arriving here. Therefore, we need to retain the | ||
3639 | # INEX1 bit from when the operand was first converted. | ||
3640 | andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | ||
3641 | |||
3642 | fmov.l &0x0,%fpcr # zero current control regs | ||
3643 | fmov.l &0x0,%fpsr | ||
3644 | |||
3645 | bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg | ||
3646 | cmpi.b %d1,&0x17 # is op an fmovecr? | ||
3647 | beq.w finex_fmovcr # yes | ||
3648 | |||
3649 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
3650 | bsr.l set_tag_x # tag the operand type | ||
3651 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM | ||
3652 | |||
3653 | # bits four and five of the fp extension word separate the monadic and dyadic | ||
3654 | # operations that can pass through fpsp_inex(). remember that fcmp and ftst | ||
3655 | # will never take this exception, but fsincos will. | ||
3656 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? | ||
3657 | beq.b finex_extract # monadic | ||
3658 | |||
3659 | btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? | ||
3660 | bne.b finex_extract # yes | ||
3661 | |||
3662 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | ||
3663 | bsr.l load_fpn2 # load dst into FP_DST | ||
3664 | |||
3665 | lea FP_DST(%a6),%a0 # pass: ptr to dst op | ||
3666 | bsr.l set_tag_x # tag the operand type | ||
3667 | cmpi.b %d0,&UNNORM # is operand an UNNORM? | ||
3668 | bne.b finex_op2_done # no | ||
3669 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO | ||
3670 | finex_op2_done: | ||
3671 | mov.b %d0,DTAG(%a6) # save dst optype tag | ||
3672 | |||
3673 | finex_extract: | ||
3674 | clr.l %d0 | ||
3675 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode | ||
3676 | |||
3677 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
3678 | andi.w &0x007f,%d1 # extract extension | ||
3679 | |||
3680 | lea FP_SRC(%a6),%a0 | ||
3681 | lea FP_DST(%a6),%a1 | ||
3682 | |||
3683 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | ||
3684 | jsr (tbl_unsupp.l,%pc,%d1.l*1) | ||
3685 | |||
3686 | # the operation has been emulated. the result is in fp0. | ||
3687 | finex_save: | ||
3688 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 | ||
3689 | bsr.l store_fpreg | ||
3690 | |||
3691 | finex_exit: | ||
3692 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
3693 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3694 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3695 | |||
3696 | frestore FP_SRC(%a6) | ||
3697 | |||
3698 | unlk %a6 | ||
3699 | bra.l _real_inex | ||
3700 | |||
3701 | finex_fmovcr: | ||
3702 | clr.l %d0 | ||
3703 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode | ||
3704 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
3705 | andi.l &0x0000007f,%d1 # pass rom offset | ||
3706 | bsr.l smovcr | ||
3707 | bra.b finex_save | ||
3708 | |||
3709 | ######################################################################## | ||
3710 | |||
3711 | # | ||
3712 | # the hardware does not save the default result to memory on enabled | ||
3713 | # inexact exceptions. we do this here before passing control to | ||
3714 | # the user inexact handler. | ||
3715 | # | ||
3716 | # byte, word, and long destination format operations can pass | ||
3717 | # through here. so can double and single precision. | ||
3718 | # although packed opclass three operations can take inexact | ||
3719 | # exceptions, they won't pass through here since they are caught | ||
3720 | # first by the unsupported data format exception handler. that handler | ||
3721 | # sends them directly to _real_inex() if necessary. | ||
3722 | # | ||
3723 | finex_out: | ||
3724 | |||
3725 | mov.b &NORM,STAG(%a6) # src is a NORM | ||
3726 | |||
3727 | clr.l %d0 | ||
3728 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode | ||
3729 | |||
3730 | andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field | ||
3731 | |||
3732 | lea FP_SRC(%a6),%a0 # pass ptr to src operand | ||
3733 | |||
3734 | bsr.l fout # store the default result | ||
3735 | |||
3736 | bra.b finex_exit | ||
3737 | |||
3738 | ######################################################################### | ||
3739 | # XDEF **************************************************************** # | ||
3740 | # _fpsp_dz(): 060FPSP entry point for FP DZ exception. # | ||
3741 | # # | ||
3742 | # This handler should be the first code executed upon taking # | ||
3743 | # the FP DZ exception in an operating system. # | ||
3744 | # # | ||
3745 | # XREF **************************************************************** # | ||
3746 | # _imem_read_long() - read instruction longword from memory # | ||
3747 | # fix_skewed_ops() - adjust fsave operand # | ||
3748 | # _real_dz() - "callout" exit point from FP DZ handler # | ||
3749 | # # | ||
3750 | # INPUT *************************************************************** # | ||
3751 | # - The system stack contains the FP DZ exception stack. # | ||
3752 | # - The fsave frame contains the source operand. # | ||
3753 | # # | ||
3754 | # OUTPUT ************************************************************** # | ||
3755 | # - The system stack contains the FP DZ exception stack. # | ||
3756 | # - The fsave frame contains the adjusted source operand. # | ||
3757 | # # | ||
3758 | # ALGORITHM *********************************************************** # | ||
3759 | # In a system where the DZ exception is enabled, the goal is to # | ||
3760 | # get to the handler specified at _real_dz(). But, on the 060, when the # | ||
3761 | # exception is taken, the input operand in the fsave state frame may # | ||
3762 | # be incorrect for some cases and need to be adjusted. So, this package # | ||
3763 | # adjusts the operand using fix_skewed_ops() and then branches to # | ||
3764 | # _real_dz(). # | ||
3765 | # # | ||
3766 | ######################################################################### | ||
3767 | |||
3768 | global _fpsp_dz | ||
3769 | _fpsp_dz: | ||
3770 | |||
3771 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
3772 | |||
3773 | fsave FP_SRC(%a6) # grab the "busy" frame | ||
3774 | |||
3775 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
3776 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
3777 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack | ||
3778 | |||
3779 | # the FPIAR holds the "current PC" of the faulting instruction | ||
3780 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
3781 | |||
3782 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
3783 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
3784 | bsr.l _imem_read_long # fetch the instruction words | ||
3785 | mov.l %d0,EXC_OPWORD(%a6) | ||
3786 | |||
3787 | ############################################################################## | ||
3788 | |||
3789 | |||
3790 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | ||
3791 | # this would be the case for opclass two operations with a source zero | ||
3792 | # in the sgl or dbl format. | ||
3793 | lea FP_SRC(%a6),%a0 # pass: ptr to src op | ||
3794 | bsr.l fix_skewed_ops # fix src op | ||
3795 | |||
3796 | fdz_exit: | ||
3797 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
3798 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
3799 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3800 | |||
3801 | frestore FP_SRC(%a6) | ||
3802 | |||
3803 | unlk %a6 | ||
3804 | bra.l _real_dz | ||
3805 | |||
3806 | ######################################################################### | ||
3807 | # XDEF **************************************************************** # | ||
3808 | # _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. # | ||
3809 | # # | ||
3810 | # This handler should be the first code executed upon taking the # | ||
3811 | # "Line F Emulator" exception in an operating system. # | ||
3812 | # # | ||
3813 | # XREF **************************************************************** # | ||
3814 | # _fpsp_unimp() - handle "FP Unimplemented" exceptions # | ||
3815 | # _real_fpu_disabled() - handle "FPU disabled" exceptions # | ||
3816 | # _real_fline() - handle "FLINE" exceptions # | ||
3817 | # _imem_read_long() - read instruction longword # | ||
3818 | # # | ||
3819 | # INPUT *************************************************************** # | ||
3820 | # - The system stack contains a "Line F Emulator" exception # | ||
3821 | # stack frame. # | ||
3822 | # # | ||
3823 | # OUTPUT ************************************************************** # | ||
3824 | # - The system stack is unchanged # | ||
3825 | # # | ||
3826 | # ALGORITHM *********************************************************** # | ||
3827 | # When a "Line F Emulator" exception occurs, there are 3 possible # | ||
3828 | # exception types, denoted by the exception stack frame format number: # | ||
3829 | # (1) FPU unimplemented instruction (6 word stack frame) # | ||
3830 | # (2) FPU disabled (8 word stack frame) # | ||
3831 | # (3) Line F (4 word stack frame) # | ||
3832 | # # | ||
3833 | # This module determines which and forks the flow off to the # | ||
3834 | # appropriate "callout" (for "disabled" and "Line F") or to the # | ||
3835 | # correct emulation code (for "FPU unimplemented"). # | ||
3836 | # This code also must check for "fmovecr" instructions w/ a # | ||
3837 | # non-zero <ea> field. These may get flagged as "Line F" but should # | ||
3838 | # really be flagged as "FPU Unimplemented". (This is a "feature" on # | ||
3839 | # the '060. # | ||
3840 | # # | ||
3841 | ######################################################################### | ||
3842 | |||
3843 | global _fpsp_fline | ||
3844 | _fpsp_fline: | ||
3845 | |||
3846 | # check to see if this exception is a "FP Unimplemented Instruction" | ||
3847 | # exception. if so, branch directly to that handler's entry point. | ||
3848 | cmpi.w 0x6(%sp),&0x202c | ||
3849 | beq.l _fpsp_unimp | ||
3850 | |||
3851 | # check to see if the FPU is disabled. if so, jump to the OS entry | ||
3852 | # point for that condition. | ||
3853 | cmpi.w 0x6(%sp),&0x402c | ||
3854 | beq.l _real_fpu_disabled | ||
3855 | |||
3856 | # the exception was an "F-Line Illegal" exception. we check to see | ||
3857 | # if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if | ||
3858 | # so, convert the F-Line exception stack frame to an FP Unimplemented | ||
3859 | # Instruction exception stack frame else branch to the OS entry | ||
3860 | # point for the F-Line exception handler. | ||
3861 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
3862 | |||
3863 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
3864 | |||
3865 | mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) | ||
3866 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
3867 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
3868 | bsr.l _imem_read_long # fetch instruction words | ||
3869 | |||
3870 | bfextu %d0{&0:&10},%d1 # is it an fmovecr? | ||
3871 | cmpi.w %d1,&0x03c8 | ||
3872 | bne.b fline_fline # no | ||
3873 | |||
3874 | bfextu %d0{&16:&6},%d1 # is it an fmovecr? | ||
3875 | cmpi.b %d1,&0x17 | ||
3876 | bne.b fline_fline # no | ||
3877 | |||
3878 | # it's an fmovecr w/ a non-zero <ea> that has entered through | ||
3879 | # the F-Line Illegal exception. | ||
3880 | # so, we need to convert the F-Line exception stack frame into an | ||
3881 | # FP Unimplemented Instruction stack frame and jump to that entry | ||
3882 | # point. | ||
3883 | # | ||
3884 | # but, if the FPU is disabled, then we need to jump to the FPU diabled | ||
3885 | # entry point. | ||
3886 | movc %pcr,%d0 | ||
3887 | btst &0x1,%d0 | ||
3888 | beq.b fline_fmovcr | ||
3889 | |||
3890 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3891 | |||
3892 | unlk %a6 | ||
3893 | |||
3894 | sub.l &0x8,%sp # make room for "Next PC", <ea> | ||
3895 | mov.w 0x8(%sp),(%sp) | ||
3896 | mov.l 0xa(%sp),0x2(%sp) # move "Current PC" | ||
3897 | mov.w &0x402c,0x6(%sp) | ||
3898 | mov.l 0x2(%sp),0xc(%sp) | ||
3899 | addq.l &0x4,0x2(%sp) # set "Next PC" | ||
3900 | |||
3901 | bra.l _real_fpu_disabled | ||
3902 | |||
3903 | fline_fmovcr: | ||
3904 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3905 | |||
3906 | unlk %a6 | ||
3907 | |||
3908 | fmov.l 0x2(%sp),%fpiar # set current PC | ||
3909 | addq.l &0x4,0x2(%sp) # set Next PC | ||
3910 | |||
3911 | mov.l (%sp),-(%sp) | ||
3912 | mov.l 0x8(%sp),0x4(%sp) | ||
3913 | mov.b &0x20,0x6(%sp) | ||
3914 | |||
3915 | bra.l _fpsp_unimp | ||
3916 | |||
3917 | fline_fline: | ||
3918 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
3919 | |||
3920 | unlk %a6 | ||
3921 | |||
3922 | bra.l _real_fline | ||
3923 | |||
3924 | ######################################################################### | ||
3925 | # XDEF **************************************************************** # | ||
3926 | # _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented # | ||
3927 | # Instruction" exception. # | ||
3928 | # # | ||
3929 | # This handler should be the first code executed upon taking the # | ||
3930 | # FP Unimplemented Instruction exception in an operating system. # | ||
3931 | # # | ||
3932 | # XREF **************************************************************** # | ||
3933 | # _imem_read_{word,long}() - read instruction word/longword # | ||
3934 | # load_fop() - load src/dst ops from memory and/or FP regfile # | ||
3935 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # | ||
3936 | # tbl_trans - addr of table of emulation routines for trnscndls # | ||
3937 | # _real_access() - "callout" for access error exception # | ||
3938 | # _fpsp_done() - "callout" for exit; work all done # | ||
3939 | # _real_trace() - "callout" for Trace enabled exception # | ||
3940 | # smovcr() - emulate "fmovecr" instruction # | ||
3941 | # funimp_skew() - adjust fsave src ops to "incorrect" value # | ||
3942 | # _ftrapcc() - emulate an "ftrapcc" instruction # | ||
3943 | # _fdbcc() - emulate an "fdbcc" instruction # | ||
3944 | # _fscc() - emulate an "fscc" instruction # | ||
3945 | # _real_trap() - "callout" for Trap exception # | ||
3946 | # _real_bsun() - "callout" for enabled Bsun exception # | ||
3947 | # # | ||
3948 | # INPUT *************************************************************** # | ||
3949 | # - The system stack contains the "Unimplemented Instr" stk frame # | ||
3950 | # # | ||
3951 | # OUTPUT ************************************************************** # | ||
3952 | # If access error: # | ||
3953 | # - The system stack is changed to an access error stack frame # | ||
3954 | # If Trace exception enabled: # | ||
3955 | # - The system stack is changed to a Trace exception stack frame # | ||
3956 | # Else: (normal case) # | ||
3957 | # - Correct result has been stored as appropriate # | ||
3958 | # # | ||
3959 | # ALGORITHM *********************************************************** # | ||
3960 | # There are two main cases of instructions that may enter here to # | ||
3961 | # be emulated: (1) the FPgen instructions, most of which were also # | ||
3962 | # unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". # | ||
3963 | # For the first set, this handler calls the routine load_fop() # | ||
3964 | # to load the source and destination (for dyadic) operands to be used # | ||
3965 | # for instruction emulation. The correct emulation routine is then # | ||
3966 | # chosen by decoding the instruction type and indexing into an # | ||
3967 | # emulation subroutine index table. After emulation returns, this # | ||
3968 | # handler checks to see if an exception should occur as a result of the # | ||
3969 | # FP instruction emulation. If so, then an FP exception of the correct # | ||
3970 | # type is inserted into the FPU state frame using the "frestore" # | ||
3971 | # instruction before exiting through _fpsp_done(). In either the # | ||
3972 | # exceptional or non-exceptional cases, we must check to see if the # | ||
3973 | # Trace exception is enabled. If so, then we must create a Trace # | ||
3974 | # exception frame from the current exception frame and exit through # | ||
3975 | # _real_trace(). # | ||
3976 | # For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines # | ||
3977 | # _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three # | ||
3978 | # may flag that a BSUN exception should be taken. If so, then the # | ||
3979 | # current exception stack frame is converted into a BSUN exception # | ||
3980 | # stack frame and an exit is made through _real_bsun(). If the # | ||
3981 | # instruction was "ftrapcc" and a Trap exception should result, a Trap # | ||
3982 | # exception stack frame is created from the current frame and an exit # | ||
3983 | # is made through _real_trap(). If a Trace exception is pending, then # | ||
3984 | # a Trace exception frame is created from the current frame and a jump # | ||
3985 | # is made to _real_trace(). Finally, if none of these conditions exist, # | ||
3986 | # then the handler exits though the callout _fpsp_done(). # | ||
3987 | # # | ||
3988 | # In any of the above scenarios, if a _mem_read() or _mem_write() # | ||
3989 | # "callout" returns a failing value, then an access error stack frame # | ||
3990 | # is created from the current stack frame and an exit is made through # | ||
3991 | # _real_access(). # | ||
3992 | # # | ||
3993 | ######################################################################### | ||
3994 | |||
3995 | # | ||
3996 | # FP UNIMPLEMENTED INSTRUCTION STACK FRAME: | ||
3997 | # | ||
3998 | # ***************** | ||
3999 | # * * => <ea> of fp unimp instr. | ||
4000 | # - EA - | ||
4001 | # * * | ||
4002 | # ***************** | ||
4003 | # * 0x2 * 0x02c * => frame format and vector offset(vector #11) | ||
4004 | # ***************** | ||
4005 | # * * | ||
4006 | # - Next PC - => PC of instr to execute after exc handling | ||
4007 | # * * | ||
4008 | # ***************** | ||
4009 | # * SR * => SR at the time the exception was taken | ||
4010 | # ***************** | ||
4011 | # | ||
4012 | # Note: the !NULL bit does not get set in the fsave frame when the | ||
4013 | # machine encounters an fp unimp exception. Therefore, it must be set | ||
4014 | # before leaving this handler. | ||
4015 | # | ||
4016 | global _fpsp_unimp | ||
4017 | _fpsp_unimp: | ||
4018 | |||
4019 | link.w %a6,&-LOCAL_SIZE # init stack frame | ||
4020 | |||
4021 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 | ||
4022 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | ||
4023 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 | ||
4024 | |||
4025 | btst &0x5,EXC_SR(%a6) # user mode exception? | ||
4026 | bne.b funimp_s # no; supervisor mode | ||
4027 | |||
4028 | # save the value of the user stack pointer onto the stack frame | ||
4029 | funimp_u: | ||
4030 | mov.l %usp,%a0 # fetch user stack pointer | ||
4031 | mov.l %a0,EXC_A7(%a6) # store in stack frame | ||
4032 | bra.b funimp_cont | ||
4033 | |||
4034 | # store the value of the supervisor stack pointer BEFORE the exc occurred. | ||
4035 | # old_sp is address just above stacked effective address. | ||
4036 | funimp_s: | ||
4037 | lea 4+EXC_EA(%a6),%a0 # load old a7' | ||
4038 | mov.l %a0,EXC_A7(%a6) # store a7' | ||
4039 | mov.l %a0,OLD_A7(%a6) # make a copy | ||
4040 | |||
4041 | funimp_cont: | ||
4042 | |||
4043 | # the FPIAR holds the "current PC" of the faulting instruction. | ||
4044 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | ||
4045 | |||
4046 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
4047 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
4048 | bsr.l _imem_read_long # fetch the instruction words | ||
4049 | mov.l %d0,EXC_OPWORD(%a6) | ||
4050 | |||
4051 | ############################################################################ | ||
4052 | |||
4053 | fmov.l &0x0,%fpcr # clear FPCR | ||
4054 | fmov.l &0x0,%fpsr # clear FPSR | ||
4055 | |||
4056 | clr.b SPCOND_FLG(%a6) # clear "special case" flag | ||
4057 | |||
4058 | # Divide the fp instructions into 8 types based on the TYPE field in | ||
4059 | # bits 6-8 of the opword(classes 6,7 are undefined). | ||
4060 | # (for the '060, only two types can take this exception) | ||
4061 | # bftst %d0{&7:&3} # test TYPE | ||
4062 | btst &22,%d0 # type 0 or 1 ? | ||
4063 | bne.w funimp_misc # type 1 | ||
4064 | |||
4065 | ######################################### | ||
4066 | # TYPE == 0: General instructions # | ||
4067 | ######################################### | ||
4068 | funimp_gen: | ||
4069 | |||
4070 | clr.b STORE_FLG(%a6) # clear "store result" flag | ||
4071 | |||
4072 | # clear the ccode byte and exception status byte | ||
4073 | andi.l &0x00ff00ff,USER_FPSR(%a6) | ||
4074 | |||
4075 | bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg | ||
4076 | cmpi.b %d1,&0x17 # is op an fmovecr? | ||
4077 | beq.w funimp_fmovcr # yes | ||
4078 | |||
4079 | funimp_gen_op: | ||
4080 | bsr.l _load_fop # load | ||
4081 | |||
4082 | clr.l %d0 | ||
4083 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode | ||
4084 | |||
4085 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
4086 | andi.w &0x003f,%d1 # extract extension bits | ||
4087 | lsl.w &0x3,%d1 # shift right 3 bits | ||
4088 | or.b STAG(%a6),%d1 # insert src optag bits | ||
4089 | |||
4090 | lea FP_DST(%a6),%a1 # pass dst ptr in a1 | ||
4091 | lea FP_SRC(%a6),%a0 # pass src ptr in a0 | ||
4092 | |||
4093 | mov.w (tbl_trans.w,%pc,%d1.w*2),%d1 | ||
4094 | jsr (tbl_trans.w,%pc,%d1.w*1) # emulate | ||
4095 | |||
4096 | funimp_fsave: | ||
4097 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled | ||
4098 | bne.w funimp_ena # some are enabled | ||
4099 | |||
4100 | funimp_store: | ||
4101 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn | ||
4102 | bsr.l store_fpreg # store result to fp regfile | ||
4103 | |||
4104 | funimp_gen_exit: | ||
4105 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4106 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4107 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4108 | |||
4109 | funimp_gen_exit_cmp: | ||
4110 | cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? | ||
4111 | beq.b funimp_gen_exit_a7 # yes | ||
4112 | |||
4113 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? | ||
4114 | beq.b funimp_gen_exit_a7 # yes | ||
4115 | |||
4116 | funimp_gen_exit_cont: | ||
4117 | unlk %a6 | ||
4118 | |||
4119 | funimp_gen_exit_cont2: | ||
4120 | btst &0x7,(%sp) # is trace on? | ||
4121 | beq.l _fpsp_done # no | ||
4122 | |||
4123 | # this catches a problem with the case where an exception will be re-inserted | ||
4124 | # into the machine. the frestore has already been executed...so, the fmov.l | ||
4125 | # alone of the control register would trigger an unwanted exception. | ||
4126 | # until I feel like fixing this, we'll sidestep the exception. | ||
4127 | fsave -(%sp) | ||
4128 | fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR | ||
4129 | frestore (%sp)+ | ||
4130 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24 | ||
4131 | bra.l _real_trace | ||
4132 | |||
4133 | funimp_gen_exit_a7: | ||
4134 | btst &0x5,EXC_SR(%a6) # supervisor or user mode? | ||
4135 | bne.b funimp_gen_exit_a7_s # supervisor | ||
4136 | |||
4137 | mov.l %a0,-(%sp) | ||
4138 | mov.l EXC_A7(%a6),%a0 | ||
4139 | mov.l %a0,%usp | ||
4140 | mov.l (%sp)+,%a0 | ||
4141 | bra.b funimp_gen_exit_cont | ||
4142 | |||
4143 | # if the instruction was executed from supervisor mode and the addressing | ||
4144 | # mode was (a7)+, then the stack frame for the rte must be shifted "up" | ||
4145 | # "n" bytes where "n" is the size of the src operand type. | ||
4146 | # f<op>.{b,w,l,s,d,x,p} | ||
4147 | funimp_gen_exit_a7_s: | ||
4148 | mov.l %d0,-(%sp) # save d0 | ||
4149 | mov.l EXC_A7(%a6),%d0 # load new a7' | ||
4150 | sub.l OLD_A7(%a6),%d0 # subtract old a7' | ||
4151 | mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame | ||
4152 | mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame | ||
4153 | mov.w %d0,EXC_SR(%a6) # store incr number | ||
4154 | mov.l (%sp)+,%d0 # restore d0 | ||
4155 | |||
4156 | unlk %a6 | ||
4157 | |||
4158 | add.w (%sp),%sp # stack frame shifted | ||
4159 | bra.b funimp_gen_exit_cont2 | ||
4160 | |||
4161 | ###################### | ||
4162 | # fmovecr.x #ccc,fpn # | ||
4163 | ###################### | ||
4164 | funimp_fmovcr: | ||
4165 | clr.l %d0 | ||
4166 | mov.b FPCR_MODE(%a6),%d0 | ||
4167 | mov.b 1+EXC_CMDREG(%a6),%d1 | ||
4168 | andi.l &0x0000007f,%d1 # pass rom offset in d1 | ||
4169 | bsr.l smovcr | ||
4170 | bra.w funimp_fsave | ||
4171 | |||
4172 | ######################################################################### | ||
4173 | |||
4174 | # | ||
4175 | # the user has enabled some exceptions. we figure not to see this too | ||
4176 | # often so that's why it gets lower priority. | ||
4177 | # | ||
4178 | funimp_ena: | ||
4179 | |||
4180 | # was an exception set that was also enabled? | ||
4181 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set | ||
4182 | bfffo %d0{&24:&8},%d0 # find highest priority exception | ||
4183 | bne.b funimp_exc # at least one was set | ||
4184 | |||
4185 | # no exception that was enabled was set BUT if we got an exact overflow | ||
4186 | # and overflow wasn't enabled but inexact was (yech!) then this is | ||
4187 | # an inexact exception; otherwise, return to normal non-exception flow. | ||
4188 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | ||
4189 | beq.w funimp_store # no; return to normal flow | ||
4190 | |||
4191 | # the overflow w/ exact result happened but was inexact set in the FPCR? | ||
4192 | funimp_ovfl: | ||
4193 | btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | ||
4194 | beq.w funimp_store # no; return to normal flow | ||
4195 | bra.b funimp_exc_ovfl # yes | ||
4196 | |||
4197 | # some exception happened that was actually enabled. | ||
4198 | # we'll insert this new exception into the FPU and then return. | ||
4199 | funimp_exc: | ||
4200 | subi.l &24,%d0 # fix offset to be 0-8 | ||
4201 | cmpi.b %d0,&0x6 # is exception INEX? | ||
4202 | bne.b funimp_exc_force # no | ||
4203 | |||
4204 | # the enabled exception was inexact. so, if it occurs with an overflow | ||
4205 | # or underflow that was disabled, then we have to force an overflow or | ||
4206 | # underflow frame. the eventual overflow or underflow handler will see that | ||
4207 | # it's actually an inexact and act appropriately. this is the only easy | ||
4208 | # way to have the EXOP available for the enabled inexact handler when | ||
4209 | # a disabled overflow or underflow has also happened. | ||
4210 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | ||
4211 | bne.b funimp_exc_ovfl # yes | ||
4212 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | ||
4213 | bne.b funimp_exc_unfl # yes | ||
4214 | |||
4215 | # force the fsave exception status bits to signal an exception of the | ||
4216 | # appropriate type. don't forget to "skew" the source operand in case we | ||
4217 | # "unskewed" the one the hardware initially gave us. | ||
4218 | funimp_exc_force: | ||
4219 | mov.l %d0,-(%sp) # save d0 | ||
4220 | bsr.l funimp_skew # check for special case | ||
4221 | mov.l (%sp)+,%d0 # restore d0 | ||
4222 | mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | ||
4223 | bra.b funimp_gen_exit2 # exit with frestore | ||
4224 | |||
4225 | tbl_funimp_except: | ||
4226 | short 0xe002, 0xe006, 0xe004, 0xe005 | ||
4227 | short 0xe003, 0xe002, 0xe001, 0xe001 | ||
4228 | |||
4229 | # insert an overflow frame | ||
4230 | funimp_exc_ovfl: | ||
4231 | bsr.l funimp_skew # check for special case | ||
4232 | mov.w &0xe005,2+FP_SRC(%a6) | ||
4233 | bra.b funimp_gen_exit2 | ||
4234 | |||
4235 | # insert an underflow frame | ||
4236 | funimp_exc_unfl: | ||
4237 | bsr.l funimp_skew # check for special case | ||
4238 | mov.w &0xe003,2+FP_SRC(%a6) | ||
4239 | |||
4240 | # this is the general exit point for an enabled exception that will be | ||
4241 | # restored into the machine for the instruction just emulated. | ||
4242 | funimp_gen_exit2: | ||
4243 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4244 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4245 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4246 | |||
4247 | frestore FP_SRC(%a6) # insert exceptional status | ||
4248 | |||
4249 | bra.w funimp_gen_exit_cmp | ||
4250 | |||
4251 | ############################################################################ | ||
4252 | |||
4253 | # | ||
4254 | # TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> | ||
4255 | # | ||
4256 | # These instructions were implemented on the '881/2 and '040 in hardware but | ||
4257 | # are emulated in software on the '060. | ||
4258 | # | ||
4259 | funimp_misc: | ||
4260 | bfextu %d0{&10:&3},%d1 # extract mode field | ||
4261 | cmpi.b %d1,&0x1 # is it an fdb<cc>? | ||
4262 | beq.w funimp_fdbcc # yes | ||
4263 | cmpi.b %d1,&0x7 # is it an fs<cc>? | ||
4264 | bne.w funimp_fscc # yes | ||
4265 | bfextu %d0{&13:&3},%d1 | ||
4266 | cmpi.b %d1,&0x2 # is it an fs<cc>? | ||
4267 | blt.w funimp_fscc # yes | ||
4268 | |||
4269 | ######################### | ||
4270 | # ftrap<cc> # | ||
4271 | # ftrap<cc>.w #<data> # | ||
4272 | # ftrap<cc>.l #<data> # | ||
4273 | ######################### | ||
4274 | funimp_ftrapcc: | ||
4275 | |||
4276 | bsr.l _ftrapcc # FTRAP<cc>() | ||
4277 | |||
4278 | cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | ||
4279 | beq.w funimp_bsun # yes | ||
4280 | |||
4281 | cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? | ||
4282 | bne.w funimp_done # no | ||
4283 | |||
4284 | # FP UNIMP FRAME TRAP FRAME | ||
4285 | # ***************** ***************** | ||
4286 | # ** <EA> ** ** Current PC ** | ||
4287 | # ***************** ***************** | ||
4288 | # * 0x2 * 0x02c * * 0x2 * 0x01c * | ||
4289 | # ***************** ***************** | ||
4290 | # ** Next PC ** ** Next PC ** | ||
4291 | # ***************** ***************** | ||
4292 | # * SR * * SR * | ||
4293 | # ***************** ***************** | ||
4294 | # (6 words) (6 words) | ||
4295 | # | ||
4296 | # the ftrapcc instruction should take a trap. so, here we must create a | ||
4297 | # trap stack frame from an unimplemented fp instruction stack frame and | ||
4298 | # jump to the user supplied entry point for the trap exception | ||
4299 | funimp_ftrapcc_tp: | ||
4300 | mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC | ||
4301 | mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c | ||
4302 | |||
4303 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4304 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4305 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4306 | |||
4307 | unlk %a6 | ||
4308 | bra.l _real_trap | ||
4309 | |||
4310 | ######################### | ||
4311 | # fdb<cc> Dn,<label> # | ||
4312 | ######################### | ||
4313 | funimp_fdbcc: | ||
4314 | |||
4315 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
4316 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
4317 | bsr.l _imem_read_word # read displacement | ||
4318 | |||
4319 | tst.l %d1 # did ifetch fail? | ||
4320 | bne.w funimp_iacc # yes | ||
4321 | |||
4322 | ext.l %d0 # sign extend displacement | ||
4323 | |||
4324 | bsr.l _fdbcc # FDB<cc>() | ||
4325 | |||
4326 | cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | ||
4327 | beq.w funimp_bsun | ||
4328 | |||
4329 | bra.w funimp_done # branch to finish | ||
4330 | |||
4331 | ################# | ||
4332 | # fs<cc>.b <ea> # | ||
4333 | ################# | ||
4334 | funimp_fscc: | ||
4335 | |||
4336 | bsr.l _fscc # FS<cc>() | ||
4337 | |||
4338 | # I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction | ||
4339 | # does not need to update "An" before taking a bsun exception. | ||
4340 | cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | ||
4341 | beq.w funimp_bsun | ||
4342 | |||
4343 | btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception? | ||
4344 | bne.b funimp_fscc_s # no | ||
4345 | |||
4346 | funimp_fscc_u: | ||
4347 | mov.l EXC_A7(%a6),%a0 # yes; set new USP | ||
4348 | mov.l %a0,%usp | ||
4349 | bra.w funimp_done # branch to finish | ||
4350 | |||
4351 | # remember, I'm assuming that post-increment is bogus...(it IS!!!) | ||
4352 | # so, the least significant WORD of the stacked effective address got | ||
4353 | # overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" | ||
4354 | # so that the rte will work correctly without destroying the result. | ||
4355 | # even though the operation size is byte, the stack ptr is decr by 2. | ||
4356 | # | ||
4357 | # remember, also, this instruction may be traced. | ||
4358 | funimp_fscc_s: | ||
4359 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified? | ||
4360 | bne.w funimp_done # no | ||
4361 | |||
4362 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4363 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4364 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4365 | |||
4366 | unlk %a6 | ||
4367 | |||
4368 | btst &0x7,(%sp) # is trace enabled? | ||
4369 | bne.b funimp_fscc_s_trace # yes | ||
4370 | |||
4371 | subq.l &0x2,%sp | ||
4372 | mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" | ||
4373 | mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down" | ||
4374 | bra.l _fpsp_done | ||
4375 | |||
4376 | funimp_fscc_s_trace: | ||
4377 | subq.l &0x2,%sp | ||
4378 | mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" | ||
4379 | mov.w 0x6(%sp),0x4(%sp) # shift lo(PC) | ||
4380 | mov.w &0x2024,0x6(%sp) # fmt/voff = $2024 | ||
4381 | fmov.l %fpiar,0x8(%sp) # insert "current PC" | ||
4382 | |||
4383 | bra.l _real_trace | ||
4384 | |||
4385 | # | ||
4386 | # The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert | ||
4387 | # the fp unimplemented instruction exception stack frame into a bsun stack frame, | ||
4388 | # restore a bsun exception into the machine, and branch to the user | ||
4389 | # supplied bsun hook. | ||
4390 | # | ||
4391 | # FP UNIMP FRAME BSUN FRAME | ||
4392 | # ***************** ***************** | ||
4393 | # ** <EA> ** * 0x0 * 0x0c0 * | ||
4394 | # ***************** ***************** | ||
4395 | # * 0x2 * 0x02c * ** Current PC ** | ||
4396 | # ***************** ***************** | ||
4397 | # ** Next PC ** * SR * | ||
4398 | # ***************** ***************** | ||
4399 | # * SR * (4 words) | ||
4400 | # ***************** | ||
4401 | # (6 words) | ||
4402 | # | ||
4403 | funimp_bsun: | ||
4404 | mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0 | ||
4405 | mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC | ||
4406 | mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" | ||
4407 | |||
4408 | mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled | ||
4409 | |||
4410 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4411 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4412 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4413 | |||
4414 | frestore FP_SRC(%a6) # restore bsun exception | ||
4415 | |||
4416 | unlk %a6 | ||
4417 | |||
4418 | addq.l &0x4,%sp # erase sludge | ||
4419 | |||
4420 | bra.l _real_bsun # branch to user bsun hook | ||
4421 | |||
4422 | # | ||
4423 | # all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame | ||
4424 | # and return. | ||
4425 | # | ||
4426 | # as usual, we have to check for trace mode being on here. since instructions | ||
4427 | # modifying the supervisor stack frame don't pass through here, this is a | ||
4428 | # relatively easy task. | ||
4429 | # | ||
4430 | funimp_done: | ||
4431 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 | ||
4432 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4433 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4434 | |||
4435 | unlk %a6 | ||
4436 | |||
4437 | btst &0x7,(%sp) # is trace enabled? | ||
4438 | bne.b funimp_trace # yes | ||
4439 | |||
4440 | bra.l _fpsp_done | ||
4441 | |||
4442 | # FP UNIMP FRAME TRACE FRAME | ||
4443 | # ***************** ***************** | ||
4444 | # ** <EA> ** ** Current PC ** | ||
4445 | # ***************** ***************** | ||
4446 | # * 0x2 * 0x02c * * 0x2 * 0x024 * | ||
4447 | # ***************** ***************** | ||
4448 | # ** Next PC ** ** Next PC ** | ||
4449 | # ***************** ***************** | ||
4450 | # * SR * * SR * | ||
4451 | # ***************** ***************** | ||
4452 | # (6 words) (6 words) | ||
4453 | # | ||
4454 | # the fscc instruction should take a trace trap. so, here we must create a | ||
4455 | # trace stack frame from an unimplemented fp instruction stack frame and | ||
4456 | # jump to the user supplied entry point for the trace exception | ||
4457 | funimp_trace: | ||
4458 | fmov.l %fpiar,0x8(%sp) # current PC is in fpiar | ||
4459 | mov.b &0x24,0x7(%sp) # vector offset = 0x024 | ||
4460 | |||
4461 | bra.l _real_trace | ||
4462 | |||
4463 | ################################################################ | ||
4464 | |||
4465 | global tbl_trans | ||
4466 | swbeg &0x1c0 | ||
4467 | tbl_trans: | ||
4468 | short tbl_trans - tbl_trans # $00-0 fmovecr all | ||
4469 | short tbl_trans - tbl_trans # $00-1 fmovecr all | ||
4470 | short tbl_trans - tbl_trans # $00-2 fmovecr all | ||
4471 | short tbl_trans - tbl_trans # $00-3 fmovecr all | ||
4472 | short tbl_trans - tbl_trans # $00-4 fmovecr all | ||
4473 | short tbl_trans - tbl_trans # $00-5 fmovecr all | ||
4474 | short tbl_trans - tbl_trans # $00-6 fmovecr all | ||
4475 | short tbl_trans - tbl_trans # $00-7 fmovecr all | ||
4476 | |||
4477 | short tbl_trans - tbl_trans # $01-0 fint norm | ||
4478 | short tbl_trans - tbl_trans # $01-1 fint zero | ||
4479 | short tbl_trans - tbl_trans # $01-2 fint inf | ||
4480 | short tbl_trans - tbl_trans # $01-3 fint qnan | ||
4481 | short tbl_trans - tbl_trans # $01-5 fint denorm | ||
4482 | short tbl_trans - tbl_trans # $01-4 fint snan | ||
4483 | short tbl_trans - tbl_trans # $01-6 fint unnorm | ||
4484 | short tbl_trans - tbl_trans # $01-7 ERROR | ||
4485 | |||
4486 | short ssinh - tbl_trans # $02-0 fsinh norm | ||
4487 | short src_zero - tbl_trans # $02-1 fsinh zero | ||
4488 | short src_inf - tbl_trans # $02-2 fsinh inf | ||
4489 | short src_qnan - tbl_trans # $02-3 fsinh qnan | ||
4490 | short ssinhd - tbl_trans # $02-5 fsinh denorm | ||
4491 | short src_snan - tbl_trans # $02-4 fsinh snan | ||
4492 | short tbl_trans - tbl_trans # $02-6 fsinh unnorm | ||
4493 | short tbl_trans - tbl_trans # $02-7 ERROR | ||
4494 | |||
4495 | short tbl_trans - tbl_trans # $03-0 fintrz norm | ||
4496 | short tbl_trans - tbl_trans # $03-1 fintrz zero | ||
4497 | short tbl_trans - tbl_trans # $03-2 fintrz inf | ||
4498 | short tbl_trans - tbl_trans # $03-3 fintrz qnan | ||
4499 | short tbl_trans - tbl_trans # $03-5 fintrz denorm | ||
4500 | short tbl_trans - tbl_trans # $03-4 fintrz snan | ||
4501 | short tbl_trans - tbl_trans # $03-6 fintrz unnorm | ||
4502 | short tbl_trans - tbl_trans # $03-7 ERROR | ||
4503 | |||
4504 | short tbl_trans - tbl_trans # $04-0 fsqrt norm | ||
4505 | short tbl_trans - tbl_trans # $04-1 fsqrt zero | ||
4506 | short tbl_trans - tbl_trans # $04-2 fsqrt inf | ||
4507 | short tbl_trans - tbl_trans # $04-3 fsqrt qnan | ||
4508 | short tbl_trans - tbl_trans # $04-5 fsqrt denorm | ||
4509 | short tbl_trans - tbl_trans # $04-4 fsqrt snan | ||
4510 | short tbl_trans - tbl_trans # $04-6 fsqrt unnorm | ||
4511 | short tbl_trans - tbl_trans # $04-7 ERROR | ||
4512 | |||
4513 | short tbl_trans - tbl_trans # $05-0 ERROR | ||
4514 | short tbl_trans - tbl_trans # $05-1 ERROR | ||
4515 | short tbl_trans - tbl_trans # $05-2 ERROR | ||
4516 | short tbl_trans - tbl_trans # $05-3 ERROR | ||
4517 | short tbl_trans - tbl_trans # $05-4 ERROR | ||
4518 | short tbl_trans - tbl_trans # $05-5 ERROR | ||
4519 | short tbl_trans - tbl_trans # $05-6 ERROR | ||
4520 | short tbl_trans - tbl_trans # $05-7 ERROR | ||
4521 | |||
4522 | short slognp1 - tbl_trans # $06-0 flognp1 norm | ||
4523 | short src_zero - tbl_trans # $06-1 flognp1 zero | ||
4524 | short sopr_inf - tbl_trans # $06-2 flognp1 inf | ||
4525 | short src_qnan - tbl_trans # $06-3 flognp1 qnan | ||
4526 | short slognp1d - tbl_trans # $06-5 flognp1 denorm | ||
4527 | short src_snan - tbl_trans # $06-4 flognp1 snan | ||
4528 | short tbl_trans - tbl_trans # $06-6 flognp1 unnorm | ||
4529 | short tbl_trans - tbl_trans # $06-7 ERROR | ||
4530 | |||
4531 | short tbl_trans - tbl_trans # $07-0 ERROR | ||
4532 | short tbl_trans - tbl_trans # $07-1 ERROR | ||
4533 | short tbl_trans - tbl_trans # $07-2 ERROR | ||
4534 | short tbl_trans - tbl_trans # $07-3 ERROR | ||
4535 | short tbl_trans - tbl_trans # $07-4 ERROR | ||
4536 | short tbl_trans - tbl_trans # $07-5 ERROR | ||
4537 | short tbl_trans - tbl_trans # $07-6 ERROR | ||
4538 | short tbl_trans - tbl_trans # $07-7 ERROR | ||
4539 | |||
4540 | short setoxm1 - tbl_trans # $08-0 fetoxm1 norm | ||
4541 | short src_zero - tbl_trans # $08-1 fetoxm1 zero | ||
4542 | short setoxm1i - tbl_trans # $08-2 fetoxm1 inf | ||
4543 | short src_qnan - tbl_trans # $08-3 fetoxm1 qnan | ||
4544 | short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm | ||
4545 | short src_snan - tbl_trans # $08-4 fetoxm1 snan | ||
4546 | short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm | ||
4547 | short tbl_trans - tbl_trans # $08-7 ERROR | ||
4548 | |||
4549 | short stanh - tbl_trans # $09-0 ftanh norm | ||
4550 | short src_zero - tbl_trans # $09-1 ftanh zero | ||
4551 | short src_one - tbl_trans # $09-2 ftanh inf | ||
4552 | short src_qnan - tbl_trans # $09-3 ftanh qnan | ||
4553 | short stanhd - tbl_trans # $09-5 ftanh denorm | ||
4554 | short src_snan - tbl_trans # $09-4 ftanh snan | ||
4555 | short tbl_trans - tbl_trans # $09-6 ftanh unnorm | ||
4556 | short tbl_trans - tbl_trans # $09-7 ERROR | ||
4557 | |||
4558 | short satan - tbl_trans # $0a-0 fatan norm | ||
4559 | short src_zero - tbl_trans # $0a-1 fatan zero | ||
4560 | short spi_2 - tbl_trans # $0a-2 fatan inf | ||
4561 | short src_qnan - tbl_trans # $0a-3 fatan qnan | ||
4562 | short satand - tbl_trans # $0a-5 fatan denorm | ||
4563 | short src_snan - tbl_trans # $0a-4 fatan snan | ||
4564 | short tbl_trans - tbl_trans # $0a-6 fatan unnorm | ||
4565 | short tbl_trans - tbl_trans # $0a-7 ERROR | ||
4566 | |||
4567 | short tbl_trans - tbl_trans # $0b-0 ERROR | ||
4568 | short tbl_trans - tbl_trans # $0b-1 ERROR | ||
4569 | short tbl_trans - tbl_trans # $0b-2 ERROR | ||
4570 | short tbl_trans - tbl_trans # $0b-3 ERROR | ||
4571 | short tbl_trans - tbl_trans # $0b-4 ERROR | ||
4572 | short tbl_trans - tbl_trans # $0b-5 ERROR | ||
4573 | short tbl_trans - tbl_trans # $0b-6 ERROR | ||
4574 | short tbl_trans - tbl_trans # $0b-7 ERROR | ||
4575 | |||
4576 | short sasin - tbl_trans # $0c-0 fasin norm | ||
4577 | short src_zero - tbl_trans # $0c-1 fasin zero | ||
4578 | short t_operr - tbl_trans # $0c-2 fasin inf | ||
4579 | short src_qnan - tbl_trans # $0c-3 fasin qnan | ||
4580 | short sasind - tbl_trans # $0c-5 fasin denorm | ||
4581 | short src_snan - tbl_trans # $0c-4 fasin snan | ||
4582 | short tbl_trans - tbl_trans # $0c-6 fasin unnorm | ||
4583 | short tbl_trans - tbl_trans # $0c-7 ERROR | ||
4584 | |||
4585 | short satanh - tbl_trans # $0d-0 fatanh norm | ||
4586 | short src_zero - tbl_trans # $0d-1 fatanh zero | ||
4587 | short t_operr - tbl_trans # $0d-2 fatanh inf | ||
4588 | short src_qnan - tbl_trans # $0d-3 fatanh qnan | ||
4589 | short satanhd - tbl_trans # $0d-5 fatanh denorm | ||
4590 | short src_snan - tbl_trans # $0d-4 fatanh snan | ||
4591 | short tbl_trans - tbl_trans # $0d-6 fatanh unnorm | ||
4592 | short tbl_trans - tbl_trans # $0d-7 ERROR | ||
4593 | |||
4594 | short ssin - tbl_trans # $0e-0 fsin norm | ||
4595 | short src_zero - tbl_trans # $0e-1 fsin zero | ||
4596 | short t_operr - tbl_trans # $0e-2 fsin inf | ||
4597 | short src_qnan - tbl_trans # $0e-3 fsin qnan | ||
4598 | short ssind - tbl_trans # $0e-5 fsin denorm | ||
4599 | short src_snan - tbl_trans # $0e-4 fsin snan | ||
4600 | short tbl_trans - tbl_trans # $0e-6 fsin unnorm | ||
4601 | short tbl_trans - tbl_trans # $0e-7 ERROR | ||
4602 | |||
4603 | short stan - tbl_trans # $0f-0 ftan norm | ||
4604 | short src_zero - tbl_trans # $0f-1 ftan zero | ||
4605 | short t_operr - tbl_trans # $0f-2 ftan inf | ||
4606 | short src_qnan - tbl_trans # $0f-3 ftan qnan | ||
4607 | short stand - tbl_trans # $0f-5 ftan denorm | ||
4608 | short src_snan - tbl_trans # $0f-4 ftan snan | ||
4609 | short tbl_trans - tbl_trans # $0f-6 ftan unnorm | ||
4610 | short tbl_trans - tbl_trans # $0f-7 ERROR | ||
4611 | |||
4612 | short setox - tbl_trans # $10-0 fetox norm | ||
4613 | short ld_pone - tbl_trans # $10-1 fetox zero | ||
4614 | short szr_inf - tbl_trans # $10-2 fetox inf | ||
4615 | short src_qnan - tbl_trans # $10-3 fetox qnan | ||
4616 | short setoxd - tbl_trans # $10-5 fetox denorm | ||
4617 | short src_snan - tbl_trans # $10-4 fetox snan | ||
4618 | short tbl_trans - tbl_trans # $10-6 fetox unnorm | ||
4619 | short tbl_trans - tbl_trans # $10-7 ERROR | ||
4620 | |||
4621 | short stwotox - tbl_trans # $11-0 ftwotox norm | ||
4622 | short ld_pone - tbl_trans # $11-1 ftwotox zero | ||
4623 | short szr_inf - tbl_trans # $11-2 ftwotox inf | ||
4624 | short src_qnan - tbl_trans # $11-3 ftwotox qnan | ||
4625 | short stwotoxd - tbl_trans # $11-5 ftwotox denorm | ||
4626 | short src_snan - tbl_trans # $11-4 ftwotox snan | ||
4627 | short tbl_trans - tbl_trans # $11-6 ftwotox unnorm | ||
4628 | short tbl_trans - tbl_trans # $11-7 ERROR | ||
4629 | |||
4630 | short stentox - tbl_trans # $12-0 ftentox norm | ||
4631 | short ld_pone - tbl_trans # $12-1 ftentox zero | ||
4632 | short szr_inf - tbl_trans # $12-2 ftentox inf | ||
4633 | short src_qnan - tbl_trans # $12-3 ftentox qnan | ||
4634 | short stentoxd - tbl_trans # $12-5 ftentox denorm | ||
4635 | short src_snan - tbl_trans # $12-4 ftentox snan | ||
4636 | short tbl_trans - tbl_trans # $12-6 ftentox unnorm | ||
4637 | short tbl_trans - tbl_trans # $12-7 ERROR | ||
4638 | |||
4639 | short tbl_trans - tbl_trans # $13-0 ERROR | ||
4640 | short tbl_trans - tbl_trans # $13-1 ERROR | ||
4641 | short tbl_trans - tbl_trans # $13-2 ERROR | ||
4642 | short tbl_trans - tbl_trans # $13-3 ERROR | ||
4643 | short tbl_trans - tbl_trans # $13-4 ERROR | ||
4644 | short tbl_trans - tbl_trans # $13-5 ERROR | ||
4645 | short tbl_trans - tbl_trans # $13-6 ERROR | ||
4646 | short tbl_trans - tbl_trans # $13-7 ERROR | ||
4647 | |||
4648 | short slogn - tbl_trans # $14-0 flogn norm | ||
4649 | short t_dz2 - tbl_trans # $14-1 flogn zero | ||
4650 | short sopr_inf - tbl_trans # $14-2 flogn inf | ||
4651 | short src_qnan - tbl_trans # $14-3 flogn qnan | ||
4652 | short slognd - tbl_trans # $14-5 flogn denorm | ||
4653 | short src_snan - tbl_trans # $14-4 flogn snan | ||
4654 | short tbl_trans - tbl_trans # $14-6 flogn unnorm | ||
4655 | short tbl_trans - tbl_trans # $14-7 ERROR | ||
4656 | |||
4657 | short slog10 - tbl_trans # $15-0 flog10 norm | ||
4658 | short t_dz2 - tbl_trans # $15-1 flog10 zero | ||
4659 | short sopr_inf - tbl_trans # $15-2 flog10 inf | ||
4660 | short src_qnan - tbl_trans # $15-3 flog10 qnan | ||
4661 | short slog10d - tbl_trans # $15-5 flog10 denorm | ||
4662 | short src_snan - tbl_trans # $15-4 flog10 snan | ||
4663 | short tbl_trans - tbl_trans # $15-6 flog10 unnorm | ||
4664 | short tbl_trans - tbl_trans # $15-7 ERROR | ||
4665 | |||
4666 | short slog2 - tbl_trans # $16-0 flog2 norm | ||
4667 | short t_dz2 - tbl_trans # $16-1 flog2 zero | ||
4668 | short sopr_inf - tbl_trans # $16-2 flog2 inf | ||
4669 | short src_qnan - tbl_trans # $16-3 flog2 qnan | ||
4670 | short slog2d - tbl_trans # $16-5 flog2 denorm | ||
4671 | short src_snan - tbl_trans # $16-4 flog2 snan | ||
4672 | short tbl_trans - tbl_trans # $16-6 flog2 unnorm | ||
4673 | short tbl_trans - tbl_trans # $16-7 ERROR | ||
4674 | |||
4675 | short tbl_trans - tbl_trans # $17-0 ERROR | ||
4676 | short tbl_trans - tbl_trans # $17-1 ERROR | ||
4677 | short tbl_trans - tbl_trans # $17-2 ERROR | ||
4678 | short tbl_trans - tbl_trans # $17-3 ERROR | ||
4679 | short tbl_trans - tbl_trans # $17-4 ERROR | ||
4680 | short tbl_trans - tbl_trans # $17-5 ERROR | ||
4681 | short tbl_trans - tbl_trans # $17-6 ERROR | ||
4682 | short tbl_trans - tbl_trans # $17-7 ERROR | ||
4683 | |||
4684 | short tbl_trans - tbl_trans # $18-0 fabs norm | ||
4685 | short tbl_trans - tbl_trans # $18-1 fabs zero | ||
4686 | short tbl_trans - tbl_trans # $18-2 fabs inf | ||
4687 | short tbl_trans - tbl_trans # $18-3 fabs qnan | ||
4688 | short tbl_trans - tbl_trans # $18-5 fabs denorm | ||
4689 | short tbl_trans - tbl_trans # $18-4 fabs snan | ||
4690 | short tbl_trans - tbl_trans # $18-6 fabs unnorm | ||
4691 | short tbl_trans - tbl_trans # $18-7 ERROR | ||
4692 | |||
4693 | short scosh - tbl_trans # $19-0 fcosh norm | ||
4694 | short ld_pone - tbl_trans # $19-1 fcosh zero | ||
4695 | short ld_pinf - tbl_trans # $19-2 fcosh inf | ||
4696 | short src_qnan - tbl_trans # $19-3 fcosh qnan | ||
4697 | short scoshd - tbl_trans # $19-5 fcosh denorm | ||
4698 | short src_snan - tbl_trans # $19-4 fcosh snan | ||
4699 | short tbl_trans - tbl_trans # $19-6 fcosh unnorm | ||
4700 | short tbl_trans - tbl_trans # $19-7 ERROR | ||
4701 | |||
4702 | short tbl_trans - tbl_trans # $1a-0 fneg norm | ||
4703 | short tbl_trans - tbl_trans # $1a-1 fneg zero | ||
4704 | short tbl_trans - tbl_trans # $1a-2 fneg inf | ||
4705 | short tbl_trans - tbl_trans # $1a-3 fneg qnan | ||
4706 | short tbl_trans - tbl_trans # $1a-5 fneg denorm | ||
4707 | short tbl_trans - tbl_trans # $1a-4 fneg snan | ||
4708 | short tbl_trans - tbl_trans # $1a-6 fneg unnorm | ||
4709 | short tbl_trans - tbl_trans # $1a-7 ERROR | ||
4710 | |||
4711 | short tbl_trans - tbl_trans # $1b-0 ERROR | ||
4712 | short tbl_trans - tbl_trans # $1b-1 ERROR | ||
4713 | short tbl_trans - tbl_trans # $1b-2 ERROR | ||
4714 | short tbl_trans - tbl_trans # $1b-3 ERROR | ||
4715 | short tbl_trans - tbl_trans # $1b-4 ERROR | ||
4716 | short tbl_trans - tbl_trans # $1b-5 ERROR | ||
4717 | short tbl_trans - tbl_trans # $1b-6 ERROR | ||
4718 | short tbl_trans - tbl_trans # $1b-7 ERROR | ||
4719 | |||
4720 | short sacos - tbl_trans # $1c-0 facos norm | ||
4721 | short ld_ppi2 - tbl_trans # $1c-1 facos zero | ||
4722 | short t_operr - tbl_trans # $1c-2 facos inf | ||
4723 | short src_qnan - tbl_trans # $1c-3 facos qnan | ||
4724 | short sacosd - tbl_trans # $1c-5 facos denorm | ||
4725 | short src_snan - tbl_trans # $1c-4 facos snan | ||
4726 | short tbl_trans - tbl_trans # $1c-6 facos unnorm | ||
4727 | short tbl_trans - tbl_trans # $1c-7 ERROR | ||
4728 | |||
4729 | short scos - tbl_trans # $1d-0 fcos norm | ||
4730 | short ld_pone - tbl_trans # $1d-1 fcos zero | ||
4731 | short t_operr - tbl_trans # $1d-2 fcos inf | ||
4732 | short src_qnan - tbl_trans # $1d-3 fcos qnan | ||
4733 | short scosd - tbl_trans # $1d-5 fcos denorm | ||
4734 | short src_snan - tbl_trans # $1d-4 fcos snan | ||
4735 | short tbl_trans - tbl_trans # $1d-6 fcos unnorm | ||
4736 | short tbl_trans - tbl_trans # $1d-7 ERROR | ||
4737 | |||
4738 | short sgetexp - tbl_trans # $1e-0 fgetexp norm | ||
4739 | short src_zero - tbl_trans # $1e-1 fgetexp zero | ||
4740 | short t_operr - tbl_trans # $1e-2 fgetexp inf | ||
4741 | short src_qnan - tbl_trans # $1e-3 fgetexp qnan | ||
4742 | short sgetexpd - tbl_trans # $1e-5 fgetexp denorm | ||
4743 | short src_snan - tbl_trans # $1e-4 fgetexp snan | ||
4744 | short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm | ||
4745 | short tbl_trans - tbl_trans # $1e-7 ERROR | ||
4746 | |||
4747 | short sgetman - tbl_trans # $1f-0 fgetman norm | ||
4748 | short src_zero - tbl_trans # $1f-1 fgetman zero | ||
4749 | short t_operr - tbl_trans # $1f-2 fgetman inf | ||
4750 | short src_qnan - tbl_trans # $1f-3 fgetman qnan | ||
4751 | short sgetmand - tbl_trans # $1f-5 fgetman denorm | ||
4752 | short src_snan - tbl_trans # $1f-4 fgetman snan | ||
4753 | short tbl_trans - tbl_trans # $1f-6 fgetman unnorm | ||
4754 | short tbl_trans - tbl_trans # $1f-7 ERROR | ||
4755 | |||
4756 | short tbl_trans - tbl_trans # $20-0 fdiv norm | ||
4757 | short tbl_trans - tbl_trans # $20-1 fdiv zero | ||
4758 | short tbl_trans - tbl_trans # $20-2 fdiv inf | ||
4759 | short tbl_trans - tbl_trans # $20-3 fdiv qnan | ||
4760 | short tbl_trans - tbl_trans # $20-5 fdiv denorm | ||
4761 | short tbl_trans - tbl_trans # $20-4 fdiv snan | ||
4762 | short tbl_trans - tbl_trans # $20-6 fdiv unnorm | ||
4763 | short tbl_trans - tbl_trans # $20-7 ERROR | ||
4764 | |||
4765 | short smod_snorm - tbl_trans # $21-0 fmod norm | ||
4766 | short smod_szero - tbl_trans # $21-1 fmod zero | ||
4767 | short smod_sinf - tbl_trans # $21-2 fmod inf | ||
4768 | short sop_sqnan - tbl_trans # $21-3 fmod qnan | ||
4769 | short smod_sdnrm - tbl_trans # $21-5 fmod denorm | ||
4770 | short sop_ssnan - tbl_trans # $21-4 fmod snan | ||
4771 | short tbl_trans - tbl_trans # $21-6 fmod unnorm | ||
4772 | short tbl_trans - tbl_trans # $21-7 ERROR | ||
4773 | |||
4774 | short tbl_trans - tbl_trans # $22-0 fadd norm | ||
4775 | short tbl_trans - tbl_trans # $22-1 fadd zero | ||
4776 | short tbl_trans - tbl_trans # $22-2 fadd inf | ||
4777 | short tbl_trans - tbl_trans # $22-3 fadd qnan | ||
4778 | short tbl_trans - tbl_trans # $22-5 fadd denorm | ||
4779 | short tbl_trans - tbl_trans # $22-4 fadd snan | ||
4780 | short tbl_trans - tbl_trans # $22-6 fadd unnorm | ||
4781 | short tbl_trans - tbl_trans # $22-7 ERROR | ||
4782 | |||
4783 | short tbl_trans - tbl_trans # $23-0 fmul norm | ||
4784 | short tbl_trans - tbl_trans # $23-1 fmul zero | ||
4785 | short tbl_trans - tbl_trans # $23-2 fmul inf | ||
4786 | short tbl_trans - tbl_trans # $23-3 fmul qnan | ||
4787 | short tbl_trans - tbl_trans # $23-5 fmul denorm | ||
4788 | short tbl_trans - tbl_trans # $23-4 fmul snan | ||
4789 | short tbl_trans - tbl_trans # $23-6 fmul unnorm | ||
4790 | short tbl_trans - tbl_trans # $23-7 ERROR | ||
4791 | |||
4792 | short tbl_trans - tbl_trans # $24-0 fsgldiv norm | ||
4793 | short tbl_trans - tbl_trans # $24-1 fsgldiv zero | ||
4794 | short tbl_trans - tbl_trans # $24-2 fsgldiv inf | ||
4795 | short tbl_trans - tbl_trans # $24-3 fsgldiv qnan | ||
4796 | short tbl_trans - tbl_trans # $24-5 fsgldiv denorm | ||
4797 | short tbl_trans - tbl_trans # $24-4 fsgldiv snan | ||
4798 | short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm | ||
4799 | short tbl_trans - tbl_trans # $24-7 ERROR | ||
4800 | |||
4801 | short srem_snorm - tbl_trans # $25-0 frem norm | ||
4802 | short srem_szero - tbl_trans # $25-1 frem zero | ||
4803 | short srem_sinf - tbl_trans # $25-2 frem inf | ||
4804 | short sop_sqnan - tbl_trans # $25-3 frem qnan | ||
4805 | short srem_sdnrm - tbl_trans # $25-5 frem denorm | ||
4806 | short sop_ssnan - tbl_trans # $25-4 frem snan | ||
4807 | short tbl_trans - tbl_trans # $25-6 frem unnorm | ||
4808 | short tbl_trans - tbl_trans # $25-7 ERROR | ||
4809 | |||
4810 | short sscale_snorm - tbl_trans # $26-0 fscale norm | ||
4811 | short sscale_szero - tbl_trans # $26-1 fscale zero | ||
4812 | short sscale_sinf - tbl_trans # $26-2 fscale inf | ||
4813 | short sop_sqnan - tbl_trans # $26-3 fscale qnan | ||
4814 | short sscale_sdnrm - tbl_trans # $26-5 fscale denorm | ||
4815 | short sop_ssnan - tbl_trans # $26-4 fscale snan | ||
4816 | short tbl_trans - tbl_trans # $26-6 fscale unnorm | ||
4817 | short tbl_trans - tbl_trans # $26-7 ERROR | ||
4818 | |||
4819 | short tbl_trans - tbl_trans # $27-0 fsglmul norm | ||
4820 | short tbl_trans - tbl_trans # $27-1 fsglmul zero | ||
4821 | short tbl_trans - tbl_trans # $27-2 fsglmul inf | ||
4822 | short tbl_trans - tbl_trans # $27-3 fsglmul qnan | ||
4823 | short tbl_trans - tbl_trans # $27-5 fsglmul denorm | ||
4824 | short tbl_trans - tbl_trans # $27-4 fsglmul snan | ||
4825 | short tbl_trans - tbl_trans # $27-6 fsglmul unnorm | ||
4826 | short tbl_trans - tbl_trans # $27-7 ERROR | ||
4827 | |||
4828 | short tbl_trans - tbl_trans # $28-0 fsub norm | ||
4829 | short tbl_trans - tbl_trans # $28-1 fsub zero | ||
4830 | short tbl_trans - tbl_trans # $28-2 fsub inf | ||
4831 | short tbl_trans - tbl_trans # $28-3 fsub qnan | ||
4832 | short tbl_trans - tbl_trans # $28-5 fsub denorm | ||
4833 | short tbl_trans - tbl_trans # $28-4 fsub snan | ||
4834 | short tbl_trans - tbl_trans # $28-6 fsub unnorm | ||
4835 | short tbl_trans - tbl_trans # $28-7 ERROR | ||
4836 | |||
4837 | short tbl_trans - tbl_trans # $29-0 ERROR | ||
4838 | short tbl_trans - tbl_trans # $29-1 ERROR | ||
4839 | short tbl_trans - tbl_trans # $29-2 ERROR | ||
4840 | short tbl_trans - tbl_trans # $29-3 ERROR | ||
4841 | short tbl_trans - tbl_trans # $29-4 ERROR | ||
4842 | short tbl_trans - tbl_trans # $29-5 ERROR | ||
4843 | short tbl_trans - tbl_trans # $29-6 ERROR | ||
4844 | short tbl_trans - tbl_trans # $29-7 ERROR | ||
4845 | |||
4846 | short tbl_trans - tbl_trans # $2a-0 ERROR | ||
4847 | short tbl_trans - tbl_trans # $2a-1 ERROR | ||
4848 | short tbl_trans - tbl_trans # $2a-2 ERROR | ||
4849 | short tbl_trans - tbl_trans # $2a-3 ERROR | ||
4850 | short tbl_trans - tbl_trans # $2a-4 ERROR | ||
4851 | short tbl_trans - tbl_trans # $2a-5 ERROR | ||
4852 | short tbl_trans - tbl_trans # $2a-6 ERROR | ||
4853 | short tbl_trans - tbl_trans # $2a-7 ERROR | ||
4854 | |||
4855 | short tbl_trans - tbl_trans # $2b-0 ERROR | ||
4856 | short tbl_trans - tbl_trans # $2b-1 ERROR | ||
4857 | short tbl_trans - tbl_trans # $2b-2 ERROR | ||
4858 | short tbl_trans - tbl_trans # $2b-3 ERROR | ||
4859 | short tbl_trans - tbl_trans # $2b-4 ERROR | ||
4860 | short tbl_trans - tbl_trans # $2b-5 ERROR | ||
4861 | short tbl_trans - tbl_trans # $2b-6 ERROR | ||
4862 | short tbl_trans - tbl_trans # $2b-7 ERROR | ||
4863 | |||
4864 | short tbl_trans - tbl_trans # $2c-0 ERROR | ||
4865 | short tbl_trans - tbl_trans # $2c-1 ERROR | ||
4866 | short tbl_trans - tbl_trans # $2c-2 ERROR | ||
4867 | short tbl_trans - tbl_trans # $2c-3 ERROR | ||
4868 | short tbl_trans - tbl_trans # $2c-4 ERROR | ||
4869 | short tbl_trans - tbl_trans # $2c-5 ERROR | ||
4870 | short tbl_trans - tbl_trans # $2c-6 ERROR | ||
4871 | short tbl_trans - tbl_trans # $2c-7 ERROR | ||
4872 | |||
4873 | short tbl_trans - tbl_trans # $2d-0 ERROR | ||
4874 | short tbl_trans - tbl_trans # $2d-1 ERROR | ||
4875 | short tbl_trans - tbl_trans # $2d-2 ERROR | ||
4876 | short tbl_trans - tbl_trans # $2d-3 ERROR | ||
4877 | short tbl_trans - tbl_trans # $2d-4 ERROR | ||
4878 | short tbl_trans - tbl_trans # $2d-5 ERROR | ||
4879 | short tbl_trans - tbl_trans # $2d-6 ERROR | ||
4880 | short tbl_trans - tbl_trans # $2d-7 ERROR | ||
4881 | |||
4882 | short tbl_trans - tbl_trans # $2e-0 ERROR | ||
4883 | short tbl_trans - tbl_trans # $2e-1 ERROR | ||
4884 | short tbl_trans - tbl_trans # $2e-2 ERROR | ||
4885 | short tbl_trans - tbl_trans # $2e-3 ERROR | ||
4886 | short tbl_trans - tbl_trans # $2e-4 ERROR | ||
4887 | short tbl_trans - tbl_trans # $2e-5 ERROR | ||
4888 | short tbl_trans - tbl_trans # $2e-6 ERROR | ||
4889 | short tbl_trans - tbl_trans # $2e-7 ERROR | ||
4890 | |||
4891 | short tbl_trans - tbl_trans # $2f-0 ERROR | ||
4892 | short tbl_trans - tbl_trans # $2f-1 ERROR | ||
4893 | short tbl_trans - tbl_trans # $2f-2 ERROR | ||
4894 | short tbl_trans - tbl_trans # $2f-3 ERROR | ||
4895 | short tbl_trans - tbl_trans # $2f-4 ERROR | ||
4896 | short tbl_trans - tbl_trans # $2f-5 ERROR | ||
4897 | short tbl_trans - tbl_trans # $2f-6 ERROR | ||
4898 | short tbl_trans - tbl_trans # $2f-7 ERROR | ||
4899 | |||
4900 | short ssincos - tbl_trans # $30-0 fsincos norm | ||
4901 | short ssincosz - tbl_trans # $30-1 fsincos zero | ||
4902 | short ssincosi - tbl_trans # $30-2 fsincos inf | ||
4903 | short ssincosqnan - tbl_trans # $30-3 fsincos qnan | ||
4904 | short ssincosd - tbl_trans # $30-5 fsincos denorm | ||
4905 | short ssincossnan - tbl_trans # $30-4 fsincos snan | ||
4906 | short tbl_trans - tbl_trans # $30-6 fsincos unnorm | ||
4907 | short tbl_trans - tbl_trans # $30-7 ERROR | ||
4908 | |||
4909 | short ssincos - tbl_trans # $31-0 fsincos norm | ||
4910 | short ssincosz - tbl_trans # $31-1 fsincos zero | ||
4911 | short ssincosi - tbl_trans # $31-2 fsincos inf | ||
4912 | short ssincosqnan - tbl_trans # $31-3 fsincos qnan | ||
4913 | short ssincosd - tbl_trans # $31-5 fsincos denorm | ||
4914 | short ssincossnan - tbl_trans # $31-4 fsincos snan | ||
4915 | short tbl_trans - tbl_trans # $31-6 fsincos unnorm | ||
4916 | short tbl_trans - tbl_trans # $31-7 ERROR | ||
4917 | |||
4918 | short ssincos - tbl_trans # $32-0 fsincos norm | ||
4919 | short ssincosz - tbl_trans # $32-1 fsincos zero | ||
4920 | short ssincosi - tbl_trans # $32-2 fsincos inf | ||
4921 | short ssincosqnan - tbl_trans # $32-3 fsincos qnan | ||
4922 | short ssincosd - tbl_trans # $32-5 fsincos denorm | ||
4923 | short ssincossnan - tbl_trans # $32-4 fsincos snan | ||
4924 | short tbl_trans - tbl_trans # $32-6 fsincos unnorm | ||
4925 | short tbl_trans - tbl_trans # $32-7 ERROR | ||
4926 | |||
4927 | short ssincos - tbl_trans # $33-0 fsincos norm | ||
4928 | short ssincosz - tbl_trans # $33-1 fsincos zero | ||
4929 | short ssincosi - tbl_trans # $33-2 fsincos inf | ||
4930 | short ssincosqnan - tbl_trans # $33-3 fsincos qnan | ||
4931 | short ssincosd - tbl_trans # $33-5 fsincos denorm | ||
4932 | short ssincossnan - tbl_trans # $33-4 fsincos snan | ||
4933 | short tbl_trans - tbl_trans # $33-6 fsincos unnorm | ||
4934 | short tbl_trans - tbl_trans # $33-7 ERROR | ||
4935 | |||
4936 | short ssincos - tbl_trans # $34-0 fsincos norm | ||
4937 | short ssincosz - tbl_trans # $34-1 fsincos zero | ||
4938 | short ssincosi - tbl_trans # $34-2 fsincos inf | ||
4939 | short ssincosqnan - tbl_trans # $34-3 fsincos qnan | ||
4940 | short ssincosd - tbl_trans # $34-5 fsincos denorm | ||
4941 | short ssincossnan - tbl_trans # $34-4 fsincos snan | ||
4942 | short tbl_trans - tbl_trans # $34-6 fsincos unnorm | ||
4943 | short tbl_trans - tbl_trans # $34-7 ERROR | ||
4944 | |||
4945 | short ssincos - tbl_trans # $35-0 fsincos norm | ||
4946 | short ssincosz - tbl_trans # $35-1 fsincos zero | ||
4947 | short ssincosi - tbl_trans # $35-2 fsincos inf | ||
4948 | short ssincosqnan - tbl_trans # $35-3 fsincos qnan | ||
4949 | short ssincosd - tbl_trans # $35-5 fsincos denorm | ||
4950 | short ssincossnan - tbl_trans # $35-4 fsincos snan | ||
4951 | short tbl_trans - tbl_trans # $35-6 fsincos unnorm | ||
4952 | short tbl_trans - tbl_trans # $35-7 ERROR | ||
4953 | |||
4954 | short ssincos - tbl_trans # $36-0 fsincos norm | ||
4955 | short ssincosz - tbl_trans # $36-1 fsincos zero | ||
4956 | short ssincosi - tbl_trans # $36-2 fsincos inf | ||
4957 | short ssincosqnan - tbl_trans # $36-3 fsincos qnan | ||
4958 | short ssincosd - tbl_trans # $36-5 fsincos denorm | ||
4959 | short ssincossnan - tbl_trans # $36-4 fsincos snan | ||
4960 | short tbl_trans - tbl_trans # $36-6 fsincos unnorm | ||
4961 | short tbl_trans - tbl_trans # $36-7 ERROR | ||
4962 | |||
4963 | short ssincos - tbl_trans # $37-0 fsincos norm | ||
4964 | short ssincosz - tbl_trans # $37-1 fsincos zero | ||
4965 | short ssincosi - tbl_trans # $37-2 fsincos inf | ||
4966 | short ssincosqnan - tbl_trans # $37-3 fsincos qnan | ||
4967 | short ssincosd - tbl_trans # $37-5 fsincos denorm | ||
4968 | short ssincossnan - tbl_trans # $37-4 fsincos snan | ||
4969 | short tbl_trans - tbl_trans # $37-6 fsincos unnorm | ||
4970 | short tbl_trans - tbl_trans # $37-7 ERROR | ||
4971 | |||
4972 | ########## | ||
4973 | |||
4974 | # the instruction fetch access for the displacement word for the | ||
4975 | # fdbcc emulation failed. here, we create an access error frame | ||
4976 | # from the current frame and branch to _real_access(). | ||
4977 | funimp_iacc: | ||
4978 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
4979 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
4980 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
4981 | |||
4982 | mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | ||
4983 | |||
4984 | unlk %a6 | ||
4985 | |||
4986 | mov.l (%sp),-(%sp) # store SR,hi(PC) | ||
4987 | mov.w 0x8(%sp),0x4(%sp) # store lo(PC) | ||
4988 | mov.w &0x4008,0x6(%sp) # store voff | ||
4989 | mov.l 0x2(%sp),0x8(%sp) # store EA | ||
4990 | mov.l &0x09428001,0xc(%sp) # store FSLW | ||
4991 | |||
4992 | btst &0x5,(%sp) # user or supervisor mode? | ||
4993 | beq.b funimp_iacc_end # user | ||
4994 | bset &0x2,0xd(%sp) # set supervisor TM bit | ||
4995 | |||
4996 | funimp_iacc_end: | ||
4997 | bra.l _real_access | ||
4998 | |||
4999 | ######################################################################### | ||
5000 | # ssin(): computes the sine of a normalized input # | ||
5001 | # ssind(): computes the sine of a denormalized input # | ||
5002 | # scos(): computes the cosine of a normalized input # | ||
5003 | # scosd(): computes the cosine of a denormalized input # | ||
5004 | # ssincos(): computes the sine and cosine of a normalized input # | ||
5005 | # ssincosd(): computes the sine and cosine of a denormalized input # | ||
5006 | # # | ||
5007 | # INPUT *************************************************************** # | ||
5008 | # a0 = pointer to extended precision input # | ||
5009 | # d0 = round precision,mode # | ||
5010 | # # | ||
5011 | # OUTPUT ************************************************************** # | ||
5012 | # fp0 = sin(X) or cos(X) # | ||
5013 | # # | ||
5014 | # For ssincos(X): # | ||
5015 | # fp0 = sin(X) # | ||
5016 | # fp1 = cos(X) # | ||
5017 | # # | ||
5018 | # ACCURACY and MONOTONICITY ******************************************* # | ||
5019 | # The returned result is within 1 ulp in 64 significant bit, i.e. # | ||
5020 | # within 0.5001 ulp to 53 bits if the result is subsequently # | ||
5021 | # rounded to double precision. The result is provably monotonic # | ||
5022 | # in double precision. # | ||
5023 | # # | ||
5024 | # ALGORITHM *********************************************************** # | ||
5025 | # # | ||
5026 | # SIN and COS: # | ||
5027 | # 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # | ||
5028 | # # | ||
5029 | # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # | ||
5030 | # # | ||
5031 | # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # | ||
5032 | # k = N mod 4, so in particular, k = 0,1,2,or 3. # | ||
5033 | # Overwrite k by k := k + AdjN. # | ||
5034 | # # | ||
5035 | # 4. If k is even, go to 6. # | ||
5036 | # # | ||
5037 | # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # | ||
5038 | # Return sgn*cos(r) where cos(r) is approximated by an # | ||
5039 | # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # | ||
5040 | # s = r*r. # | ||
5041 | # Exit. # | ||
5042 | # # | ||
5043 | # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # | ||
5044 | # where sin(r) is approximated by an odd polynomial in r # | ||
5045 | # r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # | ||
5046 | # Exit. # | ||
5047 | # # | ||
5048 | # 7. If |X| > 1, go to 9. # | ||
5049 | # # | ||
5050 | # 8. (|X|<2**(-40)) If SIN is invoked, return X; # | ||
5051 | # otherwise return 1. # | ||
5052 | # # | ||
5053 | # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # | ||
5054 | # go back to 3. # | ||
5055 | # # | ||
5056 | # SINCOS: # | ||
5057 | # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # | ||
5058 | # # | ||
5059 | # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # | ||
5060 | # k = N mod 4, so in particular, k = 0,1,2,or 3. # | ||
5061 | # # | ||
5062 | # 3. If k is even, go to 5. # | ||
5063 | # # | ||
5064 | # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # | ||
5065 | # j1 exclusive or with the l.s.b. of k. # | ||
5066 | # sgn1 := (-1)**j1, sgn2 := (-1)**j2. # | ||
5067 | # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # | ||
5068 | # sin(r) and cos(r) are computed as odd and even # | ||
5069 | # polynomials in r, respectively. Exit # | ||
5070 | # # | ||
5071 | # 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # | ||
5072 | # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # | ||
5073 | # sin(r) and cos(r) are computed as odd and even # | ||
5074 | # polynomials in r, respectively. Exit # | ||
5075 | # # | ||
5076 | # 6. If |X| > 1, go to 8. # | ||
5077 | # # | ||
5078 | # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # | ||
5079 | # # | ||
5080 | # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # | ||
5081 | # go back to 2. # | ||
5082 | # # | ||
5083 | ######################################################################### | ||
5084 | |||
5085 | SINA7: long 0xBD6AAA77,0xCCC994F5 | ||
5086 | SINA6: long 0x3DE61209,0x7AAE8DA1 | ||
5087 | SINA5: long 0xBE5AE645,0x2A118AE4 | ||
5088 | SINA4: long 0x3EC71DE3,0xA5341531 | ||
5089 | SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 | ||
5090 | SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 | ||
5091 | SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 | ||
5092 | |||
5093 | COSB8: long 0x3D2AC4D0,0xD6011EE3 | ||
5094 | COSB7: long 0xBDA9396F,0x9F45AC19 | ||
5095 | COSB6: long 0x3E21EED9,0x0612C972 | ||
5096 | COSB5: long 0xBE927E4F,0xB79D9FCF | ||
5097 | COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 | ||
5098 | COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 | ||
5099 | COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E | ||
5100 | COSB1: long 0xBF000000 | ||
5101 | |||
5102 | set INARG,FP_SCR0 | ||
5103 | |||
5104 | set X,FP_SCR0 | ||
5105 | # set XDCARE,X+2 | ||
5106 | set XFRAC,X+4 | ||
5107 | |||
5108 | set RPRIME,FP_SCR0 | ||
5109 | set SPRIME,FP_SCR1 | ||
5110 | |||
5111 | set POSNEG1,L_SCR1 | ||
5112 | set TWOTO63,L_SCR1 | ||
5113 | |||
5114 | set ENDFLAG,L_SCR2 | ||
5115 | set INT,L_SCR2 | ||
5116 | |||
5117 | set ADJN,L_SCR3 | ||
5118 | |||
5119 | ############################################ | ||
5120 | global ssin | ||
5121 | ssin: | ||
5122 | mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 | ||
5123 | bra.b SINBGN | ||
5124 | |||
5125 | ############################################ | ||
5126 | global scos | ||
5127 | scos: | ||
5128 | mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 | ||
5129 | |||
5130 | ############################################ | ||
5131 | SINBGN: | ||
5132 | #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE | ||
5133 | |||
5134 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
5135 | fmov.x %fp0,X(%a6) # save input at X | ||
5136 | |||
5137 | # "COMPACTIFY" X | ||
5138 | mov.l (%a0),%d1 # put exp in hi word | ||
5139 | mov.w 4(%a0),%d1 # fetch hi(man) | ||
5140 | and.l &0x7FFFFFFF,%d1 # strip sign | ||
5141 | |||
5142 | cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? | ||
5143 | bge.b SOK1 # no | ||
5144 | bra.w SINSM # yes; input is very small | ||
5145 | |||
5146 | SOK1: | ||
5147 | cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? | ||
5148 | blt.b SINMAIN # no | ||
5149 | bra.w SREDUCEX # yes; input is very large | ||
5150 | |||
5151 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | ||
5152 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | ||
5153 | SINMAIN: | ||
5154 | fmov.x %fp0,%fp1 | ||
5155 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI | ||
5156 | |||
5157 | lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 | ||
5158 | |||
5159 | fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER | ||
5160 | |||
5161 | mov.l INT(%a6),%d1 # make a copy of N | ||
5162 | asl.l &4,%d1 # N *= 16 | ||
5163 | add.l %d1,%a1 # tbl_addr = a1 + (N*16) | ||
5164 | |||
5165 | # A1 IS THE ADDRESS OF N*PIBY2 | ||
5166 | # ...WHICH IS IN TWO PIECES Y1 & Y2 | ||
5167 | fsub.x (%a1)+,%fp0 # X-Y1 | ||
5168 | fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 | ||
5169 | |||
5170 | SINCONT: | ||
5171 | #--continuation from REDUCEX | ||
5172 | |||
5173 | #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED | ||
5174 | mov.l INT(%a6),%d1 | ||
5175 | add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN | ||
5176 | ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE | ||
5177 | cmp.l %d1,&0 | ||
5178 | blt.w COSPOLY | ||
5179 | |||
5180 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | ||
5181 | #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY | ||
5182 | #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE | ||
5183 | #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS | ||
5184 | #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) | ||
5185 | #--WHERE T=S*S. | ||
5186 | #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION | ||
5187 | #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. | ||
5188 | SINPOLY: | ||
5189 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
5190 | |||
5191 | fmov.x %fp0,X(%a6) # X IS R | ||
5192 | fmul.x %fp0,%fp0 # FP0 IS S | ||
5193 | |||
5194 | fmov.d SINA7(%pc),%fp3 | ||
5195 | fmov.d SINA6(%pc),%fp2 | ||
5196 | |||
5197 | fmov.x %fp0,%fp1 | ||
5198 | fmul.x %fp1,%fp1 # FP1 IS T | ||
5199 | |||
5200 | ror.l &1,%d1 | ||
5201 | and.l &0x80000000,%d1 | ||
5202 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | ||
5203 | eor.l %d1,X(%a6) # X IS NOW R'= SGN*R | ||
5204 | |||
5205 | fmul.x %fp1,%fp3 # TA7 | ||
5206 | fmul.x %fp1,%fp2 # TA6 | ||
5207 | |||
5208 | fadd.d SINA5(%pc),%fp3 # A5+TA7 | ||
5209 | fadd.d SINA4(%pc),%fp2 # A4+TA6 | ||
5210 | |||
5211 | fmul.x %fp1,%fp3 # T(A5+TA7) | ||
5212 | fmul.x %fp1,%fp2 # T(A4+TA6) | ||
5213 | |||
5214 | fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) | ||
5215 | fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) | ||
5216 | |||
5217 | fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) | ||
5218 | |||
5219 | fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) | ||
5220 | fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) | ||
5221 | fmul.x X(%a6),%fp0 # R'*S | ||
5222 | |||
5223 | fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] | ||
5224 | |||
5225 | fmul.x %fp1,%fp0 # SIN(R')-R' | ||
5226 | |||
5227 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 | ||
5228 | |||
5229 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5230 | fadd.x X(%a6),%fp0 # last inst - possible exception set | ||
5231 | bra t_inx2 | ||
5232 | |||
5233 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | ||
5234 | #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY | ||
5235 | #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE | ||
5236 | #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS | ||
5237 | #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) | ||
5238 | #--WHERE T=S*S. | ||
5239 | #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION | ||
5240 | #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 | ||
5241 | #--AND IS THEREFORE STORED AS SINGLE PRECISION. | ||
5242 | COSPOLY: | ||
5243 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
5244 | |||
5245 | fmul.x %fp0,%fp0 # FP0 IS S | ||
5246 | |||
5247 | fmov.d COSB8(%pc),%fp2 | ||
5248 | fmov.d COSB7(%pc),%fp3 | ||
5249 | |||
5250 | fmov.x %fp0,%fp1 | ||
5251 | fmul.x %fp1,%fp1 # FP1 IS T | ||
5252 | |||
5253 | fmov.x %fp0,X(%a6) # X IS S | ||
5254 | ror.l &1,%d1 | ||
5255 | and.l &0x80000000,%d1 | ||
5256 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | ||
5257 | |||
5258 | fmul.x %fp1,%fp2 # TB8 | ||
5259 | |||
5260 | eor.l %d1,X(%a6) # X IS NOW S'= SGN*S | ||
5261 | and.l &0x80000000,%d1 | ||
5262 | |||
5263 | fmul.x %fp1,%fp3 # TB7 | ||
5264 | |||
5265 | or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE | ||
5266 | mov.l %d1,POSNEG1(%a6) | ||
5267 | |||
5268 | fadd.d COSB6(%pc),%fp2 # B6+TB8 | ||
5269 | fadd.d COSB5(%pc),%fp3 # B5+TB7 | ||
5270 | |||
5271 | fmul.x %fp1,%fp2 # T(B6+TB8) | ||
5272 | fmul.x %fp1,%fp3 # T(B5+TB7) | ||
5273 | |||
5274 | fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) | ||
5275 | fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) | ||
5276 | |||
5277 | fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) | ||
5278 | fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) | ||
5279 | |||
5280 | fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) | ||
5281 | fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) | ||
5282 | |||
5283 | fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) | ||
5284 | |||
5285 | fadd.x %fp1,%fp0 | ||
5286 | |||
5287 | fmul.x X(%a6),%fp0 | ||
5288 | |||
5289 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 | ||
5290 | |||
5291 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5292 | fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set | ||
5293 | bra t_inx2 | ||
5294 | |||
5295 | ############################################## | ||
5296 | |||
5297 | # SINe: Big OR Small? | ||
5298 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | ||
5299 | #--IF |X| < 2**(-40), RETURN X OR 1. | ||
5300 | SINBORS: | ||
5301 | cmp.l %d1,&0x3FFF8000 | ||
5302 | bgt.l SREDUCEX | ||
5303 | |||
5304 | SINSM: | ||
5305 | mov.l ADJN(%a6),%d1 | ||
5306 | cmp.l %d1,&0 | ||
5307 | bgt.b COSTINY | ||
5308 | |||
5309 | # here, the operation may underflow iff the precision is sgl or dbl. | ||
5310 | # extended denorms are handled through another entry point. | ||
5311 | SINTINY: | ||
5312 | # mov.w &0x0000,XDCARE(%a6) # JUST IN CASE | ||
5313 | |||
5314 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5315 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
5316 | fmov.x X(%a6),%fp0 # last inst - possible exception set | ||
5317 | bra t_catch | ||
5318 | |||
5319 | COSTINY: | ||
5320 | fmov.s &0x3F800000,%fp0 # fp0 = 1.0 | ||
5321 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5322 | fadd.s &0x80800000,%fp0 # last inst - possible exception set | ||
5323 | bra t_pinx2 | ||
5324 | |||
5325 | ################################################ | ||
5326 | global ssind | ||
5327 | #--SIN(X) = X FOR DENORMALIZED X | ||
5328 | ssind: | ||
5329 | bra t_extdnrm | ||
5330 | |||
5331 | ############################################ | ||
5332 | global scosd | ||
5333 | #--COS(X) = 1 FOR DENORMALIZED X | ||
5334 | scosd: | ||
5335 | fmov.s &0x3F800000,%fp0 # fp0 = 1.0 | ||
5336 | bra t_pinx2 | ||
5337 | |||
5338 | ################################################## | ||
5339 | |||
5340 | global ssincos | ||
5341 | ssincos: | ||
5342 | #--SET ADJN TO 4 | ||
5343 | mov.l &4,ADJN(%a6) | ||
5344 | |||
5345 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
5346 | fmov.x %fp0,X(%a6) | ||
5347 | |||
5348 | mov.l (%a0),%d1 | ||
5349 | mov.w 4(%a0),%d1 | ||
5350 | and.l &0x7FFFFFFF,%d1 # COMPACTIFY X | ||
5351 | |||
5352 | cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? | ||
5353 | bge.b SCOK1 | ||
5354 | bra.w SCSM | ||
5355 | |||
5356 | SCOK1: | ||
5357 | cmp.l %d1,&0x4004BC7E # |X| < 15 PI? | ||
5358 | blt.b SCMAIN | ||
5359 | bra.w SREDUCEX | ||
5360 | |||
5361 | |||
5362 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | ||
5363 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | ||
5364 | SCMAIN: | ||
5365 | fmov.x %fp0,%fp1 | ||
5366 | |||
5367 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI | ||
5368 | |||
5369 | lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 | ||
5370 | |||
5371 | fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER | ||
5372 | |||
5373 | mov.l INT(%a6),%d1 | ||
5374 | asl.l &4,%d1 | ||
5375 | add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 | ||
5376 | |||
5377 | fsub.x (%a1)+,%fp0 # X-Y1 | ||
5378 | fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 | ||
5379 | |||
5380 | SCCONT: | ||
5381 | #--continuation point from REDUCEX | ||
5382 | |||
5383 | mov.l INT(%a6),%d1 | ||
5384 | ror.l &1,%d1 | ||
5385 | cmp.l %d1,&0 # D0 < 0 IFF N IS ODD | ||
5386 | bge.w NEVEN | ||
5387 | |||
5388 | SNODD: | ||
5389 | #--REGISTERS SAVED SO FAR: D0, A0, FP2. | ||
5390 | fmovm.x &0x04,-(%sp) # save fp2 | ||
5391 | |||
5392 | fmov.x %fp0,RPRIME(%a6) | ||
5393 | fmul.x %fp0,%fp0 # FP0 IS S = R*R | ||
5394 | fmov.d SINA7(%pc),%fp1 # A7 | ||
5395 | fmov.d COSB8(%pc),%fp2 # B8 | ||
5396 | fmul.x %fp0,%fp1 # SA7 | ||
5397 | fmul.x %fp0,%fp2 # SB8 | ||
5398 | |||
5399 | mov.l %d2,-(%sp) | ||
5400 | mov.l %d1,%d2 | ||
5401 | ror.l &1,%d2 | ||
5402 | and.l &0x80000000,%d2 | ||
5403 | eor.l %d1,%d2 | ||
5404 | and.l &0x80000000,%d2 | ||
5405 | |||
5406 | fadd.d SINA6(%pc),%fp1 # A6+SA7 | ||
5407 | fadd.d COSB7(%pc),%fp2 # B7+SB8 | ||
5408 | |||
5409 | fmul.x %fp0,%fp1 # S(A6+SA7) | ||
5410 | eor.l %d2,RPRIME(%a6) | ||
5411 | mov.l (%sp)+,%d2 | ||
5412 | fmul.x %fp0,%fp2 # S(B7+SB8) | ||
5413 | ror.l &1,%d1 | ||
5414 | and.l &0x80000000,%d1 | ||
5415 | mov.l &0x3F800000,POSNEG1(%a6) | ||
5416 | eor.l %d1,POSNEG1(%a6) | ||
5417 | |||
5418 | fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) | ||
5419 | fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) | ||
5420 | |||
5421 | fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) | ||
5422 | fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) | ||
5423 | fmov.x %fp0,SPRIME(%a6) | ||
5424 | |||
5425 | fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) | ||
5426 | eor.l %d1,SPRIME(%a6) | ||
5427 | fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) | ||
5428 | |||
5429 | fmul.x %fp0,%fp1 # S(A4+...) | ||
5430 | fmul.x %fp0,%fp2 # S(B5+...) | ||
5431 | |||
5432 | fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) | ||
5433 | fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) | ||
5434 | |||
5435 | fmul.x %fp0,%fp1 # S(A3+...) | ||
5436 | fmul.x %fp0,%fp2 # S(B4+...) | ||
5437 | |||
5438 | fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) | ||
5439 | fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) | ||
5440 | |||
5441 | fmul.x %fp0,%fp1 # S(A2+...) | ||
5442 | fmul.x %fp0,%fp2 # S(B3+...) | ||
5443 | |||
5444 | fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) | ||
5445 | fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) | ||
5446 | |||
5447 | fmul.x %fp0,%fp1 # S(A1+...) | ||
5448 | fmul.x %fp2,%fp0 # S(B2+...) | ||
5449 | |||
5450 | fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) | ||
5451 | fadd.s COSB1(%pc),%fp0 # B1+S(B2...) | ||
5452 | fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) | ||
5453 | |||
5454 | fmovm.x (%sp)+,&0x20 # restore fp2 | ||
5455 | |||
5456 | fmov.l %d0,%fpcr | ||
5457 | fadd.x RPRIME(%a6),%fp1 # COS(X) | ||
5458 | bsr sto_cos # store cosine result | ||
5459 | fadd.s POSNEG1(%a6),%fp0 # SIN(X) | ||
5460 | bra t_inx2 | ||
5461 | |||
5462 | NEVEN: | ||
5463 | #--REGISTERS SAVED SO FAR: FP2. | ||
5464 | fmovm.x &0x04,-(%sp) # save fp2 | ||
5465 | |||
5466 | fmov.x %fp0,RPRIME(%a6) | ||
5467 | fmul.x %fp0,%fp0 # FP0 IS S = R*R | ||
5468 | |||
5469 | fmov.d COSB8(%pc),%fp1 # B8 | ||
5470 | fmov.d SINA7(%pc),%fp2 # A7 | ||
5471 | |||
5472 | fmul.x %fp0,%fp1 # SB8 | ||
5473 | fmov.x %fp0,SPRIME(%a6) | ||
5474 | fmul.x %fp0,%fp2 # SA7 | ||
5475 | |||
5476 | ror.l &1,%d1 | ||
5477 | and.l &0x80000000,%d1 | ||
5478 | |||
5479 | fadd.d COSB7(%pc),%fp1 # B7+SB8 | ||
5480 | fadd.d SINA6(%pc),%fp2 # A6+SA7 | ||
5481 | |||
5482 | eor.l %d1,RPRIME(%a6) | ||
5483 | eor.l %d1,SPRIME(%a6) | ||
5484 | |||
5485 | fmul.x %fp0,%fp1 # S(B7+SB8) | ||
5486 | |||
5487 | or.l &0x3F800000,%d1 | ||
5488 | mov.l %d1,POSNEG1(%a6) | ||
5489 | |||
5490 | fmul.x %fp0,%fp2 # S(A6+SA7) | ||
5491 | |||
5492 | fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) | ||
5493 | fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) | ||
5494 | |||
5495 | fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) | ||
5496 | fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) | ||
5497 | |||
5498 | fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) | ||
5499 | fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) | ||
5500 | |||
5501 | fmul.x %fp0,%fp1 # S(B5+...) | ||
5502 | fmul.x %fp0,%fp2 # S(A4+...) | ||
5503 | |||
5504 | fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) | ||
5505 | fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) | ||
5506 | |||
5507 | fmul.x %fp0,%fp1 # S(B4+...) | ||
5508 | fmul.x %fp0,%fp2 # S(A3+...) | ||
5509 | |||
5510 | fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) | ||
5511 | fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) | ||
5512 | |||
5513 | fmul.x %fp0,%fp1 # S(B3+...) | ||
5514 | fmul.x %fp0,%fp2 # S(A2+...) | ||
5515 | |||
5516 | fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) | ||
5517 | fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) | ||
5518 | |||
5519 | fmul.x %fp0,%fp1 # S(B2+...) | ||
5520 | fmul.x %fp2,%fp0 # s(a1+...) | ||
5521 | |||
5522 | |||
5523 | fadd.s COSB1(%pc),%fp1 # B1+S(B2...) | ||
5524 | fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) | ||
5525 | fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) | ||
5526 | |||
5527 | fmovm.x (%sp)+,&0x20 # restore fp2 | ||
5528 | |||
5529 | fmov.l %d0,%fpcr | ||
5530 | fadd.s POSNEG1(%a6),%fp1 # COS(X) | ||
5531 | bsr sto_cos # store cosine result | ||
5532 | fadd.x RPRIME(%a6),%fp0 # SIN(X) | ||
5533 | bra t_inx2 | ||
5534 | |||
5535 | ################################################ | ||
5536 | |||
5537 | SCBORS: | ||
5538 | cmp.l %d1,&0x3FFF8000 | ||
5539 | bgt.w SREDUCEX | ||
5540 | |||
5541 | ################################################ | ||
5542 | |||
5543 | SCSM: | ||
5544 | # mov.w &0x0000,XDCARE(%a6) | ||
5545 | fmov.s &0x3F800000,%fp1 | ||
5546 | |||
5547 | fmov.l %d0,%fpcr | ||
5548 | fsub.s &0x00800000,%fp1 | ||
5549 | bsr sto_cos # store cosine result | ||
5550 | fmov.l %fpcr,%d0 # d0 must have fpcr,too | ||
5551 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
5552 | fmov.x X(%a6),%fp0 | ||
5553 | bra t_catch | ||
5554 | |||
5555 | ############################################## | ||
5556 | |||
5557 | global ssincosd | ||
5558 | #--SIN AND COS OF X FOR DENORMALIZED X | ||
5559 | ssincosd: | ||
5560 | mov.l %d0,-(%sp) # save d0 | ||
5561 | fmov.s &0x3F800000,%fp1 | ||
5562 | bsr sto_cos # store cosine result | ||
5563 | mov.l (%sp)+,%d0 # restore d0 | ||
5564 | bra t_extdnrm | ||
5565 | |||
5566 | ############################################ | ||
5567 | |||
5568 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | ||
5569 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | ||
5570 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | ||
5571 | SREDUCEX: | ||
5572 | fmovm.x &0x3c,-(%sp) # save {fp2-fp5} | ||
5573 | mov.l %d2,-(%sp) # save d2 | ||
5574 | fmov.s &0x00000000,%fp1 # fp1 = 0 | ||
5575 | |||
5576 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | ||
5577 | #--there is a danger of unwanted overflow in first LOOP iteration. In this | ||
5578 | #--case, reduce argument by one remainder step to make subsequent reduction | ||
5579 | #--safe. | ||
5580 | cmp.l %d1,&0x7ffeffff # is arg dangerously large? | ||
5581 | bne.b SLOOP # no | ||
5582 | |||
5583 | # yes; create 2**16383*PI/2 | ||
5584 | mov.w &0x7ffe,FP_SCR0_EX(%a6) | ||
5585 | mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) | ||
5586 | clr.l FP_SCR0_LO(%a6) | ||
5587 | |||
5588 | # create low half of 2**16383*PI/2 at FP_SCR1 | ||
5589 | mov.w &0x7fdc,FP_SCR1_EX(%a6) | ||
5590 | mov.l &0x85a308d3,FP_SCR1_HI(%a6) | ||
5591 | clr.l FP_SCR1_LO(%a6) | ||
5592 | |||
5593 | ftest.x %fp0 # test sign of argument | ||
5594 | fblt.w sred_neg | ||
5595 | |||
5596 | or.b &0x80,FP_SCR0_EX(%a6) # positive arg | ||
5597 | or.b &0x80,FP_SCR1_EX(%a6) | ||
5598 | sred_neg: | ||
5599 | fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact | ||
5600 | fmov.x %fp0,%fp1 # save high result in fp1 | ||
5601 | fadd.x FP_SCR1(%a6),%fp0 # low part of reduction | ||
5602 | fsub.x %fp0,%fp1 # determine low component of result | ||
5603 | fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. | ||
5604 | |||
5605 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | ||
5606 | #--integer quotient will be stored in N | ||
5607 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | ||
5608 | SLOOP: | ||
5609 | fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 | ||
5610 | mov.w INARG(%a6),%d1 | ||
5611 | mov.l %d1,%a1 # save a copy of D0 | ||
5612 | and.l &0x00007FFF,%d1 | ||
5613 | sub.l &0x00003FFF,%d1 # d0 = K | ||
5614 | cmp.l %d1,&28 | ||
5615 | ble.b SLASTLOOP | ||
5616 | SCONTLOOP: | ||
5617 | sub.l &27,%d1 # d0 = L := K-27 | ||
5618 | mov.b &0,ENDFLAG(%a6) | ||
5619 | bra.b SWORK | ||
5620 | SLASTLOOP: | ||
5621 | clr.l %d1 # d0 = L := 0 | ||
5622 | mov.b &1,ENDFLAG(%a6) | ||
5623 | |||
5624 | SWORK: | ||
5625 | #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN | ||
5626 | #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. | ||
5627 | |||
5628 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | ||
5629 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | ||
5630 | |||
5631 | mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI | ||
5632 | sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) | ||
5633 | |||
5634 | mov.l &0xA2F9836E,FP_SCR0_HI(%a6) | ||
5635 | mov.l &0x4E44152A,FP_SCR0_LO(%a6) | ||
5636 | mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) | ||
5637 | |||
5638 | fmov.x %fp0,%fp2 | ||
5639 | fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) | ||
5640 | |||
5641 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | ||
5642 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N | ||
5643 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | ||
5644 | #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE | ||
5645 | #--US THE DESIRED VALUE IN FLOATING POINT. | ||
5646 | mov.l %a1,%d2 | ||
5647 | swap %d2 | ||
5648 | and.l &0x80000000,%d2 | ||
5649 | or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL | ||
5650 | mov.l %d2,TWOTO63(%a6) | ||
5651 | fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED | ||
5652 | fsub.s TWOTO63(%a6),%fp2 # fp2 = N | ||
5653 | # fint.x %fp2 | ||
5654 | |||
5655 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | ||
5656 | mov.l %d1,%d2 # d2 = L | ||
5657 | |||
5658 | add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) | ||
5659 | mov.w %d2,FP_SCR0_EX(%a6) | ||
5660 | mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) | ||
5661 | clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 | ||
5662 | |||
5663 | add.l &0x00003FDD,%d1 | ||
5664 | mov.w %d1,FP_SCR1_EX(%a6) | ||
5665 | mov.l &0x85A308D3,FP_SCR1_HI(%a6) | ||
5666 | clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 | ||
5667 | |||
5668 | mov.b ENDFLAG(%a6),%d1 | ||
5669 | |||
5670 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | ||
5671 | #--P2 = 2**(L) * Piby2_2 | ||
5672 | fmov.x %fp2,%fp4 # fp4 = N | ||
5673 | fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 | ||
5674 | fmov.x %fp2,%fp5 # fp5 = N | ||
5675 | fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 | ||
5676 | fmov.x %fp4,%fp3 # fp3 = W = N*P1 | ||
5677 | |||
5678 | #--we want P+p = W+w but |p| <= half ulp of P | ||
5679 | #--Then, we need to compute A := R-P and a := r-p | ||
5680 | fadd.x %fp5,%fp3 # fp3 = P | ||
5681 | fsub.x %fp3,%fp4 # fp4 = W-P | ||
5682 | |||
5683 | fsub.x %fp3,%fp0 # fp0 = A := R - P | ||
5684 | fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w | ||
5685 | |||
5686 | fmov.x %fp0,%fp3 # fp3 = A | ||
5687 | fsub.x %fp4,%fp1 # fp1 = a := r - p | ||
5688 | |||
5689 | #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but | ||
5690 | #--|r| <= half ulp of R. | ||
5691 | fadd.x %fp1,%fp0 # fp0 = R := A+a | ||
5692 | #--No need to calculate r if this is the last loop | ||
5693 | cmp.b %d1,&0 | ||
5694 | bgt.w SRESTORE | ||
5695 | |||
5696 | #--Need to calculate r | ||
5697 | fsub.x %fp0,%fp3 # fp3 = A-R | ||
5698 | fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a | ||
5699 | bra.w SLOOP | ||
5700 | |||
5701 | SRESTORE: | ||
5702 | fmov.l %fp2,INT(%a6) | ||
5703 | mov.l (%sp)+,%d2 # restore d2 | ||
5704 | fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} | ||
5705 | |||
5706 | mov.l ADJN(%a6),%d1 | ||
5707 | cmp.l %d1,&4 | ||
5708 | |||
5709 | blt.w SINCONT | ||
5710 | bra.w SCCONT | ||
5711 | |||
5712 | ######################################################################### | ||
5713 | # stan(): computes the tangent of a normalized input # | ||
5714 | # stand(): computes the tangent of a denormalized input # | ||
5715 | # # | ||
5716 | # INPUT *************************************************************** # | ||
5717 | # a0 = pointer to extended precision input # | ||
5718 | # d0 = round precision,mode # | ||
5719 | # # | ||
5720 | # OUTPUT ************************************************************** # | ||
5721 | # fp0 = tan(X) # | ||
5722 | # # | ||
5723 | # ACCURACY and MONOTONICITY ******************************************* # | ||
5724 | # The returned result is within 3 ulp in 64 significant bit, i.e. # | ||
5725 | # within 0.5001 ulp to 53 bits if the result is subsequently # | ||
5726 | # rounded to double precision. The result is provably monotonic # | ||
5727 | # in double precision. # | ||
5728 | # # | ||
5729 | # ALGORITHM *********************************************************** # | ||
5730 | # # | ||
5731 | # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # | ||
5732 | # # | ||
5733 | # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # | ||
5734 | # k = N mod 2, so in particular, k = 0 or 1. # | ||
5735 | # # | ||
5736 | # 3. If k is odd, go to 5. # | ||
5737 | # # | ||
5738 | # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # | ||
5739 | # rational function U/V where # | ||
5740 | # U = r + r*s*(P1 + s*(P2 + s*P3)), and # | ||
5741 | # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # | ||
5742 | # Exit. # | ||
5743 | # # | ||
5744 | # 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # | ||
5745 | # a rational function U/V where # | ||
5746 | # U = r + r*s*(P1 + s*(P2 + s*P3)), and # | ||
5747 | # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # | ||
5748 | # -Cot(r) = -V/U. Exit. # | ||
5749 | # # | ||
5750 | # 6. If |X| > 1, go to 8. # | ||
5751 | # # | ||
5752 | # 7. (|X|<2**(-40)) Tan(X) = X. Exit. # | ||
5753 | # # | ||
5754 | # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # | ||
5755 | # to 2. # | ||
5756 | # # | ||
5757 | ######################################################################### | ||
5758 | |||
5759 | TANQ4: | ||
5760 | long 0x3EA0B759,0xF50F8688 | ||
5761 | TANP3: | ||
5762 | long 0xBEF2BAA5,0xA8924F04 | ||
5763 | |||
5764 | TANQ3: | ||
5765 | long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 | ||
5766 | |||
5767 | TANP2: | ||
5768 | long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 | ||
5769 | |||
5770 | TANQ2: | ||
5771 | long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 | ||
5772 | |||
5773 | TANP1: | ||
5774 | long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 | ||
5775 | |||
5776 | TANQ1: | ||
5777 | long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 | ||
5778 | |||
5779 | INVTWOPI: | ||
5780 | long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 | ||
5781 | |||
5782 | TWOPI1: | ||
5783 | long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 | ||
5784 | TWOPI2: | ||
5785 | long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 | ||
5786 | |||
5787 | #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING | ||
5788 | #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT | ||
5789 | #--MOST 69 BITS LONG. | ||
5790 | # global PITBL | ||
5791 | PITBL: | ||
5792 | long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 | ||
5793 | long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 | ||
5794 | long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 | ||
5795 | long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 | ||
5796 | long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 | ||
5797 | long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 | ||
5798 | long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 | ||
5799 | long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 | ||
5800 | long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 | ||
5801 | long 0xC0040000,0x90836524,0x88034B96,0x20B00000 | ||
5802 | long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 | ||
5803 | long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 | ||
5804 | long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 | ||
5805 | long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 | ||
5806 | long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 | ||
5807 | long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 | ||
5808 | long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 | ||
5809 | long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 | ||
5810 | long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 | ||
5811 | long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 | ||
5812 | long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 | ||
5813 | long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 | ||
5814 | long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 | ||
5815 | long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 | ||
5816 | long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 | ||
5817 | long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 | ||
5818 | long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 | ||
5819 | long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 | ||
5820 | long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 | ||
5821 | long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 | ||
5822 | long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 | ||
5823 | long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 | ||
5824 | long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
5825 | long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 | ||
5826 | long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 | ||
5827 | long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 | ||
5828 | long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 | ||
5829 | long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 | ||
5830 | long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 | ||
5831 | long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 | ||
5832 | long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 | ||
5833 | long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 | ||
5834 | long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 | ||
5835 | long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 | ||
5836 | long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 | ||
5837 | long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 | ||
5838 | long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 | ||
5839 | long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 | ||
5840 | long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 | ||
5841 | long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 | ||
5842 | long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 | ||
5843 | long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 | ||
5844 | long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 | ||
5845 | long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 | ||
5846 | long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 | ||
5847 | long 0x40040000,0x90836524,0x88034B96,0xA0B00000 | ||
5848 | long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 | ||
5849 | long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 | ||
5850 | long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 | ||
5851 | long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 | ||
5852 | long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 | ||
5853 | long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 | ||
5854 | long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 | ||
5855 | long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 | ||
5856 | long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 | ||
5857 | |||
5858 | set INARG,FP_SCR0 | ||
5859 | |||
5860 | set TWOTO63,L_SCR1 | ||
5861 | set INT,L_SCR1 | ||
5862 | set ENDFLAG,L_SCR2 | ||
5863 | |||
5864 | global stan | ||
5865 | stan: | ||
5866 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
5867 | |||
5868 | mov.l (%a0),%d1 | ||
5869 | mov.w 4(%a0),%d1 | ||
5870 | and.l &0x7FFFFFFF,%d1 | ||
5871 | |||
5872 | cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? | ||
5873 | bge.b TANOK1 | ||
5874 | bra.w TANSM | ||
5875 | TANOK1: | ||
5876 | cmp.l %d1,&0x4004BC7E # |X| < 15 PI? | ||
5877 | blt.b TANMAIN | ||
5878 | bra.w REDUCEX | ||
5879 | |||
5880 | TANMAIN: | ||
5881 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | ||
5882 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | ||
5883 | fmov.x %fp0,%fp1 | ||
5884 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI | ||
5885 | |||
5886 | lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 | ||
5887 | |||
5888 | fmov.l %fp1,%d1 # CONVERT TO INTEGER | ||
5889 | |||
5890 | asl.l &4,%d1 | ||
5891 | add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 | ||
5892 | |||
5893 | fsub.x (%a1)+,%fp0 # X-Y1 | ||
5894 | |||
5895 | fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 | ||
5896 | |||
5897 | ror.l &5,%d1 | ||
5898 | and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 | ||
5899 | |||
5900 | TANCONT: | ||
5901 | fmovm.x &0x0c,-(%sp) # save fp2,fp3 | ||
5902 | |||
5903 | cmp.l %d1,&0 | ||
5904 | blt.w NODD | ||
5905 | |||
5906 | fmov.x %fp0,%fp1 | ||
5907 | fmul.x %fp1,%fp1 # S = R*R | ||
5908 | |||
5909 | fmov.d TANQ4(%pc),%fp3 | ||
5910 | fmov.d TANP3(%pc),%fp2 | ||
5911 | |||
5912 | fmul.x %fp1,%fp3 # SQ4 | ||
5913 | fmul.x %fp1,%fp2 # SP3 | ||
5914 | |||
5915 | fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 | ||
5916 | fadd.x TANP2(%pc),%fp2 # P2+SP3 | ||
5917 | |||
5918 | fmul.x %fp1,%fp3 # S(Q3+SQ4) | ||
5919 | fmul.x %fp1,%fp2 # S(P2+SP3) | ||
5920 | |||
5921 | fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) | ||
5922 | fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) | ||
5923 | |||
5924 | fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) | ||
5925 | fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) | ||
5926 | |||
5927 | fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) | ||
5928 | fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) | ||
5929 | |||
5930 | fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) | ||
5931 | |||
5932 | fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) | ||
5933 | |||
5934 | fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) | ||
5935 | |||
5936 | fmovm.x (%sp)+,&0x30 # restore fp2,fp3 | ||
5937 | |||
5938 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5939 | fdiv.x %fp1,%fp0 # last inst - possible exception set | ||
5940 | bra t_inx2 | ||
5941 | |||
5942 | NODD: | ||
5943 | fmov.x %fp0,%fp1 | ||
5944 | fmul.x %fp0,%fp0 # S = R*R | ||
5945 | |||
5946 | fmov.d TANQ4(%pc),%fp3 | ||
5947 | fmov.d TANP3(%pc),%fp2 | ||
5948 | |||
5949 | fmul.x %fp0,%fp3 # SQ4 | ||
5950 | fmul.x %fp0,%fp2 # SP3 | ||
5951 | |||
5952 | fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 | ||
5953 | fadd.x TANP2(%pc),%fp2 # P2+SP3 | ||
5954 | |||
5955 | fmul.x %fp0,%fp3 # S(Q3+SQ4) | ||
5956 | fmul.x %fp0,%fp2 # S(P2+SP3) | ||
5957 | |||
5958 | fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) | ||
5959 | fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) | ||
5960 | |||
5961 | fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) | ||
5962 | fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) | ||
5963 | |||
5964 | fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) | ||
5965 | fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) | ||
5966 | |||
5967 | fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) | ||
5968 | |||
5969 | fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) | ||
5970 | fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) | ||
5971 | |||
5972 | fmovm.x (%sp)+,&0x30 # restore fp2,fp3 | ||
5973 | |||
5974 | fmov.x %fp1,-(%sp) | ||
5975 | eor.l &0x80000000,(%sp) | ||
5976 | |||
5977 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5978 | fdiv.x (%sp)+,%fp0 # last inst - possible exception set | ||
5979 | bra t_inx2 | ||
5980 | |||
5981 | TANBORS: | ||
5982 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | ||
5983 | #--IF |X| < 2**(-40), RETURN X OR 1. | ||
5984 | cmp.l %d1,&0x3FFF8000 | ||
5985 | bgt.b REDUCEX | ||
5986 | |||
5987 | TANSM: | ||
5988 | fmov.x %fp0,-(%sp) | ||
5989 | fmov.l %d0,%fpcr # restore users round mode,prec | ||
5990 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
5991 | fmov.x (%sp)+,%fp0 # last inst - posibble exception set | ||
5992 | bra t_catch | ||
5993 | |||
5994 | global stand | ||
5995 | #--TAN(X) = X FOR DENORMALIZED X | ||
5996 | stand: | ||
5997 | bra t_extdnrm | ||
5998 | |||
5999 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | ||
6000 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | ||
6001 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | ||
6002 | REDUCEX: | ||
6003 | fmovm.x &0x3c,-(%sp) # save {fp2-fp5} | ||
6004 | mov.l %d2,-(%sp) # save d2 | ||
6005 | fmov.s &0x00000000,%fp1 # fp1 = 0 | ||
6006 | |||
6007 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | ||
6008 | #--there is a danger of unwanted overflow in first LOOP iteration. In this | ||
6009 | #--case, reduce argument by one remainder step to make subsequent reduction | ||
6010 | #--safe. | ||
6011 | cmp.l %d1,&0x7ffeffff # is arg dangerously large? | ||
6012 | bne.b LOOP # no | ||
6013 | |||
6014 | # yes; create 2**16383*PI/2 | ||
6015 | mov.w &0x7ffe,FP_SCR0_EX(%a6) | ||
6016 | mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) | ||
6017 | clr.l FP_SCR0_LO(%a6) | ||
6018 | |||
6019 | # create low half of 2**16383*PI/2 at FP_SCR1 | ||
6020 | mov.w &0x7fdc,FP_SCR1_EX(%a6) | ||
6021 | mov.l &0x85a308d3,FP_SCR1_HI(%a6) | ||
6022 | clr.l FP_SCR1_LO(%a6) | ||
6023 | |||
6024 | ftest.x %fp0 # test sign of argument | ||
6025 | fblt.w red_neg | ||
6026 | |||
6027 | or.b &0x80,FP_SCR0_EX(%a6) # positive arg | ||
6028 | or.b &0x80,FP_SCR1_EX(%a6) | ||
6029 | red_neg: | ||
6030 | fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact | ||
6031 | fmov.x %fp0,%fp1 # save high result in fp1 | ||
6032 | fadd.x FP_SCR1(%a6),%fp0 # low part of reduction | ||
6033 | fsub.x %fp0,%fp1 # determine low component of result | ||
6034 | fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. | ||
6035 | |||
6036 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | ||
6037 | #--integer quotient will be stored in N | ||
6038 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | ||
6039 | LOOP: | ||
6040 | fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 | ||
6041 | mov.w INARG(%a6),%d1 | ||
6042 | mov.l %d1,%a1 # save a copy of D0 | ||
6043 | and.l &0x00007FFF,%d1 | ||
6044 | sub.l &0x00003FFF,%d1 # d0 = K | ||
6045 | cmp.l %d1,&28 | ||
6046 | ble.b LASTLOOP | ||
6047 | CONTLOOP: | ||
6048 | sub.l &27,%d1 # d0 = L := K-27 | ||
6049 | mov.b &0,ENDFLAG(%a6) | ||
6050 | bra.b WORK | ||
6051 | LASTLOOP: | ||
6052 | clr.l %d1 # d0 = L := 0 | ||
6053 | mov.b &1,ENDFLAG(%a6) | ||
6054 | |||
6055 | WORK: | ||
6056 | #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN | ||
6057 | #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. | ||
6058 | |||
6059 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | ||
6060 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | ||
6061 | |||
6062 | mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI | ||
6063 | sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) | ||
6064 | |||
6065 | mov.l &0xA2F9836E,FP_SCR0_HI(%a6) | ||
6066 | mov.l &0x4E44152A,FP_SCR0_LO(%a6) | ||
6067 | mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) | ||
6068 | |||
6069 | fmov.x %fp0,%fp2 | ||
6070 | fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) | ||
6071 | |||
6072 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | ||
6073 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N | ||
6074 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | ||
6075 | #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE | ||
6076 | #--US THE DESIRED VALUE IN FLOATING POINT. | ||
6077 | mov.l %a1,%d2 | ||
6078 | swap %d2 | ||
6079 | and.l &0x80000000,%d2 | ||
6080 | or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL | ||
6081 | mov.l %d2,TWOTO63(%a6) | ||
6082 | fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED | ||
6083 | fsub.s TWOTO63(%a6),%fp2 # fp2 = N | ||
6084 | # fintrz.x %fp2,%fp2 | ||
6085 | |||
6086 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | ||
6087 | mov.l %d1,%d2 # d2 = L | ||
6088 | |||
6089 | add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) | ||
6090 | mov.w %d2,FP_SCR0_EX(%a6) | ||
6091 | mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) | ||
6092 | clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 | ||
6093 | |||
6094 | add.l &0x00003FDD,%d1 | ||
6095 | mov.w %d1,FP_SCR1_EX(%a6) | ||
6096 | mov.l &0x85A308D3,FP_SCR1_HI(%a6) | ||
6097 | clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 | ||
6098 | |||
6099 | mov.b ENDFLAG(%a6),%d1 | ||
6100 | |||
6101 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | ||
6102 | #--P2 = 2**(L) * Piby2_2 | ||
6103 | fmov.x %fp2,%fp4 # fp4 = N | ||
6104 | fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 | ||
6105 | fmov.x %fp2,%fp5 # fp5 = N | ||
6106 | fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 | ||
6107 | fmov.x %fp4,%fp3 # fp3 = W = N*P1 | ||
6108 | |||
6109 | #--we want P+p = W+w but |p| <= half ulp of P | ||
6110 | #--Then, we need to compute A := R-P and a := r-p | ||
6111 | fadd.x %fp5,%fp3 # fp3 = P | ||
6112 | fsub.x %fp3,%fp4 # fp4 = W-P | ||
6113 | |||
6114 | fsub.x %fp3,%fp0 # fp0 = A := R - P | ||
6115 | fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w | ||
6116 | |||
6117 | fmov.x %fp0,%fp3 # fp3 = A | ||
6118 | fsub.x %fp4,%fp1 # fp1 = a := r - p | ||
6119 | |||
6120 | #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but | ||
6121 | #--|r| <= half ulp of R. | ||
6122 | fadd.x %fp1,%fp0 # fp0 = R := A+a | ||
6123 | #--No need to calculate r if this is the last loop | ||
6124 | cmp.b %d1,&0 | ||
6125 | bgt.w RESTORE | ||
6126 | |||
6127 | #--Need to calculate r | ||
6128 | fsub.x %fp0,%fp3 # fp3 = A-R | ||
6129 | fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a | ||
6130 | bra.w LOOP | ||
6131 | |||
6132 | RESTORE: | ||
6133 | fmov.l %fp2,INT(%a6) | ||
6134 | mov.l (%sp)+,%d2 # restore d2 | ||
6135 | fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} | ||
6136 | |||
6137 | mov.l INT(%a6),%d1 | ||
6138 | ror.l &1,%d1 | ||
6139 | |||
6140 | bra.w TANCONT | ||
6141 | |||
6142 | ######################################################################### | ||
6143 | # satan(): computes the arctangent of a normalized number # | ||
6144 | # satand(): computes the arctangent of a denormalized number # | ||
6145 | # # | ||
6146 | # INPUT *************************************************************** # | ||
6147 | # a0 = pointer to extended precision input # | ||
6148 | # d0 = round precision,mode # | ||
6149 | # # | ||
6150 | # OUTPUT ************************************************************** # | ||
6151 | # fp0 = arctan(X) # | ||
6152 | # # | ||
6153 | # ACCURACY and MONOTONICITY ******************************************* # | ||
6154 | # The returned result is within 2 ulps in 64 significant bit, # | ||
6155 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
6156 | # rounded to double precision. The result is provably monotonic # | ||
6157 | # in double precision. # | ||
6158 | # # | ||
6159 | # ALGORITHM *********************************************************** # | ||
6160 | # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # | ||
6161 | # # | ||
6162 | # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # | ||
6163 | # Note that k = -4, -3,..., or 3. # | ||
6164 | # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # | ||
6165 | # significant bits of X with a bit-1 attached at the 6-th # | ||
6166 | # bit position. Define u to be u = (X-F) / (1 + X*F). # | ||
6167 | # # | ||
6168 | # Step 3. Approximate arctan(u) by a polynomial poly. # | ||
6169 | # # | ||
6170 | # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # | ||
6171 | # table of values calculated beforehand. Exit. # | ||
6172 | # # | ||
6173 | # Step 5. If |X| >= 16, go to Step 7. # | ||
6174 | # # | ||
6175 | # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # | ||
6176 | # # | ||
6177 | # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # | ||
6178 | # polynomial in X'. # | ||
6179 | # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # | ||
6180 | # # | ||
6181 | ######################################################################### | ||
6182 | |||
6183 | ATANA3: long 0xBFF6687E,0x314987D8 | ||
6184 | ATANA2: long 0x4002AC69,0x34A26DB3 | ||
6185 | ATANA1: long 0xBFC2476F,0x4E1DA28E | ||
6186 | |||
6187 | ATANB6: long 0x3FB34444,0x7F876989 | ||
6188 | ATANB5: long 0xBFB744EE,0x7FAF45DB | ||
6189 | ATANB4: long 0x3FBC71C6,0x46940220 | ||
6190 | ATANB3: long 0xBFC24924,0x921872F9 | ||
6191 | ATANB2: long 0x3FC99999,0x99998FA9 | ||
6192 | ATANB1: long 0xBFD55555,0x55555555 | ||
6193 | |||
6194 | ATANC5: long 0xBFB70BF3,0x98539E6A | ||
6195 | ATANC4: long 0x3FBC7187,0x962D1D7D | ||
6196 | ATANC3: long 0xBFC24924,0x827107B8 | ||
6197 | ATANC2: long 0x3FC99999,0x9996263E | ||
6198 | ATANC1: long 0xBFD55555,0x55555536 | ||
6199 | |||
6200 | PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | ||
6201 | NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 | ||
6202 | |||
6203 | PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 | ||
6204 | NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 | ||
6205 | |||
6206 | ATANTBL: | ||
6207 | long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 | ||
6208 | long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 | ||
6209 | long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 | ||
6210 | long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 | ||
6211 | long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 | ||
6212 | long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 | ||
6213 | long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 | ||
6214 | long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 | ||
6215 | long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 | ||
6216 | long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 | ||
6217 | long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 | ||
6218 | long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 | ||
6219 | long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 | ||
6220 | long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 | ||
6221 | long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 | ||
6222 | long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 | ||
6223 | long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 | ||
6224 | long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 | ||
6225 | long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 | ||
6226 | long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 | ||
6227 | long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 | ||
6228 | long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 | ||
6229 | long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 | ||
6230 | long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 | ||
6231 | long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 | ||
6232 | long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 | ||
6233 | long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 | ||
6234 | long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 | ||
6235 | long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 | ||
6236 | long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 | ||
6237 | long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 | ||
6238 | long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 | ||
6239 | long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 | ||
6240 | long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 | ||
6241 | long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 | ||
6242 | long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 | ||
6243 | long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 | ||
6244 | long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 | ||
6245 | long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 | ||
6246 | long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 | ||
6247 | long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 | ||
6248 | long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 | ||
6249 | long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 | ||
6250 | long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 | ||
6251 | long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 | ||
6252 | long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 | ||
6253 | long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 | ||
6254 | long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 | ||
6255 | long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 | ||
6256 | long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 | ||
6257 | long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 | ||
6258 | long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 | ||
6259 | long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 | ||
6260 | long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 | ||
6261 | long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 | ||
6262 | long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 | ||
6263 | long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 | ||
6264 | long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 | ||
6265 | long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 | ||
6266 | long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 | ||
6267 | long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 | ||
6268 | long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 | ||
6269 | long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 | ||
6270 | long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 | ||
6271 | long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 | ||
6272 | long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 | ||
6273 | long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 | ||
6274 | long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 | ||
6275 | long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 | ||
6276 | long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 | ||
6277 | long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 | ||
6278 | long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 | ||
6279 | long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 | ||
6280 | long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 | ||
6281 | long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 | ||
6282 | long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 | ||
6283 | long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 | ||
6284 | long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 | ||
6285 | long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 | ||
6286 | long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 | ||
6287 | long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 | ||
6288 | long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 | ||
6289 | long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 | ||
6290 | long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 | ||
6291 | long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 | ||
6292 | long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 | ||
6293 | long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 | ||
6294 | long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 | ||
6295 | long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 | ||
6296 | long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 | ||
6297 | long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 | ||
6298 | long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 | ||
6299 | long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 | ||
6300 | long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 | ||
6301 | long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 | ||
6302 | long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 | ||
6303 | long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 | ||
6304 | long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 | ||
6305 | long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 | ||
6306 | long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 | ||
6307 | long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 | ||
6308 | long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 | ||
6309 | long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 | ||
6310 | long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 | ||
6311 | long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 | ||
6312 | long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 | ||
6313 | long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 | ||
6314 | long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 | ||
6315 | long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 | ||
6316 | long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 | ||
6317 | long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 | ||
6318 | long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 | ||
6319 | long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 | ||
6320 | long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 | ||
6321 | long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 | ||
6322 | long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 | ||
6323 | long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 | ||
6324 | long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 | ||
6325 | long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 | ||
6326 | long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 | ||
6327 | long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 | ||
6328 | long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 | ||
6329 | long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 | ||
6330 | long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 | ||
6331 | long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 | ||
6332 | long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 | ||
6333 | long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 | ||
6334 | long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 | ||
6335 | |||
6336 | set X,FP_SCR0 | ||
6337 | set XDCARE,X+2 | ||
6338 | set XFRAC,X+4 | ||
6339 | set XFRACLO,X+8 | ||
6340 | |||
6341 | set ATANF,FP_SCR1 | ||
6342 | set ATANFHI,ATANF+4 | ||
6343 | set ATANFLO,ATANF+8 | ||
6344 | |||
6345 | global satan | ||
6346 | #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | ||
6347 | satan: | ||
6348 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
6349 | |||
6350 | mov.l (%a0),%d1 | ||
6351 | mov.w 4(%a0),%d1 | ||
6352 | fmov.x %fp0,X(%a6) | ||
6353 | and.l &0x7FFFFFFF,%d1 | ||
6354 | |||
6355 | cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? | ||
6356 | bge.b ATANOK1 | ||
6357 | bra.w ATANSM | ||
6358 | |||
6359 | ATANOK1: | ||
6360 | cmp.l %d1,&0x4002FFFF # |X| < 16 ? | ||
6361 | ble.b ATANMAIN | ||
6362 | bra.w ATANBIG | ||
6363 | |||
6364 | #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE | ||
6365 | #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). | ||
6366 | #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN | ||
6367 | #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE | ||
6368 | #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS | ||
6369 | #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR | ||
6370 | #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO | ||
6371 | #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE | ||
6372 | #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL | ||
6373 | #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE | ||
6374 | #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION | ||
6375 | #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION | ||
6376 | #--WILL INVOLVE A VERY LONG POLYNOMIAL. | ||
6377 | |||
6378 | #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS | ||
6379 | #--WE CHOSE F TO BE +-2^K * 1.BBBB1 | ||
6380 | #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE | ||
6381 | #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE | ||
6382 | #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS | ||
6383 | #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). | ||
6384 | |||
6385 | ATANMAIN: | ||
6386 | |||
6387 | and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS | ||
6388 | or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 | ||
6389 | mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F | ||
6390 | |||
6391 | fmov.x %fp0,%fp1 # FP1 IS X | ||
6392 | fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 | ||
6393 | fsub.x X(%a6),%fp0 # FP0 IS X-F | ||
6394 | fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F | ||
6395 | fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) | ||
6396 | |||
6397 | #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) | ||
6398 | #--CREATE ATAN(F) AND STORE IT IN ATANF, AND | ||
6399 | #--SAVE REGISTERS FP2. | ||
6400 | |||
6401 | mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY | ||
6402 | mov.l %d1,%d2 # THE EXP AND 16 BITS OF X | ||
6403 | and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION | ||
6404 | and.l &0x7FFF0000,%d2 # EXPONENT OF F | ||
6405 | sub.l &0x3FFB0000,%d2 # K+4 | ||
6406 | asr.l &1,%d2 | ||
6407 | add.l %d2,%d1 # THE 7 BITS IDENTIFYING F | ||
6408 | asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) | ||
6409 | lea ATANTBL(%pc),%a1 | ||
6410 | add.l %d1,%a1 # ADDRESS OF ATAN(|F|) | ||
6411 | mov.l (%a1)+,ATANF(%a6) | ||
6412 | mov.l (%a1)+,ATANFHI(%a6) | ||
6413 | mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) | ||
6414 | mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN | ||
6415 | and.l &0x80000000,%d1 # SIGN(F) | ||
6416 | or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) | ||
6417 | mov.l (%sp)+,%d2 # RESTORE d2 | ||
6418 | |||
6419 | #--THAT'S ALL I HAVE TO DO FOR NOW, | ||
6420 | #--BUT ALAS, THE DIVIDE IS STILL CRANKING! | ||
6421 | |||
6422 | #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS | ||
6423 | #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U | ||
6424 | #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. | ||
6425 | #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) | ||
6426 | #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. | ||
6427 | #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT | ||
6428 | #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED | ||
6429 | |||
6430 | fmovm.x &0x04,-(%sp) # save fp2 | ||
6431 | |||
6432 | fmov.x %fp0,%fp1 | ||
6433 | fmul.x %fp1,%fp1 | ||
6434 | fmov.d ATANA3(%pc),%fp2 | ||
6435 | fadd.x %fp1,%fp2 # A3+V | ||
6436 | fmul.x %fp1,%fp2 # V*(A3+V) | ||
6437 | fmul.x %fp0,%fp1 # U*V | ||
6438 | fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) | ||
6439 | fmul.d ATANA1(%pc),%fp1 # A1*U*V | ||
6440 | fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) | ||
6441 | fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED | ||
6442 | |||
6443 | fmovm.x (%sp)+,&0x20 # restore fp2 | ||
6444 | |||
6445 | fmov.l %d0,%fpcr # restore users rnd mode,prec | ||
6446 | fadd.x ATANF(%a6),%fp0 # ATAN(X) | ||
6447 | bra t_inx2 | ||
6448 | |||
6449 | ATANBORS: | ||
6450 | #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. | ||
6451 | #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. | ||
6452 | cmp.l %d1,&0x3FFF8000 | ||
6453 | bgt.w ATANBIG # I.E. |X| >= 16 | ||
6454 | |||
6455 | ATANSM: | ||
6456 | #--|X| <= 1/16 | ||
6457 | #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE | ||
6458 | #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) | ||
6459 | #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) | ||
6460 | #--WHERE Y = X*X, AND Z = Y*Y. | ||
6461 | |||
6462 | cmp.l %d1,&0x3FD78000 | ||
6463 | blt.w ATANTINY | ||
6464 | |||
6465 | #--COMPUTE POLYNOMIAL | ||
6466 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
6467 | |||
6468 | fmul.x %fp0,%fp0 # FPO IS Y = X*X | ||
6469 | |||
6470 | fmov.x %fp0,%fp1 | ||
6471 | fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y | ||
6472 | |||
6473 | fmov.d ATANB6(%pc),%fp2 | ||
6474 | fmov.d ATANB5(%pc),%fp3 | ||
6475 | |||
6476 | fmul.x %fp1,%fp2 # Z*B6 | ||
6477 | fmul.x %fp1,%fp3 # Z*B5 | ||
6478 | |||
6479 | fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 | ||
6480 | fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 | ||
6481 | |||
6482 | fmul.x %fp1,%fp2 # Z*(B4+Z*B6) | ||
6483 | fmul.x %fp3,%fp1 # Z*(B3+Z*B5) | ||
6484 | |||
6485 | fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) | ||
6486 | fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) | ||
6487 | |||
6488 | fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) | ||
6489 | fmul.x X(%a6),%fp0 # X*Y | ||
6490 | |||
6491 | fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] | ||
6492 | |||
6493 | fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) | ||
6494 | |||
6495 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 | ||
6496 | |||
6497 | fmov.l %d0,%fpcr # restore users rnd mode,prec | ||
6498 | fadd.x X(%a6),%fp0 | ||
6499 | bra t_inx2 | ||
6500 | |||
6501 | ATANTINY: | ||
6502 | #--|X| < 2^(-40), ATAN(X) = X | ||
6503 | |||
6504 | fmov.l %d0,%fpcr # restore users rnd mode,prec | ||
6505 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
6506 | fmov.x X(%a6),%fp0 # last inst - possible exception set | ||
6507 | |||
6508 | bra t_catch | ||
6509 | |||
6510 | ATANBIG: | ||
6511 | #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, | ||
6512 | #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). | ||
6513 | cmp.l %d1,&0x40638000 | ||
6514 | bgt.w ATANHUGE | ||
6515 | |||
6516 | #--APPROXIMATE ATAN(-1/X) BY | ||
6517 | #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' | ||
6518 | #--THIS CAN BE RE-WRITTEN AS | ||
6519 | #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. | ||
6520 | |||
6521 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
6522 | |||
6523 | fmov.s &0xBF800000,%fp1 # LOAD -1 | ||
6524 | fdiv.x %fp0,%fp1 # FP1 IS -1/X | ||
6525 | |||
6526 | #--DIVIDE IS STILL CRANKING | ||
6527 | |||
6528 | fmov.x %fp1,%fp0 # FP0 IS X' | ||
6529 | fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' | ||
6530 | fmov.x %fp1,X(%a6) # X IS REALLY X' | ||
6531 | |||
6532 | fmov.x %fp0,%fp1 | ||
6533 | fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y | ||
6534 | |||
6535 | fmov.d ATANC5(%pc),%fp3 | ||
6536 | fmov.d ATANC4(%pc),%fp2 | ||
6537 | |||
6538 | fmul.x %fp1,%fp3 # Z*C5 | ||
6539 | fmul.x %fp1,%fp2 # Z*B4 | ||
6540 | |||
6541 | fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 | ||
6542 | fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 | ||
6543 | |||
6544 | fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED | ||
6545 | fmul.x %fp0,%fp2 # Y*(C2+Z*C4) | ||
6546 | |||
6547 | fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) | ||
6548 | fmul.x X(%a6),%fp0 # X'*Y | ||
6549 | |||
6550 | fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] | ||
6551 | |||
6552 | fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] | ||
6553 | # ... +[Y*(B2+Z*(B4+Z*B6))]) | ||
6554 | fadd.x X(%a6),%fp0 | ||
6555 | |||
6556 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 | ||
6557 | |||
6558 | fmov.l %d0,%fpcr # restore users rnd mode,prec | ||
6559 | tst.b (%a0) | ||
6560 | bpl.b pos_big | ||
6561 | |||
6562 | neg_big: | ||
6563 | fadd.x NPIBY2(%pc),%fp0 | ||
6564 | bra t_minx2 | ||
6565 | |||
6566 | pos_big: | ||
6567 | fadd.x PPIBY2(%pc),%fp0 | ||
6568 | bra t_pinx2 | ||
6569 | |||
6570 | ATANHUGE: | ||
6571 | #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY | ||
6572 | tst.b (%a0) | ||
6573 | bpl.b pos_huge | ||
6574 | |||
6575 | neg_huge: | ||
6576 | fmov.x NPIBY2(%pc),%fp0 | ||
6577 | fmov.l %d0,%fpcr | ||
6578 | fadd.x PTINY(%pc),%fp0 | ||
6579 | bra t_minx2 | ||
6580 | |||
6581 | pos_huge: | ||
6582 | fmov.x PPIBY2(%pc),%fp0 | ||
6583 | fmov.l %d0,%fpcr | ||
6584 | fadd.x NTINY(%pc),%fp0 | ||
6585 | bra t_pinx2 | ||
6586 | |||
6587 | global satand | ||
6588 | #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT | ||
6589 | satand: | ||
6590 | bra t_extdnrm | ||
6591 | |||
6592 | ######################################################################### | ||
6593 | # sasin(): computes the inverse sine of a normalized input # | ||
6594 | # sasind(): computes the inverse sine of a denormalized input # | ||
6595 | # # | ||
6596 | # INPUT *************************************************************** # | ||
6597 | # a0 = pointer to extended precision input # | ||
6598 | # d0 = round precision,mode # | ||
6599 | # # | ||
6600 | # OUTPUT ************************************************************** # | ||
6601 | # fp0 = arcsin(X) # | ||
6602 | # # | ||
6603 | # ACCURACY and MONOTONICITY ******************************************* # | ||
6604 | # The returned result is within 3 ulps in 64 significant bit, # | ||
6605 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
6606 | # rounded to double precision. The result is provably monotonic # | ||
6607 | # in double precision. # | ||
6608 | # # | ||
6609 | # ALGORITHM *********************************************************** # | ||
6610 | # # | ||
6611 | # ASIN # | ||
6612 | # 1. If |X| >= 1, go to 3. # | ||
6613 | # # | ||
6614 | # 2. (|X| < 1) Calculate asin(X) by # | ||
6615 | # z := sqrt( [1-X][1+X] ) # | ||
6616 | # asin(X) = atan( x / z ). # | ||
6617 | # Exit. # | ||
6618 | # # | ||
6619 | # 3. If |X| > 1, go to 5. # | ||
6620 | # # | ||
6621 | # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# | ||
6622 | # # | ||
6623 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # | ||
6624 | # Exit. # | ||
6625 | # # | ||
6626 | ######################################################################### | ||
6627 | |||
6628 | global sasin | ||
6629 | sasin: | ||
6630 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
6631 | |||
6632 | mov.l (%a0),%d1 | ||
6633 | mov.w 4(%a0),%d1 | ||
6634 | and.l &0x7FFFFFFF,%d1 | ||
6635 | cmp.l %d1,&0x3FFF8000 | ||
6636 | bge.b ASINBIG | ||
6637 | |||
6638 | # This catch is added here for the '060 QSP. Originally, the call to | ||
6639 | # satan() would handle this case by causing the exception which would | ||
6640 | # not be caught until gen_except(). Now, with the exceptions being | ||
6641 | # detected inside of satan(), the exception would have been handled there | ||
6642 | # instead of inside sasin() as expected. | ||
6643 | cmp.l %d1,&0x3FD78000 | ||
6644 | blt.w ASINTINY | ||
6645 | |||
6646 | #--THIS IS THE USUAL CASE, |X| < 1 | ||
6647 | #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) | ||
6648 | |||
6649 | ASINMAIN: | ||
6650 | fmov.s &0x3F800000,%fp1 | ||
6651 | fsub.x %fp0,%fp1 # 1-X | ||
6652 | fmovm.x &0x4,-(%sp) # {fp2} | ||
6653 | fmov.s &0x3F800000,%fp2 | ||
6654 | fadd.x %fp0,%fp2 # 1+X | ||
6655 | fmul.x %fp2,%fp1 # (1+X)(1-X) | ||
6656 | fmovm.x (%sp)+,&0x20 # {fp2} | ||
6657 | fsqrt.x %fp1 # SQRT([1-X][1+X]) | ||
6658 | fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) | ||
6659 | fmovm.x &0x01,-(%sp) # save X/SQRT(...) | ||
6660 | lea (%sp),%a0 # pass ptr to X/SQRT(...) | ||
6661 | bsr satan | ||
6662 | add.l &0xc,%sp # clear X/SQRT(...) from stack | ||
6663 | bra t_inx2 | ||
6664 | |||
6665 | ASINBIG: | ||
6666 | fabs.x %fp0 # |X| | ||
6667 | fcmp.s %fp0,&0x3F800000 | ||
6668 | fbgt t_operr # cause an operr exception | ||
6669 | |||
6670 | #--|X| = 1, ASIN(X) = +- PI/2. | ||
6671 | ASINONE: | ||
6672 | fmov.x PIBY2(%pc),%fp0 | ||
6673 | mov.l (%a0),%d1 | ||
6674 | and.l &0x80000000,%d1 # SIGN BIT OF X | ||
6675 | or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT | ||
6676 | mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT | ||
6677 | fmov.l %d0,%fpcr | ||
6678 | fmul.s (%sp)+,%fp0 | ||
6679 | bra t_inx2 | ||
6680 | |||
6681 | #--|X| < 2^(-40), ATAN(X) = X | ||
6682 | ASINTINY: | ||
6683 | fmov.l %d0,%fpcr # restore users rnd mode,prec | ||
6684 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
6685 | fmov.x (%a0),%fp0 # last inst - possible exception | ||
6686 | bra t_catch | ||
6687 | |||
6688 | global sasind | ||
6689 | #--ASIN(X) = X FOR DENORMALIZED X | ||
6690 | sasind: | ||
6691 | bra t_extdnrm | ||
6692 | |||
6693 | ######################################################################### | ||
6694 | # sacos(): computes the inverse cosine of a normalized input # | ||
6695 | # sacosd(): computes the inverse cosine of a denormalized input # | ||
6696 | # # | ||
6697 | # INPUT *************************************************************** # | ||
6698 | # a0 = pointer to extended precision input # | ||
6699 | # d0 = round precision,mode # | ||
6700 | # # | ||
6701 | # OUTPUT ************************************************************** # | ||
6702 | # fp0 = arccos(X) # | ||
6703 | # # | ||
6704 | # ACCURACY and MONOTONICITY ******************************************* # | ||
6705 | # The returned result is within 3 ulps in 64 significant bit, # | ||
6706 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
6707 | # rounded to double precision. The result is provably monotonic # | ||
6708 | # in double precision. # | ||
6709 | # # | ||
6710 | # ALGORITHM *********************************************************** # | ||
6711 | # # | ||
6712 | # ACOS # | ||
6713 | # 1. If |X| >= 1, go to 3. # | ||
6714 | # # | ||
6715 | # 2. (|X| < 1) Calculate acos(X) by # | ||
6716 | # z := (1-X) / (1+X) # | ||
6717 | # acos(X) = 2 * atan( sqrt(z) ). # | ||
6718 | # Exit. # | ||
6719 | # # | ||
6720 | # 3. If |X| > 1, go to 5. # | ||
6721 | # # | ||
6722 | # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # | ||
6723 | # # | ||
6724 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # | ||
6725 | # Exit. # | ||
6726 | # # | ||
6727 | ######################################################################### | ||
6728 | |||
6729 | global sacos | ||
6730 | sacos: | ||
6731 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
6732 | |||
6733 | mov.l (%a0),%d1 # pack exp w/ upper 16 fraction | ||
6734 | mov.w 4(%a0),%d1 | ||
6735 | and.l &0x7FFFFFFF,%d1 | ||
6736 | cmp.l %d1,&0x3FFF8000 | ||
6737 | bge.b ACOSBIG | ||
6738 | |||
6739 | #--THIS IS THE USUAL CASE, |X| < 1 | ||
6740 | #--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) | ||
6741 | |||
6742 | ACOSMAIN: | ||
6743 | fmov.s &0x3F800000,%fp1 | ||
6744 | fadd.x %fp0,%fp1 # 1+X | ||
6745 | fneg.x %fp0 # -X | ||
6746 | fadd.s &0x3F800000,%fp0 # 1-X | ||
6747 | fdiv.x %fp1,%fp0 # (1-X)/(1+X) | ||
6748 | fsqrt.x %fp0 # SQRT((1-X)/(1+X)) | ||
6749 | mov.l %d0,-(%sp) # save original users fpcr | ||
6750 | clr.l %d0 | ||
6751 | fmovm.x &0x01,-(%sp) # save SQRT(...) to stack | ||
6752 | lea (%sp),%a0 # pass ptr to sqrt | ||
6753 | bsr satan # ATAN(SQRT([1-X]/[1+X])) | ||
6754 | add.l &0xc,%sp # clear SQRT(...) from stack | ||
6755 | |||
6756 | fmov.l (%sp)+,%fpcr # restore users round prec,mode | ||
6757 | fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) | ||
6758 | bra t_pinx2 | ||
6759 | |||
6760 | ACOSBIG: | ||
6761 | fabs.x %fp0 | ||
6762 | fcmp.s %fp0,&0x3F800000 | ||
6763 | fbgt t_operr # cause an operr exception | ||
6764 | |||
6765 | #--|X| = 1, ACOS(X) = 0 OR PI | ||
6766 | tst.b (%a0) # is X positive or negative? | ||
6767 | bpl.b ACOSP1 | ||
6768 | |||
6769 | #--X = -1 | ||
6770 | #Returns PI and inexact exception | ||
6771 | ACOSM1: | ||
6772 | fmov.x PI(%pc),%fp0 # load PI | ||
6773 | fmov.l %d0,%fpcr # load round mode,prec | ||
6774 | fadd.s &0x00800000,%fp0 # add a small value | ||
6775 | bra t_pinx2 | ||
6776 | |||
6777 | ACOSP1: | ||
6778 | bra ld_pzero # answer is positive zero | ||
6779 | |||
6780 | global sacosd | ||
6781 | #--ACOS(X) = PI/2 FOR DENORMALIZED X | ||
6782 | sacosd: | ||
6783 | fmov.l %d0,%fpcr # load user's rnd mode/prec | ||
6784 | fmov.x PIBY2(%pc),%fp0 | ||
6785 | bra t_pinx2 | ||
6786 | |||
6787 | ######################################################################### | ||
6788 | # setox(): computes the exponential for a normalized input # | ||
6789 | # setoxd(): computes the exponential for a denormalized input # | ||
6790 | # setoxm1(): computes the exponential minus 1 for a normalized input # | ||
6791 | # setoxm1d(): computes the exponential minus 1 for a denormalized input # | ||
6792 | # # | ||
6793 | # INPUT *************************************************************** # | ||
6794 | # a0 = pointer to extended precision input # | ||
6795 | # d0 = round precision,mode # | ||
6796 | # # | ||
6797 | # OUTPUT ************************************************************** # | ||
6798 | # fp0 = exp(X) or exp(X)-1 # | ||
6799 | # # | ||
6800 | # ACCURACY and MONOTONICITY ******************************************* # | ||
6801 | # The returned result is within 0.85 ulps in 64 significant bit, # | ||
6802 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
6803 | # rounded to double precision. The result is provably monotonic # | ||
6804 | # in double precision. # | ||
6805 | # # | ||
6806 | # ALGORITHM and IMPLEMENTATION **************************************** # | ||
6807 | # # | ||
6808 | # setoxd # | ||
6809 | # ------ # | ||
6810 | # Step 1. Set ans := 1.0 # | ||
6811 | # # | ||
6812 | # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # | ||
6813 | # Notes: This will always generate one exception -- inexact. # | ||
6814 | # # | ||
6815 | # # | ||
6816 | # setox # | ||
6817 | # ----- # | ||
6818 | # # | ||
6819 | # Step 1. Filter out extreme cases of input argument. # | ||
6820 | # 1.1 If |X| >= 2^(-65), go to Step 1.3. # | ||
6821 | # 1.2 Go to Step 7. # | ||
6822 | # 1.3 If |X| < 16380 log(2), go to Step 2. # | ||
6823 | # 1.4 Go to Step 8. # | ||
6824 | # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# | ||
6825 | # To avoid the use of floating-point comparisons, a # | ||
6826 | # compact representation of |X| is used. This format is a # | ||
6827 | # 32-bit integer, the upper (more significant) 16 bits # | ||
6828 | # are the sign and biased exponent field of |X|; the # | ||
6829 | # lower 16 bits are the 16 most significant fraction # | ||
6830 | # (including the explicit bit) bits of |X|. Consequently, # | ||
6831 | # the comparisons in Steps 1.1 and 1.3 can be performed # | ||
6832 | # by integer comparison. Note also that the constant # | ||
6833 | # 16380 log(2) used in Step 1.3 is also in the compact # | ||
6834 | # form. Thus taking the branch to Step 2 guarantees # | ||
6835 | # |X| < 16380 log(2). There is no harm to have a small # | ||
6836 | # number of cases where |X| is less than, but close to, # | ||
6837 | # 16380 log(2) and the branch to Step 9 is taken. # | ||
6838 | # # | ||
6839 | # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # | ||
6840 | # 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # | ||
6841 | # was taken) # | ||
6842 | # 2.2 N := round-to-nearest-integer( X * 64/log2 ). # | ||
6843 | # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # | ||
6844 | # or 63. # | ||
6845 | # 2.4 Calculate M = (N - J)/64; so N = 64M + J. # | ||
6846 | # 2.5 Calculate the address of the stored value of # | ||
6847 | # 2^(J/64). # | ||
6848 | # 2.6 Create the value Scale = 2^M. # | ||
6849 | # Notes: The calculation in 2.2 is really performed by # | ||
6850 | # Z := X * constant # | ||
6851 | # N := round-to-nearest-integer(Z) # | ||
6852 | # where # | ||
6853 | # constant := single-precision( 64/log 2 ). # | ||
6854 | # # | ||
6855 | # Using a single-precision constant avoids memory # | ||
6856 | # access. Another effect of using a single-precision # | ||
6857 | # "constant" is that the calculated value Z is # | ||
6858 | # # | ||
6859 | # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # | ||
6860 | # # | ||
6861 | # This error has to be considered later in Steps 3 and 4. # | ||
6862 | # # | ||
6863 | # Step 3. Calculate X - N*log2/64. # | ||
6864 | # 3.1 R := X + N*L1, # | ||
6865 | # where L1 := single-precision(-log2/64). # | ||
6866 | # 3.2 R := R + N*L2, # | ||
6867 | # L2 := extended-precision(-log2/64 - L1).# | ||
6868 | # Notes: a) The way L1 and L2 are chosen ensures L1+L2 # | ||
6869 | # approximate the value -log2/64 to 88 bits of accuracy. # | ||
6870 | # b) N*L1 is exact because N is no longer than 22 bits # | ||
6871 | # and L1 is no longer than 24 bits. # | ||
6872 | # c) The calculation X+N*L1 is also exact due to # | ||
6873 | # cancellation. Thus, R is practically X+N(L1+L2) to full # | ||
6874 | # 64 bits. # | ||
6875 | # d) It is important to estimate how large can |R| be # | ||
6876 | # after Step 3.2. # | ||
6877 | # # | ||
6878 | # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # | ||
6879 | # X*64/log2 (1+eps) = N + f, |f| <= 0.5 # | ||
6880 | # X*64/log2 - N = f - eps*X 64/log2 # | ||
6881 | # X - N*log2/64 = f*log2/64 - eps*X # | ||
6882 | # # | ||
6883 | # # | ||
6884 | # Now |X| <= 16446 log2, thus # | ||
6885 | # # | ||
6886 | # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # | ||
6887 | # <= 0.57 log2/64. # | ||
6888 | # This bound will be used in Step 4. # | ||
6889 | # # | ||
6890 | # Step 4. Approximate exp(R)-1 by a polynomial # | ||
6891 | # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # | ||
6892 | # Notes: a) In order to reduce memory access, the coefficients # | ||
6893 | # are made as "short" as possible: A1 (which is 1/2), A4 # | ||
6894 | # and A5 are single precision; A2 and A3 are double # | ||
6895 | # precision. # | ||
6896 | # b) Even with the restrictions above, # | ||
6897 | # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # | ||
6898 | # Note that 0.0062 is slightly bigger than 0.57 log2/64. # | ||
6899 | # c) To fully utilize the pipeline, p is separated into # | ||
6900 | # two independent pieces of roughly equal complexities # | ||
6901 | # p = [ R + R*S*(A2 + S*A4) ] + # | ||
6902 | # [ S*(A1 + S*(A3 + S*A5)) ] # | ||
6903 | # where S = R*R. # | ||
6904 | # # | ||
6905 | # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # | ||
6906 | # ans := T + ( T*p + t) # | ||
6907 | # where T and t are the stored values for 2^(J/64). # | ||
6908 | # Notes: 2^(J/64) is stored as T and t where T+t approximates # | ||
6909 | # 2^(J/64) to roughly 85 bits; T is in extended precision # | ||
6910 | # and t is in single precision. Note also that T is # | ||
6911 | # rounded to 62 bits so that the last two bits of T are # | ||
6912 | # zero. The reason for such a special form is that T-1, # | ||
6913 | # T-2, and T-8 will all be exact --- a property that will # | ||
6914 | # give much more accurate computation of the function # | ||
6915 | # EXPM1. # | ||
6916 | # # | ||
6917 | # Step 6. Reconstruction of exp(X) # | ||
6918 | # exp(X) = 2^M * 2^(J/64) * exp(R). # | ||
6919 | # 6.1 If AdjFlag = 0, go to 6.3 # | ||
6920 | # 6.2 ans := ans * AdjScale # | ||
6921 | # 6.3 Restore the user FPCR # | ||
6922 | # 6.4 Return ans := ans * Scale. Exit. # | ||
6923 | # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # | ||
6924 | # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # | ||
6925 | # neither overflow nor underflow. If AdjFlag = 1, that # | ||
6926 | # means that # | ||
6927 | # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # | ||
6928 | # Hence, exp(X) may overflow or underflow or neither. # | ||
6929 | # When that is the case, AdjScale = 2^(M1) where M1 is # | ||
6930 | # approximately M. Thus 6.2 will never cause # | ||
6931 | # over/underflow. Possible exception in 6.4 is overflow # | ||
6932 | # or underflow. The inexact exception is not generated in # | ||
6933 | # 6.4. Although one can argue that the inexact flag # | ||
6934 | # should always be raised, to simulate that exception # | ||
6935 | # cost to much than the flag is worth in practical uses. # | ||
6936 | # # | ||
6937 | # Step 7. Return 1 + X. # | ||
6938 | # 7.1 ans := X # | ||
6939 | # 7.2 Restore user FPCR. # | ||
6940 | # 7.3 Return ans := 1 + ans. Exit # | ||
6941 | # Notes: For non-zero X, the inexact exception will always be # | ||
6942 | # raised by 7.3. That is the only exception raised by 7.3.# | ||
6943 | # Note also that we use the FMOVEM instruction to move X # | ||
6944 | # in Step 7.1 to avoid unnecessary trapping. (Although # | ||
6945 | # the FMOVEM may not seem relevant since X is normalized, # | ||
6946 | # the precaution will be useful in the library version of # | ||
6947 | # this code where the separate entry for denormalized # | ||
6948 | # inputs will be done away with.) # | ||
6949 | # # | ||
6950 | # Step 8. Handle exp(X) where |X| >= 16380log2. # | ||
6951 | # 8.1 If |X| > 16480 log2, go to Step 9. # | ||
6952 | # (mimic 2.2 - 2.6) # | ||
6953 | # 8.2 N := round-to-integer( X * 64/log2 ) # | ||
6954 | # 8.3 Calculate J = N mod 64, J = 0,1,...,63 # | ||
6955 | # 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # | ||
6956 | # AdjFlag := 1. # | ||
6957 | # 8.5 Calculate the address of the stored value # | ||
6958 | # 2^(J/64). # | ||
6959 | # 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # | ||
6960 | # 8.7 Go to Step 3. # | ||
6961 | # Notes: Refer to notes for 2.2 - 2.6. # | ||
6962 | # # | ||
6963 | # Step 9. Handle exp(X), |X| > 16480 log2. # | ||
6964 | # 9.1 If X < 0, go to 9.3 # | ||
6965 | # 9.2 ans := Huge, go to 9.4 # | ||
6966 | # 9.3 ans := Tiny. # | ||
6967 | # 9.4 Restore user FPCR. # | ||
6968 | # 9.5 Return ans := ans * ans. Exit. # | ||
6969 | # Notes: Exp(X) will surely overflow or underflow, depending on # | ||
6970 | # X's sign. "Huge" and "Tiny" are respectively large/tiny # | ||
6971 | # extended-precision numbers whose square over/underflow # | ||
6972 | # with an inexact result. Thus, 9.5 always raises the # | ||
6973 | # inexact together with either overflow or underflow. # | ||
6974 | # # | ||
6975 | # setoxm1d # | ||
6976 | # -------- # | ||
6977 | # # | ||
6978 | # Step 1. Set ans := 0 # | ||
6979 | # # | ||
6980 | # Step 2. Return ans := X + ans. Exit. # | ||
6981 | # Notes: This will return X with the appropriate rounding # | ||
6982 | # precision prescribed by the user FPCR. # | ||
6983 | # # | ||
6984 | # setoxm1 # | ||
6985 | # ------- # | ||
6986 | # # | ||
6987 | # Step 1. Check |X| # | ||
6988 | # 1.1 If |X| >= 1/4, go to Step 1.3. # | ||
6989 | # 1.2 Go to Step 7. # | ||
6990 | # 1.3 If |X| < 70 log(2), go to Step 2. # | ||
6991 | # 1.4 Go to Step 10. # | ||
6992 | # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# | ||
6993 | # However, it is conceivable |X| can be small very often # | ||
6994 | # because EXPM1 is intended to evaluate exp(X)-1 # | ||
6995 | # accurately when |X| is small. For further details on # | ||
6996 | # the comparisons, see the notes on Step 1 of setox. # | ||
6997 | # # | ||
6998 | # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # | ||
6999 | # 2.1 N := round-to-nearest-integer( X * 64/log2 ). # | ||
7000 | # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # | ||
7001 | # or 63. # | ||
7002 | # 2.3 Calculate M = (N - J)/64; so N = 64M + J. # | ||
7003 | # 2.4 Calculate the address of the stored value of # | ||
7004 | # 2^(J/64). # | ||
7005 | # 2.5 Create the values Sc = 2^M and # | ||
7006 | # OnebySc := -2^(-M). # | ||
7007 | # Notes: See the notes on Step 2 of setox. # | ||
7008 | # # | ||
7009 | # Step 3. Calculate X - N*log2/64. # | ||
7010 | # 3.1 R := X + N*L1, # | ||
7011 | # where L1 := single-precision(-log2/64). # | ||
7012 | # 3.2 R := R + N*L2, # | ||
7013 | # L2 := extended-precision(-log2/64 - L1).# | ||
7014 | # Notes: Applying the analysis of Step 3 of setox in this case # | ||
7015 | # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # | ||
7016 | # this case). # | ||
7017 | # # | ||
7018 | # Step 4. Approximate exp(R)-1 by a polynomial # | ||
7019 | # p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # | ||
7020 | # Notes: a) In order to reduce memory access, the coefficients # | ||
7021 | # are made as "short" as possible: A1 (which is 1/2), A5 # | ||
7022 | # and A6 are single precision; A2, A3 and A4 are double # | ||
7023 | # precision. # | ||
7024 | # b) Even with the restriction above, # | ||
7025 | # |p - (exp(R)-1)| < |R| * 2^(-72.7) # | ||
7026 | # for all |R| <= 0.0055. # | ||
7027 | # c) To fully utilize the pipeline, p is separated into # | ||
7028 | # two independent pieces of roughly equal complexity # | ||
7029 | # p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # | ||
7030 | # [ R + S*(A1 + S*(A3 + S*A5)) ] # | ||
7031 | # where S = R*R. # | ||
7032 | # # | ||
7033 | # Step 5. Compute 2^(J/64)*p by # | ||
7034 | # p := T*p # | ||
7035 | # where T and t are the stored values for 2^(J/64). # | ||
7036 | # Notes: 2^(J/64) is stored as T and t where T+t approximates # | ||
7037 | # 2^(J/64) to roughly 85 bits; T is in extended precision # | ||
7038 | # and t is in single precision. Note also that T is # | ||
7039 | # rounded to 62 bits so that the last two bits of T are # | ||
7040 | # zero. The reason for such a special form is that T-1, # | ||
7041 | # T-2, and T-8 will all be exact --- a property that will # | ||
7042 | # be exploited in Step 6 below. The total relative error # | ||
7043 | # in p is no bigger than 2^(-67.7) compared to the final # | ||
7044 | # result. # | ||
7045 | # # | ||
7046 | # Step 6. Reconstruction of exp(X)-1 # | ||
7047 | # exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # | ||
7048 | # 6.1 If M <= 63, go to Step 6.3. # | ||
7049 | # 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # | ||
7050 | # 6.3 If M >= -3, go to 6.5. # | ||
7051 | # 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # | ||
7052 | # 6.5 ans := (T + OnebySc) + (p + t). # | ||
7053 | # 6.6 Restore user FPCR. # | ||
7054 | # 6.7 Return ans := Sc * ans. Exit. # | ||
7055 | # Notes: The various arrangements of the expressions give # | ||
7056 | # accurate evaluations. # | ||
7057 | # # | ||
7058 | # Step 7. exp(X)-1 for |X| < 1/4. # | ||
7059 | # 7.1 If |X| >= 2^(-65), go to Step 9. # | ||
7060 | # 7.2 Go to Step 8. # | ||
7061 | # # | ||
7062 | # Step 8. Calculate exp(X)-1, |X| < 2^(-65). # | ||
7063 | # 8.1 If |X| < 2^(-16312), goto 8.3 # | ||
7064 | # 8.2 Restore FPCR; return ans := X - 2^(-16382). # | ||
7065 | # Exit. # | ||
7066 | # 8.3 X := X * 2^(140). # | ||
7067 | # 8.4 Restore FPCR; ans := ans - 2^(-16382). # | ||
7068 | # Return ans := ans*2^(140). Exit # | ||
7069 | # Notes: The idea is to return "X - tiny" under the user # | ||
7070 | # precision and rounding modes. To avoid unnecessary # | ||
7071 | # inefficiency, we stay away from denormalized numbers # | ||
7072 | # the best we can. For |X| >= 2^(-16312), the # | ||
7073 | # straightforward 8.2 generates the inexact exception as # | ||
7074 | # the case warrants. # | ||
7075 | # # | ||
7076 | # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # | ||
7077 | # p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # | ||
7078 | # Notes: a) In order to reduce memory access, the coefficients # | ||
7079 | # are made as "short" as possible: B1 (which is 1/2), B9 # | ||
7080 | # to B12 are single precision; B3 to B8 are double # | ||
7081 | # precision; and B2 is double extended. # | ||
7082 | # b) Even with the restriction above, # | ||
7083 | # |p - (exp(X)-1)| < |X| 2^(-70.6) # | ||
7084 | # for all |X| <= 0.251. # | ||
7085 | # Note that 0.251 is slightly bigger than 1/4. # | ||
7086 | # c) To fully preserve accuracy, the polynomial is # | ||
7087 | # computed as # | ||
7088 | # X + ( S*B1 + Q ) where S = X*X and # | ||
7089 | # Q = X*S*(B2 + X*(B3 + ... + X*B12)) # | ||
7090 | # d) To fully utilize the pipeline, Q is separated into # | ||
7091 | # two independent pieces of roughly equal complexity # | ||
7092 | # Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # | ||
7093 | # [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # | ||
7094 | # # | ||
7095 | # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # | ||
7096 | # 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # | ||
7097 | # practical purposes. Therefore, go to Step 1 of setox. # | ||
7098 | # 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # | ||
7099 | # purposes. # | ||
7100 | # ans := -1 # | ||
7101 | # Restore user FPCR # | ||
7102 | # Return ans := ans + 2^(-126). Exit. # | ||
7103 | # Notes: 10.2 will always create an inexact and return -1 + tiny # | ||
7104 | # in the user rounding precision and mode. # | ||
7105 | # # | ||
7106 | ######################################################################### | ||
7107 | |||
7108 | L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 | ||
7109 | |||
7110 | EEXPA3: long 0x3FA55555,0x55554CC1 | ||
7111 | EEXPA2: long 0x3FC55555,0x55554A54 | ||
7112 | |||
7113 | EM1A4: long 0x3F811111,0x11174385 | ||
7114 | EM1A3: long 0x3FA55555,0x55554F5A | ||
7115 | |||
7116 | EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 | ||
7117 | |||
7118 | EM1B8: long 0x3EC71DE3,0xA5774682 | ||
7119 | EM1B7: long 0x3EFA01A0,0x19D7CB68 | ||
7120 | |||
7121 | EM1B6: long 0x3F2A01A0,0x1A019DF3 | ||
7122 | EM1B5: long 0x3F56C16C,0x16C170E2 | ||
7123 | |||
7124 | EM1B4: long 0x3F811111,0x11111111 | ||
7125 | EM1B3: long 0x3FA55555,0x55555555 | ||
7126 | |||
7127 | EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB | ||
7128 | long 0x00000000 | ||
7129 | |||
7130 | TWO140: long 0x48B00000,0x00000000 | ||
7131 | TWON140: | ||
7132 | long 0x37300000,0x00000000 | ||
7133 | |||
7134 | EEXPTBL: | ||
7135 | long 0x3FFF0000,0x80000000,0x00000000,0x00000000 | ||
7136 | long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B | ||
7137 | long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 | ||
7138 | long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 | ||
7139 | long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C | ||
7140 | long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F | ||
7141 | long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 | ||
7142 | long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF | ||
7143 | long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF | ||
7144 | long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA | ||
7145 | long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 | ||
7146 | long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 | ||
7147 | long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 | ||
7148 | long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 | ||
7149 | long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D | ||
7150 | long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 | ||
7151 | long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD | ||
7152 | long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 | ||
7153 | long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 | ||
7154 | long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D | ||
7155 | long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 | ||
7156 | long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C | ||
7157 | long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 | ||
7158 | long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 | ||
7159 | long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 | ||
7160 | long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA | ||
7161 | long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A | ||
7162 | long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC | ||
7163 | long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC | ||
7164 | long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 | ||
7165 | long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 | ||
7166 | long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A | ||
7167 | long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 | ||
7168 | long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 | ||
7169 | long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC | ||
7170 | long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 | ||
7171 | long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 | ||
7172 | long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 | ||
7173 | long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 | ||
7174 | long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B | ||
7175 | long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 | ||
7176 | long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E | ||
7177 | long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 | ||
7178 | long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D | ||
7179 | long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 | ||
7180 | long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C | ||
7181 | long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 | ||
7182 | long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 | ||
7183 | long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F | ||
7184 | long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F | ||
7185 | long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 | ||
7186 | long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 | ||
7187 | long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B | ||
7188 | long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 | ||
7189 | long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A | ||
7190 | long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 | ||
7191 | long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 | ||
7192 | long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B | ||
7193 | long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 | ||
7194 | long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 | ||
7195 | long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 | ||
7196 | long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 | ||
7197 | long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 | ||
7198 | long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A | ||
7199 | |||
7200 | set ADJFLAG,L_SCR2 | ||
7201 | set SCALE,FP_SCR0 | ||
7202 | set ADJSCALE,FP_SCR1 | ||
7203 | set SC,FP_SCR0 | ||
7204 | set ONEBYSC,FP_SCR1 | ||
7205 | |||
7206 | global setox | ||
7207 | setox: | ||
7208 | #--entry point for EXP(X), here X is finite, non-zero, and not NaN's | ||
7209 | |||
7210 | #--Step 1. | ||
7211 | mov.l (%a0),%d1 # load part of input X | ||
7212 | and.l &0x7FFF0000,%d1 # biased expo. of X | ||
7213 | cmp.l %d1,&0x3FBE0000 # 2^(-65) | ||
7214 | bge.b EXPC1 # normal case | ||
7215 | bra EXPSM | ||
7216 | |||
7217 | EXPC1: | ||
7218 | #--The case |X| >= 2^(-65) | ||
7219 | mov.w 4(%a0),%d1 # expo. and partial sig. of |X| | ||
7220 | cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits | ||
7221 | blt.b EXPMAIN # normal case | ||
7222 | bra EEXPBIG | ||
7223 | |||
7224 | EXPMAIN: | ||
7225 | #--Step 2. | ||
7226 | #--This is the normal branch: 2^(-65) <= |X| < 16380 log2. | ||
7227 | fmov.x (%a0),%fp0 # load input from (a0) | ||
7228 | |||
7229 | fmov.x %fp0,%fp1 | ||
7230 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X | ||
7231 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} | ||
7232 | mov.l &0,ADJFLAG(%a6) | ||
7233 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) | ||
7234 | lea EEXPTBL(%pc),%a1 | ||
7235 | fmov.l %d1,%fp0 # convert to floating-format | ||
7236 | |||
7237 | mov.l %d1,L_SCR1(%a6) # save N temporarily | ||
7238 | and.l &0x3F,%d1 # D0 is J = N mod 64 | ||
7239 | lsl.l &4,%d1 | ||
7240 | add.l %d1,%a1 # address of 2^(J/64) | ||
7241 | mov.l L_SCR1(%a6),%d1 | ||
7242 | asr.l &6,%d1 # D0 is M | ||
7243 | add.w &0x3FFF,%d1 # biased expo. of 2^(M) | ||
7244 | mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB | ||
7245 | |||
7246 | EXPCONT1: | ||
7247 | #--Step 3. | ||
7248 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | ||
7249 | #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) | ||
7250 | fmov.x %fp0,%fp2 | ||
7251 | fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) | ||
7252 | fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 | ||
7253 | fadd.x %fp1,%fp0 # X + N*L1 | ||
7254 | fadd.x %fp2,%fp0 # fp0 is R, reduced arg. | ||
7255 | |||
7256 | #--Step 4. | ||
7257 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | ||
7258 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) | ||
7259 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | ||
7260 | #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] | ||
7261 | |||
7262 | fmov.x %fp0,%fp1 | ||
7263 | fmul.x %fp1,%fp1 # fp1 IS S = R*R | ||
7264 | |||
7265 | fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 | ||
7266 | |||
7267 | fmul.x %fp1,%fp2 # fp2 IS S*A5 | ||
7268 | fmov.x %fp1,%fp3 | ||
7269 | fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 | ||
7270 | |||
7271 | fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 | ||
7272 | fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 | ||
7273 | |||
7274 | fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) | ||
7275 | mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended | ||
7276 | mov.l &0x80000000,SCALE+4(%a6) | ||
7277 | clr.l SCALE+8(%a6) | ||
7278 | |||
7279 | fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) | ||
7280 | |||
7281 | fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) | ||
7282 | fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) | ||
7283 | |||
7284 | fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) | ||
7285 | fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), | ||
7286 | |||
7287 | fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) | ||
7288 | fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 | ||
7289 | |||
7290 | #--Step 5 | ||
7291 | #--final reconstruction process | ||
7292 | #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) | ||
7293 | |||
7294 | fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) | ||
7295 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} | ||
7296 | fadd.s (%a1),%fp0 # accurate 2^(J/64) | ||
7297 | |||
7298 | fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... | ||
7299 | mov.l ADJFLAG(%a6),%d1 | ||
7300 | |||
7301 | #--Step 6 | ||
7302 | tst.l %d1 | ||
7303 | beq.b NORMAL | ||
7304 | ADJUST: | ||
7305 | fmul.x ADJSCALE(%a6),%fp0 | ||
7306 | NORMAL: | ||
7307 | fmov.l %d0,%fpcr # restore user FPCR | ||
7308 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
7309 | fmul.x SCALE(%a6),%fp0 # multiply 2^(M) | ||
7310 | bra t_catch | ||
7311 | |||
7312 | EXPSM: | ||
7313 | #--Step 7 | ||
7314 | fmovm.x (%a0),&0x80 # load X | ||
7315 | fmov.l %d0,%fpcr | ||
7316 | fadd.s &0x3F800000,%fp0 # 1+X in user mode | ||
7317 | bra t_pinx2 | ||
7318 | |||
7319 | EEXPBIG: | ||
7320 | #--Step 8 | ||
7321 | cmp.l %d1,&0x400CB27C # 16480 log2 | ||
7322 | bgt.b EXP2BIG | ||
7323 | #--Steps 8.2 -- 8.6 | ||
7324 | fmov.x (%a0),%fp0 # load input from (a0) | ||
7325 | |||
7326 | fmov.x %fp0,%fp1 | ||
7327 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X | ||
7328 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} | ||
7329 | mov.l &1,ADJFLAG(%a6) | ||
7330 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) | ||
7331 | lea EEXPTBL(%pc),%a1 | ||
7332 | fmov.l %d1,%fp0 # convert to floating-format | ||
7333 | mov.l %d1,L_SCR1(%a6) # save N temporarily | ||
7334 | and.l &0x3F,%d1 # D0 is J = N mod 64 | ||
7335 | lsl.l &4,%d1 | ||
7336 | add.l %d1,%a1 # address of 2^(J/64) | ||
7337 | mov.l L_SCR1(%a6),%d1 | ||
7338 | asr.l &6,%d1 # D0 is K | ||
7339 | mov.l %d1,L_SCR1(%a6) # save K temporarily | ||
7340 | asr.l &1,%d1 # D0 is M1 | ||
7341 | sub.l %d1,L_SCR1(%a6) # a1 is M | ||
7342 | add.w &0x3FFF,%d1 # biased expo. of 2^(M1) | ||
7343 | mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) | ||
7344 | mov.l &0x80000000,ADJSCALE+4(%a6) | ||
7345 | clr.l ADJSCALE+8(%a6) | ||
7346 | mov.l L_SCR1(%a6),%d1 # D0 is M | ||
7347 | add.w &0x3FFF,%d1 # biased expo. of 2^(M) | ||
7348 | bra.w EXPCONT1 # go back to Step 3 | ||
7349 | |||
7350 | EXP2BIG: | ||
7351 | #--Step 9 | ||
7352 | tst.b (%a0) # is X positive or negative? | ||
7353 | bmi t_unfl2 | ||
7354 | bra t_ovfl2 | ||
7355 | |||
7356 | global setoxd | ||
7357 | setoxd: | ||
7358 | #--entry point for EXP(X), X is denormalized | ||
7359 | mov.l (%a0),-(%sp) | ||
7360 | andi.l &0x80000000,(%sp) | ||
7361 | ori.l &0x00800000,(%sp) # sign(X)*2^(-126) | ||
7362 | |||
7363 | fmov.s &0x3F800000,%fp0 | ||
7364 | |||
7365 | fmov.l %d0,%fpcr | ||
7366 | fadd.s (%sp)+,%fp0 | ||
7367 | bra t_pinx2 | ||
7368 | |||
7369 | global setoxm1 | ||
7370 | setoxm1: | ||
7371 | #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN | ||
7372 | |||
7373 | #--Step 1. | ||
7374 | #--Step 1.1 | ||
7375 | mov.l (%a0),%d1 # load part of input X | ||
7376 | and.l &0x7FFF0000,%d1 # biased expo. of X | ||
7377 | cmp.l %d1,&0x3FFD0000 # 1/4 | ||
7378 | bge.b EM1CON1 # |X| >= 1/4 | ||
7379 | bra EM1SM | ||
7380 | |||
7381 | EM1CON1: | ||
7382 | #--Step 1.3 | ||
7383 | #--The case |X| >= 1/4 | ||
7384 | mov.w 4(%a0),%d1 # expo. and partial sig. of |X| | ||
7385 | cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits | ||
7386 | ble.b EM1MAIN # 1/4 <= |X| <= 70log2 | ||
7387 | bra EM1BIG | ||
7388 | |||
7389 | EM1MAIN: | ||
7390 | #--Step 2. | ||
7391 | #--This is the case: 1/4 <= |X| <= 70 log2. | ||
7392 | fmov.x (%a0),%fp0 # load input from (a0) | ||
7393 | |||
7394 | fmov.x %fp0,%fp1 | ||
7395 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X | ||
7396 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} | ||
7397 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) | ||
7398 | lea EEXPTBL(%pc),%a1 | ||
7399 | fmov.l %d1,%fp0 # convert to floating-format | ||
7400 | |||
7401 | mov.l %d1,L_SCR1(%a6) # save N temporarily | ||
7402 | and.l &0x3F,%d1 # D0 is J = N mod 64 | ||
7403 | lsl.l &4,%d1 | ||
7404 | add.l %d1,%a1 # address of 2^(J/64) | ||
7405 | mov.l L_SCR1(%a6),%d1 | ||
7406 | asr.l &6,%d1 # D0 is M | ||
7407 | mov.l %d1,L_SCR1(%a6) # save a copy of M | ||
7408 | |||
7409 | #--Step 3. | ||
7410 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | ||
7411 | #--a0 points to 2^(J/64), D0 and a1 both contain M | ||
7412 | fmov.x %fp0,%fp2 | ||
7413 | fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) | ||
7414 | fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 | ||
7415 | fadd.x %fp1,%fp0 # X + N*L1 | ||
7416 | fadd.x %fp2,%fp0 # fp0 is R, reduced arg. | ||
7417 | add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M | ||
7418 | |||
7419 | #--Step 4. | ||
7420 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | ||
7421 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) | ||
7422 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | ||
7423 | #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] | ||
7424 | |||
7425 | fmov.x %fp0,%fp1 | ||
7426 | fmul.x %fp1,%fp1 # fp1 IS S = R*R | ||
7427 | |||
7428 | fmov.s &0x3950097B,%fp2 # fp2 IS a6 | ||
7429 | |||
7430 | fmul.x %fp1,%fp2 # fp2 IS S*A6 | ||
7431 | fmov.x %fp1,%fp3 | ||
7432 | fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 | ||
7433 | |||
7434 | fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 | ||
7435 | fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 | ||
7436 | mov.w %d1,SC(%a6) # SC is 2^(M) in extended | ||
7437 | mov.l &0x80000000,SC+4(%a6) | ||
7438 | clr.l SC+8(%a6) | ||
7439 | |||
7440 | fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) | ||
7441 | mov.l L_SCR1(%a6),%d1 # D0 is M | ||
7442 | neg.w %d1 # D0 is -M | ||
7443 | fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) | ||
7444 | add.w &0x3FFF,%d1 # biased expo. of 2^(-M) | ||
7445 | fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) | ||
7446 | fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) | ||
7447 | |||
7448 | fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) | ||
7449 | or.w &0x8000,%d1 # signed/expo. of -2^(-M) | ||
7450 | mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) | ||
7451 | mov.l &0x80000000,ONEBYSC+4(%a6) | ||
7452 | clr.l ONEBYSC+8(%a6) | ||
7453 | fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) | ||
7454 | |||
7455 | fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) | ||
7456 | fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) | ||
7457 | |||
7458 | fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 | ||
7459 | |||
7460 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} | ||
7461 | |||
7462 | #--Step 5 | ||
7463 | #--Compute 2^(J/64)*p | ||
7464 | |||
7465 | fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) | ||
7466 | |||
7467 | #--Step 6 | ||
7468 | #--Step 6.1 | ||
7469 | mov.l L_SCR1(%a6),%d1 # retrieve M | ||
7470 | cmp.l %d1,&63 | ||
7471 | ble.b MLE63 | ||
7472 | #--Step 6.2 M >= 64 | ||
7473 | fmov.s 12(%a1),%fp1 # fp1 is t | ||
7474 | fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc | ||
7475 | fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released | ||
7476 | fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) | ||
7477 | bra EM1SCALE | ||
7478 | MLE63: | ||
7479 | #--Step 6.3 M <= 63 | ||
7480 | cmp.l %d1,&-3 | ||
7481 | bge.b MGEN3 | ||
7482 | MLTN3: | ||
7483 | #--Step 6.4 M <= -4 | ||
7484 | fadd.s 12(%a1),%fp0 # p+t | ||
7485 | fadd.x (%a1),%fp0 # T+(p+t) | ||
7486 | fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) | ||
7487 | bra EM1SCALE | ||
7488 | MGEN3: | ||
7489 | #--Step 6.5 -3 <= M <= 63 | ||
7490 | fmov.x (%a1)+,%fp1 # fp1 is T | ||
7491 | fadd.s (%a1),%fp0 # fp0 is p+t | ||
7492 | fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc | ||
7493 | fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) | ||
7494 | |||
7495 | EM1SCALE: | ||
7496 | #--Step 6.6 | ||
7497 | fmov.l %d0,%fpcr | ||
7498 | fmul.x SC(%a6),%fp0 | ||
7499 | bra t_inx2 | ||
7500 | |||
7501 | EM1SM: | ||
7502 | #--Step 7 |X| < 1/4. | ||
7503 | cmp.l %d1,&0x3FBE0000 # 2^(-65) | ||
7504 | bge.b EM1POLY | ||
7505 | |||
7506 | EM1TINY: | ||
7507 | #--Step 8 |X| < 2^(-65) | ||
7508 | cmp.l %d1,&0x00330000 # 2^(-16312) | ||
7509 | blt.b EM12TINY | ||
7510 | #--Step 8.2 | ||
7511 | mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) | ||
7512 | mov.l &0x80000000,SC+4(%a6) | ||
7513 | clr.l SC+8(%a6) | ||
7514 | fmov.x (%a0),%fp0 | ||
7515 | fmov.l %d0,%fpcr | ||
7516 | mov.b &FADD_OP,%d1 # last inst is ADD | ||
7517 | fadd.x SC(%a6),%fp0 | ||
7518 | bra t_catch | ||
7519 | |||
7520 | EM12TINY: | ||
7521 | #--Step 8.3 | ||
7522 | fmov.x (%a0),%fp0 | ||
7523 | fmul.d TWO140(%pc),%fp0 | ||
7524 | mov.l &0x80010000,SC(%a6) | ||
7525 | mov.l &0x80000000,SC+4(%a6) | ||
7526 | clr.l SC+8(%a6) | ||
7527 | fadd.x SC(%a6),%fp0 | ||
7528 | fmov.l %d0,%fpcr | ||
7529 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
7530 | fmul.d TWON140(%pc),%fp0 | ||
7531 | bra t_catch | ||
7532 | |||
7533 | EM1POLY: | ||
7534 | #--Step 9 exp(X)-1 by a simple polynomial | ||
7535 | fmov.x (%a0),%fp0 # fp0 is X | ||
7536 | fmul.x %fp0,%fp0 # fp0 is S := X*X | ||
7537 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} | ||
7538 | fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 | ||
7539 | fmul.x %fp0,%fp1 # fp1 is S*B12 | ||
7540 | fmov.s &0x310F8290,%fp2 # fp2 is B11 | ||
7541 | fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 | ||
7542 | |||
7543 | fmul.x %fp0,%fp2 # fp2 is S*B11 | ||
7544 | fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... | ||
7545 | |||
7546 | fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... | ||
7547 | fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... | ||
7548 | |||
7549 | fmul.x %fp0,%fp2 # fp2 is S*(B9+... | ||
7550 | fmul.x %fp0,%fp1 # fp1 is S*(B8+... | ||
7551 | |||
7552 | fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... | ||
7553 | fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... | ||
7554 | |||
7555 | fmul.x %fp0,%fp2 # fp2 is S*(B7+... | ||
7556 | fmul.x %fp0,%fp1 # fp1 is S*(B6+... | ||
7557 | |||
7558 | fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... | ||
7559 | fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... | ||
7560 | |||
7561 | fmul.x %fp0,%fp2 # fp2 is S*(B5+... | ||
7562 | fmul.x %fp0,%fp1 # fp1 is S*(B4+... | ||
7563 | |||
7564 | fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... | ||
7565 | fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... | ||
7566 | |||
7567 | fmul.x %fp0,%fp2 # fp2 is S*(B3+... | ||
7568 | fmul.x %fp0,%fp1 # fp1 is S*(B2+... | ||
7569 | |||
7570 | fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) | ||
7571 | fmul.x (%a0),%fp1 # fp1 is X*S*(B2... | ||
7572 | |||
7573 | fmul.s &0x3F000000,%fp0 # fp0 is S*B1 | ||
7574 | fadd.x %fp2,%fp1 # fp1 is Q | ||
7575 | |||
7576 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} | ||
7577 | |||
7578 | fadd.x %fp1,%fp0 # fp0 is S*B1+Q | ||
7579 | |||
7580 | fmov.l %d0,%fpcr | ||
7581 | fadd.x (%a0),%fp0 | ||
7582 | bra t_inx2 | ||
7583 | |||
7584 | EM1BIG: | ||
7585 | #--Step 10 |X| > 70 log2 | ||
7586 | mov.l (%a0),%d1 | ||
7587 | cmp.l %d1,&0 | ||
7588 | bgt.w EXPC1 | ||
7589 | #--Step 10.2 | ||
7590 | fmov.s &0xBF800000,%fp0 # fp0 is -1 | ||
7591 | fmov.l %d0,%fpcr | ||
7592 | fadd.s &0x00800000,%fp0 # -1 + 2^(-126) | ||
7593 | bra t_minx2 | ||
7594 | |||
7595 | global setoxm1d | ||
7596 | setoxm1d: | ||
7597 | #--entry point for EXPM1(X), here X is denormalized | ||
7598 | #--Step 0. | ||
7599 | bra t_extdnrm | ||
7600 | |||
7601 | ######################################################################### | ||
7602 | # sgetexp(): returns the exponent portion of the input argument. # | ||
7603 | # The exponent bias is removed and the exponent value is # | ||
7604 | # returned as an extended precision number in fp0. # | ||
7605 | # sgetexpd(): handles denormalized numbers. # | ||
7606 | # # | ||
7607 | # sgetman(): extracts the mantissa of the input argument. The # | ||
7608 | # mantissa is converted to an extended precision number w/ # | ||
7609 | # an exponent of $3fff and is returned in fp0. The range of # | ||
7610 | # the result is [1.0 - 2.0). # | ||
7611 | # sgetmand(): handles denormalized numbers. # | ||
7612 | # # | ||
7613 | # INPUT *************************************************************** # | ||
7614 | # a0 = pointer to extended precision input # | ||
7615 | # # | ||
7616 | # OUTPUT ************************************************************** # | ||
7617 | # fp0 = exponent(X) or mantissa(X) # | ||
7618 | # # | ||
7619 | ######################################################################### | ||
7620 | |||
7621 | global sgetexp | ||
7622 | sgetexp: | ||
7623 | mov.w SRC_EX(%a0),%d0 # get the exponent | ||
7624 | bclr &0xf,%d0 # clear the sign bit | ||
7625 | subi.w &0x3fff,%d0 # subtract off the bias | ||
7626 | fmov.w %d0,%fp0 # return exp in fp0 | ||
7627 | blt.b sgetexpn # it's negative | ||
7628 | rts | ||
7629 | |||
7630 | sgetexpn: | ||
7631 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
7632 | rts | ||
7633 | |||
7634 | global sgetexpd | ||
7635 | sgetexpd: | ||
7636 | bsr.l norm # normalize | ||
7637 | neg.w %d0 # new exp = -(shft amt) | ||
7638 | subi.w &0x3fff,%d0 # subtract off the bias | ||
7639 | fmov.w %d0,%fp0 # return exp in fp0 | ||
7640 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
7641 | rts | ||
7642 | |||
7643 | global sgetman | ||
7644 | sgetman: | ||
7645 | mov.w SRC_EX(%a0),%d0 # get the exp | ||
7646 | ori.w &0x7fff,%d0 # clear old exp | ||
7647 | bclr &0xe,%d0 # make it the new exp +-3fff | ||
7648 | |||
7649 | # here, we build the result in a tmp location so as not to disturb the input | ||
7650 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc | ||
7651 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc | ||
7652 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
7653 | fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 | ||
7654 | bmi.b sgetmann # it's negative | ||
7655 | rts | ||
7656 | |||
7657 | sgetmann: | ||
7658 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
7659 | rts | ||
7660 | |||
7661 | # | ||
7662 | # For denormalized numbers, shift the mantissa until the j-bit = 1, | ||
7663 | # then load the exponent with +/1 $3fff. | ||
7664 | # | ||
7665 | global sgetmand | ||
7666 | sgetmand: | ||
7667 | bsr.l norm # normalize exponent | ||
7668 | bra.b sgetman | ||
7669 | |||
7670 | ######################################################################### | ||
7671 | # scosh(): computes the hyperbolic cosine of a normalized input # | ||
7672 | # scoshd(): computes the hyperbolic cosine of a denormalized input # | ||
7673 | # # | ||
7674 | # INPUT *************************************************************** # | ||
7675 | # a0 = pointer to extended precision input # | ||
7676 | # d0 = round precision,mode # | ||
7677 | # # | ||
7678 | # OUTPUT ************************************************************** # | ||
7679 | # fp0 = cosh(X) # | ||
7680 | # # | ||
7681 | # ACCURACY and MONOTONICITY ******************************************* # | ||
7682 | # The returned result is within 3 ulps in 64 significant bit, # | ||
7683 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
7684 | # rounded to double precision. The result is provably monotonic # | ||
7685 | # in double precision. # | ||
7686 | # # | ||
7687 | # ALGORITHM *********************************************************** # | ||
7688 | # # | ||
7689 | # COSH # | ||
7690 | # 1. If |X| > 16380 log2, go to 3. # | ||
7691 | # # | ||
7692 | # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # | ||
7693 | # y = |X|, z = exp(Y), and # | ||
7694 | # cosh(X) = (1/2)*( z + 1/z ). # | ||
7695 | # Exit. # | ||
7696 | # # | ||
7697 | # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # | ||
7698 | # # | ||
7699 | # 4. (16380 log2 < |X| <= 16480 log2) # | ||
7700 | # cosh(X) = sign(X) * exp(|X|)/2. # | ||
7701 | # However, invoking exp(|X|) may cause premature # | ||
7702 | # overflow. Thus, we calculate sinh(X) as follows: # | ||
7703 | # Y := |X| # | ||
7704 | # Fact := 2**(16380) # | ||
7705 | # Y' := Y - 16381 log2 # | ||
7706 | # cosh(X) := Fact * exp(Y'). # | ||
7707 | # Exit. # | ||
7708 | # # | ||
7709 | # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # | ||
7710 | # Huge*Huge to generate overflow and an infinity with # | ||
7711 | # the appropriate sign. Huge is the largest finite number # | ||
7712 | # in extended format. Exit. # | ||
7713 | # # | ||
7714 | ######################################################################### | ||
7715 | |||
7716 | TWO16380: | ||
7717 | long 0x7FFB0000,0x80000000,0x00000000,0x00000000 | ||
7718 | |||
7719 | global scosh | ||
7720 | scosh: | ||
7721 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
7722 | |||
7723 | mov.l (%a0),%d1 | ||
7724 | mov.w 4(%a0),%d1 | ||
7725 | and.l &0x7FFFFFFF,%d1 | ||
7726 | cmp.l %d1,&0x400CB167 | ||
7727 | bgt.b COSHBIG | ||
7728 | |||
7729 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | ||
7730 | #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) | ||
7731 | |||
7732 | fabs.x %fp0 # |X| | ||
7733 | |||
7734 | mov.l %d0,-(%sp) | ||
7735 | clr.l %d0 | ||
7736 | fmovm.x &0x01,-(%sp) # save |X| to stack | ||
7737 | lea (%sp),%a0 # pass ptr to |X| | ||
7738 | bsr setox # FP0 IS EXP(|X|) | ||
7739 | add.l &0xc,%sp # erase |X| from stack | ||
7740 | fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) | ||
7741 | mov.l (%sp)+,%d0 | ||
7742 | |||
7743 | fmov.s &0x3E800000,%fp1 # (1/4) | ||
7744 | fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) | ||
7745 | |||
7746 | fmov.l %d0,%fpcr | ||
7747 | mov.b &FADD_OP,%d1 # last inst is ADD | ||
7748 | fadd.x %fp1,%fp0 | ||
7749 | bra t_catch | ||
7750 | |||
7751 | COSHBIG: | ||
7752 | cmp.l %d1,&0x400CB2B3 | ||
7753 | bgt.b COSHHUGE | ||
7754 | |||
7755 | fabs.x %fp0 | ||
7756 | fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) | ||
7757 | fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE | ||
7758 | |||
7759 | mov.l %d0,-(%sp) | ||
7760 | clr.l %d0 | ||
7761 | fmovm.x &0x01,-(%sp) # save fp0 to stack | ||
7762 | lea (%sp),%a0 # pass ptr to fp0 | ||
7763 | bsr setox | ||
7764 | add.l &0xc,%sp # clear fp0 from stack | ||
7765 | mov.l (%sp)+,%d0 | ||
7766 | |||
7767 | fmov.l %d0,%fpcr | ||
7768 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
7769 | fmul.x TWO16380(%pc),%fp0 | ||
7770 | bra t_catch | ||
7771 | |||
7772 | COSHHUGE: | ||
7773 | bra t_ovfl2 | ||
7774 | |||
7775 | global scoshd | ||
7776 | #--COSH(X) = 1 FOR DENORMALIZED X | ||
7777 | scoshd: | ||
7778 | fmov.s &0x3F800000,%fp0 | ||
7779 | |||
7780 | fmov.l %d0,%fpcr | ||
7781 | fadd.s &0x00800000,%fp0 | ||
7782 | bra t_pinx2 | ||
7783 | |||
7784 | ######################################################################### | ||
7785 | # ssinh(): computes the hyperbolic sine of a normalized input # | ||
7786 | # ssinhd(): computes the hyperbolic sine of a denormalized input # | ||
7787 | # # | ||
7788 | # INPUT *************************************************************** # | ||
7789 | # a0 = pointer to extended precision input # | ||
7790 | # d0 = round precision,mode # | ||
7791 | # # | ||
7792 | # OUTPUT ************************************************************** # | ||
7793 | # fp0 = sinh(X) # | ||
7794 | # # | ||
7795 | # ACCURACY and MONOTONICITY ******************************************* # | ||
7796 | # The returned result is within 3 ulps in 64 significant bit, # | ||
7797 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
7798 | # rounded to double precision. The result is provably monotonic # | ||
7799 | # in double precision. # | ||
7800 | # # | ||
7801 | # ALGORITHM *********************************************************** # | ||
7802 | # # | ||
7803 | # SINH # | ||
7804 | # 1. If |X| > 16380 log2, go to 3. # | ||
7805 | # # | ||
7806 | # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # | ||
7807 | # y = |X|, sgn = sign(X), and z = expm1(Y), # | ||
7808 | # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # | ||
7809 | # Exit. # | ||
7810 | # # | ||
7811 | # 3. If |X| > 16480 log2, go to 5. # | ||
7812 | # # | ||
7813 | # 4. (16380 log2 < |X| <= 16480 log2) # | ||
7814 | # sinh(X) = sign(X) * exp(|X|)/2. # | ||
7815 | # However, invoking exp(|X|) may cause premature overflow. # | ||
7816 | # Thus, we calculate sinh(X) as follows: # | ||
7817 | # Y := |X| # | ||
7818 | # sgn := sign(X) # | ||
7819 | # sgnFact := sgn * 2**(16380) # | ||
7820 | # Y' := Y - 16381 log2 # | ||
7821 | # sinh(X) := sgnFact * exp(Y'). # | ||
7822 | # Exit. # | ||
7823 | # # | ||
7824 | # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # | ||
7825 | # sign(X)*Huge*Huge to generate overflow and an infinity with # | ||
7826 | # the appropriate sign. Huge is the largest finite number in # | ||
7827 | # extended format. Exit. # | ||
7828 | # # | ||
7829 | ######################################################################### | ||
7830 | |||
7831 | global ssinh | ||
7832 | ssinh: | ||
7833 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
7834 | |||
7835 | mov.l (%a0),%d1 | ||
7836 | mov.w 4(%a0),%d1 | ||
7837 | mov.l %d1,%a1 # save (compacted) operand | ||
7838 | and.l &0x7FFFFFFF,%d1 | ||
7839 | cmp.l %d1,&0x400CB167 | ||
7840 | bgt.b SINHBIG | ||
7841 | |||
7842 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | ||
7843 | #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) | ||
7844 | |||
7845 | fabs.x %fp0 # Y = |X| | ||
7846 | |||
7847 | movm.l &0x8040,-(%sp) # {a1/d0} | ||
7848 | fmovm.x &0x01,-(%sp) # save Y on stack | ||
7849 | lea (%sp),%a0 # pass ptr to Y | ||
7850 | clr.l %d0 | ||
7851 | bsr setoxm1 # FP0 IS Z = EXPM1(Y) | ||
7852 | add.l &0xc,%sp # clear Y from stack | ||
7853 | fmov.l &0,%fpcr | ||
7854 | movm.l (%sp)+,&0x0201 # {a1/d0} | ||
7855 | |||
7856 | fmov.x %fp0,%fp1 | ||
7857 | fadd.s &0x3F800000,%fp1 # 1+Z | ||
7858 | fmov.x %fp0,-(%sp) | ||
7859 | fdiv.x %fp1,%fp0 # Z/(1+Z) | ||
7860 | mov.l %a1,%d1 | ||
7861 | and.l &0x80000000,%d1 | ||
7862 | or.l &0x3F000000,%d1 | ||
7863 | fadd.x (%sp)+,%fp0 | ||
7864 | mov.l %d1,-(%sp) | ||
7865 | |||
7866 | fmov.l %d0,%fpcr | ||
7867 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
7868 | fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set | ||
7869 | bra t_catch | ||
7870 | |||
7871 | SINHBIG: | ||
7872 | cmp.l %d1,&0x400CB2B3 | ||
7873 | bgt t_ovfl | ||
7874 | fabs.x %fp0 | ||
7875 | fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) | ||
7876 | mov.l &0,-(%sp) | ||
7877 | mov.l &0x80000000,-(%sp) | ||
7878 | mov.l %a1,%d1 | ||
7879 | and.l &0x80000000,%d1 | ||
7880 | or.l &0x7FFB0000,%d1 | ||
7881 | mov.l %d1,-(%sp) # EXTENDED FMT | ||
7882 | fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE | ||
7883 | |||
7884 | mov.l %d0,-(%sp) | ||
7885 | clr.l %d0 | ||
7886 | fmovm.x &0x01,-(%sp) # save fp0 on stack | ||
7887 | lea (%sp),%a0 # pass ptr to fp0 | ||
7888 | bsr setox | ||
7889 | add.l &0xc,%sp # clear fp0 from stack | ||
7890 | |||
7891 | mov.l (%sp)+,%d0 | ||
7892 | fmov.l %d0,%fpcr | ||
7893 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
7894 | fmul.x (%sp)+,%fp0 # possible exception | ||
7895 | bra t_catch | ||
7896 | |||
7897 | global ssinhd | ||
7898 | #--SINH(X) = X FOR DENORMALIZED X | ||
7899 | ssinhd: | ||
7900 | bra t_extdnrm | ||
7901 | |||
7902 | ######################################################################### | ||
7903 | # stanh(): computes the hyperbolic tangent of a normalized input # | ||
7904 | # stanhd(): computes the hyperbolic tangent of a denormalized input # | ||
7905 | # # | ||
7906 | # INPUT *************************************************************** # | ||
7907 | # a0 = pointer to extended precision input # | ||
7908 | # d0 = round precision,mode # | ||
7909 | # # | ||
7910 | # OUTPUT ************************************************************** # | ||
7911 | # fp0 = tanh(X) # | ||
7912 | # # | ||
7913 | # ACCURACY and MONOTONICITY ******************************************* # | ||
7914 | # The returned result is within 3 ulps in 64 significant bit, # | ||
7915 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
7916 | # rounded to double precision. The result is provably monotonic # | ||
7917 | # in double precision. # | ||
7918 | # # | ||
7919 | # ALGORITHM *********************************************************** # | ||
7920 | # # | ||
7921 | # TANH # | ||
7922 | # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # | ||
7923 | # # | ||
7924 | # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # | ||
7925 | # sgn := sign(X), y := 2|X|, z := expm1(Y), and # | ||
7926 | # tanh(X) = sgn*( z/(2+z) ). # | ||
7927 | # Exit. # | ||
7928 | # # | ||
7929 | # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # | ||
7930 | # go to 7. # | ||
7931 | # # | ||
7932 | # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # | ||
7933 | # # | ||
7934 | # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # | ||
7935 | # sgn := sign(X), y := 2|X|, z := exp(Y), # | ||
7936 | # tanh(X) = sgn - [ sgn*2/(1+z) ]. # | ||
7937 | # Exit. # | ||
7938 | # # | ||
7939 | # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # | ||
7940 | # calculate Tanh(X) by # | ||
7941 | # sgn := sign(X), Tiny := 2**(-126), # | ||
7942 | # tanh(X) := sgn - sgn*Tiny. # | ||
7943 | # Exit. # | ||
7944 | # # | ||
7945 | # 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # | ||
7946 | # # | ||
7947 | ######################################################################### | ||
7948 | |||
7949 | set X,FP_SCR0 | ||
7950 | set XFRAC,X+4 | ||
7951 | |||
7952 | set SGN,L_SCR3 | ||
7953 | |||
7954 | set V,FP_SCR0 | ||
7955 | |||
7956 | global stanh | ||
7957 | stanh: | ||
7958 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
7959 | |||
7960 | fmov.x %fp0,X(%a6) | ||
7961 | mov.l (%a0),%d1 | ||
7962 | mov.w 4(%a0),%d1 | ||
7963 | mov.l %d1,X(%a6) | ||
7964 | and.l &0x7FFFFFFF,%d1 | ||
7965 | cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? | ||
7966 | blt.w TANHBORS # yes | ||
7967 | cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? | ||
7968 | bgt.w TANHBORS # yes | ||
7969 | |||
7970 | #--THIS IS THE USUAL CASE | ||
7971 | #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). | ||
7972 | |||
7973 | mov.l X(%a6),%d1 | ||
7974 | mov.l %d1,SGN(%a6) | ||
7975 | and.l &0x7FFF0000,%d1 | ||
7976 | add.l &0x00010000,%d1 # EXPONENT OF 2|X| | ||
7977 | mov.l %d1,X(%a6) | ||
7978 | and.l &0x80000000,SGN(%a6) | ||
7979 | fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| | ||
7980 | |||
7981 | mov.l %d0,-(%sp) | ||
7982 | clr.l %d0 | ||
7983 | fmovm.x &0x1,-(%sp) # save Y on stack | ||
7984 | lea (%sp),%a0 # pass ptr to Y | ||
7985 | bsr setoxm1 # FP0 IS Z = EXPM1(Y) | ||
7986 | add.l &0xc,%sp # clear Y from stack | ||
7987 | mov.l (%sp)+,%d0 | ||
7988 | |||
7989 | fmov.x %fp0,%fp1 | ||
7990 | fadd.s &0x40000000,%fp1 # Z+2 | ||
7991 | mov.l SGN(%a6),%d1 | ||
7992 | fmov.x %fp1,V(%a6) | ||
7993 | eor.l %d1,V(%a6) | ||
7994 | |||
7995 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
7996 | fdiv.x V(%a6),%fp0 | ||
7997 | bra t_inx2 | ||
7998 | |||
7999 | TANHBORS: | ||
8000 | cmp.l %d1,&0x3FFF8000 | ||
8001 | blt.w TANHSM | ||
8002 | |||
8003 | cmp.l %d1,&0x40048AA1 | ||
8004 | bgt.w TANHHUGE | ||
8005 | |||
8006 | #-- (5/2) LOG2 < |X| < 50 LOG2, | ||
8007 | #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), | ||
8008 | #--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. | ||
8009 | |||
8010 | mov.l X(%a6),%d1 | ||
8011 | mov.l %d1,SGN(%a6) | ||
8012 | and.l &0x7FFF0000,%d1 | ||
8013 | add.l &0x00010000,%d1 # EXPO OF 2|X| | ||
8014 | mov.l %d1,X(%a6) # Y = 2|X| | ||
8015 | and.l &0x80000000,SGN(%a6) | ||
8016 | mov.l SGN(%a6),%d1 | ||
8017 | fmov.x X(%a6),%fp0 # Y = 2|X| | ||
8018 | |||
8019 | mov.l %d0,-(%sp) | ||
8020 | clr.l %d0 | ||
8021 | fmovm.x &0x01,-(%sp) # save Y on stack | ||
8022 | lea (%sp),%a0 # pass ptr to Y | ||
8023 | bsr setox # FP0 IS EXP(Y) | ||
8024 | add.l &0xc,%sp # clear Y from stack | ||
8025 | mov.l (%sp)+,%d0 | ||
8026 | mov.l SGN(%a6),%d1 | ||
8027 | fadd.s &0x3F800000,%fp0 # EXP(Y)+1 | ||
8028 | |||
8029 | eor.l &0xC0000000,%d1 # -SIGN(X)*2 | ||
8030 | fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT | ||
8031 | fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] | ||
8032 | |||
8033 | mov.l SGN(%a6),%d1 | ||
8034 | or.l &0x3F800000,%d1 # SGN | ||
8035 | fmov.s %d1,%fp0 # SGN IN SGL FMT | ||
8036 | |||
8037 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
8038 | mov.b &FADD_OP,%d1 # last inst is ADD | ||
8039 | fadd.x %fp1,%fp0 | ||
8040 | bra t_inx2 | ||
8041 | |||
8042 | TANHSM: | ||
8043 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
8044 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
8045 | fmov.x X(%a6),%fp0 # last inst - possible exception set | ||
8046 | bra t_catch | ||
8047 | |||
8048 | #---RETURN SGN(X) - SGN(X)EPS | ||
8049 | TANHHUGE: | ||
8050 | mov.l X(%a6),%d1 | ||
8051 | and.l &0x80000000,%d1 | ||
8052 | or.l &0x3F800000,%d1 | ||
8053 | fmov.s %d1,%fp0 | ||
8054 | and.l &0x80000000,%d1 | ||
8055 | eor.l &0x80800000,%d1 # -SIGN(X)*EPS | ||
8056 | |||
8057 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
8058 | fadd.s %d1,%fp0 | ||
8059 | bra t_inx2 | ||
8060 | |||
8061 | global stanhd | ||
8062 | #--TANH(X) = X FOR DENORMALIZED X | ||
8063 | stanhd: | ||
8064 | bra t_extdnrm | ||
8065 | |||
8066 | ######################################################################### | ||
8067 | # slogn(): computes the natural logarithm of a normalized input # | ||
8068 | # slognd(): computes the natural logarithm of a denormalized input # | ||
8069 | # slognp1(): computes the log(1+X) of a normalized input # | ||
8070 | # slognp1d(): computes the log(1+X) of a denormalized input # | ||
8071 | # # | ||
8072 | # INPUT *************************************************************** # | ||
8073 | # a0 = pointer to extended precision input # | ||
8074 | # d0 = round precision,mode # | ||
8075 | # # | ||
8076 | # OUTPUT ************************************************************** # | ||
8077 | # fp0 = log(X) or log(1+X) # | ||
8078 | # # | ||
8079 | # ACCURACY and MONOTONICITY ******************************************* # | ||
8080 | # The returned result is within 2 ulps in 64 significant bit, # | ||
8081 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
8082 | # rounded to double precision. The result is provably monotonic # | ||
8083 | # in double precision. # | ||
8084 | # # | ||
8085 | # ALGORITHM *********************************************************** # | ||
8086 | # LOGN: # | ||
8087 | # Step 1. If |X-1| < 1/16, approximate log(X) by an odd # | ||
8088 | # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # | ||
8089 | # move on to Step 2. # | ||
8090 | # # | ||
8091 | # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # | ||
8092 | # seven significant bits of Y plus 2**(-7), i.e. # | ||
8093 | # F = 1.xxxxxx1 in base 2 where the six "x" match those # | ||
8094 | # of Y. Note that |Y-F| <= 2**(-7). # | ||
8095 | # # | ||
8096 | # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # | ||
8097 | # polynomial in u, log(1+u) = poly. # | ||
8098 | # # | ||
8099 | # Step 4. Reconstruct # | ||
8100 | # log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # | ||
8101 | # by k*log(2) + (log(F) + poly). The values of log(F) are # | ||
8102 | # calculated beforehand and stored in the program. # | ||
8103 | # # | ||
8104 | # lognp1: # | ||
8105 | # Step 1: If |X| < 1/16, approximate log(1+X) by an odd # | ||
8106 | # polynomial in u where u = 2X/(2+X). Otherwise, move on # | ||
8107 | # to Step 2. # | ||
8108 | # # | ||
8109 | # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # | ||
8110 | # in Step 2 of the algorithm for LOGN and compute # | ||
8111 | # log(1+X) as k*log(2) + log(F) + poly where poly # | ||
8112 | # approximates log(1+u), u = (Y-F)/F. # | ||
8113 | # # | ||
8114 | # Implementation Notes: # | ||
8115 | # Note 1. There are 64 different possible values for F, thus 64 # | ||
8116 | # log(F)'s need to be tabulated. Moreover, the values of # | ||
8117 | # 1/F are also tabulated so that the division in (Y-F)/F # | ||
8118 | # can be performed by a multiplication. # | ||
8119 | # # | ||
8120 | # Note 2. In Step 2 of lognp1, in order to preserved accuracy, # | ||
8121 | # the value Y-F has to be calculated carefully when # | ||
8122 | # 1/2 <= X < 3/2. # | ||
8123 | # # | ||
8124 | # Note 3. To fully exploit the pipeline, polynomials are usually # | ||
8125 | # separated into two parts evaluated independently before # | ||
8126 | # being added up. # | ||
8127 | # # | ||
8128 | ######################################################################### | ||
8129 | LOGOF2: | ||
8130 | long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | ||
8131 | |||
8132 | one: | ||
8133 | long 0x3F800000 | ||
8134 | zero: | ||
8135 | long 0x00000000 | ||
8136 | infty: | ||
8137 | long 0x7F800000 | ||
8138 | negone: | ||
8139 | long 0xBF800000 | ||
8140 | |||
8141 | LOGA6: | ||
8142 | long 0x3FC2499A,0xB5E4040B | ||
8143 | LOGA5: | ||
8144 | long 0xBFC555B5,0x848CB7DB | ||
8145 | |||
8146 | LOGA4: | ||
8147 | long 0x3FC99999,0x987D8730 | ||
8148 | LOGA3: | ||
8149 | long 0xBFCFFFFF,0xFF6F7E97 | ||
8150 | |||
8151 | LOGA2: | ||
8152 | long 0x3FD55555,0x555555A4 | ||
8153 | LOGA1: | ||
8154 | long 0xBFE00000,0x00000008 | ||
8155 | |||
8156 | LOGB5: | ||
8157 | long 0x3F175496,0xADD7DAD6 | ||
8158 | LOGB4: | ||
8159 | long 0x3F3C71C2,0xFE80C7E0 | ||
8160 | |||
8161 | LOGB3: | ||
8162 | long 0x3F624924,0x928BCCFF | ||
8163 | LOGB2: | ||
8164 | long 0x3F899999,0x999995EC | ||
8165 | |||
8166 | LOGB1: | ||
8167 | long 0x3FB55555,0x55555555 | ||
8168 | TWO: | ||
8169 | long 0x40000000,0x00000000 | ||
8170 | |||
8171 | LTHOLD: | ||
8172 | long 0x3f990000,0x80000000,0x00000000,0x00000000 | ||
8173 | |||
8174 | LOGTBL: | ||
8175 | long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 | ||
8176 | long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 | ||
8177 | long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 | ||
8178 | long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 | ||
8179 | long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 | ||
8180 | long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 | ||
8181 | long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 | ||
8182 | long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 | ||
8183 | long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 | ||
8184 | long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 | ||
8185 | long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 | ||
8186 | long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 | ||
8187 | long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 | ||
8188 | long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 | ||
8189 | long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 | ||
8190 | long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 | ||
8191 | long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 | ||
8192 | long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 | ||
8193 | long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 | ||
8194 | long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 | ||
8195 | long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 | ||
8196 | long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 | ||
8197 | long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 | ||
8198 | long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 | ||
8199 | long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 | ||
8200 | long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 | ||
8201 | long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 | ||
8202 | long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 | ||
8203 | long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 | ||
8204 | long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 | ||
8205 | long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 | ||
8206 | long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 | ||
8207 | long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 | ||
8208 | long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 | ||
8209 | long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 | ||
8210 | long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 | ||
8211 | long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 | ||
8212 | long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 | ||
8213 | long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 | ||
8214 | long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 | ||
8215 | long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 | ||
8216 | long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 | ||
8217 | long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 | ||
8218 | long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 | ||
8219 | long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 | ||
8220 | long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 | ||
8221 | long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 | ||
8222 | long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 | ||
8223 | long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 | ||
8224 | long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 | ||
8225 | long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 | ||
8226 | long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 | ||
8227 | long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 | ||
8228 | long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 | ||
8229 | long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 | ||
8230 | long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 | ||
8231 | long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 | ||
8232 | long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 | ||
8233 | long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 | ||
8234 | long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 | ||
8235 | long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 | ||
8236 | long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 | ||
8237 | long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 | ||
8238 | long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 | ||
8239 | long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 | ||
8240 | long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 | ||
8241 | long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 | ||
8242 | long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 | ||
8243 | long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 | ||
8244 | long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 | ||
8245 | long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 | ||
8246 | long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 | ||
8247 | long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 | ||
8248 | long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 | ||
8249 | long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 | ||
8250 | long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 | ||
8251 | long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 | ||
8252 | long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 | ||
8253 | long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 | ||
8254 | long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 | ||
8255 | long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 | ||
8256 | long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 | ||
8257 | long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 | ||
8258 | long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 | ||
8259 | long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 | ||
8260 | long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 | ||
8261 | long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 | ||
8262 | long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 | ||
8263 | long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 | ||
8264 | long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 | ||
8265 | long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 | ||
8266 | long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 | ||
8267 | long 0x3FFE0000,0x94458094,0x45809446,0x00000000 | ||
8268 | long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 | ||
8269 | long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 | ||
8270 | long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 | ||
8271 | long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 | ||
8272 | long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 | ||
8273 | long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 | ||
8274 | long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 | ||
8275 | long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 | ||
8276 | long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 | ||
8277 | long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 | ||
8278 | long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 | ||
8279 | long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 | ||
8280 | long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 | ||
8281 | long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 | ||
8282 | long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 | ||
8283 | long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 | ||
8284 | long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 | ||
8285 | long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 | ||
8286 | long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 | ||
8287 | long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 | ||
8288 | long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 | ||
8289 | long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 | ||
8290 | long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 | ||
8291 | long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 | ||
8292 | long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 | ||
8293 | long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 | ||
8294 | long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 | ||
8295 | long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 | ||
8296 | long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 | ||
8297 | long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 | ||
8298 | long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 | ||
8299 | long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 | ||
8300 | long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 | ||
8301 | long 0x3FFE0000,0x80808080,0x80808081,0x00000000 | ||
8302 | long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 | ||
8303 | |||
8304 | set ADJK,L_SCR1 | ||
8305 | |||
8306 | set X,FP_SCR0 | ||
8307 | set XDCARE,X+2 | ||
8308 | set XFRAC,X+4 | ||
8309 | |||
8310 | set F,FP_SCR1 | ||
8311 | set FFRAC,F+4 | ||
8312 | |||
8313 | set KLOG2,FP_SCR0 | ||
8314 | |||
8315 | set SAVEU,FP_SCR0 | ||
8316 | |||
8317 | global slogn | ||
8318 | #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S | ||
8319 | slogn: | ||
8320 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
8321 | mov.l &0x00000000,ADJK(%a6) | ||
8322 | |||
8323 | LOGBGN: | ||
8324 | #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS | ||
8325 | #--A FINITE, NON-ZERO, NORMALIZED NUMBER. | ||
8326 | |||
8327 | mov.l (%a0),%d1 | ||
8328 | mov.w 4(%a0),%d1 | ||
8329 | |||
8330 | mov.l (%a0),X(%a6) | ||
8331 | mov.l 4(%a0),X+4(%a6) | ||
8332 | mov.l 8(%a0),X+8(%a6) | ||
8333 | |||
8334 | cmp.l %d1,&0 # CHECK IF X IS NEGATIVE | ||
8335 | blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID | ||
8336 | # X IS POSITIVE, CHECK IF X IS NEAR 1 | ||
8337 | cmp.l %d1,&0x3ffef07d # IS X < 15/16? | ||
8338 | blt.b LOGMAIN # YES | ||
8339 | cmp.l %d1,&0x3fff8841 # IS X > 17/16? | ||
8340 | ble.w LOGNEAR1 # NO | ||
8341 | |||
8342 | LOGMAIN: | ||
8343 | #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 | ||
8344 | |||
8345 | #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. | ||
8346 | #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. | ||
8347 | #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) | ||
8348 | #-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). | ||
8349 | #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING | ||
8350 | #--LOG(1+U) CAN BE VERY EFFICIENT. | ||
8351 | #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO | ||
8352 | #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. | ||
8353 | |||
8354 | #--GET K, Y, F, AND ADDRESS OF 1/F. | ||
8355 | asr.l &8,%d1 | ||
8356 | asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X | ||
8357 | sub.l &0x3FFF,%d1 # THIS IS K | ||
8358 | add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. | ||
8359 | lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) | ||
8360 | fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT | ||
8361 | |||
8362 | #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F | ||
8363 | mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X | ||
8364 | mov.l XFRAC(%a6),FFRAC(%a6) | ||
8365 | and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y | ||
8366 | or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT | ||
8367 | mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F | ||
8368 | and.l &0x7E000000,%d1 | ||
8369 | asr.l &8,%d1 | ||
8370 | asr.l &8,%d1 | ||
8371 | asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT | ||
8372 | add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F | ||
8373 | |||
8374 | fmov.x X(%a6),%fp0 | ||
8375 | mov.l &0x3fff0000,F(%a6) | ||
8376 | clr.l F+8(%a6) | ||
8377 | fsub.x F(%a6),%fp0 # Y-F | ||
8378 | fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY | ||
8379 | #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K | ||
8380 | #--REGISTERS SAVED: FPCR, FP1, FP2 | ||
8381 | |||
8382 | LP1CONT1: | ||
8383 | #--AN RE-ENTRY POINT FOR LOGNP1 | ||
8384 | fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F | ||
8385 | fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY | ||
8386 | fmov.x %fp0,%fp2 | ||
8387 | fmul.x %fp2,%fp2 # FP2 IS V=U*U | ||
8388 | fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 | ||
8389 | |||
8390 | #--LOG(1+U) IS APPROXIMATED BY | ||
8391 | #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS | ||
8392 | #--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] | ||
8393 | |||
8394 | fmov.x %fp2,%fp3 | ||
8395 | fmov.x %fp2,%fp1 | ||
8396 | |||
8397 | fmul.d LOGA6(%pc),%fp1 # V*A6 | ||
8398 | fmul.d LOGA5(%pc),%fp2 # V*A5 | ||
8399 | |||
8400 | fadd.d LOGA4(%pc),%fp1 # A4+V*A6 | ||
8401 | fadd.d LOGA3(%pc),%fp2 # A3+V*A5 | ||
8402 | |||
8403 | fmul.x %fp3,%fp1 # V*(A4+V*A6) | ||
8404 | fmul.x %fp3,%fp2 # V*(A3+V*A5) | ||
8405 | |||
8406 | fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) | ||
8407 | fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) | ||
8408 | |||
8409 | fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) | ||
8410 | add.l &16,%a0 # ADDRESS OF LOG(F) | ||
8411 | fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) | ||
8412 | |||
8413 | fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) | ||
8414 | fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) | ||
8415 | |||
8416 | fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) | ||
8417 | fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 | ||
8418 | fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) | ||
8419 | |||
8420 | fmov.l %d0,%fpcr | ||
8421 | fadd.x KLOG2(%a6),%fp0 # FINAL ADD | ||
8422 | bra t_inx2 | ||
8423 | |||
8424 | |||
8425 | LOGNEAR1: | ||
8426 | |||
8427 | # if the input is exactly equal to one, then exit through ld_pzero. | ||
8428 | # if these 2 lines weren't here, the correct answer would be returned | ||
8429 | # but the INEX2 bit would be set. | ||
8430 | fcmp.b %fp0,&0x1 # is it equal to one? | ||
8431 | fbeq.l ld_pzero # yes | ||
8432 | |||
8433 | #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. | ||
8434 | fmov.x %fp0,%fp1 | ||
8435 | fsub.s one(%pc),%fp1 # FP1 IS X-1 | ||
8436 | fadd.s one(%pc),%fp0 # FP0 IS X+1 | ||
8437 | fadd.x %fp1,%fp1 # FP1 IS 2(X-1) | ||
8438 | #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL | ||
8439 | #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 | ||
8440 | |||
8441 | LP1CONT2: | ||
8442 | #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 | ||
8443 | fdiv.x %fp0,%fp1 # FP1 IS U | ||
8444 | fmovm.x &0xc,-(%sp) # SAVE FP2-3 | ||
8445 | #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 | ||
8446 | #--LET V=U*U, W=V*V, CALCULATE | ||
8447 | #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY | ||
8448 | #--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) | ||
8449 | fmov.x %fp1,%fp0 | ||
8450 | fmul.x %fp0,%fp0 # FP0 IS V | ||
8451 | fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 | ||
8452 | fmov.x %fp0,%fp1 | ||
8453 | fmul.x %fp1,%fp1 # FP1 IS W | ||
8454 | |||
8455 | fmov.d LOGB5(%pc),%fp3 | ||
8456 | fmov.d LOGB4(%pc),%fp2 | ||
8457 | |||
8458 | fmul.x %fp1,%fp3 # W*B5 | ||
8459 | fmul.x %fp1,%fp2 # W*B4 | ||
8460 | |||
8461 | fadd.d LOGB3(%pc),%fp3 # B3+W*B5 | ||
8462 | fadd.d LOGB2(%pc),%fp2 # B2+W*B4 | ||
8463 | |||
8464 | fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED | ||
8465 | |||
8466 | fmul.x %fp0,%fp2 # V*(B2+W*B4) | ||
8467 | |||
8468 | fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) | ||
8469 | fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V | ||
8470 | |||
8471 | fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED | ||
8472 | fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED | ||
8473 | |||
8474 | fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) | ||
8475 | |||
8476 | fmov.l %d0,%fpcr | ||
8477 | fadd.x SAVEU(%a6),%fp0 | ||
8478 | bra t_inx2 | ||
8479 | |||
8480 | #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID | ||
8481 | LOGNEG: | ||
8482 | bra t_operr | ||
8483 | |||
8484 | global slognd | ||
8485 | slognd: | ||
8486 | #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT | ||
8487 | |||
8488 | mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 | ||
8489 | |||
8490 | #----normalize the input value by left shifting k bits (k to be determined | ||
8491 | #----below), adjusting exponent and storing -k to ADJK | ||
8492 | #----the value TWOTO100 is no longer needed. | ||
8493 | #----Note that this code assumes the denormalized input is NON-ZERO. | ||
8494 | |||
8495 | movm.l &0x3f00,-(%sp) # save some registers {d2-d7} | ||
8496 | mov.l (%a0),%d3 # D3 is exponent of smallest norm. # | ||
8497 | mov.l 4(%a0),%d4 | ||
8498 | mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) | ||
8499 | clr.l %d2 # D2 used for holding K | ||
8500 | |||
8501 | tst.l %d4 | ||
8502 | bne.b Hi_not0 | ||
8503 | |||
8504 | Hi_0: | ||
8505 | mov.l %d5,%d4 | ||
8506 | clr.l %d5 | ||
8507 | mov.l &32,%d2 | ||
8508 | clr.l %d6 | ||
8509 | bfffo %d4{&0:&32},%d6 | ||
8510 | lsl.l %d6,%d4 | ||
8511 | add.l %d6,%d2 # (D3,D4,D5) is normalized | ||
8512 | |||
8513 | mov.l %d3,X(%a6) | ||
8514 | mov.l %d4,XFRAC(%a6) | ||
8515 | mov.l %d5,XFRAC+4(%a6) | ||
8516 | neg.l %d2 | ||
8517 | mov.l %d2,ADJK(%a6) | ||
8518 | fmov.x X(%a6),%fp0 | ||
8519 | movm.l (%sp)+,&0xfc # restore registers {d2-d7} | ||
8520 | lea X(%a6),%a0 | ||
8521 | bra.w LOGBGN # begin regular log(X) | ||
8522 | |||
8523 | Hi_not0: | ||
8524 | clr.l %d6 | ||
8525 | bfffo %d4{&0:&32},%d6 # find first 1 | ||
8526 | mov.l %d6,%d2 # get k | ||
8527 | lsl.l %d6,%d4 | ||
8528 | mov.l %d5,%d7 # a copy of D5 | ||
8529 | lsl.l %d6,%d5 | ||
8530 | neg.l %d6 | ||
8531 | add.l &32,%d6 | ||
8532 | lsr.l %d6,%d7 | ||
8533 | or.l %d7,%d4 # (D3,D4,D5) normalized | ||
8534 | |||
8535 | mov.l %d3,X(%a6) | ||
8536 | mov.l %d4,XFRAC(%a6) | ||
8537 | mov.l %d5,XFRAC+4(%a6) | ||
8538 | neg.l %d2 | ||
8539 | mov.l %d2,ADJK(%a6) | ||
8540 | fmov.x X(%a6),%fp0 | ||
8541 | movm.l (%sp)+,&0xfc # restore registers {d2-d7} | ||
8542 | lea X(%a6),%a0 | ||
8543 | bra.w LOGBGN # begin regular log(X) | ||
8544 | |||
8545 | global slognp1 | ||
8546 | #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S | ||
8547 | slognp1: | ||
8548 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
8549 | fabs.x %fp0 # test magnitude | ||
8550 | fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold | ||
8551 | fbgt.w LP1REAL # if greater, continue | ||
8552 | fmov.l %d0,%fpcr | ||
8553 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
8554 | fmov.x (%a0),%fp0 # return signed argument | ||
8555 | bra t_catch | ||
8556 | |||
8557 | LP1REAL: | ||
8558 | fmov.x (%a0),%fp0 # LOAD INPUT | ||
8559 | mov.l &0x00000000,ADJK(%a6) | ||
8560 | fmov.x %fp0,%fp1 # FP1 IS INPUT Z | ||
8561 | fadd.s one(%pc),%fp0 # X := ROUND(1+Z) | ||
8562 | fmov.x %fp0,X(%a6) | ||
8563 | mov.w XFRAC(%a6),XDCARE(%a6) | ||
8564 | mov.l X(%a6),%d1 | ||
8565 | cmp.l %d1,&0 | ||
8566 | ble.w LP1NEG0 # LOG OF ZERO OR -VE | ||
8567 | cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? | ||
8568 | blt.w LOGMAIN | ||
8569 | cmp.l %d1,&0x3fffc000 | ||
8570 | bgt.w LOGMAIN | ||
8571 | #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, | ||
8572 | #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, | ||
8573 | #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). | ||
8574 | |||
8575 | LP1NEAR1: | ||
8576 | #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) | ||
8577 | cmp.l %d1,&0x3ffef07d | ||
8578 | blt.w LP1CARE | ||
8579 | cmp.l %d1,&0x3fff8841 | ||
8580 | bgt.w LP1CARE | ||
8581 | |||
8582 | LP1ONE16: | ||
8583 | #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) | ||
8584 | #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). | ||
8585 | fadd.x %fp1,%fp1 # FP1 IS 2Z | ||
8586 | fadd.s one(%pc),%fp0 # FP0 IS 1+X | ||
8587 | #--U = FP1/FP0 | ||
8588 | bra.w LP1CONT2 | ||
8589 | |||
8590 | LP1CARE: | ||
8591 | #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE | ||
8592 | #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST | ||
8593 | #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], | ||
8594 | #--THERE ARE ONLY TWO CASES. | ||
8595 | #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z | ||
8596 | #--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z | ||
8597 | #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF | ||
8598 | #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. | ||
8599 | |||
8600 | mov.l XFRAC(%a6),FFRAC(%a6) | ||
8601 | and.l &0xFE000000,FFRAC(%a6) | ||
8602 | or.l &0x01000000,FFRAC(%a6) # F OBTAINED | ||
8603 | cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 | ||
8604 | bge.b KISZERO | ||
8605 | |||
8606 | KISNEG1: | ||
8607 | fmov.s TWO(%pc),%fp0 | ||
8608 | mov.l &0x3fff0000,F(%a6) | ||
8609 | clr.l F+8(%a6) | ||
8610 | fsub.x F(%a6),%fp0 # 2-F | ||
8611 | mov.l FFRAC(%a6),%d1 | ||
8612 | and.l &0x7E000000,%d1 | ||
8613 | asr.l &8,%d1 | ||
8614 | asr.l &8,%d1 | ||
8615 | asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F | ||
8616 | fadd.x %fp1,%fp1 # GET 2Z | ||
8617 | fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} | ||
8618 | fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z | ||
8619 | lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F | ||
8620 | add.l %d1,%a0 | ||
8621 | fmov.s negone(%pc),%fp1 # FP1 IS K = -1 | ||
8622 | bra.w LP1CONT1 | ||
8623 | |||
8624 | KISZERO: | ||
8625 | fmov.s one(%pc),%fp0 | ||
8626 | mov.l &0x3fff0000,F(%a6) | ||
8627 | clr.l F+8(%a6) | ||
8628 | fsub.x F(%a6),%fp0 # 1-F | ||
8629 | mov.l FFRAC(%a6),%d1 | ||
8630 | and.l &0x7E000000,%d1 | ||
8631 | asr.l &8,%d1 | ||
8632 | asr.l &8,%d1 | ||
8633 | asr.l &4,%d1 | ||
8634 | fadd.x %fp1,%fp0 # FP0 IS Y-F | ||
8635 | fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} | ||
8636 | lea LOGTBL(%pc),%a0 | ||
8637 | add.l %d1,%a0 # A0 IS ADDRESS OF 1/F | ||
8638 | fmov.s zero(%pc),%fp1 # FP1 IS K = 0 | ||
8639 | bra.w LP1CONT1 | ||
8640 | |||
8641 | LP1NEG0: | ||
8642 | #--FPCR SAVED. D0 IS X IN COMPACT FORM. | ||
8643 | cmp.l %d1,&0 | ||
8644 | blt.b LP1NEG | ||
8645 | LP1ZERO: | ||
8646 | fmov.s negone(%pc),%fp0 | ||
8647 | |||
8648 | fmov.l %d0,%fpcr | ||
8649 | bra t_dz | ||
8650 | |||
8651 | LP1NEG: | ||
8652 | fmov.s zero(%pc),%fp0 | ||
8653 | |||
8654 | fmov.l %d0,%fpcr | ||
8655 | bra t_operr | ||
8656 | |||
8657 | global slognp1d | ||
8658 | #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT | ||
8659 | # Simply return the denorm | ||
8660 | slognp1d: | ||
8661 | bra t_extdnrm | ||
8662 | |||
8663 | ######################################################################### | ||
8664 | # satanh(): computes the inverse hyperbolic tangent of a norm input # | ||
8665 | # satanhd(): computes the inverse hyperbolic tangent of a denorm input # | ||
8666 | # # | ||
8667 | # INPUT *************************************************************** # | ||
8668 | # a0 = pointer to extended precision input # | ||
8669 | # d0 = round precision,mode # | ||
8670 | # # | ||
8671 | # OUTPUT ************************************************************** # | ||
8672 | # fp0 = arctanh(X) # | ||
8673 | # # | ||
8674 | # ACCURACY and MONOTONICITY ******************************************* # | ||
8675 | # The returned result is within 3 ulps in 64 significant bit, # | ||
8676 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
8677 | # rounded to double precision. The result is provably monotonic # | ||
8678 | # in double precision. # | ||
8679 | # # | ||
8680 | # ALGORITHM *********************************************************** # | ||
8681 | # # | ||
8682 | # ATANH # | ||
8683 | # 1. If |X| >= 1, go to 3. # | ||
8684 | # # | ||
8685 | # 2. (|X| < 1) Calculate atanh(X) by # | ||
8686 | # sgn := sign(X) # | ||
8687 | # y := |X| # | ||
8688 | # z := 2y/(1-y) # | ||
8689 | # atanh(X) := sgn * (1/2) * logp1(z) # | ||
8690 | # Exit. # | ||
8691 | # # | ||
8692 | # 3. If |X| > 1, go to 5. # | ||
8693 | # # | ||
8694 | # 4. (|X| = 1) Generate infinity with an appropriate sign and # | ||
8695 | # divide-by-zero by # | ||
8696 | # sgn := sign(X) # | ||
8697 | # atan(X) := sgn / (+0). # | ||
8698 | # Exit. # | ||
8699 | # # | ||
8700 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # | ||
8701 | # Exit. # | ||
8702 | # # | ||
8703 | ######################################################################### | ||
8704 | |||
8705 | global satanh | ||
8706 | satanh: | ||
8707 | mov.l (%a0),%d1 | ||
8708 | mov.w 4(%a0),%d1 | ||
8709 | and.l &0x7FFFFFFF,%d1 | ||
8710 | cmp.l %d1,&0x3FFF8000 | ||
8711 | bge.b ATANHBIG | ||
8712 | |||
8713 | #--THIS IS THE USUAL CASE, |X| < 1 | ||
8714 | #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). | ||
8715 | |||
8716 | fabs.x (%a0),%fp0 # Y = |X| | ||
8717 | fmov.x %fp0,%fp1 | ||
8718 | fneg.x %fp1 # -Y | ||
8719 | fadd.x %fp0,%fp0 # 2Y | ||
8720 | fadd.s &0x3F800000,%fp1 # 1-Y | ||
8721 | fdiv.x %fp1,%fp0 # 2Y/(1-Y) | ||
8722 | mov.l (%a0),%d1 | ||
8723 | and.l &0x80000000,%d1 | ||
8724 | or.l &0x3F000000,%d1 # SIGN(X)*HALF | ||
8725 | mov.l %d1,-(%sp) | ||
8726 | |||
8727 | mov.l %d0,-(%sp) # save rnd prec,mode | ||
8728 | clr.l %d0 # pass ext prec,RN | ||
8729 | fmovm.x &0x01,-(%sp) # save Z on stack | ||
8730 | lea (%sp),%a0 # pass ptr to Z | ||
8731 | bsr slognp1 # LOG1P(Z) | ||
8732 | add.l &0xc,%sp # clear Z from stack | ||
8733 | |||
8734 | mov.l (%sp)+,%d0 # fetch old prec,mode | ||
8735 | fmov.l %d0,%fpcr # load it | ||
8736 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
8737 | fmul.s (%sp)+,%fp0 | ||
8738 | bra t_catch | ||
8739 | |||
8740 | ATANHBIG: | ||
8741 | fabs.x (%a0),%fp0 # |X| | ||
8742 | fcmp.s %fp0,&0x3F800000 | ||
8743 | fbgt t_operr | ||
8744 | bra t_dz | ||
8745 | |||
8746 | global satanhd | ||
8747 | #--ATANH(X) = X FOR DENORMALIZED X | ||
8748 | satanhd: | ||
8749 | bra t_extdnrm | ||
8750 | |||
8751 | ######################################################################### | ||
8752 | # slog10(): computes the base-10 logarithm of a normalized input # | ||
8753 | # slog10d(): computes the base-10 logarithm of a denormalized input # | ||
8754 | # slog2(): computes the base-2 logarithm of a normalized input # | ||
8755 | # slog2d(): computes the base-2 logarithm of a denormalized input # | ||
8756 | # # | ||
8757 | # INPUT *************************************************************** # | ||
8758 | # a0 = pointer to extended precision input # | ||
8759 | # d0 = round precision,mode # | ||
8760 | # # | ||
8761 | # OUTPUT ************************************************************** # | ||
8762 | # fp0 = log_10(X) or log_2(X) # | ||
8763 | # # | ||
8764 | # ACCURACY and MONOTONICITY ******************************************* # | ||
8765 | # The returned result is within 1.7 ulps in 64 significant bit, # | ||
8766 | # i.e. within 0.5003 ulp to 53 bits if the result is subsequently # | ||
8767 | # rounded to double precision. The result is provably monotonic # | ||
8768 | # in double precision. # | ||
8769 | # # | ||
8770 | # ALGORITHM *********************************************************** # | ||
8771 | # # | ||
8772 | # slog10d: # | ||
8773 | # # | ||
8774 | # Step 0. If X < 0, create a NaN and raise the invalid operation # | ||
8775 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # | ||
8776 | # Notes: Default means round-to-nearest mode, no floating-point # | ||
8777 | # traps, and precision control = double extended. # | ||
8778 | # # | ||
8779 | # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # | ||
8780 | # Notes: Even if X is denormalized, log(X) is always normalized. # | ||
8781 | # # | ||
8782 | # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # | ||
8783 | # 2.1 Restore the user FPCR # | ||
8784 | # 2.2 Return ans := Y * INV_L10. # | ||
8785 | # # | ||
8786 | # slog10: # | ||
8787 | # # | ||
8788 | # Step 0. If X < 0, create a NaN and raise the invalid operation # | ||
8789 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # | ||
8790 | # Notes: Default means round-to-nearest mode, no floating-point # | ||
8791 | # traps, and precision control = double extended. # | ||
8792 | # # | ||
8793 | # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # | ||
8794 | # # | ||
8795 | # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # | ||
8796 | # 2.1 Restore the user FPCR # | ||
8797 | # 2.2 Return ans := Y * INV_L10. # | ||
8798 | # # | ||
8799 | # sLog2d: # | ||
8800 | # # | ||
8801 | # Step 0. If X < 0, create a NaN and raise the invalid operation # | ||
8802 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # | ||
8803 | # Notes: Default means round-to-nearest mode, no floating-point # | ||
8804 | # traps, and precision control = double extended. # | ||
8805 | # # | ||
8806 | # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # | ||
8807 | # Notes: Even if X is denormalized, log(X) is always normalized. # | ||
8808 | # # | ||
8809 | # Step 2. Compute log_10(X) = log(X) * (1/log(2)). # | ||
8810 | # 2.1 Restore the user FPCR # | ||
8811 | # 2.2 Return ans := Y * INV_L2. # | ||
8812 | # # | ||
8813 | # sLog2: # | ||
8814 | # # | ||
8815 | # Step 0. If X < 0, create a NaN and raise the invalid operation # | ||
8816 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # | ||
8817 | # Notes: Default means round-to-nearest mode, no floating-point # | ||
8818 | # traps, and precision control = double extended. # | ||
8819 | # # | ||
8820 | # Step 1. If X is not an integer power of two, i.e., X != 2^k, # | ||
8821 | # go to Step 3. # | ||
8822 | # # | ||
8823 | # Step 2. Return k. # | ||
8824 | # 2.1 Get integer k, X = 2^k. # | ||
8825 | # 2.2 Restore the user FPCR. # | ||
8826 | # 2.3 Return ans := convert-to-double-extended(k). # | ||
8827 | # # | ||
8828 | # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # | ||
8829 | # # | ||
8830 | # Step 4. Compute log_2(X) = log(X) * (1/log(2)). # | ||
8831 | # 4.1 Restore the user FPCR # | ||
8832 | # 4.2 Return ans := Y * INV_L2. # | ||
8833 | # # | ||
8834 | ######################################################################### | ||
8835 | |||
8836 | INV_L10: | ||
8837 | long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 | ||
8838 | |||
8839 | INV_L2: | ||
8840 | long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 | ||
8841 | |||
8842 | global slog10 | ||
8843 | #--entry point for Log10(X), X is normalized | ||
8844 | slog10: | ||
8845 | fmov.b &0x1,%fp0 | ||
8846 | fcmp.x %fp0,(%a0) # if operand == 1, | ||
8847 | fbeq.l ld_pzero # return an EXACT zero | ||
8848 | |||
8849 | mov.l (%a0),%d1 | ||
8850 | blt.w invalid | ||
8851 | mov.l %d0,-(%sp) | ||
8852 | clr.l %d0 | ||
8853 | bsr slogn # log(X), X normal. | ||
8854 | fmov.l (%sp)+,%fpcr | ||
8855 | fmul.x INV_L10(%pc),%fp0 | ||
8856 | bra t_inx2 | ||
8857 | |||
8858 | global slog10d | ||
8859 | #--entry point for Log10(X), X is denormalized | ||
8860 | slog10d: | ||
8861 | mov.l (%a0),%d1 | ||
8862 | blt.w invalid | ||
8863 | mov.l %d0,-(%sp) | ||
8864 | clr.l %d0 | ||
8865 | bsr slognd # log(X), X denorm. | ||
8866 | fmov.l (%sp)+,%fpcr | ||
8867 | fmul.x INV_L10(%pc),%fp0 | ||
8868 | bra t_minx2 | ||
8869 | |||
8870 | global slog2 | ||
8871 | #--entry point for Log2(X), X is normalized | ||
8872 | slog2: | ||
8873 | mov.l (%a0),%d1 | ||
8874 | blt.w invalid | ||
8875 | |||
8876 | mov.l 8(%a0),%d1 | ||
8877 | bne.b continue # X is not 2^k | ||
8878 | |||
8879 | mov.l 4(%a0),%d1 | ||
8880 | and.l &0x7FFFFFFF,%d1 | ||
8881 | bne.b continue | ||
8882 | |||
8883 | #--X = 2^k. | ||
8884 | mov.w (%a0),%d1 | ||
8885 | and.l &0x00007FFF,%d1 | ||
8886 | sub.l &0x3FFF,%d1 | ||
8887 | beq.l ld_pzero | ||
8888 | fmov.l %d0,%fpcr | ||
8889 | fmov.l %d1,%fp0 | ||
8890 | bra t_inx2 | ||
8891 | |||
8892 | continue: | ||
8893 | mov.l %d0,-(%sp) | ||
8894 | clr.l %d0 | ||
8895 | bsr slogn # log(X), X normal. | ||
8896 | fmov.l (%sp)+,%fpcr | ||
8897 | fmul.x INV_L2(%pc),%fp0 | ||
8898 | bra t_inx2 | ||
8899 | |||
8900 | invalid: | ||
8901 | bra t_operr | ||
8902 | |||
8903 | global slog2d | ||
8904 | #--entry point for Log2(X), X is denormalized | ||
8905 | slog2d: | ||
8906 | mov.l (%a0),%d1 | ||
8907 | blt.w invalid | ||
8908 | mov.l %d0,-(%sp) | ||
8909 | clr.l %d0 | ||
8910 | bsr slognd # log(X), X denorm. | ||
8911 | fmov.l (%sp)+,%fpcr | ||
8912 | fmul.x INV_L2(%pc),%fp0 | ||
8913 | bra t_minx2 | ||
8914 | |||
8915 | ######################################################################### | ||
8916 | # stwotox(): computes 2**X for a normalized input # | ||
8917 | # stwotoxd(): computes 2**X for a denormalized input # | ||
8918 | # stentox(): computes 10**X for a normalized input # | ||
8919 | # stentoxd(): computes 10**X for a denormalized input # | ||
8920 | # # | ||
8921 | # INPUT *************************************************************** # | ||
8922 | # a0 = pointer to extended precision input # | ||
8923 | # d0 = round precision,mode # | ||
8924 | # # | ||
8925 | # OUTPUT ************************************************************** # | ||
8926 | # fp0 = 2**X or 10**X # | ||
8927 | # # | ||
8928 | # ACCURACY and MONOTONICITY ******************************************* # | ||
8929 | # The returned result is within 2 ulps in 64 significant bit, # | ||
8930 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | ||
8931 | # rounded to double precision. The result is provably monotonic # | ||
8932 | # in double precision. # | ||
8933 | # # | ||
8934 | # ALGORITHM *********************************************************** # | ||
8935 | # # | ||
8936 | # twotox # | ||
8937 | # 1. If |X| > 16480, go to ExpBig. # | ||
8938 | # # | ||
8939 | # 2. If |X| < 2**(-70), go to ExpSm. # | ||
8940 | # # | ||
8941 | # 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # | ||
8942 | # decompose N as # | ||
8943 | # N = 64(M + M') + j, j = 0,1,2,...,63. # | ||
8944 | # # | ||
8945 | # 4. Overwrite r := r * log2. Then # | ||
8946 | # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # | ||
8947 | # Go to expr to compute that expression. # | ||
8948 | # # | ||
8949 | # tentox # | ||
8950 | # 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # | ||
8951 | # # | ||
8952 | # 2. If |X| < 2**(-70), go to ExpSm. # | ||
8953 | # # | ||
8954 | # 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # | ||
8955 | # N := round-to-int(y). Decompose N as # | ||
8956 | # N = 64(M + M') + j, j = 0,1,2,...,63. # | ||
8957 | # # | ||
8958 | # 4. Define r as # | ||
8959 | # r := ((X - N*L1)-N*L2) * L10 # | ||
8960 | # where L1, L2 are the leading and trailing parts of # | ||
8961 | # log_10(2)/64 and L10 is the natural log of 10. Then # | ||
8962 | # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # | ||
8963 | # Go to expr to compute that expression. # | ||
8964 | # # | ||
8965 | # expr # | ||
8966 | # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # | ||
8967 | # # | ||
8968 | # 2. Overwrite Fact1 and Fact2 by # | ||
8969 | # Fact1 := 2**(M) * Fact1 # | ||
8970 | # Fact2 := 2**(M) * Fact2 # | ||
8971 | # Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # | ||
8972 | # # | ||
8973 | # 3. Calculate P where 1 + P approximates exp(r): # | ||
8974 | # P = r + r*r*(A1+r*(A2+...+r*A5)). # | ||
8975 | # # | ||
8976 | # 4. Let AdjFact := 2**(M'). Return # | ||
8977 | # AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # | ||
8978 | # Exit. # | ||
8979 | # # | ||
8980 | # ExpBig # | ||
8981 | # 1. Generate overflow by Huge * Huge if X > 0; otherwise, # | ||
8982 | # generate underflow by Tiny * Tiny. # | ||
8983 | # # | ||
8984 | # ExpSm # | ||
8985 | # 1. Return 1 + X. # | ||
8986 | # # | ||
8987 | ######################################################################### | ||
8988 | |||
8989 | L2TEN64: | ||
8990 | long 0x406A934F,0x0979A371 # 64LOG10/LOG2 | ||
8991 | L10TWO1: | ||
8992 | long 0x3F734413,0x509F8000 # LOG2/64LOG10 | ||
8993 | |||
8994 | L10TWO2: | ||
8995 | long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 | ||
8996 | |||
8997 | LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 | ||
8998 | |||
8999 | LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | ||
9000 | |||
9001 | EXPA5: long 0x3F56C16D,0x6F7BD0B2 | ||
9002 | EXPA4: long 0x3F811112,0x302C712C | ||
9003 | EXPA3: long 0x3FA55555,0x55554CC1 | ||
9004 | EXPA2: long 0x3FC55555,0x55554A54 | ||
9005 | EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 | ||
9006 | |||
9007 | TEXPTBL: | ||
9008 | long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 | ||
9009 | long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA | ||
9010 | long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 | ||
9011 | long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 | ||
9012 | long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA | ||
9013 | long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C | ||
9014 | long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 | ||
9015 | long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA | ||
9016 | long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 | ||
9017 | long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 | ||
9018 | long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 | ||
9019 | long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 | ||
9020 | long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D | ||
9021 | long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 | ||
9022 | long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B | ||
9023 | long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 | ||
9024 | long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A | ||
9025 | long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B | ||
9026 | long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF | ||
9027 | long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA | ||
9028 | long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD | ||
9029 | long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E | ||
9030 | long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B | ||
9031 | long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB | ||
9032 | long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB | ||
9033 | long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 | ||
9034 | long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C | ||
9035 | long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 | ||
9036 | long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 | ||
9037 | long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 | ||
9038 | long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F | ||
9039 | long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C | ||
9040 | long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB | ||
9041 | long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB | ||
9042 | long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C | ||
9043 | long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA | ||
9044 | long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD | ||
9045 | long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 | ||
9046 | long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A | ||
9047 | long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 | ||
9048 | long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB | ||
9049 | long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 | ||
9050 | long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C | ||
9051 | long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 | ||
9052 | long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 | ||
9053 | long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE | ||
9054 | long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 | ||
9055 | long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 | ||
9056 | long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A | ||
9057 | long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 | ||
9058 | long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 | ||
9059 | long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 | ||
9060 | long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 | ||
9061 | long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE | ||
9062 | long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 | ||
9063 | long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F | ||
9064 | long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A | ||
9065 | long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A | ||
9066 | long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC | ||
9067 | long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F | ||
9068 | long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A | ||
9069 | long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 | ||
9070 | long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B | ||
9071 | long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 | ||
9072 | |||
9073 | set INT,L_SCR1 | ||
9074 | |||
9075 | set X,FP_SCR0 | ||
9076 | set XDCARE,X+2 | ||
9077 | set XFRAC,X+4 | ||
9078 | |||
9079 | set ADJFACT,FP_SCR0 | ||
9080 | |||
9081 | set FACT1,FP_SCR0 | ||
9082 | set FACT1HI,FACT1+4 | ||
9083 | set FACT1LOW,FACT1+8 | ||
9084 | |||
9085 | set FACT2,FP_SCR1 | ||
9086 | set FACT2HI,FACT2+4 | ||
9087 | set FACT2LOW,FACT2+8 | ||
9088 | |||
9089 | global stwotox | ||
9090 | #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | ||
9091 | stwotox: | ||
9092 | fmovm.x (%a0),&0x80 # LOAD INPUT | ||
9093 | |||
9094 | mov.l (%a0),%d1 | ||
9095 | mov.w 4(%a0),%d1 | ||
9096 | fmov.x %fp0,X(%a6) | ||
9097 | and.l &0x7FFFFFFF,%d1 | ||
9098 | |||
9099 | cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? | ||
9100 | bge.b TWOOK1 | ||
9101 | bra.w EXPBORS | ||
9102 | |||
9103 | TWOOK1: | ||
9104 | cmp.l %d1,&0x400D80C0 # |X| > 16480? | ||
9105 | ble.b TWOMAIN | ||
9106 | bra.w EXPBORS | ||
9107 | |||
9108 | TWOMAIN: | ||
9109 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 | ||
9110 | |||
9111 | fmov.x %fp0,%fp1 | ||
9112 | fmul.s &0x42800000,%fp1 # 64 * X | ||
9113 | fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) | ||
9114 | mov.l %d2,-(%sp) | ||
9115 | lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) | ||
9116 | fmov.l INT(%a6),%fp1 # N --> FLOATING FMT | ||
9117 | mov.l INT(%a6),%d1 | ||
9118 | mov.l %d1,%d2 | ||
9119 | and.l &0x3F,%d1 # D0 IS J | ||
9120 | asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) | ||
9121 | add.l %d1,%a1 # ADDRESS FOR 2^(J/64) | ||
9122 | asr.l &6,%d2 # d2 IS L, N = 64L + J | ||
9123 | mov.l %d2,%d1 | ||
9124 | asr.l &1,%d1 # D0 IS M | ||
9125 | sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J | ||
9126 | add.l &0x3FFF,%d2 | ||
9127 | |||
9128 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | ||
9129 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | ||
9130 | #--ADJFACT = 2^(M'). | ||
9131 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | ||
9132 | |||
9133 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
9134 | |||
9135 | fmul.s &0x3C800000,%fp1 # (1/64)*N | ||
9136 | mov.l (%a1)+,FACT1(%a6) | ||
9137 | mov.l (%a1)+,FACT1HI(%a6) | ||
9138 | mov.l (%a1)+,FACT1LOW(%a6) | ||
9139 | mov.w (%a1)+,FACT2(%a6) | ||
9140 | |||
9141 | fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) | ||
9142 | |||
9143 | mov.w (%a1)+,FACT2HI(%a6) | ||
9144 | clr.w FACT2HI+2(%a6) | ||
9145 | clr.l FACT2LOW(%a6) | ||
9146 | add.w %d1,FACT1(%a6) | ||
9147 | fmul.x LOG2(%pc),%fp0 # FP0 IS R | ||
9148 | add.w %d1,FACT2(%a6) | ||
9149 | |||
9150 | bra.w expr | ||
9151 | |||
9152 | EXPBORS: | ||
9153 | #--FPCR, D0 SAVED | ||
9154 | cmp.l %d1,&0x3FFF8000 | ||
9155 | bgt.b TEXPBIG | ||
9156 | |||
9157 | #--|X| IS SMALL, RETURN 1 + X | ||
9158 | |||
9159 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
9160 | fadd.s &0x3F800000,%fp0 # RETURN 1 + X | ||
9161 | bra t_pinx2 | ||
9162 | |||
9163 | TEXPBIG: | ||
9164 | #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW | ||
9165 | #--REGISTERS SAVE SO FAR ARE FPCR AND D0 | ||
9166 | mov.l X(%a6),%d1 | ||
9167 | cmp.l %d1,&0 | ||
9168 | blt.b EXPNEG | ||
9169 | |||
9170 | bra t_ovfl2 # t_ovfl expects positive value | ||
9171 | |||
9172 | EXPNEG: | ||
9173 | bra t_unfl2 # t_unfl expects positive value | ||
9174 | |||
9175 | global stwotoxd | ||
9176 | stwotoxd: | ||
9177 | #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT | ||
9178 | |||
9179 | fmov.l %d0,%fpcr # set user's rounding mode/precision | ||
9180 | fmov.s &0x3F800000,%fp0 # RETURN 1 + X | ||
9181 | mov.l (%a0),%d1 | ||
9182 | or.l &0x00800001,%d1 | ||
9183 | fadd.s %d1,%fp0 | ||
9184 | bra t_pinx2 | ||
9185 | |||
9186 | global stentox | ||
9187 | #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | ||
9188 | stentox: | ||
9189 | fmovm.x (%a0),&0x80 # LOAD INPUT | ||
9190 | |||
9191 | mov.l (%a0),%d1 | ||
9192 | mov.w 4(%a0),%d1 | ||
9193 | fmov.x %fp0,X(%a6) | ||
9194 | and.l &0x7FFFFFFF,%d1 | ||
9195 | |||
9196 | cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? | ||
9197 | bge.b TENOK1 | ||
9198 | bra.w EXPBORS | ||
9199 | |||
9200 | TENOK1: | ||
9201 | cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? | ||
9202 | ble.b TENMAIN | ||
9203 | bra.w EXPBORS | ||
9204 | |||
9205 | TENMAIN: | ||
9206 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 | ||
9207 | |||
9208 | fmov.x %fp0,%fp1 | ||
9209 | fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 | ||
9210 | fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) | ||
9211 | mov.l %d2,-(%sp) | ||
9212 | lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) | ||
9213 | fmov.l INT(%a6),%fp1 # N --> FLOATING FMT | ||
9214 | mov.l INT(%a6),%d1 | ||
9215 | mov.l %d1,%d2 | ||
9216 | and.l &0x3F,%d1 # D0 IS J | ||
9217 | asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) | ||
9218 | add.l %d1,%a1 # ADDRESS FOR 2^(J/64) | ||
9219 | asr.l &6,%d2 # d2 IS L, N = 64L + J | ||
9220 | mov.l %d2,%d1 | ||
9221 | asr.l &1,%d1 # D0 IS M | ||
9222 | sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J | ||
9223 | add.l &0x3FFF,%d2 | ||
9224 | |||
9225 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | ||
9226 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | ||
9227 | #--ADJFACT = 2^(M'). | ||
9228 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | ||
9229 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 | ||
9230 | |||
9231 | fmov.x %fp1,%fp2 | ||
9232 | |||
9233 | fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD | ||
9234 | mov.l (%a1)+,FACT1(%a6) | ||
9235 | |||
9236 | fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL | ||
9237 | |||
9238 | mov.l (%a1)+,FACT1HI(%a6) | ||
9239 | mov.l (%a1)+,FACT1LOW(%a6) | ||
9240 | fsub.x %fp1,%fp0 # X - N L_LEAD | ||
9241 | mov.w (%a1)+,FACT2(%a6) | ||
9242 | |||
9243 | fsub.x %fp2,%fp0 # X - N L_TRAIL | ||
9244 | |||
9245 | mov.w (%a1)+,FACT2HI(%a6) | ||
9246 | clr.w FACT2HI+2(%a6) | ||
9247 | clr.l FACT2LOW(%a6) | ||
9248 | |||
9249 | fmul.x LOG10(%pc),%fp0 # FP0 IS R | ||
9250 | add.w %d1,FACT1(%a6) | ||
9251 | add.w %d1,FACT2(%a6) | ||
9252 | |||
9253 | expr: | ||
9254 | #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. | ||
9255 | #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). | ||
9256 | #--FP0 IS R. THE FOLLOWING CODE COMPUTES | ||
9257 | #-- 2**(M'+M) * 2**(J/64) * EXP(R) | ||
9258 | |||
9259 | fmov.x %fp0,%fp1 | ||
9260 | fmul.x %fp1,%fp1 # FP1 IS S = R*R | ||
9261 | |||
9262 | fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 | ||
9263 | fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 | ||
9264 | |||
9265 | fmul.x %fp1,%fp2 # FP2 IS S*A5 | ||
9266 | fmul.x %fp1,%fp3 # FP3 IS S*A4 | ||
9267 | |||
9268 | fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 | ||
9269 | fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 | ||
9270 | |||
9271 | fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) | ||
9272 | fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) | ||
9273 | |||
9274 | fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) | ||
9275 | fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) | ||
9276 | |||
9277 | fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) | ||
9278 | fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) | ||
9279 | fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 | ||
9280 | |||
9281 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 | ||
9282 | |||
9283 | #--FINAL RECONSTRUCTION PROCESS | ||
9284 | #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) | ||
9285 | |||
9286 | fmul.x FACT1(%a6),%fp0 | ||
9287 | fadd.x FACT2(%a6),%fp0 | ||
9288 | fadd.x FACT1(%a6),%fp0 | ||
9289 | |||
9290 | fmov.l %d0,%fpcr # restore users round prec,mode | ||
9291 | mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT | ||
9292 | mov.l (%sp)+,%d2 | ||
9293 | mov.l &0x80000000,ADJFACT+4(%a6) | ||
9294 | clr.l ADJFACT+8(%a6) | ||
9295 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
9296 | fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT | ||
9297 | bra t_catch | ||
9298 | |||
9299 | global stentoxd | ||
9300 | stentoxd: | ||
9301 | #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT | ||
9302 | |||
9303 | fmov.l %d0,%fpcr # set user's rounding mode/precision | ||
9304 | fmov.s &0x3F800000,%fp0 # RETURN 1 + X | ||
9305 | mov.l (%a0),%d1 | ||
9306 | or.l &0x00800001,%d1 | ||
9307 | fadd.s %d1,%fp0 | ||
9308 | bra t_pinx2 | ||
9309 | |||
9310 | ######################################################################### | ||
9311 | # smovcr(): returns the ROM constant at the offset specified in d1 # | ||
9312 | # rounded to the mode and precision specified in d0. # | ||
9313 | # # | ||
9314 | # INPUT *************************************************************** # | ||
9315 | # d0 = rnd prec,mode # | ||
9316 | # d1 = ROM offset # | ||
9317 | # # | ||
9318 | # OUTPUT ************************************************************** # | ||
9319 | # fp0 = the ROM constant rounded to the user's rounding mode,prec # | ||
9320 | # # | ||
9321 | ######################################################################### | ||
9322 | |||
9323 | global smovcr | ||
9324 | smovcr: | ||
9325 | mov.l %d1,-(%sp) # save rom offset for a sec | ||
9326 | |||
9327 | lsr.b &0x4,%d0 # shift ctrl bits to lo | ||
9328 | mov.l %d0,%d1 # make a copy | ||
9329 | andi.w &0x3,%d1 # extract rnd mode | ||
9330 | andi.w &0xc,%d0 # extract rnd prec | ||
9331 | swap %d0 # put rnd prec in hi | ||
9332 | mov.w %d1,%d0 # put rnd mode in lo | ||
9333 | |||
9334 | mov.l (%sp)+,%d1 # get rom offset | ||
9335 | |||
9336 | # | ||
9337 | # check range of offset | ||
9338 | # | ||
9339 | tst.b %d1 # if zero, offset is to pi | ||
9340 | beq.b pi_tbl # it is pi | ||
9341 | cmpi.b %d1,&0x0a # check range $01 - $0a | ||
9342 | ble.b z_val # if in this range, return zero | ||
9343 | cmpi.b %d1,&0x0e # check range $0b - $0e | ||
9344 | ble.b sm_tbl # valid constants in this range | ||
9345 | cmpi.b %d1,&0x2f # check range $10 - $2f | ||
9346 | ble.b z_val # if in this range, return zero | ||
9347 | cmpi.b %d1,&0x3f # check range $30 - $3f | ||
9348 | ble.b bg_tbl # valid constants in this range | ||
9349 | |||
9350 | z_val: | ||
9351 | bra.l ld_pzero # return a zero | ||
9352 | |||
9353 | # | ||
9354 | # the answer is PI rounded to the proper precision. | ||
9355 | # | ||
9356 | # fetch a pointer to the answer table relating to the proper rounding | ||
9357 | # precision. | ||
9358 | # | ||
9359 | pi_tbl: | ||
9360 | tst.b %d0 # is rmode RN? | ||
9361 | bne.b pi_not_rn # no | ||
9362 | pi_rn: | ||
9363 | lea.l PIRN(%pc),%a0 # yes; load PI RN table addr | ||
9364 | bra.w set_finx | ||
9365 | pi_not_rn: | ||
9366 | cmpi.b %d0,&rp_mode # is rmode RP? | ||
9367 | beq.b pi_rp # yes | ||
9368 | pi_rzrm: | ||
9369 | lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr | ||
9370 | bra.b set_finx | ||
9371 | pi_rp: | ||
9372 | lea.l PIRP(%pc),%a0 # load PI RP table addr | ||
9373 | bra.b set_finx | ||
9374 | |||
9375 | # | ||
9376 | # the answer is one of: | ||
9377 | # $0B log10(2) (inexact) | ||
9378 | # $0C e (inexact) | ||
9379 | # $0D log2(e) (inexact) | ||
9380 | # $0E log10(e) (exact) | ||
9381 | # | ||
9382 | # fetch a pointer to the answer table relating to the proper rounding | ||
9383 | # precision. | ||
9384 | # | ||
9385 | sm_tbl: | ||
9386 | subi.b &0xb,%d1 # make offset in 0-4 range | ||
9387 | tst.b %d0 # is rmode RN? | ||
9388 | bne.b sm_not_rn # no | ||
9389 | sm_rn: | ||
9390 | lea.l SMALRN(%pc),%a0 # yes; load RN table addr | ||
9391 | sm_tbl_cont: | ||
9392 | cmpi.b %d1,&0x2 # is result log10(e)? | ||
9393 | ble.b set_finx # no; answer is inexact | ||
9394 | bra.b no_finx # yes; answer is exact | ||
9395 | sm_not_rn: | ||
9396 | cmpi.b %d0,&rp_mode # is rmode RP? | ||
9397 | beq.b sm_rp # yes | ||
9398 | sm_rzrm: | ||
9399 | lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr | ||
9400 | bra.b sm_tbl_cont | ||
9401 | sm_rp: | ||
9402 | lea.l SMALRP(%pc),%a0 # load RP table addr | ||
9403 | bra.b sm_tbl_cont | ||
9404 | |||
9405 | # | ||
9406 | # the answer is one of: | ||
9407 | # $30 ln(2) (inexact) | ||
9408 | # $31 ln(10) (inexact) | ||
9409 | # $32 10^0 (exact) | ||
9410 | # $33 10^1 (exact) | ||
9411 | # $34 10^2 (exact) | ||
9412 | # $35 10^4 (exact) | ||
9413 | # $36 10^8 (exact) | ||
9414 | # $37 10^16 (exact) | ||
9415 | # $38 10^32 (inexact) | ||
9416 | # $39 10^64 (inexact) | ||
9417 | # $3A 10^128 (inexact) | ||
9418 | # $3B 10^256 (inexact) | ||
9419 | # $3C 10^512 (inexact) | ||
9420 | # $3D 10^1024 (inexact) | ||
9421 | # $3E 10^2048 (inexact) | ||
9422 | # $3F 10^4096 (inexact) | ||
9423 | # | ||
9424 | # fetch a pointer to the answer table relating to the proper rounding | ||
9425 | # precision. | ||
9426 | # | ||
9427 | bg_tbl: | ||
9428 | subi.b &0x30,%d1 # make offset in 0-f range | ||
9429 | tst.b %d0 # is rmode RN? | ||
9430 | bne.b bg_not_rn # no | ||
9431 | bg_rn: | ||
9432 | lea.l BIGRN(%pc),%a0 # yes; load RN table addr | ||
9433 | bg_tbl_cont: | ||
9434 | cmpi.b %d1,&0x1 # is offset <= $31? | ||
9435 | ble.b set_finx # yes; answer is inexact | ||
9436 | cmpi.b %d1,&0x7 # is $32 <= offset <= $37? | ||
9437 | ble.b no_finx # yes; answer is exact | ||
9438 | bra.b set_finx # no; answer is inexact | ||
9439 | bg_not_rn: | ||
9440 | cmpi.b %d0,&rp_mode # is rmode RP? | ||
9441 | beq.b bg_rp # yes | ||
9442 | bg_rzrm: | ||
9443 | lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr | ||
9444 | bra.b bg_tbl_cont | ||
9445 | bg_rp: | ||
9446 | lea.l BIGRP(%pc),%a0 # load RP table addr | ||
9447 | bra.b bg_tbl_cont | ||
9448 | |||
9449 | # answer is inexact, so set INEX2 and AINEX in the user's FPSR. | ||
9450 | set_finx: | ||
9451 | ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX | ||
9452 | no_finx: | ||
9453 | mulu.w &0xc,%d1 # offset points into tables | ||
9454 | swap %d0 # put rnd prec in lo word | ||
9455 | tst.b %d0 # is precision extended? | ||
9456 | |||
9457 | bne.b not_ext # if xprec, do not call round | ||
9458 | |||
9459 | # Precision is extended | ||
9460 | fmovm.x (%a0,%d1.w),&0x80 # return result in fp0 | ||
9461 | rts | ||
9462 | |||
9463 | # Precision is single or double | ||
9464 | not_ext: | ||
9465 | swap %d0 # rnd prec in upper word | ||
9466 | |||
9467 | # call round() to round the answer to the proper precision. | ||
9468 | # exponents out of range for single or double DO NOT cause underflow | ||
9469 | # or overflow. | ||
9470 | mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word | ||
9471 | mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word | ||
9472 | mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word | ||
9473 | mov.l %d0,%d1 | ||
9474 | clr.l %d0 # clear g,r,s | ||
9475 | lea FP_SCR1(%a6),%a0 # pass ptr to answer | ||
9476 | clr.w LOCAL_SGN(%a0) # sign always positive | ||
9477 | bsr.l _round # round the mantissa | ||
9478 | |||
9479 | fmovm.x (%a0),&0x80 # return rounded result in fp0 | ||
9480 | rts | ||
9481 | |||
9482 | align 0x4 | ||
9483 | |||
9484 | PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi | ||
9485 | PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi | ||
9486 | PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi | ||
9487 | |||
9488 | SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) | ||
9489 | long 0x40000000,0xadf85458,0xa2bb4a9a # e | ||
9490 | long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) | ||
9491 | long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) | ||
9492 | long 0x00000000,0x00000000,0x00000000 # 0.0 | ||
9493 | |||
9494 | SMALRZRM: | ||
9495 | long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) | ||
9496 | long 0x40000000,0xadf85458,0xa2bb4a9a # e | ||
9497 | long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e) | ||
9498 | long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) | ||
9499 | long 0x00000000,0x00000000,0x00000000 # 0.0 | ||
9500 | |||
9501 | SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2) | ||
9502 | long 0x40000000,0xadf85458,0xa2bb4a9b # e | ||
9503 | long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) | ||
9504 | long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) | ||
9505 | long 0x00000000,0x00000000,0x00000000 # 0.0 | ||
9506 | |||
9507 | BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) | ||
9508 | long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) | ||
9509 | |||
9510 | long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 | ||
9511 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
9512 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
9513 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
9514 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
9515 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
9516 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 | ||
9517 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 | ||
9518 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 | ||
9519 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 | ||
9520 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 | ||
9521 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 | ||
9522 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 | ||
9523 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 | ||
9524 | |||
9525 | BIGRZRM: | ||
9526 | long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2) | ||
9527 | long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10) | ||
9528 | |||
9529 | long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 | ||
9530 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
9531 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
9532 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
9533 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
9534 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
9535 | long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 | ||
9536 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 | ||
9537 | long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 | ||
9538 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 | ||
9539 | long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 | ||
9540 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 | ||
9541 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 | ||
9542 | long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 | ||
9543 | |||
9544 | BIGRP: | ||
9545 | long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) | ||
9546 | long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) | ||
9547 | |||
9548 | long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 | ||
9549 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
9550 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
9551 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
9552 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
9553 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
9554 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 | ||
9555 | long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 | ||
9556 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 | ||
9557 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 | ||
9558 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 | ||
9559 | long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 | ||
9560 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 | ||
9561 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 | ||
9562 | |||
9563 | ######################################################################### | ||
9564 | # sscale(): computes the destination operand scaled by the source # | ||
9565 | # operand. If the absoulute value of the source operand is # | ||
9566 | # >= 2^14, an overflow or underflow is returned. # | ||
9567 | # # | ||
9568 | # INPUT *************************************************************** # | ||
9569 | # a0 = pointer to double-extended source operand X # | ||
9570 | # a1 = pointer to double-extended destination operand Y # | ||
9571 | # # | ||
9572 | # OUTPUT ************************************************************** # | ||
9573 | # fp0 = scale(X,Y) # | ||
9574 | # # | ||
9575 | ######################################################################### | ||
9576 | |||
9577 | set SIGN, L_SCR1 | ||
9578 | |||
9579 | global sscale | ||
9580 | sscale: | ||
9581 | mov.l %d0,-(%sp) # store off ctrl bits for now | ||
9582 | |||
9583 | mov.w DST_EX(%a1),%d1 # get dst exponent | ||
9584 | smi.b SIGN(%a6) # use SIGN to hold dst sign | ||
9585 | andi.l &0x00007fff,%d1 # strip sign from dst exp | ||
9586 | |||
9587 | mov.w SRC_EX(%a0),%d0 # check src bounds | ||
9588 | andi.w &0x7fff,%d0 # clr src sign bit | ||
9589 | cmpi.w %d0,&0x3fff # is src ~ ZERO? | ||
9590 | blt.w src_small # yes | ||
9591 | cmpi.w %d0,&0x400c # no; is src too big? | ||
9592 | bgt.w src_out # yes | ||
9593 | |||
9594 | # | ||
9595 | # Source is within 2^14 range. | ||
9596 | # | ||
9597 | src_ok: | ||
9598 | fintrz.x SRC(%a0),%fp0 # calc int of src | ||
9599 | fmov.l %fp0,%d0 # int src to d0 | ||
9600 | # don't want any accrued bits from the fintrz showing up later since | ||
9601 | # we may need to read the fpsr for the last fp op in t_catch2(). | ||
9602 | fmov.l &0x0,%fpsr | ||
9603 | |||
9604 | tst.b DST_HI(%a1) # is dst denormalized? | ||
9605 | bmi.b sok_norm | ||
9606 | |||
9607 | # the dst is a DENORM. normalize the DENORM and add the adjustment to | ||
9608 | # the src value. then, jump to the norm part of the routine. | ||
9609 | sok_dnrm: | ||
9610 | mov.l %d0,-(%sp) # save src for now | ||
9611 | |||
9612 | mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy | ||
9613 | mov.l DST_HI(%a1),FP_SCR0_HI(%a6) | ||
9614 | mov.l DST_LO(%a1),FP_SCR0_LO(%a6) | ||
9615 | |||
9616 | lea FP_SCR0(%a6),%a0 # pass ptr to DENORM | ||
9617 | bsr.l norm # normalize the DENORM | ||
9618 | neg.l %d0 | ||
9619 | add.l (%sp)+,%d0 # add adjustment to src | ||
9620 | |||
9621 | fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM | ||
9622 | |||
9623 | cmpi.w %d0,&-0x3fff # is the shft amt really low? | ||
9624 | bge.b sok_norm2 # thank goodness no | ||
9625 | |||
9626 | # the multiply factor that we're trying to create should be a denorm | ||
9627 | # for the multiply to work. therefore, we're going to actually do a | ||
9628 | # multiply with a denorm which will cause an unimplemented data type | ||
9629 | # exception to be put into the machine which will be caught and corrected | ||
9630 | # later. we don't do this with the DENORMs above because this method | ||
9631 | # is slower. but, don't fret, I don't see it being used much either. | ||
9632 | fmov.l (%sp)+,%fpcr # restore user fpcr | ||
9633 | mov.l &0x80000000,%d1 # load normalized mantissa | ||
9634 | subi.l &-0x3fff,%d0 # how many should we shift? | ||
9635 | neg.l %d0 # make it positive | ||
9636 | cmpi.b %d0,&0x20 # is it > 32? | ||
9637 | bge.b sok_dnrm_32 # yes | ||
9638 | lsr.l %d0,%d1 # no; bit stays in upper lw | ||
9639 | clr.l -(%sp) # insert zero low mantissa | ||
9640 | mov.l %d1,-(%sp) # insert new high mantissa | ||
9641 | clr.l -(%sp) # make zero exponent | ||
9642 | bra.b sok_norm_cont | ||
9643 | sok_dnrm_32: | ||
9644 | subi.b &0x20,%d0 # get shift count | ||
9645 | lsr.l %d0,%d1 # make low mantissa longword | ||
9646 | mov.l %d1,-(%sp) # insert new low mantissa | ||
9647 | clr.l -(%sp) # insert zero high mantissa | ||
9648 | clr.l -(%sp) # make zero exponent | ||
9649 | bra.b sok_norm_cont | ||
9650 | |||
9651 | # the src will force the dst to a DENORM value or worse. so, let's | ||
9652 | # create an fp multiply that will create the result. | ||
9653 | sok_norm: | ||
9654 | fmovm.x DST(%a1),&0x80 # load fp0 with normalized src | ||
9655 | sok_norm2: | ||
9656 | fmov.l (%sp)+,%fpcr # restore user fpcr | ||
9657 | |||
9658 | addi.w &0x3fff,%d0 # turn src amt into exp value | ||
9659 | swap %d0 # put exponent in high word | ||
9660 | clr.l -(%sp) # insert new exponent | ||
9661 | mov.l &0x80000000,-(%sp) # insert new high mantissa | ||
9662 | mov.l %d0,-(%sp) # insert new lo mantissa | ||
9663 | |||
9664 | sok_norm_cont: | ||
9665 | fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 | ||
9666 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
9667 | fmul.x (%sp)+,%fp0 # do the multiply | ||
9668 | bra t_catch2 # catch any exceptions | ||
9669 | |||
9670 | # | ||
9671 | # Source is outside of 2^14 range. Test the sign and branch | ||
9672 | # to the appropriate exception handler. | ||
9673 | # | ||
9674 | src_out: | ||
9675 | mov.l (%sp)+,%d0 # restore ctrl bits | ||
9676 | exg %a0,%a1 # swap src,dst ptrs | ||
9677 | tst.b SRC_EX(%a1) # is src negative? | ||
9678 | bmi t_unfl # yes; underflow | ||
9679 | bra t_ovfl_sc # no; overflow | ||
9680 | |||
9681 | # | ||
9682 | # The source input is below 1, so we check for denormalized numbers | ||
9683 | # and set unfl. | ||
9684 | # | ||
9685 | src_small: | ||
9686 | tst.b DST_HI(%a1) # is dst denormalized? | ||
9687 | bpl.b ssmall_done # yes | ||
9688 | |||
9689 | mov.l (%sp)+,%d0 | ||
9690 | fmov.l %d0,%fpcr # no; load control bits | ||
9691 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
9692 | fmov.x DST(%a1),%fp0 # simply return dest | ||
9693 | bra t_catch2 | ||
9694 | ssmall_done: | ||
9695 | mov.l (%sp)+,%d0 # load control bits into d1 | ||
9696 | mov.l %a1,%a0 # pass ptr to dst | ||
9697 | bra t_resdnrm | ||
9698 | |||
9699 | ######################################################################### | ||
9700 | # smod(): computes the fp MOD of the input values X,Y. # | ||
9701 | # srem(): computes the fp (IEEE) REM of the input values X,Y. # | ||
9702 | # # | ||
9703 | # INPUT *************************************************************** # | ||
9704 | # a0 = pointer to extended precision input X # | ||
9705 | # a1 = pointer to extended precision input Y # | ||
9706 | # d0 = round precision,mode # | ||
9707 | # # | ||
9708 | # The input operands X and Y can be either normalized or # | ||
9709 | # denormalized. # | ||
9710 | # # | ||
9711 | # OUTPUT ************************************************************** # | ||
9712 | # fp0 = FREM(X,Y) or FMOD(X,Y) # | ||
9713 | # # | ||
9714 | # ALGORITHM *********************************************************** # | ||
9715 | # # | ||
9716 | # Step 1. Save and strip signs of X and Y: signX := sign(X), # | ||
9717 | # signY := sign(Y), X := |X|, Y := |Y|, # | ||
9718 | # signQ := signX EOR signY. Record whether MOD or REM # | ||
9719 | # is requested. # | ||
9720 | # # | ||
9721 | # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # | ||
9722 | # If (L < 0) then # | ||
9723 | # R := X, go to Step 4. # | ||
9724 | # else # | ||
9725 | # R := 2^(-L)X, j := L. # | ||
9726 | # endif # | ||
9727 | # # | ||
9728 | # Step 3. Perform MOD(X,Y) # | ||
9729 | # 3.1 If R = Y, go to Step 9. # | ||
9730 | # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # | ||
9731 | # 3.3 If j = 0, go to Step 4. # | ||
9732 | # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # | ||
9733 | # Step 3.1. # | ||
9734 | # # | ||
9735 | # Step 4. At this point, R = X - QY = MOD(X,Y). Set # | ||
9736 | # Last_Subtract := false (used in Step 7 below). If # | ||
9737 | # MOD is requested, go to Step 6. # | ||
9738 | # # | ||
9739 | # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # | ||
9740 | # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # | ||
9741 | # Step 6. # | ||
9742 | # 5.2 If R > Y/2, then { set Last_Subtract := true, # | ||
9743 | # Q := Q + 1, Y := signY*Y }. Go to Step 6. # | ||
9744 | # 5.3 This is the tricky case of R = Y/2. If Q is odd, # | ||
9745 | # then { Q := Q + 1, signX := -signX }. # | ||
9746 | # # | ||
9747 | # Step 6. R := signX*R. # | ||
9748 | # # | ||
9749 | # Step 7. If Last_Subtract = true, R := R - Y. # | ||
9750 | # # | ||
9751 | # Step 8. Return signQ, last 7 bits of Q, and R as required. # | ||
9752 | # # | ||
9753 | # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # | ||
9754 | # X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # | ||
9755 | # R := 0. Return signQ, last 7 bits of Q, and R. # | ||
9756 | # # | ||
9757 | ######################################################################### | ||
9758 | |||
9759 | set Mod_Flag,L_SCR3 | ||
9760 | set Sc_Flag,L_SCR3+1 | ||
9761 | |||
9762 | set SignY,L_SCR2 | ||
9763 | set SignX,L_SCR2+2 | ||
9764 | set SignQ,L_SCR3+2 | ||
9765 | |||
9766 | set Y,FP_SCR0 | ||
9767 | set Y_Hi,Y+4 | ||
9768 | set Y_Lo,Y+8 | ||
9769 | |||
9770 | set R,FP_SCR1 | ||
9771 | set R_Hi,R+4 | ||
9772 | set R_Lo,R+8 | ||
9773 | |||
9774 | Scale: | ||
9775 | long 0x00010000,0x80000000,0x00000000,0x00000000 | ||
9776 | |||
9777 | global smod | ||
9778 | smod: | ||
9779 | clr.b FPSR_QBYTE(%a6) | ||
9780 | mov.l %d0,-(%sp) # save ctrl bits | ||
9781 | clr.b Mod_Flag(%a6) | ||
9782 | bra.b Mod_Rem | ||
9783 | |||
9784 | global srem | ||
9785 | srem: | ||
9786 | clr.b FPSR_QBYTE(%a6) | ||
9787 | mov.l %d0,-(%sp) # save ctrl bits | ||
9788 | mov.b &0x1,Mod_Flag(%a6) | ||
9789 | |||
9790 | Mod_Rem: | ||
9791 | #..Save sign of X and Y | ||
9792 | movm.l &0x3f00,-(%sp) # save data registers | ||
9793 | mov.w SRC_EX(%a0),%d3 | ||
9794 | mov.w %d3,SignY(%a6) | ||
9795 | and.l &0x00007FFF,%d3 # Y := |Y| | ||
9796 | |||
9797 | # | ||
9798 | mov.l SRC_HI(%a0),%d4 | ||
9799 | mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| | ||
9800 | |||
9801 | tst.l %d3 | ||
9802 | bne.b Y_Normal | ||
9803 | |||
9804 | mov.l &0x00003FFE,%d3 # $3FFD + 1 | ||
9805 | tst.l %d4 | ||
9806 | bne.b HiY_not0 | ||
9807 | |||
9808 | HiY_0: | ||
9809 | mov.l %d5,%d4 | ||
9810 | clr.l %d5 | ||
9811 | sub.l &32,%d3 | ||
9812 | clr.l %d6 | ||
9813 | bfffo %d4{&0:&32},%d6 | ||
9814 | lsl.l %d6,%d4 | ||
9815 | sub.l %d6,%d3 # (D3,D4,D5) is normalized | ||
9816 | # ...with bias $7FFD | ||
9817 | bra.b Chk_X | ||
9818 | |||
9819 | HiY_not0: | ||
9820 | clr.l %d6 | ||
9821 | bfffo %d4{&0:&32},%d6 | ||
9822 | sub.l %d6,%d3 | ||
9823 | lsl.l %d6,%d4 | ||
9824 | mov.l %d5,%d7 # a copy of D5 | ||
9825 | lsl.l %d6,%d5 | ||
9826 | neg.l %d6 | ||
9827 | add.l &32,%d6 | ||
9828 | lsr.l %d6,%d7 | ||
9829 | or.l %d7,%d4 # (D3,D4,D5) normalized | ||
9830 | # ...with bias $7FFD | ||
9831 | bra.b Chk_X | ||
9832 | |||
9833 | Y_Normal: | ||
9834 | add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized | ||
9835 | # ...with bias $7FFD | ||
9836 | |||
9837 | Chk_X: | ||
9838 | mov.w DST_EX(%a1),%d0 | ||
9839 | mov.w %d0,SignX(%a6) | ||
9840 | mov.w SignY(%a6),%d1 | ||
9841 | eor.l %d0,%d1 | ||
9842 | and.l &0x00008000,%d1 | ||
9843 | mov.w %d1,SignQ(%a6) # sign(Q) obtained | ||
9844 | and.l &0x00007FFF,%d0 | ||
9845 | mov.l DST_HI(%a1),%d1 | ||
9846 | mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| | ||
9847 | tst.l %d0 | ||
9848 | bne.b X_Normal | ||
9849 | mov.l &0x00003FFE,%d0 | ||
9850 | tst.l %d1 | ||
9851 | bne.b HiX_not0 | ||
9852 | |||
9853 | HiX_0: | ||
9854 | mov.l %d2,%d1 | ||
9855 | clr.l %d2 | ||
9856 | sub.l &32,%d0 | ||
9857 | clr.l %d6 | ||
9858 | bfffo %d1{&0:&32},%d6 | ||
9859 | lsl.l %d6,%d1 | ||
9860 | sub.l %d6,%d0 # (D0,D1,D2) is normalized | ||
9861 | # ...with bias $7FFD | ||
9862 | bra.b Init | ||
9863 | |||
9864 | HiX_not0: | ||
9865 | clr.l %d6 | ||
9866 | bfffo %d1{&0:&32},%d6 | ||
9867 | sub.l %d6,%d0 | ||
9868 | lsl.l %d6,%d1 | ||
9869 | mov.l %d2,%d7 # a copy of D2 | ||
9870 | lsl.l %d6,%d2 | ||
9871 | neg.l %d6 | ||
9872 | add.l &32,%d6 | ||
9873 | lsr.l %d6,%d7 | ||
9874 | or.l %d7,%d1 # (D0,D1,D2) normalized | ||
9875 | # ...with bias $7FFD | ||
9876 | bra.b Init | ||
9877 | |||
9878 | X_Normal: | ||
9879 | add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized | ||
9880 | # ...with bias $7FFD | ||
9881 | |||
9882 | Init: | ||
9883 | # | ||
9884 | mov.l %d3,L_SCR1(%a6) # save biased exp(Y) | ||
9885 | mov.l %d0,-(%sp) # save biased exp(X) | ||
9886 | sub.l %d3,%d0 # L := expo(X)-expo(Y) | ||
9887 | |||
9888 | clr.l %d6 # D6 := carry <- 0 | ||
9889 | clr.l %d3 # D3 is Q | ||
9890 | mov.l &0,%a1 # A1 is k; j+k=L, Q=0 | ||
9891 | |||
9892 | #..(Carry,D1,D2) is R | ||
9893 | tst.l %d0 | ||
9894 | bge.b Mod_Loop_pre | ||
9895 | |||
9896 | #..expo(X) < expo(Y). Thus X = mod(X,Y) | ||
9897 | # | ||
9898 | mov.l (%sp)+,%d0 # restore d0 | ||
9899 | bra.w Get_Mod | ||
9900 | |||
9901 | Mod_Loop_pre: | ||
9902 | addq.l &0x4,%sp # erase exp(X) | ||
9903 | #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L | ||
9904 | Mod_Loop: | ||
9905 | tst.l %d6 # test carry bit | ||
9906 | bgt.b R_GT_Y | ||
9907 | |||
9908 | #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) | ||
9909 | cmp.l %d1,%d4 # compare hi(R) and hi(Y) | ||
9910 | bne.b R_NE_Y | ||
9911 | cmp.l %d2,%d5 # compare lo(R) and lo(Y) | ||
9912 | bne.b R_NE_Y | ||
9913 | |||
9914 | #..At this point, R = Y | ||
9915 | bra.w Rem_is_0 | ||
9916 | |||
9917 | R_NE_Y: | ||
9918 | #..use the borrow of the previous compare | ||
9919 | bcs.b R_LT_Y # borrow is set iff R < Y | ||
9920 | |||
9921 | R_GT_Y: | ||
9922 | #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 | ||
9923 | #..and Y < (D1,D2) < 2Y. Either way, perform R - Y | ||
9924 | sub.l %d5,%d2 # lo(R) - lo(Y) | ||
9925 | subx.l %d4,%d1 # hi(R) - hi(Y) | ||
9926 | clr.l %d6 # clear carry | ||
9927 | addq.l &1,%d3 # Q := Q + 1 | ||
9928 | |||
9929 | R_LT_Y: | ||
9930 | #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. | ||
9931 | tst.l %d0 # see if j = 0. | ||
9932 | beq.b PostLoop | ||
9933 | |||
9934 | add.l %d3,%d3 # Q := 2Q | ||
9935 | add.l %d2,%d2 # lo(R) = 2lo(R) | ||
9936 | roxl.l &1,%d1 # hi(R) = 2hi(R) + carry | ||
9937 | scs %d6 # set Carry if 2(R) overflows | ||
9938 | addq.l &1,%a1 # k := k+1 | ||
9939 | subq.l &1,%d0 # j := j - 1 | ||
9940 | #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. | ||
9941 | |||
9942 | bra.b Mod_Loop | ||
9943 | |||
9944 | PostLoop: | ||
9945 | #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. | ||
9946 | |||
9947 | #..normalize R. | ||
9948 | mov.l L_SCR1(%a6),%d0 # new biased expo of R | ||
9949 | tst.l %d1 | ||
9950 | bne.b HiR_not0 | ||
9951 | |||
9952 | HiR_0: | ||
9953 | mov.l %d2,%d1 | ||
9954 | clr.l %d2 | ||
9955 | sub.l &32,%d0 | ||
9956 | clr.l %d6 | ||
9957 | bfffo %d1{&0:&32},%d6 | ||
9958 | lsl.l %d6,%d1 | ||
9959 | sub.l %d6,%d0 # (D0,D1,D2) is normalized | ||
9960 | # ...with bias $7FFD | ||
9961 | bra.b Get_Mod | ||
9962 | |||
9963 | HiR_not0: | ||
9964 | clr.l %d6 | ||
9965 | bfffo %d1{&0:&32},%d6 | ||
9966 | bmi.b Get_Mod # already normalized | ||
9967 | sub.l %d6,%d0 | ||
9968 | lsl.l %d6,%d1 | ||
9969 | mov.l %d2,%d7 # a copy of D2 | ||
9970 | lsl.l %d6,%d2 | ||
9971 | neg.l %d6 | ||
9972 | add.l &32,%d6 | ||
9973 | lsr.l %d6,%d7 | ||
9974 | or.l %d7,%d1 # (D0,D1,D2) normalized | ||
9975 | |||
9976 | # | ||
9977 | Get_Mod: | ||
9978 | cmp.l %d0,&0x000041FE | ||
9979 | bge.b No_Scale | ||
9980 | Do_Scale: | ||
9981 | mov.w %d0,R(%a6) | ||
9982 | mov.l %d1,R_Hi(%a6) | ||
9983 | mov.l %d2,R_Lo(%a6) | ||
9984 | mov.l L_SCR1(%a6),%d6 | ||
9985 | mov.w %d6,Y(%a6) | ||
9986 | mov.l %d4,Y_Hi(%a6) | ||
9987 | mov.l %d5,Y_Lo(%a6) | ||
9988 | fmov.x R(%a6),%fp0 # no exception | ||
9989 | mov.b &1,Sc_Flag(%a6) | ||
9990 | bra.b ModOrRem | ||
9991 | No_Scale: | ||
9992 | mov.l %d1,R_Hi(%a6) | ||
9993 | mov.l %d2,R_Lo(%a6) | ||
9994 | sub.l &0x3FFE,%d0 | ||
9995 | mov.w %d0,R(%a6) | ||
9996 | mov.l L_SCR1(%a6),%d6 | ||
9997 | sub.l &0x3FFE,%d6 | ||
9998 | mov.l %d6,L_SCR1(%a6) | ||
9999 | fmov.x R(%a6),%fp0 | ||
10000 | mov.w %d6,Y(%a6) | ||
10001 | mov.l %d4,Y_Hi(%a6) | ||
10002 | mov.l %d5,Y_Lo(%a6) | ||
10003 | clr.b Sc_Flag(%a6) | ||
10004 | |||
10005 | # | ||
10006 | ModOrRem: | ||
10007 | tst.b Mod_Flag(%a6) | ||
10008 | beq.b Fix_Sign | ||
10009 | |||
10010 | mov.l L_SCR1(%a6),%d6 # new biased expo(Y) | ||
10011 | subq.l &1,%d6 # biased expo(Y/2) | ||
10012 | cmp.l %d0,%d6 | ||
10013 | blt.b Fix_Sign | ||
10014 | bgt.b Last_Sub | ||
10015 | |||
10016 | cmp.l %d1,%d4 | ||
10017 | bne.b Not_EQ | ||
10018 | cmp.l %d2,%d5 | ||
10019 | bne.b Not_EQ | ||
10020 | bra.w Tie_Case | ||
10021 | |||
10022 | Not_EQ: | ||
10023 | bcs.b Fix_Sign | ||
10024 | |||
10025 | Last_Sub: | ||
10026 | # | ||
10027 | fsub.x Y(%a6),%fp0 # no exceptions | ||
10028 | addq.l &1,%d3 # Q := Q + 1 | ||
10029 | |||
10030 | # | ||
10031 | Fix_Sign: | ||
10032 | #..Get sign of X | ||
10033 | mov.w SignX(%a6),%d6 | ||
10034 | bge.b Get_Q | ||
10035 | fneg.x %fp0 | ||
10036 | |||
10037 | #..Get Q | ||
10038 | # | ||
10039 | Get_Q: | ||
10040 | clr.l %d6 | ||
10041 | mov.w SignQ(%a6),%d6 # D6 is sign(Q) | ||
10042 | mov.l &8,%d7 | ||
10043 | lsr.l %d7,%d6 | ||
10044 | and.l &0x0000007F,%d3 # 7 bits of Q | ||
10045 | or.l %d6,%d3 # sign and bits of Q | ||
10046 | # swap %d3 | ||
10047 | # fmov.l %fpsr,%d6 | ||
10048 | # and.l &0xFF00FFFF,%d6 | ||
10049 | # or.l %d3,%d6 | ||
10050 | # fmov.l %d6,%fpsr # put Q in fpsr | ||
10051 | mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr | ||
10052 | |||
10053 | # | ||
10054 | Restore: | ||
10055 | movm.l (%sp)+,&0xfc # {%d2-%d7} | ||
10056 | mov.l (%sp)+,%d0 | ||
10057 | fmov.l %d0,%fpcr | ||
10058 | tst.b Sc_Flag(%a6) | ||
10059 | beq.b Finish | ||
10060 | mov.b &FMUL_OP,%d1 # last inst is MUL | ||
10061 | fmul.x Scale(%pc),%fp0 # may cause underflow | ||
10062 | bra t_catch2 | ||
10063 | # the '040 package did this apparently to see if the dst operand for the | ||
10064 | # preceding fmul was a denorm. but, it better not have been since the | ||
10065 | # algorithm just got done playing with fp0 and expected no exceptions | ||
10066 | # as a result. trust me... | ||
10067 | # bra t_avoid_unsupp # check for denorm as a | ||
10068 | # ;result of the scaling | ||
10069 | |||
10070 | Finish: | ||
10071 | mov.b &FMOV_OP,%d1 # last inst is MOVE | ||
10072 | fmov.x %fp0,%fp0 # capture exceptions & round | ||
10073 | bra t_catch2 | ||
10074 | |||
10075 | Rem_is_0: | ||
10076 | #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) | ||
10077 | addq.l &1,%d3 | ||
10078 | cmp.l %d0,&8 # D0 is j | ||
10079 | bge.b Q_Big | ||
10080 | |||
10081 | lsl.l %d0,%d3 | ||
10082 | bra.b Set_R_0 | ||
10083 | |||
10084 | Q_Big: | ||
10085 | clr.l %d3 | ||
10086 | |||
10087 | Set_R_0: | ||
10088 | fmov.s &0x00000000,%fp0 | ||
10089 | clr.b Sc_Flag(%a6) | ||
10090 | bra.w Fix_Sign | ||
10091 | |||
10092 | Tie_Case: | ||
10093 | #..Check parity of Q | ||
10094 | mov.l %d3,%d6 | ||
10095 | and.l &0x00000001,%d6 | ||
10096 | tst.l %d6 | ||
10097 | beq.w Fix_Sign # Q is even | ||
10098 | |||
10099 | #..Q is odd, Q := Q + 1, signX := -signX | ||
10100 | addq.l &1,%d3 | ||
10101 | mov.w SignX(%a6),%d6 | ||
10102 | eor.l &0x00008000,%d6 | ||
10103 | mov.w %d6,SignX(%a6) | ||
10104 | bra.w Fix_Sign | ||
10105 | |||
10106 | qnan: long 0x7fff0000, 0xffffffff, 0xffffffff | ||
10107 | |||
10108 | ######################################################################### | ||
10109 | # XDEF **************************************************************** # | ||
10110 | # t_dz(): Handle DZ exception during transcendental emulation. # | ||
10111 | # Sets N bit according to sign of source operand. # | ||
10112 | # t_dz2(): Handle DZ exception during transcendental emulation. # | ||
10113 | # Sets N bit always. # | ||
10114 | # # | ||
10115 | # XREF **************************************************************** # | ||
10116 | # None # | ||
10117 | # # | ||
10118 | # INPUT *************************************************************** # | ||
10119 | # a0 = pointer to source operand # | ||
10120 | # # | ||
10121 | # OUTPUT ************************************************************** # | ||
10122 | # fp0 = default result # | ||
10123 | # # | ||
10124 | # ALGORITHM *********************************************************** # | ||
10125 | # - Store properly signed INF into fp0. # | ||
10126 | # - Set FPSR exception status dz bit, ccode inf bit, and # | ||
10127 | # accrued dz bit. # | ||
10128 | # # | ||
10129 | ######################################################################### | ||
10130 | |||
10131 | global t_dz | ||
10132 | t_dz: | ||
10133 | tst.b SRC_EX(%a0) # no; is src negative? | ||
10134 | bmi.b t_dz2 # yes | ||
10135 | |||
10136 | dz_pinf: | ||
10137 | fmov.s &0x7f800000,%fp0 # return +INF in fp0 | ||
10138 | ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ | ||
10139 | rts | ||
10140 | |||
10141 | global t_dz2 | ||
10142 | t_dz2: | ||
10143 | fmov.s &0xff800000,%fp0 # return -INF in fp0 | ||
10144 | ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ | ||
10145 | rts | ||
10146 | |||
10147 | ################################################################# | ||
10148 | # OPERR exception: # | ||
10149 | # - set FPSR exception status operr bit, condition code # | ||
10150 | # nan bit; Store default NAN into fp0 # | ||
10151 | ################################################################# | ||
10152 | global t_operr | ||
10153 | t_operr: | ||
10154 | ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP | ||
10155 | fmovm.x qnan(%pc),&0x80 # return default NAN in fp0 | ||
10156 | rts | ||
10157 | |||
10158 | ################################################################# | ||
10159 | # Extended DENORM: # | ||
10160 | # - For all functions that have a denormalized input and # | ||
10161 | # that f(x)=x, this is the entry point. # | ||
10162 | # - we only return the EXOP here if either underflow or # | ||
10163 | # inexact is enabled. # | ||
10164 | ################################################################# | ||
10165 | |||
10166 | # Entry point for scale w/ extended denorm. The function does | ||
10167 | # NOT set INEX2/AUNFL/AINEX. | ||
10168 | global t_resdnrm | ||
10169 | t_resdnrm: | ||
10170 | ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL | ||
10171 | bra.b xdnrm_con | ||
10172 | |||
10173 | global t_extdnrm | ||
10174 | t_extdnrm: | ||
10175 | ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | ||
10176 | |||
10177 | xdnrm_con: | ||
10178 | mov.l %a0,%a1 # make copy of src ptr | ||
10179 | mov.l %d0,%d1 # make copy of rnd prec,mode | ||
10180 | andi.b &0xc0,%d1 # extended precision? | ||
10181 | bne.b xdnrm_sd # no | ||
10182 | |||
10183 | # result precision is extended. | ||
10184 | tst.b LOCAL_EX(%a0) # is denorm negative? | ||
10185 | bpl.b xdnrm_exit # no | ||
10186 | |||
10187 | bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit | ||
10188 | bra.b xdnrm_exit | ||
10189 | |||
10190 | # result precision is single or double | ||
10191 | xdnrm_sd: | ||
10192 | mov.l %a1,-(%sp) | ||
10193 | tst.b LOCAL_EX(%a0) # is denorm pos or neg? | ||
10194 | smi.b %d1 # set d0 accodingly | ||
10195 | bsr.l unf_sub | ||
10196 | mov.l (%sp)+,%a1 | ||
10197 | xdnrm_exit: | ||
10198 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
10199 | |||
10200 | mov.b FPCR_ENABLE(%a6),%d0 | ||
10201 | andi.b &0x0a,%d0 # is UNFL or INEX enabled? | ||
10202 | bne.b xdnrm_ena # yes | ||
10203 | rts | ||
10204 | |||
10205 | ################ | ||
10206 | # unfl enabled # | ||
10207 | ################ | ||
10208 | # we have a DENORM that needs to be converted into an EXOP. | ||
10209 | # so, normalize the mantissa, add 0x6000 to the new exponent, | ||
10210 | # and return the result in fp1. | ||
10211 | xdnrm_ena: | ||
10212 | mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6) | ||
10213 | mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6) | ||
10214 | mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6) | ||
10215 | |||
10216 | lea FP_SCR0(%a6),%a0 | ||
10217 | bsr.l norm # normalize mantissa | ||
10218 | addi.l &0x6000,%d0 # add extra bias | ||
10219 | andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign | ||
10220 | or.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
10221 | |||
10222 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
10223 | rts | ||
10224 | |||
10225 | ################################################################# | ||
10226 | # UNFL exception: # | ||
10227 | # - This routine is for cases where even an EXOP isn't # | ||
10228 | # large enough to hold the range of this result. # | ||
10229 | # In such a case, the EXOP equals zero. # | ||
10230 | # - Return the default result to the proper precision # | ||
10231 | # with the sign of this result being the same as that # | ||
10232 | # of the src operand. # | ||
10233 | # - t_unfl2() is provided to force the result sign to # | ||
10234 | # positive which is the desired result for fetox(). # | ||
10235 | ################################################################# | ||
10236 | global t_unfl | ||
10237 | t_unfl: | ||
10238 | ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | ||
10239 | |||
10240 | tst.b (%a0) # is result pos or neg? | ||
10241 | smi.b %d1 # set d1 accordingly | ||
10242 | bsr.l unf_sub # calc default unfl result | ||
10243 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
10244 | |||
10245 | fmov.s &0x00000000,%fp1 # return EXOP in fp1 | ||
10246 | rts | ||
10247 | |||
10248 | # t_unfl2 ALWAYS tells unf_sub to create a positive result | ||
10249 | global t_unfl2 | ||
10250 | t_unfl2: | ||
10251 | ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | ||
10252 | |||
10253 | sf.b %d1 # set d0 to represent positive | ||
10254 | bsr.l unf_sub # calc default unfl result | ||
10255 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
10256 | |||
10257 | fmov.s &0x0000000,%fp1 # return EXOP in fp1 | ||
10258 | rts | ||
10259 | |||
10260 | ################################################################# | ||
10261 | # OVFL exception: # | ||
10262 | # - This routine is for cases where even an EXOP isn't # | ||
10263 | # large enough to hold the range of this result. # | ||
10264 | # - Return the default result to the proper precision # | ||
10265 | # with the sign of this result being the same as that # | ||
10266 | # of the src operand. # | ||
10267 | # - t_ovfl2() is provided to force the result sign to # | ||
10268 | # positive which is the desired result for fcosh(). # | ||
10269 | # - t_ovfl_sc() is provided for scale() which only sets # | ||
10270 | # the inexact bits if the number is inexact for the # | ||
10271 | # precision indicated. # | ||
10272 | ################################################################# | ||
10273 | |||
10274 | global t_ovfl_sc | ||
10275 | t_ovfl_sc: | ||
10276 | ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX | ||
10277 | |||
10278 | mov.b %d0,%d1 # fetch rnd mode/prec | ||
10279 | andi.b &0xc0,%d1 # extract rnd prec | ||
10280 | beq.b ovfl_work # prec is extended | ||
10281 | |||
10282 | tst.b LOCAL_HI(%a0) # is dst a DENORM? | ||
10283 | bmi.b ovfl_sc_norm # no | ||
10284 | |||
10285 | # dst op is a DENORM. we have to normalize the mantissa to see if the | ||
10286 | # result would be inexact for the given precision. make a copy of the | ||
10287 | # dst so we don't screw up the version passed to us. | ||
10288 | mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) | ||
10289 | mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) | ||
10290 | mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) | ||
10291 | lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 | ||
10292 | movm.l &0xc080,-(%sp) # save d0-d1/a0 | ||
10293 | bsr.l norm # normalize mantissa | ||
10294 | movm.l (%sp)+,&0x0103 # restore d0-d1/a0 | ||
10295 | |||
10296 | ovfl_sc_norm: | ||
10297 | cmpi.b %d1,&0x40 # is prec dbl? | ||
10298 | bne.b ovfl_sc_dbl # no; sgl | ||
10299 | ovfl_sc_sgl: | ||
10300 | tst.l LOCAL_LO(%a0) # is lo lw of sgl set? | ||
10301 | bne.b ovfl_sc_inx # yes | ||
10302 | tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? | ||
10303 | bne.b ovfl_sc_inx # yes | ||
10304 | bra.b ovfl_work # don't set INEX2 | ||
10305 | ovfl_sc_dbl: | ||
10306 | mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of | ||
10307 | andi.l &0x7ff,%d1 # dbl mantissa set? | ||
10308 | beq.b ovfl_work # no; don't set INEX2 | ||
10309 | ovfl_sc_inx: | ||
10310 | ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 | ||
10311 | bra.b ovfl_work # continue | ||
10312 | |||
10313 | global t_ovfl | ||
10314 | t_ovfl: | ||
10315 | ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | ||
10316 | |||
10317 | ovfl_work: | ||
10318 | tst.b LOCAL_EX(%a0) # what is the sign? | ||
10319 | smi.b %d1 # set d1 accordingly | ||
10320 | bsr.l ovf_res # calc default ovfl result | ||
10321 | mov.b %d0,FPSR_CC(%a6) # insert new ccodes | ||
10322 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
10323 | |||
10324 | fmov.s &0x00000000,%fp1 # return EXOP in fp1 | ||
10325 | rts | ||
10326 | |||
10327 | # t_ovfl2 ALWAYS tells ovf_res to create a positive result | ||
10328 | global t_ovfl2 | ||
10329 | t_ovfl2: | ||
10330 | ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | ||
10331 | |||
10332 | sf.b %d1 # clear sign flag for positive | ||
10333 | bsr.l ovf_res # calc default ovfl result | ||
10334 | mov.b %d0,FPSR_CC(%a6) # insert new ccodes | ||
10335 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
10336 | |||
10337 | fmov.s &0x00000000,%fp1 # return EXOP in fp1 | ||
10338 | rts | ||
10339 | |||
10340 | ################################################################# | ||
10341 | # t_catch(): # | ||
10342 | # - the last operation of a transcendental emulation # | ||
10343 | # routine may have caused an underflow or overflow. # | ||
10344 | # we find out if this occurred by doing an fsave and # | ||
10345 | # checking the exception bit. if one did occur, then we # | ||
10346 | # jump to fgen_except() which creates the default # | ||
10347 | # result and EXOP for us. # | ||
10348 | ################################################################# | ||
10349 | global t_catch | ||
10350 | t_catch: | ||
10351 | |||
10352 | fsave -(%sp) | ||
10353 | tst.b 0x2(%sp) | ||
10354 | bmi.b catch | ||
10355 | add.l &0xc,%sp | ||
10356 | |||
10357 | ################################################################# | ||
10358 | # INEX2 exception: # | ||
10359 | # - The inex2 and ainex bits are set. # | ||
10360 | ################################################################# | ||
10361 | global t_inx2 | ||
10362 | t_inx2: | ||
10363 | fblt.w t_minx2 | ||
10364 | fbeq.w inx2_zero | ||
10365 | |||
10366 | global t_pinx2 | ||
10367 | t_pinx2: | ||
10368 | ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | ||
10369 | rts | ||
10370 | |||
10371 | global t_minx2 | ||
10372 | t_minx2: | ||
10373 | ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX | ||
10374 | rts | ||
10375 | |||
10376 | inx2_zero: | ||
10377 | mov.b &z_bmask,FPSR_CC(%a6) | ||
10378 | ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | ||
10379 | rts | ||
10380 | |||
10381 | # an underflow or overflow exception occurred. | ||
10382 | # we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! | ||
10383 | catch: | ||
10384 | ori.w &inx2a_mask,FPSR_EXCEPT(%a6) | ||
10385 | catch2: | ||
10386 | bsr.l fgen_except | ||
10387 | add.l &0xc,%sp | ||
10388 | rts | ||
10389 | |||
10390 | global t_catch2 | ||
10391 | t_catch2: | ||
10392 | |||
10393 | fsave -(%sp) | ||
10394 | |||
10395 | tst.b 0x2(%sp) | ||
10396 | bmi.b catch2 | ||
10397 | add.l &0xc,%sp | ||
10398 | |||
10399 | fmov.l %fpsr,%d0 | ||
10400 | or.l %d0,USER_FPSR(%a6) | ||
10401 | |||
10402 | rts | ||
10403 | |||
10404 | ######################################################################### | ||
10405 | |||
10406 | ######################################################################### | ||
10407 | # unf_res(): underflow default result calculation for transcendentals # | ||
10408 | # # | ||
10409 | # INPUT: # | ||
10410 | # d0 : rnd mode,precision # | ||
10411 | # d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) # | ||
10412 | # OUTPUT: # | ||
10413 | # a0 : points to result (in instruction memory) # | ||
10414 | ######################################################################### | ||
10415 | unf_sub: | ||
10416 | ori.l &unfinx_mask,USER_FPSR(%a6) | ||
10417 | |||
10418 | andi.w &0x10,%d1 # keep sign bit in 4th spot | ||
10419 | |||
10420 | lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits | ||
10421 | andi.b &0xf,%d0 # strip hi rnd mode bit | ||
10422 | or.b %d1,%d0 # concat {sgn,mode,prec} | ||
10423 | |||
10424 | mov.l %d0,%d1 # make a copy | ||
10425 | lsl.b &0x1,%d1 # mult index 2 by 2 | ||
10426 | |||
10427 | mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits | ||
10428 | lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr | ||
10429 | rts | ||
10430 | |||
10431 | tbl_unf_cc: | ||
10432 | byte 0x4, 0x4, 0x4, 0x0 | ||
10433 | byte 0x4, 0x4, 0x4, 0x0 | ||
10434 | byte 0x4, 0x4, 0x4, 0x0 | ||
10435 | byte 0x0, 0x0, 0x0, 0x0 | ||
10436 | byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | ||
10437 | byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | ||
10438 | byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | ||
10439 | |||
10440 | tbl_unf_result: | ||
10441 | long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10442 | long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10443 | long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10444 | long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | ||
10445 | |||
10446 | long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10447 | long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10448 | long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10449 | long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | ||
10450 | |||
10451 | long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | ||
10452 | long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl | ||
10453 | long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | ||
10454 | long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | ||
10455 | |||
10456 | long 0x0,0x0,0x0,0x0 | ||
10457 | long 0x0,0x0,0x0,0x0 | ||
10458 | long 0x0,0x0,0x0,0x0 | ||
10459 | long 0x0,0x0,0x0,0x0 | ||
10460 | |||
10461 | long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10462 | long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10463 | long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | ||
10464 | long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | ||
10465 | |||
10466 | long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10467 | long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10468 | long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | ||
10469 | long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | ||
10470 | |||
10471 | long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | ||
10472 | long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | ||
10473 | long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | ||
10474 | long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | ||
10475 | |||
10476 | ############################################################ | ||
10477 | |||
10478 | ######################################################################### | ||
10479 | # src_zero(): Return signed zero according to sign of src operand. # | ||
10480 | ######################################################################### | ||
10481 | global src_zero | ||
10482 | src_zero: | ||
10483 | tst.b SRC_EX(%a0) # get sign of src operand | ||
10484 | bmi.b ld_mzero # if neg, load neg zero | ||
10485 | |||
10486 | # | ||
10487 | # ld_pzero(): return a positive zero. | ||
10488 | # | ||
10489 | global ld_pzero | ||
10490 | ld_pzero: | ||
10491 | fmov.s &0x00000000,%fp0 # load +0 | ||
10492 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
10493 | rts | ||
10494 | |||
10495 | # ld_mzero(): return a negative zero. | ||
10496 | global ld_mzero | ||
10497 | ld_mzero: | ||
10498 | fmov.s &0x80000000,%fp0 # load -0 | ||
10499 | mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits | ||
10500 | rts | ||
10501 | |||
10502 | ######################################################################### | ||
10503 | # dst_zero(): Return signed zero according to sign of dst operand. # | ||
10504 | ######################################################################### | ||
10505 | global dst_zero | ||
10506 | dst_zero: | ||
10507 | tst.b DST_EX(%a1) # get sign of dst operand | ||
10508 | bmi.b ld_mzero # if neg, load neg zero | ||
10509 | bra.b ld_pzero # load positive zero | ||
10510 | |||
10511 | ######################################################################### | ||
10512 | # src_inf(): Return signed inf according to sign of src operand. # | ||
10513 | ######################################################################### | ||
10514 | global src_inf | ||
10515 | src_inf: | ||
10516 | tst.b SRC_EX(%a0) # get sign of src operand | ||
10517 | bmi.b ld_minf # if negative branch | ||
10518 | |||
10519 | # | ||
10520 | # ld_pinf(): return a positive infinity. | ||
10521 | # | ||
10522 | global ld_pinf | ||
10523 | ld_pinf: | ||
10524 | fmov.s &0x7f800000,%fp0 # load +INF | ||
10525 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit | ||
10526 | rts | ||
10527 | |||
10528 | # | ||
10529 | # ld_minf():return a negative infinity. | ||
10530 | # | ||
10531 | global ld_minf | ||
10532 | ld_minf: | ||
10533 | fmov.s &0xff800000,%fp0 # load -INF | ||
10534 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | ||
10535 | rts | ||
10536 | |||
10537 | ######################################################################### | ||
10538 | # dst_inf(): Return signed inf according to sign of dst operand. # | ||
10539 | ######################################################################### | ||
10540 | global dst_inf | ||
10541 | dst_inf: | ||
10542 | tst.b DST_EX(%a1) # get sign of dst operand | ||
10543 | bmi.b ld_minf # if negative branch | ||
10544 | bra.b ld_pinf | ||
10545 | |||
10546 | global szr_inf | ||
10547 | ################################################################# | ||
10548 | # szr_inf(): Return +ZERO for a negative src operand or # | ||
10549 | # +INF for a positive src operand. # | ||
10550 | # Routine used for fetox, ftwotox, and ftentox. # | ||
10551 | ################################################################# | ||
10552 | szr_inf: | ||
10553 | tst.b SRC_EX(%a0) # check sign of source | ||
10554 | bmi.b ld_pzero | ||
10555 | bra.b ld_pinf | ||
10556 | |||
10557 | ######################################################################### | ||
10558 | # sopr_inf(): Return +INF for a positive src operand or # | ||
10559 | # jump to operand error routine for a negative src operand. # | ||
10560 | # Routine used for flogn, flognp1, flog10, and flog2. # | ||
10561 | ######################################################################### | ||
10562 | global sopr_inf | ||
10563 | sopr_inf: | ||
10564 | tst.b SRC_EX(%a0) # check sign of source | ||
10565 | bmi.w t_operr | ||
10566 | bra.b ld_pinf | ||
10567 | |||
10568 | ################################################################# | ||
10569 | # setoxm1i(): Return minus one for a negative src operand or # | ||
10570 | # positive infinity for a positive src operand. # | ||
10571 | # Routine used for fetoxm1. # | ||
10572 | ################################################################# | ||
10573 | global setoxm1i | ||
10574 | setoxm1i: | ||
10575 | tst.b SRC_EX(%a0) # check sign of source | ||
10576 | bmi.b ld_mone | ||
10577 | bra.b ld_pinf | ||
10578 | |||
10579 | ######################################################################### | ||
10580 | # src_one(): Return signed one according to sign of src operand. # | ||
10581 | ######################################################################### | ||
10582 | global src_one | ||
10583 | src_one: | ||
10584 | tst.b SRC_EX(%a0) # check sign of source | ||
10585 | bmi.b ld_mone | ||
10586 | |||
10587 | # | ||
10588 | # ld_pone(): return positive one. | ||
10589 | # | ||
10590 | global ld_pone | ||
10591 | ld_pone: | ||
10592 | fmov.s &0x3f800000,%fp0 # load +1 | ||
10593 | clr.b FPSR_CC(%a6) | ||
10594 | rts | ||
10595 | |||
10596 | # | ||
10597 | # ld_mone(): return negative one. | ||
10598 | # | ||
10599 | global ld_mone | ||
10600 | ld_mone: | ||
10601 | fmov.s &0xbf800000,%fp0 # load -1 | ||
10602 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
10603 | rts | ||
10604 | |||
10605 | ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 | ||
10606 | mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 | ||
10607 | |||
10608 | ################################################################# | ||
10609 | # spi_2(): Return signed PI/2 according to sign of src operand. # | ||
10610 | ################################################################# | ||
10611 | global spi_2 | ||
10612 | spi_2: | ||
10613 | tst.b SRC_EX(%a0) # check sign of source | ||
10614 | bmi.b ld_mpi2 | ||
10615 | |||
10616 | # | ||
10617 | # ld_ppi2(): return positive PI/2. | ||
10618 | # | ||
10619 | global ld_ppi2 | ||
10620 | ld_ppi2: | ||
10621 | fmov.l %d0,%fpcr | ||
10622 | fmov.x ppiby2(%pc),%fp0 # load +pi/2 | ||
10623 | bra.w t_pinx2 # set INEX2 | ||
10624 | |||
10625 | # | ||
10626 | # ld_mpi2(): return negative PI/2. | ||
10627 | # | ||
10628 | global ld_mpi2 | ||
10629 | ld_mpi2: | ||
10630 | fmov.l %d0,%fpcr | ||
10631 | fmov.x mpiby2(%pc),%fp0 # load -pi/2 | ||
10632 | bra.w t_minx2 # set INEX2 | ||
10633 | |||
10634 | #################################################### | ||
10635 | # The following routines give support for fsincos. # | ||
10636 | #################################################### | ||
10637 | |||
10638 | # | ||
10639 | # ssincosz(): When the src operand is ZERO, store a one in the | ||
10640 | # cosine register and return a ZERO in fp0 w/ the same sign | ||
10641 | # as the src operand. | ||
10642 | # | ||
10643 | global ssincosz | ||
10644 | ssincosz: | ||
10645 | fmov.s &0x3f800000,%fp1 | ||
10646 | tst.b SRC_EX(%a0) # test sign | ||
10647 | bpl.b sincoszp | ||
10648 | fmov.s &0x80000000,%fp0 # return sin result in fp0 | ||
10649 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) | ||
10650 | bra.b sto_cos # store cosine result | ||
10651 | sincoszp: | ||
10652 | fmov.s &0x00000000,%fp0 # return sin result in fp0 | ||
10653 | mov.b &z_bmask,FPSR_CC(%a6) | ||
10654 | bra.b sto_cos # store cosine result | ||
10655 | |||
10656 | # | ||
10657 | # ssincosi(): When the src operand is INF, store a QNAN in the cosine | ||
10658 | # register and jump to the operand error routine for negative | ||
10659 | # src operands. | ||
10660 | # | ||
10661 | global ssincosi | ||
10662 | ssincosi: | ||
10663 | fmov.x qnan(%pc),%fp1 # load NAN | ||
10664 | bsr.l sto_cos # store cosine result | ||
10665 | bra.w t_operr | ||
10666 | |||
10667 | # | ||
10668 | # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine | ||
10669 | # register and branch to the src QNAN routine. | ||
10670 | # | ||
10671 | global ssincosqnan | ||
10672 | ssincosqnan: | ||
10673 | fmov.x LOCAL_EX(%a0),%fp1 | ||
10674 | bsr.l sto_cos | ||
10675 | bra.w src_qnan | ||
10676 | |||
10677 | # | ||
10678 | # ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set | ||
10679 | # in the cosine register and branch to the src SNAN routine. | ||
10680 | # | ||
10681 | global ssincossnan | ||
10682 | ssincossnan: | ||
10683 | fmov.x LOCAL_EX(%a0),%fp1 | ||
10684 | bsr.l sto_cos | ||
10685 | bra.w src_snan | ||
10686 | |||
10687 | ######################################################################## | ||
10688 | |||
10689 | ######################################################################### | ||
10690 | # sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. # | ||
10691 | # fp1 holds the result of the cosine portion of ssincos(). # | ||
10692 | # the value in fp1 will not take any exceptions when moved. # | ||
10693 | # INPUT: # | ||
10694 | # fp1 : fp value to store # | ||
10695 | # MODIFIED: # | ||
10696 | # d0 # | ||
10697 | ######################################################################### | ||
10698 | global sto_cos | ||
10699 | sto_cos: | ||
10700 | mov.b 1+EXC_CMDREG(%a6),%d0 | ||
10701 | andi.w &0x7,%d0 | ||
10702 | mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0 | ||
10703 | jmp (tbl_sto_cos.b,%pc,%d0.w*1) | ||
10704 | |||
10705 | tbl_sto_cos: | ||
10706 | short sto_cos_0 - tbl_sto_cos | ||
10707 | short sto_cos_1 - tbl_sto_cos | ||
10708 | short sto_cos_2 - tbl_sto_cos | ||
10709 | short sto_cos_3 - tbl_sto_cos | ||
10710 | short sto_cos_4 - tbl_sto_cos | ||
10711 | short sto_cos_5 - tbl_sto_cos | ||
10712 | short sto_cos_6 - tbl_sto_cos | ||
10713 | short sto_cos_7 - tbl_sto_cos | ||
10714 | |||
10715 | sto_cos_0: | ||
10716 | fmovm.x &0x40,EXC_FP0(%a6) | ||
10717 | rts | ||
10718 | sto_cos_1: | ||
10719 | fmovm.x &0x40,EXC_FP1(%a6) | ||
10720 | rts | ||
10721 | sto_cos_2: | ||
10722 | fmov.x %fp1,%fp2 | ||
10723 | rts | ||
10724 | sto_cos_3: | ||
10725 | fmov.x %fp1,%fp3 | ||
10726 | rts | ||
10727 | sto_cos_4: | ||
10728 | fmov.x %fp1,%fp4 | ||
10729 | rts | ||
10730 | sto_cos_5: | ||
10731 | fmov.x %fp1,%fp5 | ||
10732 | rts | ||
10733 | sto_cos_6: | ||
10734 | fmov.x %fp1,%fp6 | ||
10735 | rts | ||
10736 | sto_cos_7: | ||
10737 | fmov.x %fp1,%fp7 | ||
10738 | rts | ||
10739 | |||
10740 | ################################################################## | ||
10741 | global smod_sdnrm | ||
10742 | global smod_snorm | ||
10743 | smod_sdnrm: | ||
10744 | smod_snorm: | ||
10745 | mov.b DTAG(%a6),%d1 | ||
10746 | beq.l smod | ||
10747 | cmpi.b %d1,&ZERO | ||
10748 | beq.w smod_zro | ||
10749 | cmpi.b %d1,&INF | ||
10750 | beq.l t_operr | ||
10751 | cmpi.b %d1,&DENORM | ||
10752 | beq.l smod | ||
10753 | cmpi.b %d1,&SNAN | ||
10754 | beq.l dst_snan | ||
10755 | bra.l dst_qnan | ||
10756 | |||
10757 | global smod_szero | ||
10758 | smod_szero: | ||
10759 | mov.b DTAG(%a6),%d1 | ||
10760 | beq.l t_operr | ||
10761 | cmpi.b %d1,&ZERO | ||
10762 | beq.l t_operr | ||
10763 | cmpi.b %d1,&INF | ||
10764 | beq.l t_operr | ||
10765 | cmpi.b %d1,&DENORM | ||
10766 | beq.l t_operr | ||
10767 | cmpi.b %d1,&QNAN | ||
10768 | beq.l dst_qnan | ||
10769 | bra.l dst_snan | ||
10770 | |||
10771 | global smod_sinf | ||
10772 | smod_sinf: | ||
10773 | mov.b DTAG(%a6),%d1 | ||
10774 | beq.l smod_fpn | ||
10775 | cmpi.b %d1,&ZERO | ||
10776 | beq.l smod_zro | ||
10777 | cmpi.b %d1,&INF | ||
10778 | beq.l t_operr | ||
10779 | cmpi.b %d1,&DENORM | ||
10780 | beq.l smod_fpn | ||
10781 | cmpi.b %d1,&QNAN | ||
10782 | beq.l dst_qnan | ||
10783 | bra.l dst_snan | ||
10784 | |||
10785 | smod_zro: | ||
10786 | srem_zro: | ||
10787 | mov.b SRC_EX(%a0),%d1 # get src sign | ||
10788 | mov.b DST_EX(%a1),%d0 # get dst sign | ||
10789 | eor.b %d0,%d1 # get qbyte sign | ||
10790 | andi.b &0x80,%d1 | ||
10791 | mov.b %d1,FPSR_QBYTE(%a6) | ||
10792 | tst.b %d0 | ||
10793 | bpl.w ld_pzero | ||
10794 | bra.w ld_mzero | ||
10795 | |||
10796 | smod_fpn: | ||
10797 | srem_fpn: | ||
10798 | clr.b FPSR_QBYTE(%a6) | ||
10799 | mov.l %d0,-(%sp) | ||
10800 | mov.b SRC_EX(%a0),%d1 # get src sign | ||
10801 | mov.b DST_EX(%a1),%d0 # get dst sign | ||
10802 | eor.b %d0,%d1 # get qbyte sign | ||
10803 | andi.b &0x80,%d1 | ||
10804 | mov.b %d1,FPSR_QBYTE(%a6) | ||
10805 | cmpi.b DTAG(%a6),&DENORM | ||
10806 | bne.b smod_nrm | ||
10807 | lea DST(%a1),%a0 | ||
10808 | mov.l (%sp)+,%d0 | ||
10809 | bra t_resdnrm | ||
10810 | smod_nrm: | ||
10811 | fmov.l (%sp)+,%fpcr | ||
10812 | fmov.x DST(%a1),%fp0 | ||
10813 | tst.b DST_EX(%a1) | ||
10814 | bmi.b smod_nrm_neg | ||
10815 | rts | ||
10816 | |||
10817 | smod_nrm_neg: | ||
10818 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode | ||
10819 | rts | ||
10820 | |||
10821 | ######################################################################### | ||
10822 | global srem_snorm | ||
10823 | global srem_sdnrm | ||
10824 | srem_sdnrm: | ||
10825 | srem_snorm: | ||
10826 | mov.b DTAG(%a6),%d1 | ||
10827 | beq.l srem | ||
10828 | cmpi.b %d1,&ZERO | ||
10829 | beq.w srem_zro | ||
10830 | cmpi.b %d1,&INF | ||
10831 | beq.l t_operr | ||
10832 | cmpi.b %d1,&DENORM | ||
10833 | beq.l srem | ||
10834 | cmpi.b %d1,&QNAN | ||
10835 | beq.l dst_qnan | ||
10836 | bra.l dst_snan | ||
10837 | |||
10838 | global srem_szero | ||
10839 | srem_szero: | ||
10840 | mov.b DTAG(%a6),%d1 | ||
10841 | beq.l t_operr | ||
10842 | cmpi.b %d1,&ZERO | ||
10843 | beq.l t_operr | ||
10844 | cmpi.b %d1,&INF | ||
10845 | beq.l t_operr | ||
10846 | cmpi.b %d1,&DENORM | ||
10847 | beq.l t_operr | ||
10848 | cmpi.b %d1,&QNAN | ||
10849 | beq.l dst_qnan | ||
10850 | bra.l dst_snan | ||
10851 | |||
10852 | global srem_sinf | ||
10853 | srem_sinf: | ||
10854 | mov.b DTAG(%a6),%d1 | ||
10855 | beq.w srem_fpn | ||
10856 | cmpi.b %d1,&ZERO | ||
10857 | beq.w srem_zro | ||
10858 | cmpi.b %d1,&INF | ||
10859 | beq.l t_operr | ||
10860 | cmpi.b %d1,&DENORM | ||
10861 | beq.l srem_fpn | ||
10862 | cmpi.b %d1,&QNAN | ||
10863 | beq.l dst_qnan | ||
10864 | bra.l dst_snan | ||
10865 | |||
10866 | ######################################################################### | ||
10867 | global sscale_snorm | ||
10868 | global sscale_sdnrm | ||
10869 | sscale_snorm: | ||
10870 | sscale_sdnrm: | ||
10871 | mov.b DTAG(%a6),%d1 | ||
10872 | beq.l sscale | ||
10873 | cmpi.b %d1,&ZERO | ||
10874 | beq.l dst_zero | ||
10875 | cmpi.b %d1,&INF | ||
10876 | beq.l dst_inf | ||
10877 | cmpi.b %d1,&DENORM | ||
10878 | beq.l sscale | ||
10879 | cmpi.b %d1,&QNAN | ||
10880 | beq.l dst_qnan | ||
10881 | bra.l dst_snan | ||
10882 | |||
10883 | global sscale_szero | ||
10884 | sscale_szero: | ||
10885 | mov.b DTAG(%a6),%d1 | ||
10886 | beq.l sscale | ||
10887 | cmpi.b %d1,&ZERO | ||
10888 | beq.l dst_zero | ||
10889 | cmpi.b %d1,&INF | ||
10890 | beq.l dst_inf | ||
10891 | cmpi.b %d1,&DENORM | ||
10892 | beq.l sscale | ||
10893 | cmpi.b %d1,&QNAN | ||
10894 | beq.l dst_qnan | ||
10895 | bra.l dst_snan | ||
10896 | |||
10897 | global sscale_sinf | ||
10898 | sscale_sinf: | ||
10899 | mov.b DTAG(%a6),%d1 | ||
10900 | beq.l t_operr | ||
10901 | cmpi.b %d1,&QNAN | ||
10902 | beq.l dst_qnan | ||
10903 | cmpi.b %d1,&SNAN | ||
10904 | beq.l dst_snan | ||
10905 | bra.l t_operr | ||
10906 | |||
10907 | ######################################################################## | ||
10908 | |||
10909 | # | ||
10910 | # sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. | ||
10911 | # | ||
10912 | global sop_sqnan | ||
10913 | sop_sqnan: | ||
10914 | mov.b DTAG(%a6),%d1 | ||
10915 | cmpi.b %d1,&QNAN | ||
10916 | beq.b dst_qnan | ||
10917 | cmpi.b %d1,&SNAN | ||
10918 | beq.b dst_snan | ||
10919 | bra.b src_qnan | ||
10920 | |||
10921 | # | ||
10922 | # sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. | ||
10923 | # | ||
10924 | global sop_ssnan | ||
10925 | sop_ssnan: | ||
10926 | mov.b DTAG(%a6),%d1 | ||
10927 | cmpi.b %d1,&QNAN | ||
10928 | beq.b dst_qnan_src_snan | ||
10929 | cmpi.b %d1,&SNAN | ||
10930 | beq.b dst_snan | ||
10931 | bra.b src_snan | ||
10932 | |||
10933 | dst_qnan_src_snan: | ||
10934 | ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP | ||
10935 | bra.b dst_qnan | ||
10936 | |||
10937 | # | ||
10938 | # dst_qnan(): Return the dst SNAN w/ the SNAN bit set. | ||
10939 | # | ||
10940 | global dst_snan | ||
10941 | dst_snan: | ||
10942 | fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit | ||
10943 | fmov.l %fpsr,%d0 # catch resulting status | ||
10944 | or.l %d0,USER_FPSR(%a6) # store status | ||
10945 | rts | ||
10946 | |||
10947 | # | ||
10948 | # dst_qnan(): Return the dst QNAN. | ||
10949 | # | ||
10950 | global dst_qnan | ||
10951 | dst_qnan: | ||
10952 | fmov.x DST(%a1),%fp0 # return the non-signalling nan | ||
10953 | tst.b DST_EX(%a1) # set ccodes according to QNAN sign | ||
10954 | bmi.b dst_qnan_m | ||
10955 | dst_qnan_p: | ||
10956 | mov.b &nan_bmask,FPSR_CC(%a6) | ||
10957 | rts | ||
10958 | dst_qnan_m: | ||
10959 | mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) | ||
10960 | rts | ||
10961 | |||
10962 | # | ||
10963 | # src_snan(): Return the src SNAN w/ the SNAN bit set. | ||
10964 | # | ||
10965 | global src_snan | ||
10966 | src_snan: | ||
10967 | fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit | ||
10968 | fmov.l %fpsr,%d0 # catch resulting status | ||
10969 | or.l %d0,USER_FPSR(%a6) # store status | ||
10970 | rts | ||
10971 | |||
10972 | # | ||
10973 | # src_qnan(): Return the src QNAN. | ||
10974 | # | ||
10975 | global src_qnan | ||
10976 | src_qnan: | ||
10977 | fmov.x SRC(%a0),%fp0 # return the non-signalling nan | ||
10978 | tst.b SRC_EX(%a0) # set ccodes according to QNAN sign | ||
10979 | bmi.b dst_qnan_m | ||
10980 | src_qnan_p: | ||
10981 | mov.b &nan_bmask,FPSR_CC(%a6) | ||
10982 | rts | ||
10983 | src_qnan_m: | ||
10984 | mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) | ||
10985 | rts | ||
10986 | |||
10987 | # | ||
10988 | # fkern2.s: | ||
10989 | # These entry points are used by the exception handler | ||
10990 | # routines where an instruction is selected by an index into | ||
10991 | # a large jump table corresponding to a given instruction which | ||
10992 | # has been decoded. Flow continues here where we now decode | ||
10993 | # further accoding to the source operand type. | ||
10994 | # | ||
10995 | |||
10996 | global fsinh | ||
10997 | fsinh: | ||
10998 | mov.b STAG(%a6),%d1 | ||
10999 | beq.l ssinh | ||
11000 | cmpi.b %d1,&ZERO | ||
11001 | beq.l src_zero | ||
11002 | cmpi.b %d1,&INF | ||
11003 | beq.l src_inf | ||
11004 | cmpi.b %d1,&DENORM | ||
11005 | beq.l ssinhd | ||
11006 | cmpi.b %d1,&QNAN | ||
11007 | beq.l src_qnan | ||
11008 | bra.l src_snan | ||
11009 | |||
11010 | global flognp1 | ||
11011 | flognp1: | ||
11012 | mov.b STAG(%a6),%d1 | ||
11013 | beq.l slognp1 | ||
11014 | cmpi.b %d1,&ZERO | ||
11015 | beq.l src_zero | ||
11016 | cmpi.b %d1,&INF | ||
11017 | beq.l sopr_inf | ||
11018 | cmpi.b %d1,&DENORM | ||
11019 | beq.l slognp1d | ||
11020 | cmpi.b %d1,&QNAN | ||
11021 | beq.l src_qnan | ||
11022 | bra.l src_snan | ||
11023 | |||
11024 | global fetoxm1 | ||
11025 | fetoxm1: | ||
11026 | mov.b STAG(%a6),%d1 | ||
11027 | beq.l setoxm1 | ||
11028 | cmpi.b %d1,&ZERO | ||
11029 | beq.l src_zero | ||
11030 | cmpi.b %d1,&INF | ||
11031 | beq.l setoxm1i | ||
11032 | cmpi.b %d1,&DENORM | ||
11033 | beq.l setoxm1d | ||
11034 | cmpi.b %d1,&QNAN | ||
11035 | beq.l src_qnan | ||
11036 | bra.l src_snan | ||
11037 | |||
11038 | global ftanh | ||
11039 | ftanh: | ||
11040 | mov.b STAG(%a6),%d1 | ||
11041 | beq.l stanh | ||
11042 | cmpi.b %d1,&ZERO | ||
11043 | beq.l src_zero | ||
11044 | cmpi.b %d1,&INF | ||
11045 | beq.l src_one | ||
11046 | cmpi.b %d1,&DENORM | ||
11047 | beq.l stanhd | ||
11048 | cmpi.b %d1,&QNAN | ||
11049 | beq.l src_qnan | ||
11050 | bra.l src_snan | ||
11051 | |||
11052 | global fatan | ||
11053 | fatan: | ||
11054 | mov.b STAG(%a6),%d1 | ||
11055 | beq.l satan | ||
11056 | cmpi.b %d1,&ZERO | ||
11057 | beq.l src_zero | ||
11058 | cmpi.b %d1,&INF | ||
11059 | beq.l spi_2 | ||
11060 | cmpi.b %d1,&DENORM | ||
11061 | beq.l satand | ||
11062 | cmpi.b %d1,&QNAN | ||
11063 | beq.l src_qnan | ||
11064 | bra.l src_snan | ||
11065 | |||
11066 | global fasin | ||
11067 | fasin: | ||
11068 | mov.b STAG(%a6),%d1 | ||
11069 | beq.l sasin | ||
11070 | cmpi.b %d1,&ZERO | ||
11071 | beq.l src_zero | ||
11072 | cmpi.b %d1,&INF | ||
11073 | beq.l t_operr | ||
11074 | cmpi.b %d1,&DENORM | ||
11075 | beq.l sasind | ||
11076 | cmpi.b %d1,&QNAN | ||
11077 | beq.l src_qnan | ||
11078 | bra.l src_snan | ||
11079 | |||
11080 | global fatanh | ||
11081 | fatanh: | ||
11082 | mov.b STAG(%a6),%d1 | ||
11083 | beq.l satanh | ||
11084 | cmpi.b %d1,&ZERO | ||
11085 | beq.l src_zero | ||
11086 | cmpi.b %d1,&INF | ||
11087 | beq.l t_operr | ||
11088 | cmpi.b %d1,&DENORM | ||
11089 | beq.l satanhd | ||
11090 | cmpi.b %d1,&QNAN | ||
11091 | beq.l src_qnan | ||
11092 | bra.l src_snan | ||
11093 | |||
11094 | global fsine | ||
11095 | fsine: | ||
11096 | mov.b STAG(%a6),%d1 | ||
11097 | beq.l ssin | ||
11098 | cmpi.b %d1,&ZERO | ||
11099 | beq.l src_zero | ||
11100 | cmpi.b %d1,&INF | ||
11101 | beq.l t_operr | ||
11102 | cmpi.b %d1,&DENORM | ||
11103 | beq.l ssind | ||
11104 | cmpi.b %d1,&QNAN | ||
11105 | beq.l src_qnan | ||
11106 | bra.l src_snan | ||
11107 | |||
11108 | global ftan | ||
11109 | ftan: | ||
11110 | mov.b STAG(%a6),%d1 | ||
11111 | beq.l stan | ||
11112 | cmpi.b %d1,&ZERO | ||
11113 | beq.l src_zero | ||
11114 | cmpi.b %d1,&INF | ||
11115 | beq.l t_operr | ||
11116 | cmpi.b %d1,&DENORM | ||
11117 | beq.l stand | ||
11118 | cmpi.b %d1,&QNAN | ||
11119 | beq.l src_qnan | ||
11120 | bra.l src_snan | ||
11121 | |||
11122 | global fetox | ||
11123 | fetox: | ||
11124 | mov.b STAG(%a6),%d1 | ||
11125 | beq.l setox | ||
11126 | cmpi.b %d1,&ZERO | ||
11127 | beq.l ld_pone | ||
11128 | cmpi.b %d1,&INF | ||
11129 | beq.l szr_inf | ||
11130 | cmpi.b %d1,&DENORM | ||
11131 | beq.l setoxd | ||
11132 | cmpi.b %d1,&QNAN | ||
11133 | beq.l src_qnan | ||
11134 | bra.l src_snan | ||
11135 | |||
11136 | global ftwotox | ||
11137 | ftwotox: | ||
11138 | mov.b STAG(%a6),%d1 | ||
11139 | beq.l stwotox | ||
11140 | cmpi.b %d1,&ZERO | ||
11141 | beq.l ld_pone | ||
11142 | cmpi.b %d1,&INF | ||
11143 | beq.l szr_inf | ||
11144 | cmpi.b %d1,&DENORM | ||
11145 | beq.l stwotoxd | ||
11146 | cmpi.b %d1,&QNAN | ||
11147 | beq.l src_qnan | ||
11148 | bra.l src_snan | ||
11149 | |||
11150 | global ftentox | ||
11151 | ftentox: | ||
11152 | mov.b STAG(%a6),%d1 | ||
11153 | beq.l stentox | ||
11154 | cmpi.b %d1,&ZERO | ||
11155 | beq.l ld_pone | ||
11156 | cmpi.b %d1,&INF | ||
11157 | beq.l szr_inf | ||
11158 | cmpi.b %d1,&DENORM | ||
11159 | beq.l stentoxd | ||
11160 | cmpi.b %d1,&QNAN | ||
11161 | beq.l src_qnan | ||
11162 | bra.l src_snan | ||
11163 | |||
11164 | global flogn | ||
11165 | flogn: | ||
11166 | mov.b STAG(%a6),%d1 | ||
11167 | beq.l slogn | ||
11168 | cmpi.b %d1,&ZERO | ||
11169 | beq.l t_dz2 | ||
11170 | cmpi.b %d1,&INF | ||
11171 | beq.l sopr_inf | ||
11172 | cmpi.b %d1,&DENORM | ||
11173 | beq.l slognd | ||
11174 | cmpi.b %d1,&QNAN | ||
11175 | beq.l src_qnan | ||
11176 | bra.l src_snan | ||
11177 | |||
11178 | global flog10 | ||
11179 | flog10: | ||
11180 | mov.b STAG(%a6),%d1 | ||
11181 | beq.l slog10 | ||
11182 | cmpi.b %d1,&ZERO | ||
11183 | beq.l t_dz2 | ||
11184 | cmpi.b %d1,&INF | ||
11185 | beq.l sopr_inf | ||
11186 | cmpi.b %d1,&DENORM | ||
11187 | beq.l slog10d | ||
11188 | cmpi.b %d1,&QNAN | ||
11189 | beq.l src_qnan | ||
11190 | bra.l src_snan | ||
11191 | |||
11192 | global flog2 | ||
11193 | flog2: | ||
11194 | mov.b STAG(%a6),%d1 | ||
11195 | beq.l slog2 | ||
11196 | cmpi.b %d1,&ZERO | ||
11197 | beq.l t_dz2 | ||
11198 | cmpi.b %d1,&INF | ||
11199 | beq.l sopr_inf | ||
11200 | cmpi.b %d1,&DENORM | ||
11201 | beq.l slog2d | ||
11202 | cmpi.b %d1,&QNAN | ||
11203 | beq.l src_qnan | ||
11204 | bra.l src_snan | ||
11205 | |||
11206 | global fcosh | ||
11207 | fcosh: | ||
11208 | mov.b STAG(%a6),%d1 | ||
11209 | beq.l scosh | ||
11210 | cmpi.b %d1,&ZERO | ||
11211 | beq.l ld_pone | ||
11212 | cmpi.b %d1,&INF | ||
11213 | beq.l ld_pinf | ||
11214 | cmpi.b %d1,&DENORM | ||
11215 | beq.l scoshd | ||
11216 | cmpi.b %d1,&QNAN | ||
11217 | beq.l src_qnan | ||
11218 | bra.l src_snan | ||
11219 | |||
11220 | global facos | ||
11221 | facos: | ||
11222 | mov.b STAG(%a6),%d1 | ||
11223 | beq.l sacos | ||
11224 | cmpi.b %d1,&ZERO | ||
11225 | beq.l ld_ppi2 | ||
11226 | cmpi.b %d1,&INF | ||
11227 | beq.l t_operr | ||
11228 | cmpi.b %d1,&DENORM | ||
11229 | beq.l sacosd | ||
11230 | cmpi.b %d1,&QNAN | ||
11231 | beq.l src_qnan | ||
11232 | bra.l src_snan | ||
11233 | |||
11234 | global fcos | ||
11235 | fcos: | ||
11236 | mov.b STAG(%a6),%d1 | ||
11237 | beq.l scos | ||
11238 | cmpi.b %d1,&ZERO | ||
11239 | beq.l ld_pone | ||
11240 | cmpi.b %d1,&INF | ||
11241 | beq.l t_operr | ||
11242 | cmpi.b %d1,&DENORM | ||
11243 | beq.l scosd | ||
11244 | cmpi.b %d1,&QNAN | ||
11245 | beq.l src_qnan | ||
11246 | bra.l src_snan | ||
11247 | |||
11248 | global fgetexp | ||
11249 | fgetexp: | ||
11250 | mov.b STAG(%a6),%d1 | ||
11251 | beq.l sgetexp | ||
11252 | cmpi.b %d1,&ZERO | ||
11253 | beq.l src_zero | ||
11254 | cmpi.b %d1,&INF | ||
11255 | beq.l t_operr | ||
11256 | cmpi.b %d1,&DENORM | ||
11257 | beq.l sgetexpd | ||
11258 | cmpi.b %d1,&QNAN | ||
11259 | beq.l src_qnan | ||
11260 | bra.l src_snan | ||
11261 | |||
11262 | global fgetman | ||
11263 | fgetman: | ||
11264 | mov.b STAG(%a6),%d1 | ||
11265 | beq.l sgetman | ||
11266 | cmpi.b %d1,&ZERO | ||
11267 | beq.l src_zero | ||
11268 | cmpi.b %d1,&INF | ||
11269 | beq.l t_operr | ||
11270 | cmpi.b %d1,&DENORM | ||
11271 | beq.l sgetmand | ||
11272 | cmpi.b %d1,&QNAN | ||
11273 | beq.l src_qnan | ||
11274 | bra.l src_snan | ||
11275 | |||
11276 | global fsincos | ||
11277 | fsincos: | ||
11278 | mov.b STAG(%a6),%d1 | ||
11279 | beq.l ssincos | ||
11280 | cmpi.b %d1,&ZERO | ||
11281 | beq.l ssincosz | ||
11282 | cmpi.b %d1,&INF | ||
11283 | beq.l ssincosi | ||
11284 | cmpi.b %d1,&DENORM | ||
11285 | beq.l ssincosd | ||
11286 | cmpi.b %d1,&QNAN | ||
11287 | beq.l ssincosqnan | ||
11288 | bra.l ssincossnan | ||
11289 | |||
11290 | global fmod | ||
11291 | fmod: | ||
11292 | mov.b STAG(%a6),%d1 | ||
11293 | beq.l smod_snorm | ||
11294 | cmpi.b %d1,&ZERO | ||
11295 | beq.l smod_szero | ||
11296 | cmpi.b %d1,&INF | ||
11297 | beq.l smod_sinf | ||
11298 | cmpi.b %d1,&DENORM | ||
11299 | beq.l smod_sdnrm | ||
11300 | cmpi.b %d1,&QNAN | ||
11301 | beq.l sop_sqnan | ||
11302 | bra.l sop_ssnan | ||
11303 | |||
11304 | global frem | ||
11305 | frem: | ||
11306 | mov.b STAG(%a6),%d1 | ||
11307 | beq.l srem_snorm | ||
11308 | cmpi.b %d1,&ZERO | ||
11309 | beq.l srem_szero | ||
11310 | cmpi.b %d1,&INF | ||
11311 | beq.l srem_sinf | ||
11312 | cmpi.b %d1,&DENORM | ||
11313 | beq.l srem_sdnrm | ||
11314 | cmpi.b %d1,&QNAN | ||
11315 | beq.l sop_sqnan | ||
11316 | bra.l sop_ssnan | ||
11317 | |||
11318 | global fscale | ||
11319 | fscale: | ||
11320 | mov.b STAG(%a6),%d1 | ||
11321 | beq.l sscale_snorm | ||
11322 | cmpi.b %d1,&ZERO | ||
11323 | beq.l sscale_szero | ||
11324 | cmpi.b %d1,&INF | ||
11325 | beq.l sscale_sinf | ||
11326 | cmpi.b %d1,&DENORM | ||
11327 | beq.l sscale_sdnrm | ||
11328 | cmpi.b %d1,&QNAN | ||
11329 | beq.l sop_sqnan | ||
11330 | bra.l sop_ssnan | ||
11331 | |||
11332 | ######################################################################### | ||
11333 | # XDEF **************************************************************** # | ||
11334 | # fgen_except(): catch an exception during transcendental # | ||
11335 | # emulation # | ||
11336 | # # | ||
11337 | # XREF **************************************************************** # | ||
11338 | # fmul() - emulate a multiply instruction # | ||
11339 | # fadd() - emulate an add instruction # | ||
11340 | # fin() - emulate an fmove instruction # | ||
11341 | # # | ||
11342 | # INPUT *************************************************************** # | ||
11343 | # fp0 = destination operand # | ||
11344 | # d0 = type of instruction that took exception # | ||
11345 | # fsave frame = source operand # | ||
11346 | # # | ||
11347 | # OUTPUT ************************************************************** # | ||
11348 | # fp0 = result # | ||
11349 | # fp1 = EXOP # | ||
11350 | # # | ||
11351 | # ALGORITHM *********************************************************** # | ||
11352 | # An exception occurred on the last instruction of the # | ||
11353 | # transcendental emulation. hopefully, this won't be happening much # | ||
11354 | # because it will be VERY slow. # | ||
11355 | # The only exceptions capable of passing through here are # | ||
11356 | # Overflow, Underflow, and Unsupported Data Type. # | ||
11357 | # # | ||
11358 | ######################################################################### | ||
11359 | |||
11360 | global fgen_except | ||
11361 | fgen_except: | ||
11362 | cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP? | ||
11363 | beq.b fge_unsupp # yes | ||
11364 | |||
11365 | mov.b &NORM,STAG(%a6) | ||
11366 | |||
11367 | fge_cont: | ||
11368 | mov.b &NORM,DTAG(%a6) | ||
11369 | |||
11370 | # ok, I have a problem with putting the dst op at FP_DST. the emulation | ||
11371 | # routines aren't supposed to alter the operands but we've just squashed | ||
11372 | # FP_DST here... | ||
11373 | |||
11374 | # 8/17/93 - this turns out to be more of a "cleanliness" standpoint | ||
11375 | # then a potential bug. to begin with, only the dyadic functions | ||
11376 | # frem,fmod, and fscale would get the dst trashed here. But, for | ||
11377 | # the 060SP, the FP_DST is never used again anyways. | ||
11378 | fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0 | ||
11379 | |||
11380 | lea 0x4(%sp),%a0 # pass: ptr to src op | ||
11381 | lea FP_DST(%a6),%a1 # pass: ptr to dst op | ||
11382 | |||
11383 | cmpi.b %d1,&FMOV_OP | ||
11384 | beq.b fge_fin # it was an "fmov" | ||
11385 | cmpi.b %d1,&FADD_OP | ||
11386 | beq.b fge_fadd # it was an "fadd" | ||
11387 | fge_fmul: | ||
11388 | bsr.l fmul | ||
11389 | rts | ||
11390 | fge_fadd: | ||
11391 | bsr.l fadd | ||
11392 | rts | ||
11393 | fge_fin: | ||
11394 | bsr.l fin | ||
11395 | rts | ||
11396 | |||
11397 | fge_unsupp: | ||
11398 | mov.b &DENORM,STAG(%a6) | ||
11399 | bra.b fge_cont | ||
11400 | |||
11401 | # | ||
11402 | # This table holds the offsets of the emulation routines for each individual | ||
11403 | # math operation relative to the address of this table. Included are | ||
11404 | # routines like fadd/fmul/fabs as well as the transcendentals. | ||
11405 | # The location within the table is determined by the extension bits of the | ||
11406 | # operation longword. | ||
11407 | # | ||
11408 | |||
11409 | swbeg &109 | ||
11410 | tbl_unsupp: | ||
11411 | long fin - tbl_unsupp # 00: fmove | ||
11412 | long fint - tbl_unsupp # 01: fint | ||
11413 | long fsinh - tbl_unsupp # 02: fsinh | ||
11414 | long fintrz - tbl_unsupp # 03: fintrz | ||
11415 | long fsqrt - tbl_unsupp # 04: fsqrt | ||
11416 | long tbl_unsupp - tbl_unsupp | ||
11417 | long flognp1 - tbl_unsupp # 06: flognp1 | ||
11418 | long tbl_unsupp - tbl_unsupp | ||
11419 | long fetoxm1 - tbl_unsupp # 08: fetoxm1 | ||
11420 | long ftanh - tbl_unsupp # 09: ftanh | ||
11421 | long fatan - tbl_unsupp # 0a: fatan | ||
11422 | long tbl_unsupp - tbl_unsupp | ||
11423 | long fasin - tbl_unsupp # 0c: fasin | ||
11424 | long fatanh - tbl_unsupp # 0d: fatanh | ||
11425 | long fsine - tbl_unsupp # 0e: fsin | ||
11426 | long ftan - tbl_unsupp # 0f: ftan | ||
11427 | long fetox - tbl_unsupp # 10: fetox | ||
11428 | long ftwotox - tbl_unsupp # 11: ftwotox | ||
11429 | long ftentox - tbl_unsupp # 12: ftentox | ||
11430 | long tbl_unsupp - tbl_unsupp | ||
11431 | long flogn - tbl_unsupp # 14: flogn | ||
11432 | long flog10 - tbl_unsupp # 15: flog10 | ||
11433 | long flog2 - tbl_unsupp # 16: flog2 | ||
11434 | long tbl_unsupp - tbl_unsupp | ||
11435 | long fabs - tbl_unsupp # 18: fabs | ||
11436 | long fcosh - tbl_unsupp # 19: fcosh | ||
11437 | long fneg - tbl_unsupp # 1a: fneg | ||
11438 | long tbl_unsupp - tbl_unsupp | ||
11439 | long facos - tbl_unsupp # 1c: facos | ||
11440 | long fcos - tbl_unsupp # 1d: fcos | ||
11441 | long fgetexp - tbl_unsupp # 1e: fgetexp | ||
11442 | long fgetman - tbl_unsupp # 1f: fgetman | ||
11443 | long fdiv - tbl_unsupp # 20: fdiv | ||
11444 | long fmod - tbl_unsupp # 21: fmod | ||
11445 | long fadd - tbl_unsupp # 22: fadd | ||
11446 | long fmul - tbl_unsupp # 23: fmul | ||
11447 | long fsgldiv - tbl_unsupp # 24: fsgldiv | ||
11448 | long frem - tbl_unsupp # 25: frem | ||
11449 | long fscale - tbl_unsupp # 26: fscale | ||
11450 | long fsglmul - tbl_unsupp # 27: fsglmul | ||
11451 | long fsub - tbl_unsupp # 28: fsub | ||
11452 | long tbl_unsupp - tbl_unsupp | ||
11453 | long tbl_unsupp - tbl_unsupp | ||
11454 | long tbl_unsupp - tbl_unsupp | ||
11455 | long tbl_unsupp - tbl_unsupp | ||
11456 | long tbl_unsupp - tbl_unsupp | ||
11457 | long tbl_unsupp - tbl_unsupp | ||
11458 | long tbl_unsupp - tbl_unsupp | ||
11459 | long fsincos - tbl_unsupp # 30: fsincos | ||
11460 | long fsincos - tbl_unsupp # 31: fsincos | ||
11461 | long fsincos - tbl_unsupp # 32: fsincos | ||
11462 | long fsincos - tbl_unsupp # 33: fsincos | ||
11463 | long fsincos - tbl_unsupp # 34: fsincos | ||
11464 | long fsincos - tbl_unsupp # 35: fsincos | ||
11465 | long fsincos - tbl_unsupp # 36: fsincos | ||
11466 | long fsincos - tbl_unsupp # 37: fsincos | ||
11467 | long fcmp - tbl_unsupp # 38: fcmp | ||
11468 | long tbl_unsupp - tbl_unsupp | ||
11469 | long ftst - tbl_unsupp # 3a: ftst | ||
11470 | long tbl_unsupp - tbl_unsupp | ||
11471 | long tbl_unsupp - tbl_unsupp | ||
11472 | long tbl_unsupp - tbl_unsupp | ||
11473 | long tbl_unsupp - tbl_unsupp | ||
11474 | long tbl_unsupp - tbl_unsupp | ||
11475 | long fsin - tbl_unsupp # 40: fsmove | ||
11476 | long fssqrt - tbl_unsupp # 41: fssqrt | ||
11477 | long tbl_unsupp - tbl_unsupp | ||
11478 | long tbl_unsupp - tbl_unsupp | ||
11479 | long fdin - tbl_unsupp # 44: fdmove | ||
11480 | long fdsqrt - tbl_unsupp # 45: fdsqrt | ||
11481 | long tbl_unsupp - tbl_unsupp | ||
11482 | long tbl_unsupp - tbl_unsupp | ||
11483 | long tbl_unsupp - tbl_unsupp | ||
11484 | long tbl_unsupp - tbl_unsupp | ||
11485 | long tbl_unsupp - tbl_unsupp | ||
11486 | long tbl_unsupp - tbl_unsupp | ||
11487 | long tbl_unsupp - tbl_unsupp | ||
11488 | long tbl_unsupp - tbl_unsupp | ||
11489 | long tbl_unsupp - tbl_unsupp | ||
11490 | long tbl_unsupp - tbl_unsupp | ||
11491 | long tbl_unsupp - tbl_unsupp | ||
11492 | long tbl_unsupp - tbl_unsupp | ||
11493 | long tbl_unsupp - tbl_unsupp | ||
11494 | long tbl_unsupp - tbl_unsupp | ||
11495 | long tbl_unsupp - tbl_unsupp | ||
11496 | long tbl_unsupp - tbl_unsupp | ||
11497 | long tbl_unsupp - tbl_unsupp | ||
11498 | long tbl_unsupp - tbl_unsupp | ||
11499 | long fsabs - tbl_unsupp # 58: fsabs | ||
11500 | long tbl_unsupp - tbl_unsupp | ||
11501 | long fsneg - tbl_unsupp # 5a: fsneg | ||
11502 | long tbl_unsupp - tbl_unsupp | ||
11503 | long fdabs - tbl_unsupp # 5c: fdabs | ||
11504 | long tbl_unsupp - tbl_unsupp | ||
11505 | long fdneg - tbl_unsupp # 5e: fdneg | ||
11506 | long tbl_unsupp - tbl_unsupp | ||
11507 | long fsdiv - tbl_unsupp # 60: fsdiv | ||
11508 | long tbl_unsupp - tbl_unsupp | ||
11509 | long fsadd - tbl_unsupp # 62: fsadd | ||
11510 | long fsmul - tbl_unsupp # 63: fsmul | ||
11511 | long fddiv - tbl_unsupp # 64: fddiv | ||
11512 | long tbl_unsupp - tbl_unsupp | ||
11513 | long fdadd - tbl_unsupp # 66: fdadd | ||
11514 | long fdmul - tbl_unsupp # 67: fdmul | ||
11515 | long fssub - tbl_unsupp # 68: fssub | ||
11516 | long tbl_unsupp - tbl_unsupp | ||
11517 | long tbl_unsupp - tbl_unsupp | ||
11518 | long tbl_unsupp - tbl_unsupp | ||
11519 | long fdsub - tbl_unsupp # 6c: fdsub | ||
11520 | |||
11521 | ######################################################################### | ||
11522 | # XDEF **************************************************************** # | ||
11523 | # fmul(): emulates the fmul instruction # | ||
11524 | # fsmul(): emulates the fsmul instruction # | ||
11525 | # fdmul(): emulates the fdmul instruction # | ||
11526 | # # | ||
11527 | # XREF **************************************************************** # | ||
11528 | # scale_to_zero_src() - scale src exponent to zero # | ||
11529 | # scale_to_zero_dst() - scale dst exponent to zero # | ||
11530 | # unf_res() - return default underflow result # | ||
11531 | # ovf_res() - return default overflow result # | ||
11532 | # res_qnan() - return QNAN result # | ||
11533 | # res_snan() - return SNAN result # | ||
11534 | # # | ||
11535 | # INPUT *************************************************************** # | ||
11536 | # a0 = pointer to extended precision source operand # | ||
11537 | # a1 = pointer to extended precision destination operand # | ||
11538 | # d0 rnd prec,mode # | ||
11539 | # # | ||
11540 | # OUTPUT ************************************************************** # | ||
11541 | # fp0 = result # | ||
11542 | # fp1 = EXOP (if exception occurred) # | ||
11543 | # # | ||
11544 | # ALGORITHM *********************************************************** # | ||
11545 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
11546 | # norms/denorms into ext/sgl/dbl precision. # | ||
11547 | # For norms/denorms, scale the exponents such that a multiply # | ||
11548 | # instruction won't cause an exception. Use the regular fmul to # | ||
11549 | # compute a result. Check if the regular operands would have taken # | ||
11550 | # an exception. If so, return the default overflow/underflow result # | ||
11551 | # and return the EXOP if exceptions are enabled. Else, scale the # | ||
11552 | # result operand to the proper exponent. # | ||
11553 | # # | ||
11554 | ######################################################################### | ||
11555 | |||
11556 | align 0x10 | ||
11557 | tbl_fmul_ovfl: | ||
11558 | long 0x3fff - 0x7ffe # ext_max | ||
11559 | long 0x3fff - 0x407e # sgl_max | ||
11560 | long 0x3fff - 0x43fe # dbl_max | ||
11561 | tbl_fmul_unfl: | ||
11562 | long 0x3fff + 0x0001 # ext_unfl | ||
11563 | long 0x3fff - 0x3f80 # sgl_unfl | ||
11564 | long 0x3fff - 0x3c00 # dbl_unfl | ||
11565 | |||
11566 | global fsmul | ||
11567 | fsmul: | ||
11568 | andi.b &0x30,%d0 # clear rnd prec | ||
11569 | ori.b &s_mode*0x10,%d0 # insert sgl prec | ||
11570 | bra.b fmul | ||
11571 | |||
11572 | global fdmul | ||
11573 | fdmul: | ||
11574 | andi.b &0x30,%d0 | ||
11575 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
11576 | |||
11577 | global fmul | ||
11578 | fmul: | ||
11579 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
11580 | |||
11581 | clr.w %d1 | ||
11582 | mov.b DTAG(%a6),%d1 | ||
11583 | lsl.b &0x3,%d1 | ||
11584 | or.b STAG(%a6),%d1 # combine src tags | ||
11585 | bne.w fmul_not_norm # optimize on non-norm input | ||
11586 | |||
11587 | fmul_norm: | ||
11588 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
11589 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
11590 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
11591 | |||
11592 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
11593 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
11594 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
11595 | |||
11596 | bsr.l scale_to_zero_src # scale src exponent | ||
11597 | mov.l %d0,-(%sp) # save scale factor 1 | ||
11598 | |||
11599 | bsr.l scale_to_zero_dst # scale dst exponent | ||
11600 | |||
11601 | add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 | ||
11602 | |||
11603 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision | ||
11604 | lsr.b &0x6,%d1 # shift to lo bits | ||
11605 | mov.l (%sp)+,%d0 # load S.F. | ||
11606 | cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? | ||
11607 | beq.w fmul_may_ovfl # result may rnd to overflow | ||
11608 | blt.w fmul_ovfl # result will overflow | ||
11609 | |||
11610 | cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? | ||
11611 | beq.w fmul_may_unfl # result may rnd to no unfl | ||
11612 | bgt.w fmul_unfl # result will underflow | ||
11613 | |||
11614 | # | ||
11615 | # NORMAL: | ||
11616 | # - the result of the multiply operation will neither overflow nor underflow. | ||
11617 | # - do the multiply to the proper precision and rounding mode. | ||
11618 | # - scale the result exponent using the scale factor. if both operands were | ||
11619 | # normalized then we really don't need to go through this scaling. but for now, | ||
11620 | # this will do. | ||
11621 | # | ||
11622 | fmul_normal: | ||
11623 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
11624 | |||
11625 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
11626 | fmov.l &0x0,%fpsr # clear FPSR | ||
11627 | |||
11628 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11629 | |||
11630 | fmov.l %fpsr,%d1 # save status | ||
11631 | fmov.l &0x0,%fpcr # clear FPCR | ||
11632 | |||
11633 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
11634 | |||
11635 | fmul_normal_exit: | ||
11636 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
11637 | mov.l %d2,-(%sp) # save d2 | ||
11638 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} | ||
11639 | mov.l %d1,%d2 # make a copy | ||
11640 | andi.l &0x7fff,%d1 # strip sign | ||
11641 | andi.w &0x8000,%d2 # keep old sign | ||
11642 | sub.l %d0,%d1 # add scale factor | ||
11643 | or.w %d2,%d1 # concat old sign,new exp | ||
11644 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
11645 | mov.l (%sp)+,%d2 # restore d2 | ||
11646 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
11647 | rts | ||
11648 | |||
11649 | # | ||
11650 | # OVERFLOW: | ||
11651 | # - the result of the multiply operation is an overflow. | ||
11652 | # - do the multiply to the proper precision and rounding mode in order to | ||
11653 | # set the inexact bits. | ||
11654 | # - calculate the default result and return it in fp0. | ||
11655 | # - if overflow or inexact is enabled, we need a multiply result rounded to | ||
11656 | # extended precision. if the original operation was extended, then we have this | ||
11657 | # result. if the original operation was single or double, we have to do another | ||
11658 | # multiply using extended precision and the correct rounding mode. the result | ||
11659 | # of this operation then has its exponent scaled by -0x6000 to create the | ||
11660 | # exceptional operand. | ||
11661 | # | ||
11662 | fmul_ovfl: | ||
11663 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
11664 | |||
11665 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
11666 | fmov.l &0x0,%fpsr # clear FPSR | ||
11667 | |||
11668 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11669 | |||
11670 | fmov.l %fpsr,%d1 # save status | ||
11671 | fmov.l &0x0,%fpcr # clear FPCR | ||
11672 | |||
11673 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
11674 | |||
11675 | # save setting this until now because this is where fmul_may_ovfl may jump in | ||
11676 | fmul_ovfl_tst: | ||
11677 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
11678 | |||
11679 | mov.b FPCR_ENABLE(%a6),%d1 | ||
11680 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
11681 | bne.b fmul_ovfl_ena # yes | ||
11682 | |||
11683 | # calculate the default result | ||
11684 | fmul_ovfl_dis: | ||
11685 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
11686 | sne %d1 # set sign param accordingly | ||
11687 | mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode | ||
11688 | bsr.l ovf_res # calculate default result | ||
11689 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
11690 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
11691 | rts | ||
11692 | |||
11693 | # | ||
11694 | # OVFL is enabled; Create EXOP: | ||
11695 | # - if precision is extended, then we have the EXOP. simply bias the exponent | ||
11696 | # with an extra -0x6000. if the precision is single or double, we need to | ||
11697 | # calculate a result rounded to extended precision. | ||
11698 | # | ||
11699 | fmul_ovfl_ena: | ||
11700 | mov.l L_SCR3(%a6),%d1 | ||
11701 | andi.b &0xc0,%d1 # test the rnd prec | ||
11702 | bne.b fmul_ovfl_ena_sd # it's sgl or dbl | ||
11703 | |||
11704 | fmul_ovfl_ena_cont: | ||
11705 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack | ||
11706 | |||
11707 | mov.l %d2,-(%sp) # save d2 | ||
11708 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
11709 | mov.w %d1,%d2 # make a copy | ||
11710 | andi.l &0x7fff,%d1 # strip sign | ||
11711 | sub.l %d0,%d1 # add scale factor | ||
11712 | subi.l &0x6000,%d1 # subtract bias | ||
11713 | andi.w &0x7fff,%d1 # clear sign bit | ||
11714 | andi.w &0x8000,%d2 # keep old sign | ||
11715 | or.w %d2,%d1 # concat old sign,new exp | ||
11716 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
11717 | mov.l (%sp)+,%d2 # restore d2 | ||
11718 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
11719 | bra.b fmul_ovfl_dis | ||
11720 | |||
11721 | fmul_ovfl_ena_sd: | ||
11722 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
11723 | |||
11724 | mov.l L_SCR3(%a6),%d1 | ||
11725 | andi.b &0x30,%d1 # keep rnd mode only | ||
11726 | fmov.l %d1,%fpcr # set FPCR | ||
11727 | |||
11728 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11729 | |||
11730 | fmov.l &0x0,%fpcr # clear FPCR | ||
11731 | bra.b fmul_ovfl_ena_cont | ||
11732 | |||
11733 | # | ||
11734 | # may OVERFLOW: | ||
11735 | # - the result of the multiply operation MAY overflow. | ||
11736 | # - do the multiply to the proper precision and rounding mode in order to | ||
11737 | # set the inexact bits. | ||
11738 | # - calculate the default result and return it in fp0. | ||
11739 | # | ||
11740 | fmul_may_ovfl: | ||
11741 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
11742 | |||
11743 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
11744 | fmov.l &0x0,%fpsr # clear FPSR | ||
11745 | |||
11746 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11747 | |||
11748 | fmov.l %fpsr,%d1 # save status | ||
11749 | fmov.l &0x0,%fpcr # clear FPCR | ||
11750 | |||
11751 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
11752 | |||
11753 | fabs.x %fp0,%fp1 # make a copy of result | ||
11754 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? | ||
11755 | fbge.w fmul_ovfl_tst # yes; overflow has occurred | ||
11756 | |||
11757 | # no, it didn't overflow; we have correct result | ||
11758 | bra.w fmul_normal_exit | ||
11759 | |||
11760 | # | ||
11761 | # UNDERFLOW: | ||
11762 | # - the result of the multiply operation is an underflow. | ||
11763 | # - do the multiply to the proper precision and rounding mode in order to | ||
11764 | # set the inexact bits. | ||
11765 | # - calculate the default result and return it in fp0. | ||
11766 | # - if overflow or inexact is enabled, we need a multiply result rounded to | ||
11767 | # extended precision. if the original operation was extended, then we have this | ||
11768 | # result. if the original operation was single or double, we have to do another | ||
11769 | # multiply using extended precision and the correct rounding mode. the result | ||
11770 | # of this operation then has its exponent scaled by -0x6000 to create the | ||
11771 | # exceptional operand. | ||
11772 | # | ||
11773 | fmul_unfl: | ||
11774 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
11775 | |||
11776 | # for fun, let's use only extended precision, round to zero. then, let | ||
11777 | # the unf_res() routine figure out all the rest. | ||
11778 | # will we get the correct answer. | ||
11779 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
11780 | |||
11781 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
11782 | fmov.l &0x0,%fpsr # clear FPSR | ||
11783 | |||
11784 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11785 | |||
11786 | fmov.l %fpsr,%d1 # save status | ||
11787 | fmov.l &0x0,%fpcr # clear FPCR | ||
11788 | |||
11789 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
11790 | |||
11791 | mov.b FPCR_ENABLE(%a6),%d1 | ||
11792 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
11793 | bne.b fmul_unfl_ena # yes | ||
11794 | |||
11795 | fmul_unfl_dis: | ||
11796 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
11797 | |||
11798 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
11799 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
11800 | bsr.l unf_res # calculate default result | ||
11801 | or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' | ||
11802 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
11803 | rts | ||
11804 | |||
11805 | # | ||
11806 | # UNFL is enabled. | ||
11807 | # | ||
11808 | fmul_unfl_ena: | ||
11809 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op | ||
11810 | |||
11811 | mov.l L_SCR3(%a6),%d1 | ||
11812 | andi.b &0xc0,%d1 # is precision extended? | ||
11813 | bne.b fmul_unfl_ena_sd # no, sgl or dbl | ||
11814 | |||
11815 | # if the rnd mode is anything but RZ, then we have to re-do the above | ||
11816 | # multiplication becuase we used RZ for all. | ||
11817 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
11818 | |||
11819 | fmul_unfl_ena_cont: | ||
11820 | fmov.l &0x0,%fpsr # clear FPSR | ||
11821 | |||
11822 | fmul.x FP_SCR0(%a6),%fp1 # execute multiply | ||
11823 | |||
11824 | fmov.l &0x0,%fpcr # clear FPCR | ||
11825 | |||
11826 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack | ||
11827 | mov.l %d2,-(%sp) # save d2 | ||
11828 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
11829 | mov.l %d1,%d2 # make a copy | ||
11830 | andi.l &0x7fff,%d1 # strip sign | ||
11831 | andi.w &0x8000,%d2 # keep old sign | ||
11832 | sub.l %d0,%d1 # add scale factor | ||
11833 | addi.l &0x6000,%d1 # add bias | ||
11834 | andi.w &0x7fff,%d1 | ||
11835 | or.w %d2,%d1 # concat old sign,new exp | ||
11836 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
11837 | mov.l (%sp)+,%d2 # restore d2 | ||
11838 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
11839 | bra.w fmul_unfl_dis | ||
11840 | |||
11841 | fmul_unfl_ena_sd: | ||
11842 | mov.l L_SCR3(%a6),%d1 | ||
11843 | andi.b &0x30,%d1 # use only rnd mode | ||
11844 | fmov.l %d1,%fpcr # set FPCR | ||
11845 | |||
11846 | bra.b fmul_unfl_ena_cont | ||
11847 | |||
11848 | # MAY UNDERFLOW: | ||
11849 | # -use the correct rounding mode and precision. this code favors operations | ||
11850 | # that do not underflow. | ||
11851 | fmul_may_unfl: | ||
11852 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
11853 | |||
11854 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
11855 | fmov.l &0x0,%fpsr # clear FPSR | ||
11856 | |||
11857 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply | ||
11858 | |||
11859 | fmov.l %fpsr,%d1 # save status | ||
11860 | fmov.l &0x0,%fpcr # clear FPCR | ||
11861 | |||
11862 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
11863 | |||
11864 | fabs.x %fp0,%fp1 # make a copy of result | ||
11865 | fcmp.b %fp1,&0x2 # is |result| > 2.b? | ||
11866 | fbgt.w fmul_normal_exit # no; no underflow occurred | ||
11867 | fblt.w fmul_unfl # yes; underflow occurred | ||
11868 | |||
11869 | # | ||
11870 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | ||
11871 | # we don't know if the result was an underflow that rounded up to a 2 or | ||
11872 | # a normalized number that rounded down to a 2. so, redo the entire operation | ||
11873 | # using RZ as the rounding mode to see what the pre-rounded result is. | ||
11874 | # this case should be relatively rare. | ||
11875 | # | ||
11876 | fmovm.x FP_SCR1(%a6),&0x40 # load dst operand | ||
11877 | |||
11878 | mov.l L_SCR3(%a6),%d1 | ||
11879 | andi.b &0xc0,%d1 # keep rnd prec | ||
11880 | ori.b &rz_mode*0x10,%d1 # insert RZ | ||
11881 | |||
11882 | fmov.l %d1,%fpcr # set FPCR | ||
11883 | fmov.l &0x0,%fpsr # clear FPSR | ||
11884 | |||
11885 | fmul.x FP_SCR0(%a6),%fp1 # execute multiply | ||
11886 | |||
11887 | fmov.l &0x0,%fpcr # clear FPCR | ||
11888 | fabs.x %fp1 # make absolute value | ||
11889 | fcmp.b %fp1,&0x2 # is |result| < 2.b? | ||
11890 | fbge.w fmul_normal_exit # no; no underflow occurred | ||
11891 | bra.w fmul_unfl # yes, underflow occurred | ||
11892 | |||
11893 | ################################################################################ | ||
11894 | |||
11895 | # | ||
11896 | # Multiply: inputs are not both normalized; what are they? | ||
11897 | # | ||
11898 | fmul_not_norm: | ||
11899 | mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 | ||
11900 | jmp (tbl_fmul_op.b,%pc,%d1.w) | ||
11901 | |||
11902 | swbeg &48 | ||
11903 | tbl_fmul_op: | ||
11904 | short fmul_norm - tbl_fmul_op # NORM x NORM | ||
11905 | short fmul_zero - tbl_fmul_op # NORM x ZERO | ||
11906 | short fmul_inf_src - tbl_fmul_op # NORM x INF | ||
11907 | short fmul_res_qnan - tbl_fmul_op # NORM x QNAN | ||
11908 | short fmul_norm - tbl_fmul_op # NORM x DENORM | ||
11909 | short fmul_res_snan - tbl_fmul_op # NORM x SNAN | ||
11910 | short tbl_fmul_op - tbl_fmul_op # | ||
11911 | short tbl_fmul_op - tbl_fmul_op # | ||
11912 | |||
11913 | short fmul_zero - tbl_fmul_op # ZERO x NORM | ||
11914 | short fmul_zero - tbl_fmul_op # ZERO x ZERO | ||
11915 | short fmul_res_operr - tbl_fmul_op # ZERO x INF | ||
11916 | short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN | ||
11917 | short fmul_zero - tbl_fmul_op # ZERO x DENORM | ||
11918 | short fmul_res_snan - tbl_fmul_op # ZERO x SNAN | ||
11919 | short tbl_fmul_op - tbl_fmul_op # | ||
11920 | short tbl_fmul_op - tbl_fmul_op # | ||
11921 | |||
11922 | short fmul_inf_dst - tbl_fmul_op # INF x NORM | ||
11923 | short fmul_res_operr - tbl_fmul_op # INF x ZERO | ||
11924 | short fmul_inf_dst - tbl_fmul_op # INF x INF | ||
11925 | short fmul_res_qnan - tbl_fmul_op # INF x QNAN | ||
11926 | short fmul_inf_dst - tbl_fmul_op # INF x DENORM | ||
11927 | short fmul_res_snan - tbl_fmul_op # INF x SNAN | ||
11928 | short tbl_fmul_op - tbl_fmul_op # | ||
11929 | short tbl_fmul_op - tbl_fmul_op # | ||
11930 | |||
11931 | short fmul_res_qnan - tbl_fmul_op # QNAN x NORM | ||
11932 | short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO | ||
11933 | short fmul_res_qnan - tbl_fmul_op # QNAN x INF | ||
11934 | short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN | ||
11935 | short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM | ||
11936 | short fmul_res_snan - tbl_fmul_op # QNAN x SNAN | ||
11937 | short tbl_fmul_op - tbl_fmul_op # | ||
11938 | short tbl_fmul_op - tbl_fmul_op # | ||
11939 | |||
11940 | short fmul_norm - tbl_fmul_op # NORM x NORM | ||
11941 | short fmul_zero - tbl_fmul_op # NORM x ZERO | ||
11942 | short fmul_inf_src - tbl_fmul_op # NORM x INF | ||
11943 | short fmul_res_qnan - tbl_fmul_op # NORM x QNAN | ||
11944 | short fmul_norm - tbl_fmul_op # NORM x DENORM | ||
11945 | short fmul_res_snan - tbl_fmul_op # NORM x SNAN | ||
11946 | short tbl_fmul_op - tbl_fmul_op # | ||
11947 | short tbl_fmul_op - tbl_fmul_op # | ||
11948 | |||
11949 | short fmul_res_snan - tbl_fmul_op # SNAN x NORM | ||
11950 | short fmul_res_snan - tbl_fmul_op # SNAN x ZERO | ||
11951 | short fmul_res_snan - tbl_fmul_op # SNAN x INF | ||
11952 | short fmul_res_snan - tbl_fmul_op # SNAN x QNAN | ||
11953 | short fmul_res_snan - tbl_fmul_op # SNAN x DENORM | ||
11954 | short fmul_res_snan - tbl_fmul_op # SNAN x SNAN | ||
11955 | short tbl_fmul_op - tbl_fmul_op # | ||
11956 | short tbl_fmul_op - tbl_fmul_op # | ||
11957 | |||
11958 | fmul_res_operr: | ||
11959 | bra.l res_operr | ||
11960 | fmul_res_snan: | ||
11961 | bra.l res_snan | ||
11962 | fmul_res_qnan: | ||
11963 | bra.l res_qnan | ||
11964 | |||
11965 | # | ||
11966 | # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) | ||
11967 | # | ||
11968 | global fmul_zero # global for fsglmul | ||
11969 | fmul_zero: | ||
11970 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs | ||
11971 | mov.b DST_EX(%a1),%d1 | ||
11972 | eor.b %d0,%d1 | ||
11973 | bpl.b fmul_zero_p # result ZERO is pos. | ||
11974 | fmul_zero_n: | ||
11975 | fmov.s &0x80000000,%fp0 # load -ZERO | ||
11976 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N | ||
11977 | rts | ||
11978 | fmul_zero_p: | ||
11979 | fmov.s &0x00000000,%fp0 # load +ZERO | ||
11980 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
11981 | rts | ||
11982 | |||
11983 | # | ||
11984 | # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) | ||
11985 | # | ||
11986 | # Note: The j-bit for an infinity is a don't-care. However, to be | ||
11987 | # strictly compatible w/ the 68881/882, we make sure to return an | ||
11988 | # INF w/ the j-bit set if the input INF j-bit was set. Destination | ||
11989 | # INFs take priority. | ||
11990 | # | ||
11991 | global fmul_inf_dst # global for fsglmul | ||
11992 | fmul_inf_dst: | ||
11993 | fmovm.x DST(%a1),&0x80 # return INF result in fp0 | ||
11994 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs | ||
11995 | mov.b DST_EX(%a1),%d1 | ||
11996 | eor.b %d0,%d1 | ||
11997 | bpl.b fmul_inf_dst_p # result INF is pos. | ||
11998 | fmul_inf_dst_n: | ||
11999 | fabs.x %fp0 # clear result sign | ||
12000 | fneg.x %fp0 # set result sign | ||
12001 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | ||
12002 | rts | ||
12003 | fmul_inf_dst_p: | ||
12004 | fabs.x %fp0 # clear result sign | ||
12005 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF | ||
12006 | rts | ||
12007 | |||
12008 | global fmul_inf_src # global for fsglmul | ||
12009 | fmul_inf_src: | ||
12010 | fmovm.x SRC(%a0),&0x80 # return INF result in fp0 | ||
12011 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs | ||
12012 | mov.b DST_EX(%a1),%d1 | ||
12013 | eor.b %d0,%d1 | ||
12014 | bpl.b fmul_inf_dst_p # result INF is pos. | ||
12015 | bra.b fmul_inf_dst_n | ||
12016 | |||
12017 | ######################################################################### | ||
12018 | # XDEF **************************************************************** # | ||
12019 | # fin(): emulates the fmove instruction # | ||
12020 | # fsin(): emulates the fsmove instruction # | ||
12021 | # fdin(): emulates the fdmove instruction # | ||
12022 | # # | ||
12023 | # XREF **************************************************************** # | ||
12024 | # norm() - normalize mantissa for EXOP on denorm # | ||
12025 | # scale_to_zero_src() - scale src exponent to zero # | ||
12026 | # ovf_res() - return default overflow result # | ||
12027 | # unf_res() - return default underflow result # | ||
12028 | # res_qnan_1op() - return QNAN result # | ||
12029 | # res_snan_1op() - return SNAN result # | ||
12030 | # # | ||
12031 | # INPUT *************************************************************** # | ||
12032 | # a0 = pointer to extended precision source operand # | ||
12033 | # d0 = round prec/mode # | ||
12034 | # # | ||
12035 | # OUTPUT ************************************************************** # | ||
12036 | # fp0 = result # | ||
12037 | # fp1 = EXOP (if exception occurred) # | ||
12038 | # # | ||
12039 | # ALGORITHM *********************************************************** # | ||
12040 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
12041 | # norms into extended, single, and double precision. # | ||
12042 | # Norms can be emulated w/ a regular fmove instruction. For # | ||
12043 | # sgl/dbl, must scale exponent and perform an "fmove". Check to see # | ||
12044 | # if the result would have overflowed/underflowed. If so, use unf_res() # | ||
12045 | # or ovf_res() to return the default result. Also return EXOP if # | ||
12046 | # exception is enabled. If no exception, return the default result. # | ||
12047 | # Unnorms don't pass through here. # | ||
12048 | # # | ||
12049 | ######################################################################### | ||
12050 | |||
12051 | global fsin | ||
12052 | fsin: | ||
12053 | andi.b &0x30,%d0 # clear rnd prec | ||
12054 | ori.b &s_mode*0x10,%d0 # insert sgl precision | ||
12055 | bra.b fin | ||
12056 | |||
12057 | global fdin | ||
12058 | fdin: | ||
12059 | andi.b &0x30,%d0 # clear rnd prec | ||
12060 | ori.b &d_mode*0x10,%d0 # insert dbl precision | ||
12061 | |||
12062 | global fin | ||
12063 | fin: | ||
12064 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
12065 | |||
12066 | mov.b STAG(%a6),%d1 # fetch src optype tag | ||
12067 | bne.w fin_not_norm # optimize on non-norm input | ||
12068 | |||
12069 | # | ||
12070 | # FP MOVE IN: NORMs and DENORMs ONLY! | ||
12071 | # | ||
12072 | fin_norm: | ||
12073 | andi.b &0xc0,%d0 # is precision extended? | ||
12074 | bne.w fin_not_ext # no, so go handle dbl or sgl | ||
12075 | |||
12076 | # | ||
12077 | # precision selected is extended. so...we cannot get an underflow | ||
12078 | # or overflow because of rounding to the correct precision. so... | ||
12079 | # skip the scaling and unscaling... | ||
12080 | # | ||
12081 | tst.b SRC_EX(%a0) # is the operand negative? | ||
12082 | bpl.b fin_norm_done # no | ||
12083 | bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit | ||
12084 | fin_norm_done: | ||
12085 | fmovm.x SRC(%a0),&0x80 # return result in fp0 | ||
12086 | rts | ||
12087 | |||
12088 | # | ||
12089 | # for an extended precision DENORM, the UNFL exception bit is set | ||
12090 | # the accrued bit is NOT set in this instance(no inexactness!) | ||
12091 | # | ||
12092 | fin_denorm: | ||
12093 | andi.b &0xc0,%d0 # is precision extended? | ||
12094 | bne.w fin_not_ext # no, so go handle dbl or sgl | ||
12095 | |||
12096 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
12097 | tst.b SRC_EX(%a0) # is the operand negative? | ||
12098 | bpl.b fin_denorm_done # no | ||
12099 | bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit | ||
12100 | fin_denorm_done: | ||
12101 | fmovm.x SRC(%a0),&0x80 # return result in fp0 | ||
12102 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | ||
12103 | bne.b fin_denorm_unfl_ena # yes | ||
12104 | rts | ||
12105 | |||
12106 | # | ||
12107 | # the input is an extended DENORM and underflow is enabled in the FPCR. | ||
12108 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | ||
12109 | # exponent and insert back into the operand. | ||
12110 | # | ||
12111 | fin_denorm_unfl_ena: | ||
12112 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12113 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12114 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12115 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
12116 | bsr.l norm # normalize result | ||
12117 | neg.w %d0 # new exponent = -(shft val) | ||
12118 | addi.w &0x6000,%d0 # add new bias to exponent | ||
12119 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp | ||
12120 | andi.w &0x8000,%d1 # keep old sign | ||
12121 | andi.w &0x7fff,%d0 # clear sign position | ||
12122 | or.w %d1,%d0 # concat new exo,old sign | ||
12123 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
12124 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
12125 | rts | ||
12126 | |||
12127 | # | ||
12128 | # operand is to be rounded to single or double precision | ||
12129 | # | ||
12130 | fin_not_ext: | ||
12131 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec | ||
12132 | bne.b fin_dbl | ||
12133 | |||
12134 | # | ||
12135 | # operand is to be rounded to single precision | ||
12136 | # | ||
12137 | fin_sgl: | ||
12138 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12139 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12140 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12141 | bsr.l scale_to_zero_src # calculate scale factor | ||
12142 | |||
12143 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? | ||
12144 | bge.w fin_sd_unfl # yes; go handle underflow | ||
12145 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? | ||
12146 | beq.w fin_sd_may_ovfl # maybe; go check | ||
12147 | blt.w fin_sd_ovfl # yes; go handle overflow | ||
12148 | |||
12149 | # | ||
12150 | # operand will NOT overflow or underflow when moved into the fp reg file | ||
12151 | # | ||
12152 | fin_sd_normal: | ||
12153 | fmov.l &0x0,%fpsr # clear FPSR | ||
12154 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12155 | |||
12156 | fmov.x FP_SCR0(%a6),%fp0 # perform move | ||
12157 | |||
12158 | fmov.l %fpsr,%d1 # save FPSR | ||
12159 | fmov.l &0x0,%fpcr # clear FPCR | ||
12160 | |||
12161 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12162 | |||
12163 | fin_sd_normal_exit: | ||
12164 | mov.l %d2,-(%sp) # save d2 | ||
12165 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
12166 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} | ||
12167 | mov.w %d1,%d2 # make a copy | ||
12168 | andi.l &0x7fff,%d1 # strip sign | ||
12169 | sub.l %d0,%d1 # add scale factor | ||
12170 | andi.w &0x8000,%d2 # keep old sign | ||
12171 | or.w %d1,%d2 # concat old sign,new exponent | ||
12172 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent | ||
12173 | mov.l (%sp)+,%d2 # restore d2 | ||
12174 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
12175 | rts | ||
12176 | |||
12177 | # | ||
12178 | # operand is to be rounded to double precision | ||
12179 | # | ||
12180 | fin_dbl: | ||
12181 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12182 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12183 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12184 | bsr.l scale_to_zero_src # calculate scale factor | ||
12185 | |||
12186 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? | ||
12187 | bge.w fin_sd_unfl # yes; go handle underflow | ||
12188 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? | ||
12189 | beq.w fin_sd_may_ovfl # maybe; go check | ||
12190 | blt.w fin_sd_ovfl # yes; go handle overflow | ||
12191 | bra.w fin_sd_normal # no; ho handle normalized op | ||
12192 | |||
12193 | # | ||
12194 | # operand WILL underflow when moved in to the fp register file | ||
12195 | # | ||
12196 | fin_sd_unfl: | ||
12197 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
12198 | |||
12199 | tst.b FP_SCR0_EX(%a6) # is operand negative? | ||
12200 | bpl.b fin_sd_unfl_tst | ||
12201 | bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit | ||
12202 | |||
12203 | # if underflow or inexact is enabled, then go calculate the EXOP first. | ||
12204 | fin_sd_unfl_tst: | ||
12205 | mov.b FPCR_ENABLE(%a6),%d1 | ||
12206 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
12207 | bne.b fin_sd_unfl_ena # yes | ||
12208 | |||
12209 | fin_sd_unfl_dis: | ||
12210 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
12211 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
12212 | bsr.l unf_res # calculate default result | ||
12213 | or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' | ||
12214 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
12215 | rts | ||
12216 | |||
12217 | # | ||
12218 | # operand will underflow AND underflow or inexact is enabled. | ||
12219 | # therefore, we must return the result rounded to extended precision. | ||
12220 | # | ||
12221 | fin_sd_unfl_ena: | ||
12222 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | ||
12223 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | ||
12224 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent | ||
12225 | |||
12226 | mov.l %d2,-(%sp) # save d2 | ||
12227 | mov.w %d1,%d2 # make a copy | ||
12228 | andi.l &0x7fff,%d1 # strip sign | ||
12229 | sub.l %d0,%d1 # subtract scale factor | ||
12230 | andi.w &0x8000,%d2 # extract old sign | ||
12231 | addi.l &0x6000,%d1 # add new bias | ||
12232 | andi.w &0x7fff,%d1 | ||
12233 | or.w %d1,%d2 # concat old sign,new exp | ||
12234 | mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent | ||
12235 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 | ||
12236 | mov.l (%sp)+,%d2 # restore d2 | ||
12237 | bra.b fin_sd_unfl_dis | ||
12238 | |||
12239 | # | ||
12240 | # operand WILL overflow. | ||
12241 | # | ||
12242 | fin_sd_ovfl: | ||
12243 | fmov.l &0x0,%fpsr # clear FPSR | ||
12244 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12245 | |||
12246 | fmov.x FP_SCR0(%a6),%fp0 # perform move | ||
12247 | |||
12248 | fmov.l &0x0,%fpcr # clear FPCR | ||
12249 | fmov.l %fpsr,%d1 # save FPSR | ||
12250 | |||
12251 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12252 | |||
12253 | fin_sd_ovfl_tst: | ||
12254 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
12255 | |||
12256 | mov.b FPCR_ENABLE(%a6),%d1 | ||
12257 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
12258 | bne.b fin_sd_ovfl_ena # yes | ||
12259 | |||
12260 | # | ||
12261 | # OVFL is not enabled; therefore, we must create the default result by | ||
12262 | # calling ovf_res(). | ||
12263 | # | ||
12264 | fin_sd_ovfl_dis: | ||
12265 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
12266 | sne %d1 # set sign param accordingly | ||
12267 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode | ||
12268 | bsr.l ovf_res # calculate default result | ||
12269 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
12270 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
12271 | rts | ||
12272 | |||
12273 | # | ||
12274 | # OVFL is enabled. | ||
12275 | # the INEX2 bit has already been updated by the round to the correct precision. | ||
12276 | # now, round to extended(and don't alter the FPSR). | ||
12277 | # | ||
12278 | fin_sd_ovfl_ena: | ||
12279 | mov.l %d2,-(%sp) # save d2 | ||
12280 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
12281 | mov.l %d1,%d2 # make a copy | ||
12282 | andi.l &0x7fff,%d1 # strip sign | ||
12283 | andi.w &0x8000,%d2 # keep old sign | ||
12284 | sub.l %d0,%d1 # add scale factor | ||
12285 | sub.l &0x6000,%d1 # subtract bias | ||
12286 | andi.w &0x7fff,%d1 | ||
12287 | or.w %d2,%d1 | ||
12288 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
12289 | mov.l (%sp)+,%d2 # restore d2 | ||
12290 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
12291 | bra.b fin_sd_ovfl_dis | ||
12292 | |||
12293 | # | ||
12294 | # the move in MAY overflow. so... | ||
12295 | # | ||
12296 | fin_sd_may_ovfl: | ||
12297 | fmov.l &0x0,%fpsr # clear FPSR | ||
12298 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12299 | |||
12300 | fmov.x FP_SCR0(%a6),%fp0 # perform the move | ||
12301 | |||
12302 | fmov.l %fpsr,%d1 # save status | ||
12303 | fmov.l &0x0,%fpcr # clear FPCR | ||
12304 | |||
12305 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12306 | |||
12307 | fabs.x %fp0,%fp1 # make a copy of result | ||
12308 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? | ||
12309 | fbge.w fin_sd_ovfl_tst # yes; overflow has occurred | ||
12310 | |||
12311 | # no, it didn't overflow; we have correct result | ||
12312 | bra.w fin_sd_normal_exit | ||
12313 | |||
12314 | ########################################################################## | ||
12315 | |||
12316 | # | ||
12317 | # operand is not a NORM: check its optype and branch accordingly | ||
12318 | # | ||
12319 | fin_not_norm: | ||
12320 | cmpi.b %d1,&DENORM # weed out DENORM | ||
12321 | beq.w fin_denorm | ||
12322 | cmpi.b %d1,&SNAN # weed out SNANs | ||
12323 | beq.l res_snan_1op | ||
12324 | cmpi.b %d1,&QNAN # weed out QNANs | ||
12325 | beq.l res_qnan_1op | ||
12326 | |||
12327 | # | ||
12328 | # do the fmove in; at this point, only possible ops are ZERO and INF. | ||
12329 | # use fmov to determine ccodes. | ||
12330 | # prec:mode should be zero at this point but it won't affect answer anyways. | ||
12331 | # | ||
12332 | fmov.x SRC(%a0),%fp0 # do fmove in | ||
12333 | fmov.l %fpsr,%d0 # no exceptions possible | ||
12334 | rol.l &0x8,%d0 # put ccodes in lo byte | ||
12335 | mov.b %d0,FPSR_CC(%a6) # insert correct ccodes | ||
12336 | rts | ||
12337 | |||
12338 | ######################################################################### | ||
12339 | # XDEF **************************************************************** # | ||
12340 | # fdiv(): emulates the fdiv instruction # | ||
12341 | # fsdiv(): emulates the fsdiv instruction # | ||
12342 | # fddiv(): emulates the fddiv instruction # | ||
12343 | # # | ||
12344 | # XREF **************************************************************** # | ||
12345 | # scale_to_zero_src() - scale src exponent to zero # | ||
12346 | # scale_to_zero_dst() - scale dst exponent to zero # | ||
12347 | # unf_res() - return default underflow result # | ||
12348 | # ovf_res() - return default overflow result # | ||
12349 | # res_qnan() - return QNAN result # | ||
12350 | # res_snan() - return SNAN result # | ||
12351 | # # | ||
12352 | # INPUT *************************************************************** # | ||
12353 | # a0 = pointer to extended precision source operand # | ||
12354 | # a1 = pointer to extended precision destination operand # | ||
12355 | # d0 rnd prec,mode # | ||
12356 | # # | ||
12357 | # OUTPUT ************************************************************** # | ||
12358 | # fp0 = result # | ||
12359 | # fp1 = EXOP (if exception occurred) # | ||
12360 | # # | ||
12361 | # ALGORITHM *********************************************************** # | ||
12362 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
12363 | # norms/denorms into ext/sgl/dbl precision. # | ||
12364 | # For norms/denorms, scale the exponents such that a divide # | ||
12365 | # instruction won't cause an exception. Use the regular fdiv to # | ||
12366 | # compute a result. Check if the regular operands would have taken # | ||
12367 | # an exception. If so, return the default overflow/underflow result # | ||
12368 | # and return the EXOP if exceptions are enabled. Else, scale the # | ||
12369 | # result operand to the proper exponent. # | ||
12370 | # # | ||
12371 | ######################################################################### | ||
12372 | |||
12373 | align 0x10 | ||
12374 | tbl_fdiv_unfl: | ||
12375 | long 0x3fff - 0x0000 # ext_unfl | ||
12376 | long 0x3fff - 0x3f81 # sgl_unfl | ||
12377 | long 0x3fff - 0x3c01 # dbl_unfl | ||
12378 | |||
12379 | tbl_fdiv_ovfl: | ||
12380 | long 0x3fff - 0x7ffe # ext overflow exponent | ||
12381 | long 0x3fff - 0x407e # sgl overflow exponent | ||
12382 | long 0x3fff - 0x43fe # dbl overflow exponent | ||
12383 | |||
12384 | global fsdiv | ||
12385 | fsdiv: | ||
12386 | andi.b &0x30,%d0 # clear rnd prec | ||
12387 | ori.b &s_mode*0x10,%d0 # insert sgl prec | ||
12388 | bra.b fdiv | ||
12389 | |||
12390 | global fddiv | ||
12391 | fddiv: | ||
12392 | andi.b &0x30,%d0 # clear rnd prec | ||
12393 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
12394 | |||
12395 | global fdiv | ||
12396 | fdiv: | ||
12397 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
12398 | |||
12399 | clr.w %d1 | ||
12400 | mov.b DTAG(%a6),%d1 | ||
12401 | lsl.b &0x3,%d1 | ||
12402 | or.b STAG(%a6),%d1 # combine src tags | ||
12403 | |||
12404 | bne.w fdiv_not_norm # optimize on non-norm input | ||
12405 | |||
12406 | # | ||
12407 | # DIVIDE: NORMs and DENORMs ONLY! | ||
12408 | # | ||
12409 | fdiv_norm: | ||
12410 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
12411 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
12412 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
12413 | |||
12414 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12415 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12416 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12417 | |||
12418 | bsr.l scale_to_zero_src # scale src exponent | ||
12419 | mov.l %d0,-(%sp) # save scale factor 1 | ||
12420 | |||
12421 | bsr.l scale_to_zero_dst # scale dst exponent | ||
12422 | |||
12423 | neg.l (%sp) # SCALE FACTOR = scale1 - scale2 | ||
12424 | add.l %d0,(%sp) | ||
12425 | |||
12426 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision | ||
12427 | lsr.b &0x6,%d1 # shift to lo bits | ||
12428 | mov.l (%sp)+,%d0 # load S.F. | ||
12429 | cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? | ||
12430 | ble.w fdiv_may_ovfl # result will overflow | ||
12431 | |||
12432 | cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? | ||
12433 | beq.w fdiv_may_unfl # maybe | ||
12434 | bgt.w fdiv_unfl # yes; go handle underflow | ||
12435 | |||
12436 | fdiv_normal: | ||
12437 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
12438 | |||
12439 | fmov.l L_SCR3(%a6),%fpcr # save FPCR | ||
12440 | fmov.l &0x0,%fpsr # clear FPSR | ||
12441 | |||
12442 | fdiv.x FP_SCR0(%a6),%fp0 # perform divide | ||
12443 | |||
12444 | fmov.l %fpsr,%d1 # save FPSR | ||
12445 | fmov.l &0x0,%fpcr # clear FPCR | ||
12446 | |||
12447 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12448 | |||
12449 | fdiv_normal_exit: | ||
12450 | fmovm.x &0x80,FP_SCR0(%a6) # store result on stack | ||
12451 | mov.l %d2,-(%sp) # store d2 | ||
12452 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} | ||
12453 | mov.l %d1,%d2 # make a copy | ||
12454 | andi.l &0x7fff,%d1 # strip sign | ||
12455 | andi.w &0x8000,%d2 # keep old sign | ||
12456 | sub.l %d0,%d1 # add scale factor | ||
12457 | or.w %d2,%d1 # concat old sign,new exp | ||
12458 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
12459 | mov.l (%sp)+,%d2 # restore d2 | ||
12460 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
12461 | rts | ||
12462 | |||
12463 | tbl_fdiv_ovfl2: | ||
12464 | long 0x7fff | ||
12465 | long 0x407f | ||
12466 | long 0x43ff | ||
12467 | |||
12468 | fdiv_no_ovfl: | ||
12469 | mov.l (%sp)+,%d0 # restore scale factor | ||
12470 | bra.b fdiv_normal_exit | ||
12471 | |||
12472 | fdiv_may_ovfl: | ||
12473 | mov.l %d0,-(%sp) # save scale factor | ||
12474 | |||
12475 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
12476 | |||
12477 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12478 | fmov.l &0x0,%fpsr # set FPSR | ||
12479 | |||
12480 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide | ||
12481 | |||
12482 | fmov.l %fpsr,%d0 | ||
12483 | fmov.l &0x0,%fpcr | ||
12484 | |||
12485 | or.l %d0,USER_FPSR(%a6) # save INEX,N | ||
12486 | |||
12487 | fmovm.x &0x01,-(%sp) # save result to stack | ||
12488 | mov.w (%sp),%d0 # fetch new exponent | ||
12489 | add.l &0xc,%sp # clear result from stack | ||
12490 | andi.l &0x7fff,%d0 # strip sign | ||
12491 | sub.l (%sp),%d0 # add scale factor | ||
12492 | cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) | ||
12493 | blt.b fdiv_no_ovfl | ||
12494 | mov.l (%sp)+,%d0 | ||
12495 | |||
12496 | fdiv_ovfl_tst: | ||
12497 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
12498 | |||
12499 | mov.b FPCR_ENABLE(%a6),%d1 | ||
12500 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
12501 | bne.b fdiv_ovfl_ena # yes | ||
12502 | |||
12503 | fdiv_ovfl_dis: | ||
12504 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
12505 | sne %d1 # set sign param accordingly | ||
12506 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd | ||
12507 | bsr.l ovf_res # calculate default result | ||
12508 | or.b %d0,FPSR_CC(%a6) # set INF if applicable | ||
12509 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
12510 | rts | ||
12511 | |||
12512 | fdiv_ovfl_ena: | ||
12513 | mov.l L_SCR3(%a6),%d1 | ||
12514 | andi.b &0xc0,%d1 # is precision extended? | ||
12515 | bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl | ||
12516 | |||
12517 | fdiv_ovfl_ena_cont: | ||
12518 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack | ||
12519 | |||
12520 | mov.l %d2,-(%sp) # save d2 | ||
12521 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
12522 | mov.w %d1,%d2 # make a copy | ||
12523 | andi.l &0x7fff,%d1 # strip sign | ||
12524 | sub.l %d0,%d1 # add scale factor | ||
12525 | subi.l &0x6000,%d1 # subtract bias | ||
12526 | andi.w &0x7fff,%d1 # clear sign bit | ||
12527 | andi.w &0x8000,%d2 # keep old sign | ||
12528 | or.w %d2,%d1 # concat old sign,new exp | ||
12529 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
12530 | mov.l (%sp)+,%d2 # restore d2 | ||
12531 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
12532 | bra.b fdiv_ovfl_dis | ||
12533 | |||
12534 | fdiv_ovfl_ena_sd: | ||
12535 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand | ||
12536 | |||
12537 | mov.l L_SCR3(%a6),%d1 | ||
12538 | andi.b &0x30,%d1 # keep rnd mode | ||
12539 | fmov.l %d1,%fpcr # set FPCR | ||
12540 | |||
12541 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide | ||
12542 | |||
12543 | fmov.l &0x0,%fpcr # clear FPCR | ||
12544 | bra.b fdiv_ovfl_ena_cont | ||
12545 | |||
12546 | fdiv_unfl: | ||
12547 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
12548 | |||
12549 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
12550 | |||
12551 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
12552 | fmov.l &0x0,%fpsr # clear FPSR | ||
12553 | |||
12554 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide | ||
12555 | |||
12556 | fmov.l %fpsr,%d1 # save status | ||
12557 | fmov.l &0x0,%fpcr # clear FPCR | ||
12558 | |||
12559 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12560 | |||
12561 | mov.b FPCR_ENABLE(%a6),%d1 | ||
12562 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
12563 | bne.b fdiv_unfl_ena # yes | ||
12564 | |||
12565 | fdiv_unfl_dis: | ||
12566 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
12567 | |||
12568 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
12569 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
12570 | bsr.l unf_res # calculate default result | ||
12571 | or.b %d0,FPSR_CC(%a6) # 'Z' may have been set | ||
12572 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
12573 | rts | ||
12574 | |||
12575 | # | ||
12576 | # UNFL is enabled. | ||
12577 | # | ||
12578 | fdiv_unfl_ena: | ||
12579 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op | ||
12580 | |||
12581 | mov.l L_SCR3(%a6),%d1 | ||
12582 | andi.b &0xc0,%d1 # is precision extended? | ||
12583 | bne.b fdiv_unfl_ena_sd # no, sgl or dbl | ||
12584 | |||
12585 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12586 | |||
12587 | fdiv_unfl_ena_cont: | ||
12588 | fmov.l &0x0,%fpsr # clear FPSR | ||
12589 | |||
12590 | fdiv.x FP_SCR0(%a6),%fp1 # execute divide | ||
12591 | |||
12592 | fmov.l &0x0,%fpcr # clear FPCR | ||
12593 | |||
12594 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack | ||
12595 | mov.l %d2,-(%sp) # save d2 | ||
12596 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
12597 | mov.l %d1,%d2 # make a copy | ||
12598 | andi.l &0x7fff,%d1 # strip sign | ||
12599 | andi.w &0x8000,%d2 # keep old sign | ||
12600 | sub.l %d0,%d1 # add scale factoer | ||
12601 | addi.l &0x6000,%d1 # add bias | ||
12602 | andi.w &0x7fff,%d1 | ||
12603 | or.w %d2,%d1 # concat old sign,new exp | ||
12604 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exp | ||
12605 | mov.l (%sp)+,%d2 # restore d2 | ||
12606 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
12607 | bra.w fdiv_unfl_dis | ||
12608 | |||
12609 | fdiv_unfl_ena_sd: | ||
12610 | mov.l L_SCR3(%a6),%d1 | ||
12611 | andi.b &0x30,%d1 # use only rnd mode | ||
12612 | fmov.l %d1,%fpcr # set FPCR | ||
12613 | |||
12614 | bra.b fdiv_unfl_ena_cont | ||
12615 | |||
12616 | # | ||
12617 | # the divide operation MAY underflow: | ||
12618 | # | ||
12619 | fdiv_may_unfl: | ||
12620 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
12621 | |||
12622 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12623 | fmov.l &0x0,%fpsr # clear FPSR | ||
12624 | |||
12625 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide | ||
12626 | |||
12627 | fmov.l %fpsr,%d1 # save status | ||
12628 | fmov.l &0x0,%fpcr # clear FPCR | ||
12629 | |||
12630 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12631 | |||
12632 | fabs.x %fp0,%fp1 # make a copy of result | ||
12633 | fcmp.b %fp1,&0x1 # is |result| > 1.b? | ||
12634 | fbgt.w fdiv_normal_exit # no; no underflow occurred | ||
12635 | fblt.w fdiv_unfl # yes; underflow occurred | ||
12636 | |||
12637 | # | ||
12638 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | ||
12639 | # we don't know if the result was an underflow that rounded up to a 1 | ||
12640 | # or a normalized number that rounded down to a 1. so, redo the entire | ||
12641 | # operation using RZ as the rounding mode to see what the pre-rounded | ||
12642 | # result is. this case should be relatively rare. | ||
12643 | # | ||
12644 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 | ||
12645 | |||
12646 | mov.l L_SCR3(%a6),%d1 | ||
12647 | andi.b &0xc0,%d1 # keep rnd prec | ||
12648 | ori.b &rz_mode*0x10,%d1 # insert RZ | ||
12649 | |||
12650 | fmov.l %d1,%fpcr # set FPCR | ||
12651 | fmov.l &0x0,%fpsr # clear FPSR | ||
12652 | |||
12653 | fdiv.x FP_SCR0(%a6),%fp1 # execute divide | ||
12654 | |||
12655 | fmov.l &0x0,%fpcr # clear FPCR | ||
12656 | fabs.x %fp1 # make absolute value | ||
12657 | fcmp.b %fp1,&0x1 # is |result| < 1.b? | ||
12658 | fbge.w fdiv_normal_exit # no; no underflow occurred | ||
12659 | bra.w fdiv_unfl # yes; underflow occurred | ||
12660 | |||
12661 | ############################################################################ | ||
12662 | |||
12663 | # | ||
12664 | # Divide: inputs are not both normalized; what are they? | ||
12665 | # | ||
12666 | fdiv_not_norm: | ||
12667 | mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 | ||
12668 | jmp (tbl_fdiv_op.b,%pc,%d1.w*1) | ||
12669 | |||
12670 | swbeg &48 | ||
12671 | tbl_fdiv_op: | ||
12672 | short fdiv_norm - tbl_fdiv_op # NORM / NORM | ||
12673 | short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO | ||
12674 | short fdiv_zero_load - tbl_fdiv_op # NORM / INF | ||
12675 | short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN | ||
12676 | short fdiv_norm - tbl_fdiv_op # NORM / DENORM | ||
12677 | short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN | ||
12678 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12679 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12680 | |||
12681 | short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM | ||
12682 | short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO | ||
12683 | short fdiv_zero_load - tbl_fdiv_op # ZERO / INF | ||
12684 | short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN | ||
12685 | short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM | ||
12686 | short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN | ||
12687 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12688 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12689 | |||
12690 | short fdiv_inf_dst - tbl_fdiv_op # INF / NORM | ||
12691 | short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO | ||
12692 | short fdiv_res_operr - tbl_fdiv_op # INF / INF | ||
12693 | short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN | ||
12694 | short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM | ||
12695 | short fdiv_res_snan - tbl_fdiv_op # INF / SNAN | ||
12696 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12697 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12698 | |||
12699 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM | ||
12700 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO | ||
12701 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF | ||
12702 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN | ||
12703 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM | ||
12704 | short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN | ||
12705 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12706 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12707 | |||
12708 | short fdiv_norm - tbl_fdiv_op # DENORM / NORM | ||
12709 | short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO | ||
12710 | short fdiv_zero_load - tbl_fdiv_op # DENORM / INF | ||
12711 | short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN | ||
12712 | short fdiv_norm - tbl_fdiv_op # DENORM / DENORM | ||
12713 | short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN | ||
12714 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12715 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12716 | |||
12717 | short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM | ||
12718 | short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO | ||
12719 | short fdiv_res_snan - tbl_fdiv_op # SNAN / INF | ||
12720 | short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN | ||
12721 | short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM | ||
12722 | short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN | ||
12723 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12724 | short tbl_fdiv_op - tbl_fdiv_op # | ||
12725 | |||
12726 | fdiv_res_qnan: | ||
12727 | bra.l res_qnan | ||
12728 | fdiv_res_snan: | ||
12729 | bra.l res_snan | ||
12730 | fdiv_res_operr: | ||
12731 | bra.l res_operr | ||
12732 | |||
12733 | global fdiv_zero_load # global for fsgldiv | ||
12734 | fdiv_zero_load: | ||
12735 | mov.b SRC_EX(%a0),%d0 # result sign is exclusive | ||
12736 | mov.b DST_EX(%a1),%d1 # or of input signs. | ||
12737 | eor.b %d0,%d1 | ||
12738 | bpl.b fdiv_zero_load_p # result is positive | ||
12739 | fmov.s &0x80000000,%fp0 # load a -ZERO | ||
12740 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N | ||
12741 | rts | ||
12742 | fdiv_zero_load_p: | ||
12743 | fmov.s &0x00000000,%fp0 # load a +ZERO | ||
12744 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
12745 | rts | ||
12746 | |||
12747 | # | ||
12748 | # The destination was In Range and the source was a ZERO. The result, | ||
12749 | # therefore, is an INF w/ the proper sign. | ||
12750 | # So, determine the sign and return a new INF (w/ the j-bit cleared). | ||
12751 | # | ||
12752 | global fdiv_inf_load # global for fsgldiv | ||
12753 | fdiv_inf_load: | ||
12754 | ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ | ||
12755 | mov.b SRC_EX(%a0),%d0 # load both signs | ||
12756 | mov.b DST_EX(%a1),%d1 | ||
12757 | eor.b %d0,%d1 | ||
12758 | bpl.b fdiv_inf_load_p # result is positive | ||
12759 | fmov.s &0xff800000,%fp0 # make result -INF | ||
12760 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | ||
12761 | rts | ||
12762 | fdiv_inf_load_p: | ||
12763 | fmov.s &0x7f800000,%fp0 # make result +INF | ||
12764 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF | ||
12765 | rts | ||
12766 | |||
12767 | # | ||
12768 | # The destination was an INF w/ an In Range or ZERO source, the result is | ||
12769 | # an INF w/ the proper sign. | ||
12770 | # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the | ||
12771 | # dst INF is set, then then j-bit of the result INF is also set). | ||
12772 | # | ||
12773 | global fdiv_inf_dst # global for fsgldiv | ||
12774 | fdiv_inf_dst: | ||
12775 | mov.b DST_EX(%a1),%d0 # load both signs | ||
12776 | mov.b SRC_EX(%a0),%d1 | ||
12777 | eor.b %d0,%d1 | ||
12778 | bpl.b fdiv_inf_dst_p # result is positive | ||
12779 | |||
12780 | fmovm.x DST(%a1),&0x80 # return result in fp0 | ||
12781 | fabs.x %fp0 # clear sign bit | ||
12782 | fneg.x %fp0 # set sign bit | ||
12783 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG | ||
12784 | rts | ||
12785 | |||
12786 | fdiv_inf_dst_p: | ||
12787 | fmovm.x DST(%a1),&0x80 # return result in fp0 | ||
12788 | fabs.x %fp0 # return positive INF | ||
12789 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF | ||
12790 | rts | ||
12791 | |||
12792 | ######################################################################### | ||
12793 | # XDEF **************************************************************** # | ||
12794 | # fneg(): emulates the fneg instruction # | ||
12795 | # fsneg(): emulates the fsneg instruction # | ||
12796 | # fdneg(): emulates the fdneg instruction # | ||
12797 | # # | ||
12798 | # XREF **************************************************************** # | ||
12799 | # norm() - normalize a denorm to provide EXOP # | ||
12800 | # scale_to_zero_src() - scale sgl/dbl source exponent # | ||
12801 | # ovf_res() - return default overflow result # | ||
12802 | # unf_res() - return default underflow result # | ||
12803 | # res_qnan_1op() - return QNAN result # | ||
12804 | # res_snan_1op() - return SNAN result # | ||
12805 | # # | ||
12806 | # INPUT *************************************************************** # | ||
12807 | # a0 = pointer to extended precision source operand # | ||
12808 | # d0 = rnd prec,mode # | ||
12809 | # # | ||
12810 | # OUTPUT ************************************************************** # | ||
12811 | # fp0 = result # | ||
12812 | # fp1 = EXOP (if exception occurred) # | ||
12813 | # # | ||
12814 | # ALGORITHM *********************************************************** # | ||
12815 | # Handle NANs, zeroes, and infinities as special cases. Separate # | ||
12816 | # norms/denorms into ext/sgl/dbl precisions. Extended precision can be # | ||
12817 | # emulated by simply setting sign bit. Sgl/dbl operands must be scaled # | ||
12818 | # and an actual fneg performed to see if overflow/underflow would have # | ||
12819 | # occurred. If so, return default underflow/overflow result. Else, # | ||
12820 | # scale the result exponent and return result. FPSR gets set based on # | ||
12821 | # the result value. # | ||
12822 | # # | ||
12823 | ######################################################################### | ||
12824 | |||
12825 | global fsneg | ||
12826 | fsneg: | ||
12827 | andi.b &0x30,%d0 # clear rnd prec | ||
12828 | ori.b &s_mode*0x10,%d0 # insert sgl precision | ||
12829 | bra.b fneg | ||
12830 | |||
12831 | global fdneg | ||
12832 | fdneg: | ||
12833 | andi.b &0x30,%d0 # clear rnd prec | ||
12834 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
12835 | |||
12836 | global fneg | ||
12837 | fneg: | ||
12838 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
12839 | mov.b STAG(%a6),%d1 | ||
12840 | bne.w fneg_not_norm # optimize on non-norm input | ||
12841 | |||
12842 | # | ||
12843 | # NEGATE SIGN : norms and denorms ONLY! | ||
12844 | # | ||
12845 | fneg_norm: | ||
12846 | andi.b &0xc0,%d0 # is precision extended? | ||
12847 | bne.w fneg_not_ext # no; go handle sgl or dbl | ||
12848 | |||
12849 | # | ||
12850 | # precision selected is extended. so...we can not get an underflow | ||
12851 | # or overflow because of rounding to the correct precision. so... | ||
12852 | # skip the scaling and unscaling... | ||
12853 | # | ||
12854 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12855 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12856 | mov.w SRC_EX(%a0),%d0 | ||
12857 | eori.w &0x8000,%d0 # negate sign | ||
12858 | bpl.b fneg_norm_load # sign is positive | ||
12859 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
12860 | fneg_norm_load: | ||
12861 | mov.w %d0,FP_SCR0_EX(%a6) | ||
12862 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
12863 | rts | ||
12864 | |||
12865 | # | ||
12866 | # for an extended precision DENORM, the UNFL exception bit is set | ||
12867 | # the accrued bit is NOT set in this instance(no inexactness!) | ||
12868 | # | ||
12869 | fneg_denorm: | ||
12870 | andi.b &0xc0,%d0 # is precision extended? | ||
12871 | bne.b fneg_not_ext # no; go handle sgl or dbl | ||
12872 | |||
12873 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
12874 | |||
12875 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12876 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12877 | mov.w SRC_EX(%a0),%d0 | ||
12878 | eori.w &0x8000,%d0 # negate sign | ||
12879 | bpl.b fneg_denorm_done # no | ||
12880 | mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit | ||
12881 | fneg_denorm_done: | ||
12882 | mov.w %d0,FP_SCR0_EX(%a6) | ||
12883 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
12884 | |||
12885 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | ||
12886 | bne.b fneg_ext_unfl_ena # yes | ||
12887 | rts | ||
12888 | |||
12889 | # | ||
12890 | # the input is an extended DENORM and underflow is enabled in the FPCR. | ||
12891 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | ||
12892 | # exponent and insert back into the operand. | ||
12893 | # | ||
12894 | fneg_ext_unfl_ena: | ||
12895 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
12896 | bsr.l norm # normalize result | ||
12897 | neg.w %d0 # new exponent = -(shft val) | ||
12898 | addi.w &0x6000,%d0 # add new bias to exponent | ||
12899 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp | ||
12900 | andi.w &0x8000,%d1 # keep old sign | ||
12901 | andi.w &0x7fff,%d0 # clear sign position | ||
12902 | or.w %d1,%d0 # concat old sign, new exponent | ||
12903 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
12904 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
12905 | rts | ||
12906 | |||
12907 | # | ||
12908 | # operand is either single or double | ||
12909 | # | ||
12910 | fneg_not_ext: | ||
12911 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec | ||
12912 | bne.b fneg_dbl | ||
12913 | |||
12914 | # | ||
12915 | # operand is to be rounded to single precision | ||
12916 | # | ||
12917 | fneg_sgl: | ||
12918 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12919 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12920 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12921 | bsr.l scale_to_zero_src # calculate scale factor | ||
12922 | |||
12923 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? | ||
12924 | bge.w fneg_sd_unfl # yes; go handle underflow | ||
12925 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? | ||
12926 | beq.w fneg_sd_may_ovfl # maybe; go check | ||
12927 | blt.w fneg_sd_ovfl # yes; go handle overflow | ||
12928 | |||
12929 | # | ||
12930 | # operand will NOT overflow or underflow when moved in to the fp reg file | ||
12931 | # | ||
12932 | fneg_sd_normal: | ||
12933 | fmov.l &0x0,%fpsr # clear FPSR | ||
12934 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
12935 | |||
12936 | fneg.x FP_SCR0(%a6),%fp0 # perform negation | ||
12937 | |||
12938 | fmov.l %fpsr,%d1 # save FPSR | ||
12939 | fmov.l &0x0,%fpcr # clear FPCR | ||
12940 | |||
12941 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
12942 | |||
12943 | fneg_sd_normal_exit: | ||
12944 | mov.l %d2,-(%sp) # save d2 | ||
12945 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
12946 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp | ||
12947 | mov.w %d1,%d2 # make a copy | ||
12948 | andi.l &0x7fff,%d1 # strip sign | ||
12949 | sub.l %d0,%d1 # add scale factor | ||
12950 | andi.w &0x8000,%d2 # keep old sign | ||
12951 | or.w %d1,%d2 # concat old sign,new exp | ||
12952 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent | ||
12953 | mov.l (%sp)+,%d2 # restore d2 | ||
12954 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
12955 | rts | ||
12956 | |||
12957 | # | ||
12958 | # operand is to be rounded to double precision | ||
12959 | # | ||
12960 | fneg_dbl: | ||
12961 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
12962 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
12963 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
12964 | bsr.l scale_to_zero_src # calculate scale factor | ||
12965 | |||
12966 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? | ||
12967 | bge.b fneg_sd_unfl # yes; go handle underflow | ||
12968 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? | ||
12969 | beq.w fneg_sd_may_ovfl # maybe; go check | ||
12970 | blt.w fneg_sd_ovfl # yes; go handle overflow | ||
12971 | bra.w fneg_sd_normal # no; ho handle normalized op | ||
12972 | |||
12973 | # | ||
12974 | # operand WILL underflow when moved in to the fp register file | ||
12975 | # | ||
12976 | fneg_sd_unfl: | ||
12977 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
12978 | |||
12979 | eori.b &0x80,FP_SCR0_EX(%a6) # negate sign | ||
12980 | bpl.b fneg_sd_unfl_tst | ||
12981 | bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit | ||
12982 | |||
12983 | # if underflow or inexact is enabled, go calculate EXOP first. | ||
12984 | fneg_sd_unfl_tst: | ||
12985 | mov.b FPCR_ENABLE(%a6),%d1 | ||
12986 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
12987 | bne.b fneg_sd_unfl_ena # yes | ||
12988 | |||
12989 | fneg_sd_unfl_dis: | ||
12990 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
12991 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
12992 | bsr.l unf_res # calculate default result | ||
12993 | or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' | ||
12994 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
12995 | rts | ||
12996 | |||
12997 | # | ||
12998 | # operand will underflow AND underflow is enabled. | ||
12999 | # therefore, we must return the result rounded to extended precision. | ||
13000 | # | ||
13001 | fneg_sd_unfl_ena: | ||
13002 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | ||
13003 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | ||
13004 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent | ||
13005 | |||
13006 | mov.l %d2,-(%sp) # save d2 | ||
13007 | mov.l %d1,%d2 # make a copy | ||
13008 | andi.l &0x7fff,%d1 # strip sign | ||
13009 | andi.w &0x8000,%d2 # keep old sign | ||
13010 | sub.l %d0,%d1 # subtract scale factor | ||
13011 | addi.l &0x6000,%d1 # add new bias | ||
13012 | andi.w &0x7fff,%d1 | ||
13013 | or.w %d2,%d1 # concat new sign,new exp | ||
13014 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp | ||
13015 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 | ||
13016 | mov.l (%sp)+,%d2 # restore d2 | ||
13017 | bra.b fneg_sd_unfl_dis | ||
13018 | |||
13019 | # | ||
13020 | # operand WILL overflow. | ||
13021 | # | ||
13022 | fneg_sd_ovfl: | ||
13023 | fmov.l &0x0,%fpsr # clear FPSR | ||
13024 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13025 | |||
13026 | fneg.x FP_SCR0(%a6),%fp0 # perform negation | ||
13027 | |||
13028 | fmov.l &0x0,%fpcr # clear FPCR | ||
13029 | fmov.l %fpsr,%d1 # save FPSR | ||
13030 | |||
13031 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
13032 | |||
13033 | fneg_sd_ovfl_tst: | ||
13034 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
13035 | |||
13036 | mov.b FPCR_ENABLE(%a6),%d1 | ||
13037 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
13038 | bne.b fneg_sd_ovfl_ena # yes | ||
13039 | |||
13040 | # | ||
13041 | # OVFL is not enabled; therefore, we must create the default result by | ||
13042 | # calling ovf_res(). | ||
13043 | # | ||
13044 | fneg_sd_ovfl_dis: | ||
13045 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
13046 | sne %d1 # set sign param accordingly | ||
13047 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode | ||
13048 | bsr.l ovf_res # calculate default result | ||
13049 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
13050 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
13051 | rts | ||
13052 | |||
13053 | # | ||
13054 | # OVFL is enabled. | ||
13055 | # the INEX2 bit has already been updated by the round to the correct precision. | ||
13056 | # now, round to extended(and don't alter the FPSR). | ||
13057 | # | ||
13058 | fneg_sd_ovfl_ena: | ||
13059 | mov.l %d2,-(%sp) # save d2 | ||
13060 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
13061 | mov.l %d1,%d2 # make a copy | ||
13062 | andi.l &0x7fff,%d1 # strip sign | ||
13063 | andi.w &0x8000,%d2 # keep old sign | ||
13064 | sub.l %d0,%d1 # add scale factor | ||
13065 | subi.l &0x6000,%d1 # subtract bias | ||
13066 | andi.w &0x7fff,%d1 | ||
13067 | or.w %d2,%d1 # concat sign,exp | ||
13068 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
13069 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
13070 | mov.l (%sp)+,%d2 # restore d2 | ||
13071 | bra.b fneg_sd_ovfl_dis | ||
13072 | |||
13073 | # | ||
13074 | # the move in MAY underflow. so... | ||
13075 | # | ||
13076 | fneg_sd_may_ovfl: | ||
13077 | fmov.l &0x0,%fpsr # clear FPSR | ||
13078 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13079 | |||
13080 | fneg.x FP_SCR0(%a6),%fp0 # perform negation | ||
13081 | |||
13082 | fmov.l %fpsr,%d1 # save status | ||
13083 | fmov.l &0x0,%fpcr # clear FPCR | ||
13084 | |||
13085 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
13086 | |||
13087 | fabs.x %fp0,%fp1 # make a copy of result | ||
13088 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? | ||
13089 | fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred | ||
13090 | |||
13091 | # no, it didn't overflow; we have correct result | ||
13092 | bra.w fneg_sd_normal_exit | ||
13093 | |||
13094 | ########################################################################## | ||
13095 | |||
13096 | # | ||
13097 | # input is not normalized; what is it? | ||
13098 | # | ||
13099 | fneg_not_norm: | ||
13100 | cmpi.b %d1,&DENORM # weed out DENORM | ||
13101 | beq.w fneg_denorm | ||
13102 | cmpi.b %d1,&SNAN # weed out SNAN | ||
13103 | beq.l res_snan_1op | ||
13104 | cmpi.b %d1,&QNAN # weed out QNAN | ||
13105 | beq.l res_qnan_1op | ||
13106 | |||
13107 | # | ||
13108 | # do the fneg; at this point, only possible ops are ZERO and INF. | ||
13109 | # use fneg to determine ccodes. | ||
13110 | # prec:mode should be zero at this point but it won't affect answer anyways. | ||
13111 | # | ||
13112 | fneg.x SRC_EX(%a0),%fp0 # do fneg | ||
13113 | fmov.l %fpsr,%d0 | ||
13114 | rol.l &0x8,%d0 # put ccodes in lo byte | ||
13115 | mov.b %d0,FPSR_CC(%a6) # insert correct ccodes | ||
13116 | rts | ||
13117 | |||
13118 | ######################################################################### | ||
13119 | # XDEF **************************************************************** # | ||
13120 | # ftst(): emulates the ftest instruction # | ||
13121 | # # | ||
13122 | # XREF **************************************************************** # | ||
13123 | # res{s,q}nan_1op() - set NAN result for monadic instruction # | ||
13124 | # # | ||
13125 | # INPUT *************************************************************** # | ||
13126 | # a0 = pointer to extended precision source operand # | ||
13127 | # # | ||
13128 | # OUTPUT ************************************************************** # | ||
13129 | # none # | ||
13130 | # # | ||
13131 | # ALGORITHM *********************************************************** # | ||
13132 | # Check the source operand tag (STAG) and set the FPCR according # | ||
13133 | # to the operand type and sign. # | ||
13134 | # # | ||
13135 | ######################################################################### | ||
13136 | |||
13137 | global ftst | ||
13138 | ftst: | ||
13139 | mov.b STAG(%a6),%d1 | ||
13140 | bne.b ftst_not_norm # optimize on non-norm input | ||
13141 | |||
13142 | # | ||
13143 | # Norm: | ||
13144 | # | ||
13145 | ftst_norm: | ||
13146 | tst.b SRC_EX(%a0) # is operand negative? | ||
13147 | bmi.b ftst_norm_m # yes | ||
13148 | rts | ||
13149 | ftst_norm_m: | ||
13150 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
13151 | rts | ||
13152 | |||
13153 | # | ||
13154 | # input is not normalized; what is it? | ||
13155 | # | ||
13156 | ftst_not_norm: | ||
13157 | cmpi.b %d1,&ZERO # weed out ZERO | ||
13158 | beq.b ftst_zero | ||
13159 | cmpi.b %d1,&INF # weed out INF | ||
13160 | beq.b ftst_inf | ||
13161 | cmpi.b %d1,&SNAN # weed out SNAN | ||
13162 | beq.l res_snan_1op | ||
13163 | cmpi.b %d1,&QNAN # weed out QNAN | ||
13164 | beq.l res_qnan_1op | ||
13165 | |||
13166 | # | ||
13167 | # Denorm: | ||
13168 | # | ||
13169 | ftst_denorm: | ||
13170 | tst.b SRC_EX(%a0) # is operand negative? | ||
13171 | bmi.b ftst_denorm_m # yes | ||
13172 | rts | ||
13173 | ftst_denorm_m: | ||
13174 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
13175 | rts | ||
13176 | |||
13177 | # | ||
13178 | # Infinity: | ||
13179 | # | ||
13180 | ftst_inf: | ||
13181 | tst.b SRC_EX(%a0) # is operand negative? | ||
13182 | bmi.b ftst_inf_m # yes | ||
13183 | ftst_inf_p: | ||
13184 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit | ||
13185 | rts | ||
13186 | ftst_inf_m: | ||
13187 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits | ||
13188 | rts | ||
13189 | |||
13190 | # | ||
13191 | # Zero: | ||
13192 | # | ||
13193 | ftst_zero: | ||
13194 | tst.b SRC_EX(%a0) # is operand negative? | ||
13195 | bmi.b ftst_zero_m # yes | ||
13196 | ftst_zero_p: | ||
13197 | mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit | ||
13198 | rts | ||
13199 | ftst_zero_m: | ||
13200 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | ||
13201 | rts | ||
13202 | |||
13203 | ######################################################################### | ||
13204 | # XDEF **************************************************************** # | ||
13205 | # fint(): emulates the fint instruction # | ||
13206 | # # | ||
13207 | # XREF **************************************************************** # | ||
13208 | # res_{s,q}nan_1op() - set NAN result for monadic operation # | ||
13209 | # # | ||
13210 | # INPUT *************************************************************** # | ||
13211 | # a0 = pointer to extended precision source operand # | ||
13212 | # d0 = round precision/mode # | ||
13213 | # # | ||
13214 | # OUTPUT ************************************************************** # | ||
13215 | # fp0 = result # | ||
13216 | # # | ||
13217 | # ALGORITHM *********************************************************** # | ||
13218 | # Separate according to operand type. Unnorms don't pass through # | ||
13219 | # here. For norms, load the rounding mode/prec, execute a "fint", then # | ||
13220 | # store the resulting FPSR bits. # | ||
13221 | # For denorms, force the j-bit to a one and do the same as for # | ||
13222 | # norms. Denorms are so low that the answer will either be a zero or a # | ||
13223 | # one. # | ||
13224 | # For zeroes/infs/NANs, return the same while setting the FPSR # | ||
13225 | # as appropriate. # | ||
13226 | # # | ||
13227 | ######################################################################### | ||
13228 | |||
13229 | global fint | ||
13230 | fint: | ||
13231 | mov.b STAG(%a6),%d1 | ||
13232 | bne.b fint_not_norm # optimize on non-norm input | ||
13233 | |||
13234 | # | ||
13235 | # Norm: | ||
13236 | # | ||
13237 | fint_norm: | ||
13238 | andi.b &0x30,%d0 # set prec = ext | ||
13239 | |||
13240 | fmov.l %d0,%fpcr # set FPCR | ||
13241 | fmov.l &0x0,%fpsr # clear FPSR | ||
13242 | |||
13243 | fint.x SRC(%a0),%fp0 # execute fint | ||
13244 | |||
13245 | fmov.l &0x0,%fpcr # clear FPCR | ||
13246 | fmov.l %fpsr,%d0 # save FPSR | ||
13247 | or.l %d0,USER_FPSR(%a6) # set exception bits | ||
13248 | |||
13249 | rts | ||
13250 | |||
13251 | # | ||
13252 | # input is not normalized; what is it? | ||
13253 | # | ||
13254 | fint_not_norm: | ||
13255 | cmpi.b %d1,&ZERO # weed out ZERO | ||
13256 | beq.b fint_zero | ||
13257 | cmpi.b %d1,&INF # weed out INF | ||
13258 | beq.b fint_inf | ||
13259 | cmpi.b %d1,&DENORM # weed out DENORM | ||
13260 | beq.b fint_denorm | ||
13261 | cmpi.b %d1,&SNAN # weed out SNAN | ||
13262 | beq.l res_snan_1op | ||
13263 | bra.l res_qnan_1op # weed out QNAN | ||
13264 | |||
13265 | # | ||
13266 | # Denorm: | ||
13267 | # | ||
13268 | # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. | ||
13269 | # also, the INEX2 and AINEX exception bits will be set. | ||
13270 | # so, we could either set these manually or force the DENORM | ||
13271 | # to a very small NORM and ship it to the NORM routine. | ||
13272 | # I do the latter. | ||
13273 | # | ||
13274 | fint_denorm: | ||
13275 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | ||
13276 | mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM | ||
13277 | lea FP_SCR0(%a6),%a0 | ||
13278 | bra.b fint_norm | ||
13279 | |||
13280 | # | ||
13281 | # Zero: | ||
13282 | # | ||
13283 | fint_zero: | ||
13284 | tst.b SRC_EX(%a0) # is ZERO negative? | ||
13285 | bmi.b fint_zero_m # yes | ||
13286 | fint_zero_p: | ||
13287 | fmov.s &0x00000000,%fp0 # return +ZERO in fp0 | ||
13288 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
13289 | rts | ||
13290 | fint_zero_m: | ||
13291 | fmov.s &0x80000000,%fp0 # return -ZERO in fp0 | ||
13292 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | ||
13293 | rts | ||
13294 | |||
13295 | # | ||
13296 | # Infinity: | ||
13297 | # | ||
13298 | fint_inf: | ||
13299 | fmovm.x SRC(%a0),&0x80 # return result in fp0 | ||
13300 | tst.b SRC_EX(%a0) # is INF negative? | ||
13301 | bmi.b fint_inf_m # yes | ||
13302 | fint_inf_p: | ||
13303 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit | ||
13304 | rts | ||
13305 | fint_inf_m: | ||
13306 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | ||
13307 | rts | ||
13308 | |||
13309 | ######################################################################### | ||
13310 | # XDEF **************************************************************** # | ||
13311 | # fintrz(): emulates the fintrz instruction # | ||
13312 | # # | ||
13313 | # XREF **************************************************************** # | ||
13314 | # res_{s,q}nan_1op() - set NAN result for monadic operation # | ||
13315 | # # | ||
13316 | # INPUT *************************************************************** # | ||
13317 | # a0 = pointer to extended precision source operand # | ||
13318 | # d0 = round precision/mode # | ||
13319 | # # | ||
13320 | # OUTPUT ************************************************************** # | ||
13321 | # fp0 = result # | ||
13322 | # # | ||
13323 | # ALGORITHM *********************************************************** # | ||
13324 | # Separate according to operand type. Unnorms don't pass through # | ||
13325 | # here. For norms, load the rounding mode/prec, execute a "fintrz", # | ||
13326 | # then store the resulting FPSR bits. # | ||
13327 | # For denorms, force the j-bit to a one and do the same as for # | ||
13328 | # norms. Denorms are so low that the answer will either be a zero or a # | ||
13329 | # one. # | ||
13330 | # For zeroes/infs/NANs, return the same while setting the FPSR # | ||
13331 | # as appropriate. # | ||
13332 | # # | ||
13333 | ######################################################################### | ||
13334 | |||
13335 | global fintrz | ||
13336 | fintrz: | ||
13337 | mov.b STAG(%a6),%d1 | ||
13338 | bne.b fintrz_not_norm # optimize on non-norm input | ||
13339 | |||
13340 | # | ||
13341 | # Norm: | ||
13342 | # | ||
13343 | fintrz_norm: | ||
13344 | fmov.l &0x0,%fpsr # clear FPSR | ||
13345 | |||
13346 | fintrz.x SRC(%a0),%fp0 # execute fintrz | ||
13347 | |||
13348 | fmov.l %fpsr,%d0 # save FPSR | ||
13349 | or.l %d0,USER_FPSR(%a6) # set exception bits | ||
13350 | |||
13351 | rts | ||
13352 | |||
13353 | # | ||
13354 | # input is not normalized; what is it? | ||
13355 | # | ||
13356 | fintrz_not_norm: | ||
13357 | cmpi.b %d1,&ZERO # weed out ZERO | ||
13358 | beq.b fintrz_zero | ||
13359 | cmpi.b %d1,&INF # weed out INF | ||
13360 | beq.b fintrz_inf | ||
13361 | cmpi.b %d1,&DENORM # weed out DENORM | ||
13362 | beq.b fintrz_denorm | ||
13363 | cmpi.b %d1,&SNAN # weed out SNAN | ||
13364 | beq.l res_snan_1op | ||
13365 | bra.l res_qnan_1op # weed out QNAN | ||
13366 | |||
13367 | # | ||
13368 | # Denorm: | ||
13369 | # | ||
13370 | # for DENORMs, the result will be (+/-)ZERO. | ||
13371 | # also, the INEX2 and AINEX exception bits will be set. | ||
13372 | # so, we could either set these manually or force the DENORM | ||
13373 | # to a very small NORM and ship it to the NORM routine. | ||
13374 | # I do the latter. | ||
13375 | # | ||
13376 | fintrz_denorm: | ||
13377 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | ||
13378 | mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM | ||
13379 | lea FP_SCR0(%a6),%a0 | ||
13380 | bra.b fintrz_norm | ||
13381 | |||
13382 | # | ||
13383 | # Zero: | ||
13384 | # | ||
13385 | fintrz_zero: | ||
13386 | tst.b SRC_EX(%a0) # is ZERO negative? | ||
13387 | bmi.b fintrz_zero_m # yes | ||
13388 | fintrz_zero_p: | ||
13389 | fmov.s &0x00000000,%fp0 # return +ZERO in fp0 | ||
13390 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
13391 | rts | ||
13392 | fintrz_zero_m: | ||
13393 | fmov.s &0x80000000,%fp0 # return -ZERO in fp0 | ||
13394 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | ||
13395 | rts | ||
13396 | |||
13397 | # | ||
13398 | # Infinity: | ||
13399 | # | ||
13400 | fintrz_inf: | ||
13401 | fmovm.x SRC(%a0),&0x80 # return result in fp0 | ||
13402 | tst.b SRC_EX(%a0) # is INF negative? | ||
13403 | bmi.b fintrz_inf_m # yes | ||
13404 | fintrz_inf_p: | ||
13405 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit | ||
13406 | rts | ||
13407 | fintrz_inf_m: | ||
13408 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | ||
13409 | rts | ||
13410 | |||
13411 | ######################################################################### | ||
13412 | # XDEF **************************************************************** # | ||
13413 | # fabs(): emulates the fabs instruction # | ||
13414 | # fsabs(): emulates the fsabs instruction # | ||
13415 | # fdabs(): emulates the fdabs instruction # | ||
13416 | # # | ||
13417 | # XREF **************************************************************** # | ||
13418 | # norm() - normalize denorm mantissa to provide EXOP # | ||
13419 | # scale_to_zero_src() - make exponent. = 0; get scale factor # | ||
13420 | # unf_res() - calculate underflow result # | ||
13421 | # ovf_res() - calculate overflow result # | ||
13422 | # res_{s,q}nan_1op() - set NAN result for monadic operation # | ||
13423 | # # | ||
13424 | # INPUT *************************************************************** # | ||
13425 | # a0 = pointer to extended precision source operand # | ||
13426 | # d0 = rnd precision/mode # | ||
13427 | # # | ||
13428 | # OUTPUT ************************************************************** # | ||
13429 | # fp0 = result # | ||
13430 | # fp1 = EXOP (if exception occurred) # | ||
13431 | # # | ||
13432 | # ALGORITHM *********************************************************** # | ||
13433 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
13434 | # norms into extended, single, and double precision. # | ||
13435 | # Simply clear sign for extended precision norm. Ext prec denorm # | ||
13436 | # gets an EXOP created for it since it's an underflow. # | ||
13437 | # Double and single precision can overflow and underflow. First, # | ||
13438 | # scale the operand such that the exponent is zero. Perform an "fabs" # | ||
13439 | # using the correct rnd mode/prec. Check to see if the original # | ||
13440 | # exponent would take an exception. If so, use unf_res() or ovf_res() # | ||
13441 | # to calculate the default result. Also, create the EXOP for the # | ||
13442 | # exceptional case. If no exception should occur, insert the correct # | ||
13443 | # result exponent and return. # | ||
13444 | # Unnorms don't pass through here. # | ||
13445 | # # | ||
13446 | ######################################################################### | ||
13447 | |||
13448 | global fsabs | ||
13449 | fsabs: | ||
13450 | andi.b &0x30,%d0 # clear rnd prec | ||
13451 | ori.b &s_mode*0x10,%d0 # insert sgl precision | ||
13452 | bra.b fabs | ||
13453 | |||
13454 | global fdabs | ||
13455 | fdabs: | ||
13456 | andi.b &0x30,%d0 # clear rnd prec | ||
13457 | ori.b &d_mode*0x10,%d0 # insert dbl precision | ||
13458 | |||
13459 | global fabs | ||
13460 | fabs: | ||
13461 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
13462 | mov.b STAG(%a6),%d1 | ||
13463 | bne.w fabs_not_norm # optimize on non-norm input | ||
13464 | |||
13465 | # | ||
13466 | # ABSOLUTE VALUE: norms and denorms ONLY! | ||
13467 | # | ||
13468 | fabs_norm: | ||
13469 | andi.b &0xc0,%d0 # is precision extended? | ||
13470 | bne.b fabs_not_ext # no; go handle sgl or dbl | ||
13471 | |||
13472 | # | ||
13473 | # precision selected is extended. so...we can not get an underflow | ||
13474 | # or overflow because of rounding to the correct precision. so... | ||
13475 | # skip the scaling and unscaling... | ||
13476 | # | ||
13477 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
13478 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13479 | mov.w SRC_EX(%a0),%d1 | ||
13480 | bclr &15,%d1 # force absolute value | ||
13481 | mov.w %d1,FP_SCR0_EX(%a6) # insert exponent | ||
13482 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
13483 | rts | ||
13484 | |||
13485 | # | ||
13486 | # for an extended precision DENORM, the UNFL exception bit is set | ||
13487 | # the accrued bit is NOT set in this instance(no inexactness!) | ||
13488 | # | ||
13489 | fabs_denorm: | ||
13490 | andi.b &0xc0,%d0 # is precision extended? | ||
13491 | bne.b fabs_not_ext # no | ||
13492 | |||
13493 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
13494 | |||
13495 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
13496 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13497 | mov.w SRC_EX(%a0),%d0 | ||
13498 | bclr &15,%d0 # clear sign | ||
13499 | mov.w %d0,FP_SCR0_EX(%a6) # insert exponent | ||
13500 | |||
13501 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
13502 | |||
13503 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | ||
13504 | bne.b fabs_ext_unfl_ena | ||
13505 | rts | ||
13506 | |||
13507 | # | ||
13508 | # the input is an extended DENORM and underflow is enabled in the FPCR. | ||
13509 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | ||
13510 | # exponent and insert back into the operand. | ||
13511 | # | ||
13512 | fabs_ext_unfl_ena: | ||
13513 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
13514 | bsr.l norm # normalize result | ||
13515 | neg.w %d0 # new exponent = -(shft val) | ||
13516 | addi.w &0x6000,%d0 # add new bias to exponent | ||
13517 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp | ||
13518 | andi.w &0x8000,%d1 # keep old sign | ||
13519 | andi.w &0x7fff,%d0 # clear sign position | ||
13520 | or.w %d1,%d0 # concat old sign, new exponent | ||
13521 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
13522 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
13523 | rts | ||
13524 | |||
13525 | # | ||
13526 | # operand is either single or double | ||
13527 | # | ||
13528 | fabs_not_ext: | ||
13529 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec | ||
13530 | bne.b fabs_dbl | ||
13531 | |||
13532 | # | ||
13533 | # operand is to be rounded to single precision | ||
13534 | # | ||
13535 | fabs_sgl: | ||
13536 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
13537 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
13538 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13539 | bsr.l scale_to_zero_src # calculate scale factor | ||
13540 | |||
13541 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? | ||
13542 | bge.w fabs_sd_unfl # yes; go handle underflow | ||
13543 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? | ||
13544 | beq.w fabs_sd_may_ovfl # maybe; go check | ||
13545 | blt.w fabs_sd_ovfl # yes; go handle overflow | ||
13546 | |||
13547 | # | ||
13548 | # operand will NOT overflow or underflow when moved in to the fp reg file | ||
13549 | # | ||
13550 | fabs_sd_normal: | ||
13551 | fmov.l &0x0,%fpsr # clear FPSR | ||
13552 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13553 | |||
13554 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute | ||
13555 | |||
13556 | fmov.l %fpsr,%d1 # save FPSR | ||
13557 | fmov.l &0x0,%fpcr # clear FPCR | ||
13558 | |||
13559 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
13560 | |||
13561 | fabs_sd_normal_exit: | ||
13562 | mov.l %d2,-(%sp) # save d2 | ||
13563 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
13564 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp | ||
13565 | mov.l %d1,%d2 # make a copy | ||
13566 | andi.l &0x7fff,%d1 # strip sign | ||
13567 | sub.l %d0,%d1 # add scale factor | ||
13568 | andi.w &0x8000,%d2 # keep old sign | ||
13569 | or.w %d1,%d2 # concat old sign,new exp | ||
13570 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent | ||
13571 | mov.l (%sp)+,%d2 # restore d2 | ||
13572 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
13573 | rts | ||
13574 | |||
13575 | # | ||
13576 | # operand is to be rounded to double precision | ||
13577 | # | ||
13578 | fabs_dbl: | ||
13579 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
13580 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
13581 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13582 | bsr.l scale_to_zero_src # calculate scale factor | ||
13583 | |||
13584 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? | ||
13585 | bge.b fabs_sd_unfl # yes; go handle underflow | ||
13586 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? | ||
13587 | beq.w fabs_sd_may_ovfl # maybe; go check | ||
13588 | blt.w fabs_sd_ovfl # yes; go handle overflow | ||
13589 | bra.w fabs_sd_normal # no; ho handle normalized op | ||
13590 | |||
13591 | # | ||
13592 | # operand WILL underflow when moved in to the fp register file | ||
13593 | # | ||
13594 | fabs_sd_unfl: | ||
13595 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
13596 | |||
13597 | bclr &0x7,FP_SCR0_EX(%a6) # force absolute value | ||
13598 | |||
13599 | # if underflow or inexact is enabled, go calculate EXOP first. | ||
13600 | mov.b FPCR_ENABLE(%a6),%d1 | ||
13601 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
13602 | bne.b fabs_sd_unfl_ena # yes | ||
13603 | |||
13604 | fabs_sd_unfl_dis: | ||
13605 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
13606 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
13607 | bsr.l unf_res # calculate default result | ||
13608 | or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode | ||
13609 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
13610 | rts | ||
13611 | |||
13612 | # | ||
13613 | # operand will underflow AND underflow is enabled. | ||
13614 | # therefore, we must return the result rounded to extended precision. | ||
13615 | # | ||
13616 | fabs_sd_unfl_ena: | ||
13617 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | ||
13618 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | ||
13619 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent | ||
13620 | |||
13621 | mov.l %d2,-(%sp) # save d2 | ||
13622 | mov.l %d1,%d2 # make a copy | ||
13623 | andi.l &0x7fff,%d1 # strip sign | ||
13624 | andi.w &0x8000,%d2 # keep old sign | ||
13625 | sub.l %d0,%d1 # subtract scale factor | ||
13626 | addi.l &0x6000,%d1 # add new bias | ||
13627 | andi.w &0x7fff,%d1 | ||
13628 | or.w %d2,%d1 # concat new sign,new exp | ||
13629 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp | ||
13630 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 | ||
13631 | mov.l (%sp)+,%d2 # restore d2 | ||
13632 | bra.b fabs_sd_unfl_dis | ||
13633 | |||
13634 | # | ||
13635 | # operand WILL overflow. | ||
13636 | # | ||
13637 | fabs_sd_ovfl: | ||
13638 | fmov.l &0x0,%fpsr # clear FPSR | ||
13639 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13640 | |||
13641 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute | ||
13642 | |||
13643 | fmov.l &0x0,%fpcr # clear FPCR | ||
13644 | fmov.l %fpsr,%d1 # save FPSR | ||
13645 | |||
13646 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
13647 | |||
13648 | fabs_sd_ovfl_tst: | ||
13649 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
13650 | |||
13651 | mov.b FPCR_ENABLE(%a6),%d1 | ||
13652 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
13653 | bne.b fabs_sd_ovfl_ena # yes | ||
13654 | |||
13655 | # | ||
13656 | # OVFL is not enabled; therefore, we must create the default result by | ||
13657 | # calling ovf_res(). | ||
13658 | # | ||
13659 | fabs_sd_ovfl_dis: | ||
13660 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
13661 | sne %d1 # set sign param accordingly | ||
13662 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode | ||
13663 | bsr.l ovf_res # calculate default result | ||
13664 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
13665 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
13666 | rts | ||
13667 | |||
13668 | # | ||
13669 | # OVFL is enabled. | ||
13670 | # the INEX2 bit has already been updated by the round to the correct precision. | ||
13671 | # now, round to extended(and don't alter the FPSR). | ||
13672 | # | ||
13673 | fabs_sd_ovfl_ena: | ||
13674 | mov.l %d2,-(%sp) # save d2 | ||
13675 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
13676 | mov.l %d1,%d2 # make a copy | ||
13677 | andi.l &0x7fff,%d1 # strip sign | ||
13678 | andi.w &0x8000,%d2 # keep old sign | ||
13679 | sub.l %d0,%d1 # add scale factor | ||
13680 | subi.l &0x6000,%d1 # subtract bias | ||
13681 | andi.w &0x7fff,%d1 | ||
13682 | or.w %d2,%d1 # concat sign,exp | ||
13683 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
13684 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
13685 | mov.l (%sp)+,%d2 # restore d2 | ||
13686 | bra.b fabs_sd_ovfl_dis | ||
13687 | |||
13688 | # | ||
13689 | # the move in MAY underflow. so... | ||
13690 | # | ||
13691 | fabs_sd_may_ovfl: | ||
13692 | fmov.l &0x0,%fpsr # clear FPSR | ||
13693 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13694 | |||
13695 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute | ||
13696 | |||
13697 | fmov.l %fpsr,%d1 # save status | ||
13698 | fmov.l &0x0,%fpcr # clear FPCR | ||
13699 | |||
13700 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
13701 | |||
13702 | fabs.x %fp0,%fp1 # make a copy of result | ||
13703 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? | ||
13704 | fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred | ||
13705 | |||
13706 | # no, it didn't overflow; we have correct result | ||
13707 | bra.w fabs_sd_normal_exit | ||
13708 | |||
13709 | ########################################################################## | ||
13710 | |||
13711 | # | ||
13712 | # input is not normalized; what is it? | ||
13713 | # | ||
13714 | fabs_not_norm: | ||
13715 | cmpi.b %d1,&DENORM # weed out DENORM | ||
13716 | beq.w fabs_denorm | ||
13717 | cmpi.b %d1,&SNAN # weed out SNAN | ||
13718 | beq.l res_snan_1op | ||
13719 | cmpi.b %d1,&QNAN # weed out QNAN | ||
13720 | beq.l res_qnan_1op | ||
13721 | |||
13722 | fabs.x SRC(%a0),%fp0 # force absolute value | ||
13723 | |||
13724 | cmpi.b %d1,&INF # weed out INF | ||
13725 | beq.b fabs_inf | ||
13726 | fabs_zero: | ||
13727 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
13728 | rts | ||
13729 | fabs_inf: | ||
13730 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit | ||
13731 | rts | ||
13732 | |||
13733 | ######################################################################### | ||
13734 | # XDEF **************************************************************** # | ||
13735 | # fcmp(): fp compare op routine # | ||
13736 | # # | ||
13737 | # XREF **************************************************************** # | ||
13738 | # res_qnan() - return QNAN result # | ||
13739 | # res_snan() - return SNAN result # | ||
13740 | # # | ||
13741 | # INPUT *************************************************************** # | ||
13742 | # a0 = pointer to extended precision source operand # | ||
13743 | # a1 = pointer to extended precision destination operand # | ||
13744 | # d0 = round prec/mode # | ||
13745 | # # | ||
13746 | # OUTPUT ************************************************************** # | ||
13747 | # None # | ||
13748 | # # | ||
13749 | # ALGORITHM *********************************************************** # | ||
13750 | # Handle NANs and denorms as special cases. For everything else, # | ||
13751 | # just use the actual fcmp instruction to produce the correct condition # | ||
13752 | # codes. # | ||
13753 | # # | ||
13754 | ######################################################################### | ||
13755 | |||
13756 | global fcmp | ||
13757 | fcmp: | ||
13758 | clr.w %d1 | ||
13759 | mov.b DTAG(%a6),%d1 | ||
13760 | lsl.b &0x3,%d1 | ||
13761 | or.b STAG(%a6),%d1 | ||
13762 | bne.b fcmp_not_norm # optimize on non-norm input | ||
13763 | |||
13764 | # | ||
13765 | # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs | ||
13766 | # | ||
13767 | fcmp_norm: | ||
13768 | fmovm.x DST(%a1),&0x80 # load dst op | ||
13769 | |||
13770 | fcmp.x %fp0,SRC(%a0) # do compare | ||
13771 | |||
13772 | fmov.l %fpsr,%d0 # save FPSR | ||
13773 | rol.l &0x8,%d0 # extract ccode bits | ||
13774 | mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) | ||
13775 | |||
13776 | rts | ||
13777 | |||
13778 | # | ||
13779 | # fcmp: inputs are not both normalized; what are they? | ||
13780 | # | ||
13781 | fcmp_not_norm: | ||
13782 | mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 | ||
13783 | jmp (tbl_fcmp_op.b,%pc,%d1.w*1) | ||
13784 | |||
13785 | swbeg &48 | ||
13786 | tbl_fcmp_op: | ||
13787 | short fcmp_norm - tbl_fcmp_op # NORM - NORM | ||
13788 | short fcmp_norm - tbl_fcmp_op # NORM - ZERO | ||
13789 | short fcmp_norm - tbl_fcmp_op # NORM - INF | ||
13790 | short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN | ||
13791 | short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM | ||
13792 | short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN | ||
13793 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13794 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13795 | |||
13796 | short fcmp_norm - tbl_fcmp_op # ZERO - NORM | ||
13797 | short fcmp_norm - tbl_fcmp_op # ZERO - ZERO | ||
13798 | short fcmp_norm - tbl_fcmp_op # ZERO - INF | ||
13799 | short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN | ||
13800 | short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM | ||
13801 | short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN | ||
13802 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13803 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13804 | |||
13805 | short fcmp_norm - tbl_fcmp_op # INF - NORM | ||
13806 | short fcmp_norm - tbl_fcmp_op # INF - ZERO | ||
13807 | short fcmp_norm - tbl_fcmp_op # INF - INF | ||
13808 | short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN | ||
13809 | short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM | ||
13810 | short fcmp_res_snan - tbl_fcmp_op # INF - SNAN | ||
13811 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13812 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13813 | |||
13814 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM | ||
13815 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO | ||
13816 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF | ||
13817 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN | ||
13818 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM | ||
13819 | short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN | ||
13820 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13821 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13822 | |||
13823 | short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM | ||
13824 | short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO | ||
13825 | short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF | ||
13826 | short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN | ||
13827 | short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM | ||
13828 | short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN | ||
13829 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13830 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13831 | |||
13832 | short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM | ||
13833 | short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO | ||
13834 | short fcmp_res_snan - tbl_fcmp_op # SNAN - INF | ||
13835 | short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN | ||
13836 | short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM | ||
13837 | short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN | ||
13838 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13839 | short tbl_fcmp_op - tbl_fcmp_op # | ||
13840 | |||
13841 | # unlike all other functions for QNAN and SNAN, fcmp does NOT set the | ||
13842 | # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. | ||
13843 | fcmp_res_qnan: | ||
13844 | bsr.l res_qnan | ||
13845 | andi.b &0xf7,FPSR_CC(%a6) | ||
13846 | rts | ||
13847 | fcmp_res_snan: | ||
13848 | bsr.l res_snan | ||
13849 | andi.b &0xf7,FPSR_CC(%a6) | ||
13850 | rts | ||
13851 | |||
13852 | # | ||
13853 | # DENORMs are a little more difficult. | ||
13854 | # If you have a 2 DENORMs, then you can just force the j-bit to a one | ||
13855 | # and use the fcmp_norm routine. | ||
13856 | # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one | ||
13857 | # and use the fcmp_norm routine. | ||
13858 | # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. | ||
13859 | # But with a DENORM and a NORM of the same sign, the neg bit is set if the | ||
13860 | # (1) signs are (+) and the DENORM is the dst or | ||
13861 | # (2) signs are (-) and the DENORM is the src | ||
13862 | # | ||
13863 | |||
13864 | fcmp_dnrm_s: | ||
13865 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
13866 | mov.l SRC_HI(%a0),%d0 | ||
13867 | bset &31,%d0 # DENORM src; make into small norm | ||
13868 | mov.l %d0,FP_SCR0_HI(%a6) | ||
13869 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13870 | lea FP_SCR0(%a6),%a0 | ||
13871 | bra.w fcmp_norm | ||
13872 | |||
13873 | fcmp_dnrm_d: | ||
13874 | mov.l DST_EX(%a1),FP_SCR0_EX(%a6) | ||
13875 | mov.l DST_HI(%a1),%d0 | ||
13876 | bset &31,%d0 # DENORM src; make into small norm | ||
13877 | mov.l %d0,FP_SCR0_HI(%a6) | ||
13878 | mov.l DST_LO(%a1),FP_SCR0_LO(%a6) | ||
13879 | lea FP_SCR0(%a6),%a1 | ||
13880 | bra.w fcmp_norm | ||
13881 | |||
13882 | fcmp_dnrm_sd: | ||
13883 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
13884 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
13885 | mov.l DST_HI(%a1),%d0 | ||
13886 | bset &31,%d0 # DENORM dst; make into small norm | ||
13887 | mov.l %d0,FP_SCR1_HI(%a6) | ||
13888 | mov.l SRC_HI(%a0),%d0 | ||
13889 | bset &31,%d0 # DENORM dst; make into small norm | ||
13890 | mov.l %d0,FP_SCR0_HI(%a6) | ||
13891 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
13892 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13893 | lea FP_SCR1(%a6),%a1 | ||
13894 | lea FP_SCR0(%a6),%a0 | ||
13895 | bra.w fcmp_norm | ||
13896 | |||
13897 | fcmp_nrm_dnrm: | ||
13898 | mov.b SRC_EX(%a0),%d0 # determine if like signs | ||
13899 | mov.b DST_EX(%a1),%d1 | ||
13900 | eor.b %d0,%d1 | ||
13901 | bmi.w fcmp_dnrm_s | ||
13902 | |||
13903 | # signs are the same, so must determine the answer ourselves. | ||
13904 | tst.b %d0 # is src op negative? | ||
13905 | bmi.b fcmp_nrm_dnrm_m # yes | ||
13906 | rts | ||
13907 | fcmp_nrm_dnrm_m: | ||
13908 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
13909 | rts | ||
13910 | |||
13911 | fcmp_dnrm_nrm: | ||
13912 | mov.b SRC_EX(%a0),%d0 # determine if like signs | ||
13913 | mov.b DST_EX(%a1),%d1 | ||
13914 | eor.b %d0,%d1 | ||
13915 | bmi.w fcmp_dnrm_d | ||
13916 | |||
13917 | # signs are the same, so must determine the answer ourselves. | ||
13918 | tst.b %d0 # is src op negative? | ||
13919 | bpl.b fcmp_dnrm_nrm_m # no | ||
13920 | rts | ||
13921 | fcmp_dnrm_nrm_m: | ||
13922 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
13923 | rts | ||
13924 | |||
13925 | ######################################################################### | ||
13926 | # XDEF **************************************************************** # | ||
13927 | # fsglmul(): emulates the fsglmul instruction # | ||
13928 | # # | ||
13929 | # XREF **************************************************************** # | ||
13930 | # scale_to_zero_src() - scale src exponent to zero # | ||
13931 | # scale_to_zero_dst() - scale dst exponent to zero # | ||
13932 | # unf_res4() - return default underflow result for sglop # | ||
13933 | # ovf_res() - return default overflow result # | ||
13934 | # res_qnan() - return QNAN result # | ||
13935 | # res_snan() - return SNAN result # | ||
13936 | # # | ||
13937 | # INPUT *************************************************************** # | ||
13938 | # a0 = pointer to extended precision source operand # | ||
13939 | # a1 = pointer to extended precision destination operand # | ||
13940 | # d0 rnd prec,mode # | ||
13941 | # # | ||
13942 | # OUTPUT ************************************************************** # | ||
13943 | # fp0 = result # | ||
13944 | # fp1 = EXOP (if exception occurred) # | ||
13945 | # # | ||
13946 | # ALGORITHM *********************************************************** # | ||
13947 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
13948 | # norms/denorms into ext/sgl/dbl precision. # | ||
13949 | # For norms/denorms, scale the exponents such that a multiply # | ||
13950 | # instruction won't cause an exception. Use the regular fsglmul to # | ||
13951 | # compute a result. Check if the regular operands would have taken # | ||
13952 | # an exception. If so, return the default overflow/underflow result # | ||
13953 | # and return the EXOP if exceptions are enabled. Else, scale the # | ||
13954 | # result operand to the proper exponent. # | ||
13955 | # # | ||
13956 | ######################################################################### | ||
13957 | |||
13958 | global fsglmul | ||
13959 | fsglmul: | ||
13960 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
13961 | |||
13962 | clr.w %d1 | ||
13963 | mov.b DTAG(%a6),%d1 | ||
13964 | lsl.b &0x3,%d1 | ||
13965 | or.b STAG(%a6),%d1 | ||
13966 | |||
13967 | bne.w fsglmul_not_norm # optimize on non-norm input | ||
13968 | |||
13969 | fsglmul_norm: | ||
13970 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
13971 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
13972 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
13973 | |||
13974 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
13975 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
13976 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
13977 | |||
13978 | bsr.l scale_to_zero_src # scale exponent | ||
13979 | mov.l %d0,-(%sp) # save scale factor 1 | ||
13980 | |||
13981 | bsr.l scale_to_zero_dst # scale dst exponent | ||
13982 | |||
13983 | add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 | ||
13984 | |||
13985 | cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? | ||
13986 | beq.w fsglmul_may_ovfl # result may rnd to overflow | ||
13987 | blt.w fsglmul_ovfl # result will overflow | ||
13988 | |||
13989 | cmpi.l %d0,&0x3fff+0x0001 # would result unfl? | ||
13990 | beq.w fsglmul_may_unfl # result may rnd to no unfl | ||
13991 | bgt.w fsglmul_unfl # result will underflow | ||
13992 | |||
13993 | fsglmul_normal: | ||
13994 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
13995 | |||
13996 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
13997 | fmov.l &0x0,%fpsr # clear FPSR | ||
13998 | |||
13999 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply | ||
14000 | |||
14001 | fmov.l %fpsr,%d1 # save status | ||
14002 | fmov.l &0x0,%fpcr # clear FPCR | ||
14003 | |||
14004 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14005 | |||
14006 | fsglmul_normal_exit: | ||
14007 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
14008 | mov.l %d2,-(%sp) # save d2 | ||
14009 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} | ||
14010 | mov.l %d1,%d2 # make a copy | ||
14011 | andi.l &0x7fff,%d1 # strip sign | ||
14012 | andi.w &0x8000,%d2 # keep old sign | ||
14013 | sub.l %d0,%d1 # add scale factor | ||
14014 | or.w %d2,%d1 # concat old sign,new exp | ||
14015 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14016 | mov.l (%sp)+,%d2 # restore d2 | ||
14017 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
14018 | rts | ||
14019 | |||
14020 | fsglmul_ovfl: | ||
14021 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14022 | |||
14023 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14024 | fmov.l &0x0,%fpsr # clear FPSR | ||
14025 | |||
14026 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply | ||
14027 | |||
14028 | fmov.l %fpsr,%d1 # save status | ||
14029 | fmov.l &0x0,%fpcr # clear FPCR | ||
14030 | |||
14031 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14032 | |||
14033 | fsglmul_ovfl_tst: | ||
14034 | |||
14035 | # save setting this until now because this is where fsglmul_may_ovfl may jump in | ||
14036 | or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
14037 | |||
14038 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14039 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
14040 | bne.b fsglmul_ovfl_ena # yes | ||
14041 | |||
14042 | fsglmul_ovfl_dis: | ||
14043 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
14044 | sne %d1 # set sign param accordingly | ||
14045 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd | ||
14046 | andi.b &0x30,%d0 # force prec = ext | ||
14047 | bsr.l ovf_res # calculate default result | ||
14048 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
14049 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
14050 | rts | ||
14051 | |||
14052 | fsglmul_ovfl_ena: | ||
14053 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack | ||
14054 | |||
14055 | mov.l %d2,-(%sp) # save d2 | ||
14056 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
14057 | mov.l %d1,%d2 # make a copy | ||
14058 | andi.l &0x7fff,%d1 # strip sign | ||
14059 | sub.l %d0,%d1 # add scale factor | ||
14060 | subi.l &0x6000,%d1 # subtract bias | ||
14061 | andi.w &0x7fff,%d1 | ||
14062 | andi.w &0x8000,%d2 # keep old sign | ||
14063 | or.w %d2,%d1 # concat old sign,new exp | ||
14064 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14065 | mov.l (%sp)+,%d2 # restore d2 | ||
14066 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
14067 | bra.b fsglmul_ovfl_dis | ||
14068 | |||
14069 | fsglmul_may_ovfl: | ||
14070 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14071 | |||
14072 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14073 | fmov.l &0x0,%fpsr # clear FPSR | ||
14074 | |||
14075 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply | ||
14076 | |||
14077 | fmov.l %fpsr,%d1 # save status | ||
14078 | fmov.l &0x0,%fpcr # clear FPCR | ||
14079 | |||
14080 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14081 | |||
14082 | fabs.x %fp0,%fp1 # make a copy of result | ||
14083 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? | ||
14084 | fbge.w fsglmul_ovfl_tst # yes; overflow has occurred | ||
14085 | |||
14086 | # no, it didn't overflow; we have correct result | ||
14087 | bra.w fsglmul_normal_exit | ||
14088 | |||
14089 | fsglmul_unfl: | ||
14090 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
14091 | |||
14092 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14093 | |||
14094 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
14095 | fmov.l &0x0,%fpsr # clear FPSR | ||
14096 | |||
14097 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply | ||
14098 | |||
14099 | fmov.l %fpsr,%d1 # save status | ||
14100 | fmov.l &0x0,%fpcr # clear FPCR | ||
14101 | |||
14102 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14103 | |||
14104 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14105 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
14106 | bne.b fsglmul_unfl_ena # yes | ||
14107 | |||
14108 | fsglmul_unfl_dis: | ||
14109 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
14110 | |||
14111 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
14112 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
14113 | bsr.l unf_res4 # calculate default result | ||
14114 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set | ||
14115 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
14116 | rts | ||
14117 | |||
14118 | # | ||
14119 | # UNFL is enabled. | ||
14120 | # | ||
14121 | fsglmul_unfl_ena: | ||
14122 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op | ||
14123 | |||
14124 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14125 | fmov.l &0x0,%fpsr # clear FPSR | ||
14126 | |||
14127 | fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply | ||
14128 | |||
14129 | fmov.l &0x0,%fpcr # clear FPCR | ||
14130 | |||
14131 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack | ||
14132 | mov.l %d2,-(%sp) # save d2 | ||
14133 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
14134 | mov.l %d1,%d2 # make a copy | ||
14135 | andi.l &0x7fff,%d1 # strip sign | ||
14136 | andi.w &0x8000,%d2 # keep old sign | ||
14137 | sub.l %d0,%d1 # add scale factor | ||
14138 | addi.l &0x6000,%d1 # add bias | ||
14139 | andi.w &0x7fff,%d1 | ||
14140 | or.w %d2,%d1 # concat old sign,new exp | ||
14141 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14142 | mov.l (%sp)+,%d2 # restore d2 | ||
14143 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
14144 | bra.w fsglmul_unfl_dis | ||
14145 | |||
14146 | fsglmul_may_unfl: | ||
14147 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14148 | |||
14149 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14150 | fmov.l &0x0,%fpsr # clear FPSR | ||
14151 | |||
14152 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply | ||
14153 | |||
14154 | fmov.l %fpsr,%d1 # save status | ||
14155 | fmov.l &0x0,%fpcr # clear FPCR | ||
14156 | |||
14157 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14158 | |||
14159 | fabs.x %fp0,%fp1 # make a copy of result | ||
14160 | fcmp.b %fp1,&0x2 # is |result| > 2.b? | ||
14161 | fbgt.w fsglmul_normal_exit # no; no underflow occurred | ||
14162 | fblt.w fsglmul_unfl # yes; underflow occurred | ||
14163 | |||
14164 | # | ||
14165 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | ||
14166 | # we don't know if the result was an underflow that rounded up to a 2 or | ||
14167 | # a normalized number that rounded down to a 2. so, redo the entire operation | ||
14168 | # using RZ as the rounding mode to see what the pre-rounded result is. | ||
14169 | # this case should be relatively rare. | ||
14170 | # | ||
14171 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 | ||
14172 | |||
14173 | mov.l L_SCR3(%a6),%d1 | ||
14174 | andi.b &0xc0,%d1 # keep rnd prec | ||
14175 | ori.b &rz_mode*0x10,%d1 # insert RZ | ||
14176 | |||
14177 | fmov.l %d1,%fpcr # set FPCR | ||
14178 | fmov.l &0x0,%fpsr # clear FPSR | ||
14179 | |||
14180 | fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply | ||
14181 | |||
14182 | fmov.l &0x0,%fpcr # clear FPCR | ||
14183 | fabs.x %fp1 # make absolute value | ||
14184 | fcmp.b %fp1,&0x2 # is |result| < 2.b? | ||
14185 | fbge.w fsglmul_normal_exit # no; no underflow occurred | ||
14186 | bra.w fsglmul_unfl # yes, underflow occurred | ||
14187 | |||
14188 | ############################################################################## | ||
14189 | |||
14190 | # | ||
14191 | # Single Precision Multiply: inputs are not both normalized; what are they? | ||
14192 | # | ||
14193 | fsglmul_not_norm: | ||
14194 | mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 | ||
14195 | jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) | ||
14196 | |||
14197 | swbeg &48 | ||
14198 | tbl_fsglmul_op: | ||
14199 | short fsglmul_norm - tbl_fsglmul_op # NORM x NORM | ||
14200 | short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO | ||
14201 | short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF | ||
14202 | short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN | ||
14203 | short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM | ||
14204 | short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN | ||
14205 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14206 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14207 | |||
14208 | short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM | ||
14209 | short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO | ||
14210 | short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF | ||
14211 | short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN | ||
14212 | short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM | ||
14213 | short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN | ||
14214 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14215 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14216 | |||
14217 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM | ||
14218 | short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO | ||
14219 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF | ||
14220 | short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN | ||
14221 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM | ||
14222 | short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN | ||
14223 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14224 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14225 | |||
14226 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM | ||
14227 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO | ||
14228 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF | ||
14229 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN | ||
14230 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM | ||
14231 | short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN | ||
14232 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14233 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14234 | |||
14235 | short fsglmul_norm - tbl_fsglmul_op # NORM x NORM | ||
14236 | short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO | ||
14237 | short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF | ||
14238 | short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN | ||
14239 | short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM | ||
14240 | short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN | ||
14241 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14242 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14243 | |||
14244 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM | ||
14245 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO | ||
14246 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF | ||
14247 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN | ||
14248 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM | ||
14249 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN | ||
14250 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14251 | short tbl_fsglmul_op - tbl_fsglmul_op # | ||
14252 | |||
14253 | fsglmul_res_operr: | ||
14254 | bra.l res_operr | ||
14255 | fsglmul_res_snan: | ||
14256 | bra.l res_snan | ||
14257 | fsglmul_res_qnan: | ||
14258 | bra.l res_qnan | ||
14259 | fsglmul_zero: | ||
14260 | bra.l fmul_zero | ||
14261 | fsglmul_inf_src: | ||
14262 | bra.l fmul_inf_src | ||
14263 | fsglmul_inf_dst: | ||
14264 | bra.l fmul_inf_dst | ||
14265 | |||
14266 | ######################################################################### | ||
14267 | # XDEF **************************************************************** # | ||
14268 | # fsgldiv(): emulates the fsgldiv instruction # | ||
14269 | # # | ||
14270 | # XREF **************************************************************** # | ||
14271 | # scale_to_zero_src() - scale src exponent to zero # | ||
14272 | # scale_to_zero_dst() - scale dst exponent to zero # | ||
14273 | # unf_res4() - return default underflow result for sglop # | ||
14274 | # ovf_res() - return default overflow result # | ||
14275 | # res_qnan() - return QNAN result # | ||
14276 | # res_snan() - return SNAN result # | ||
14277 | # # | ||
14278 | # INPUT *************************************************************** # | ||
14279 | # a0 = pointer to extended precision source operand # | ||
14280 | # a1 = pointer to extended precision destination operand # | ||
14281 | # d0 rnd prec,mode # | ||
14282 | # # | ||
14283 | # OUTPUT ************************************************************** # | ||
14284 | # fp0 = result # | ||
14285 | # fp1 = EXOP (if exception occurred) # | ||
14286 | # # | ||
14287 | # ALGORITHM *********************************************************** # | ||
14288 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
14289 | # norms/denorms into ext/sgl/dbl precision. # | ||
14290 | # For norms/denorms, scale the exponents such that a divide # | ||
14291 | # instruction won't cause an exception. Use the regular fsgldiv to # | ||
14292 | # compute a result. Check if the regular operands would have taken # | ||
14293 | # an exception. If so, return the default overflow/underflow result # | ||
14294 | # and return the EXOP if exceptions are enabled. Else, scale the # | ||
14295 | # result operand to the proper exponent. # | ||
14296 | # # | ||
14297 | ######################################################################### | ||
14298 | |||
14299 | global fsgldiv | ||
14300 | fsgldiv: | ||
14301 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
14302 | |||
14303 | clr.w %d1 | ||
14304 | mov.b DTAG(%a6),%d1 | ||
14305 | lsl.b &0x3,%d1 | ||
14306 | or.b STAG(%a6),%d1 # combine src tags | ||
14307 | |||
14308 | bne.w fsgldiv_not_norm # optimize on non-norm input | ||
14309 | |||
14310 | # | ||
14311 | # DIVIDE: NORMs and DENORMs ONLY! | ||
14312 | # | ||
14313 | fsgldiv_norm: | ||
14314 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
14315 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
14316 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
14317 | |||
14318 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
14319 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
14320 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
14321 | |||
14322 | bsr.l scale_to_zero_src # calculate scale factor 1 | ||
14323 | mov.l %d0,-(%sp) # save scale factor 1 | ||
14324 | |||
14325 | bsr.l scale_to_zero_dst # calculate scale factor 2 | ||
14326 | |||
14327 | neg.l (%sp) # S.F. = scale1 - scale2 | ||
14328 | add.l %d0,(%sp) | ||
14329 | |||
14330 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode | ||
14331 | lsr.b &0x6,%d1 | ||
14332 | mov.l (%sp)+,%d0 | ||
14333 | cmpi.l %d0,&0x3fff-0x7ffe | ||
14334 | ble.w fsgldiv_may_ovfl | ||
14335 | |||
14336 | cmpi.l %d0,&0x3fff-0x0000 # will result underflow? | ||
14337 | beq.w fsgldiv_may_unfl # maybe | ||
14338 | bgt.w fsgldiv_unfl # yes; go handle underflow | ||
14339 | |||
14340 | fsgldiv_normal: | ||
14341 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14342 | |||
14343 | fmov.l L_SCR3(%a6),%fpcr # save FPCR | ||
14344 | fmov.l &0x0,%fpsr # clear FPSR | ||
14345 | |||
14346 | fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide | ||
14347 | |||
14348 | fmov.l %fpsr,%d1 # save FPSR | ||
14349 | fmov.l &0x0,%fpcr # clear FPCR | ||
14350 | |||
14351 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14352 | |||
14353 | fsgldiv_normal_exit: | ||
14354 | fmovm.x &0x80,FP_SCR0(%a6) # store result on stack | ||
14355 | mov.l %d2,-(%sp) # save d2 | ||
14356 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} | ||
14357 | mov.l %d1,%d2 # make a copy | ||
14358 | andi.l &0x7fff,%d1 # strip sign | ||
14359 | andi.w &0x8000,%d2 # keep old sign | ||
14360 | sub.l %d0,%d1 # add scale factor | ||
14361 | or.w %d2,%d1 # concat old sign,new exp | ||
14362 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14363 | mov.l (%sp)+,%d2 # restore d2 | ||
14364 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
14365 | rts | ||
14366 | |||
14367 | fsgldiv_may_ovfl: | ||
14368 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14369 | |||
14370 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14371 | fmov.l &0x0,%fpsr # set FPSR | ||
14372 | |||
14373 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide | ||
14374 | |||
14375 | fmov.l %fpsr,%d1 | ||
14376 | fmov.l &0x0,%fpcr | ||
14377 | |||
14378 | or.l %d1,USER_FPSR(%a6) # save INEX,N | ||
14379 | |||
14380 | fmovm.x &0x01,-(%sp) # save result to stack | ||
14381 | mov.w (%sp),%d1 # fetch new exponent | ||
14382 | add.l &0xc,%sp # clear result | ||
14383 | andi.l &0x7fff,%d1 # strip sign | ||
14384 | sub.l %d0,%d1 # add scale factor | ||
14385 | cmp.l %d1,&0x7fff # did divide overflow? | ||
14386 | blt.b fsgldiv_normal_exit | ||
14387 | |||
14388 | fsgldiv_ovfl_tst: | ||
14389 | or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
14390 | |||
14391 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14392 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
14393 | bne.b fsgldiv_ovfl_ena # yes | ||
14394 | |||
14395 | fsgldiv_ovfl_dis: | ||
14396 | btst &neg_bit,FPSR_CC(%a6) # is result negative | ||
14397 | sne %d1 # set sign param accordingly | ||
14398 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd | ||
14399 | andi.b &0x30,%d0 # kill precision | ||
14400 | bsr.l ovf_res # calculate default result | ||
14401 | or.b %d0,FPSR_CC(%a6) # set INF if applicable | ||
14402 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
14403 | rts | ||
14404 | |||
14405 | fsgldiv_ovfl_ena: | ||
14406 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack | ||
14407 | |||
14408 | mov.l %d2,-(%sp) # save d2 | ||
14409 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
14410 | mov.l %d1,%d2 # make a copy | ||
14411 | andi.l &0x7fff,%d1 # strip sign | ||
14412 | andi.w &0x8000,%d2 # keep old sign | ||
14413 | sub.l %d0,%d1 # add scale factor | ||
14414 | subi.l &0x6000,%d1 # subtract new bias | ||
14415 | andi.w &0x7fff,%d1 # clear ms bit | ||
14416 | or.w %d2,%d1 # concat old sign,new exp | ||
14417 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14418 | mov.l (%sp)+,%d2 # restore d2 | ||
14419 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
14420 | bra.b fsgldiv_ovfl_dis | ||
14421 | |||
14422 | fsgldiv_unfl: | ||
14423 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
14424 | |||
14425 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14426 | |||
14427 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
14428 | fmov.l &0x0,%fpsr # clear FPSR | ||
14429 | |||
14430 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide | ||
14431 | |||
14432 | fmov.l %fpsr,%d1 # save status | ||
14433 | fmov.l &0x0,%fpcr # clear FPCR | ||
14434 | |||
14435 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14436 | |||
14437 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14438 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
14439 | bne.b fsgldiv_unfl_ena # yes | ||
14440 | |||
14441 | fsgldiv_unfl_dis: | ||
14442 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
14443 | |||
14444 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
14445 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
14446 | bsr.l unf_res4 # calculate default result | ||
14447 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set | ||
14448 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
14449 | rts | ||
14450 | |||
14451 | # | ||
14452 | # UNFL is enabled. | ||
14453 | # | ||
14454 | fsgldiv_unfl_ena: | ||
14455 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op | ||
14456 | |||
14457 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14458 | fmov.l &0x0,%fpsr # clear FPSR | ||
14459 | |||
14460 | fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide | ||
14461 | |||
14462 | fmov.l &0x0,%fpcr # clear FPCR | ||
14463 | |||
14464 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack | ||
14465 | mov.l %d2,-(%sp) # save d2 | ||
14466 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
14467 | mov.l %d1,%d2 # make a copy | ||
14468 | andi.l &0x7fff,%d1 # strip sign | ||
14469 | andi.w &0x8000,%d2 # keep old sign | ||
14470 | sub.l %d0,%d1 # add scale factor | ||
14471 | addi.l &0x6000,%d1 # add bias | ||
14472 | andi.w &0x7fff,%d1 # clear top bit | ||
14473 | or.w %d2,%d1 # concat old sign, new exp | ||
14474 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14475 | mov.l (%sp)+,%d2 # restore d2 | ||
14476 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
14477 | bra.b fsgldiv_unfl_dis | ||
14478 | |||
14479 | # | ||
14480 | # the divide operation MAY underflow: | ||
14481 | # | ||
14482 | fsgldiv_may_unfl: | ||
14483 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14484 | |||
14485 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14486 | fmov.l &0x0,%fpsr # clear FPSR | ||
14487 | |||
14488 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide | ||
14489 | |||
14490 | fmov.l %fpsr,%d1 # save status | ||
14491 | fmov.l &0x0,%fpcr # clear FPCR | ||
14492 | |||
14493 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
14494 | |||
14495 | fabs.x %fp0,%fp1 # make a copy of result | ||
14496 | fcmp.b %fp1,&0x1 # is |result| > 1.b? | ||
14497 | fbgt.w fsgldiv_normal_exit # no; no underflow occurred | ||
14498 | fblt.w fsgldiv_unfl # yes; underflow occurred | ||
14499 | |||
14500 | # | ||
14501 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | ||
14502 | # we don't know if the result was an underflow that rounded up to a 1 | ||
14503 | # or a normalized number that rounded down to a 1. so, redo the entire | ||
14504 | # operation using RZ as the rounding mode to see what the pre-rounded | ||
14505 | # result is. this case should be relatively rare. | ||
14506 | # | ||
14507 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 | ||
14508 | |||
14509 | clr.l %d1 # clear scratch register | ||
14510 | ori.b &rz_mode*0x10,%d1 # force RZ rnd mode | ||
14511 | |||
14512 | fmov.l %d1,%fpcr # set FPCR | ||
14513 | fmov.l &0x0,%fpsr # clear FPSR | ||
14514 | |||
14515 | fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide | ||
14516 | |||
14517 | fmov.l &0x0,%fpcr # clear FPCR | ||
14518 | fabs.x %fp1 # make absolute value | ||
14519 | fcmp.b %fp1,&0x1 # is |result| < 1.b? | ||
14520 | fbge.w fsgldiv_normal_exit # no; no underflow occurred | ||
14521 | bra.w fsgldiv_unfl # yes; underflow occurred | ||
14522 | |||
14523 | ############################################################################ | ||
14524 | |||
14525 | # | ||
14526 | # Divide: inputs are not both normalized; what are they? | ||
14527 | # | ||
14528 | fsgldiv_not_norm: | ||
14529 | mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 | ||
14530 | jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) | ||
14531 | |||
14532 | swbeg &48 | ||
14533 | tbl_fsgldiv_op: | ||
14534 | short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM | ||
14535 | short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO | ||
14536 | short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF | ||
14537 | short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN | ||
14538 | short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM | ||
14539 | short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN | ||
14540 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14541 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14542 | |||
14543 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM | ||
14544 | short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO | ||
14545 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF | ||
14546 | short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN | ||
14547 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM | ||
14548 | short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN | ||
14549 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14550 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14551 | |||
14552 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM | ||
14553 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO | ||
14554 | short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF | ||
14555 | short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN | ||
14556 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM | ||
14557 | short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN | ||
14558 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14559 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14560 | |||
14561 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM | ||
14562 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO | ||
14563 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF | ||
14564 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN | ||
14565 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM | ||
14566 | short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN | ||
14567 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14568 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14569 | |||
14570 | short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM | ||
14571 | short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO | ||
14572 | short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF | ||
14573 | short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN | ||
14574 | short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM | ||
14575 | short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN | ||
14576 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14577 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14578 | |||
14579 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM | ||
14580 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO | ||
14581 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF | ||
14582 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN | ||
14583 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM | ||
14584 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN | ||
14585 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14586 | short tbl_fsgldiv_op - tbl_fsgldiv_op # | ||
14587 | |||
14588 | fsgldiv_res_qnan: | ||
14589 | bra.l res_qnan | ||
14590 | fsgldiv_res_snan: | ||
14591 | bra.l res_snan | ||
14592 | fsgldiv_res_operr: | ||
14593 | bra.l res_operr | ||
14594 | fsgldiv_inf_load: | ||
14595 | bra.l fdiv_inf_load | ||
14596 | fsgldiv_zero_load: | ||
14597 | bra.l fdiv_zero_load | ||
14598 | fsgldiv_inf_dst: | ||
14599 | bra.l fdiv_inf_dst | ||
14600 | |||
14601 | ######################################################################### | ||
14602 | # XDEF **************************************************************** # | ||
14603 | # fadd(): emulates the fadd instruction # | ||
14604 | # fsadd(): emulates the fadd instruction # | ||
14605 | # fdadd(): emulates the fdadd instruction # | ||
14606 | # # | ||
14607 | # XREF **************************************************************** # | ||
14608 | # addsub_scaler2() - scale the operands so they won't take exc # | ||
14609 | # ovf_res() - return default overflow result # | ||
14610 | # unf_res() - return default underflow result # | ||
14611 | # res_qnan() - set QNAN result # | ||
14612 | # res_snan() - set SNAN result # | ||
14613 | # res_operr() - set OPERR result # | ||
14614 | # scale_to_zero_src() - set src operand exponent equal to zero # | ||
14615 | # scale_to_zero_dst() - set dst operand exponent equal to zero # | ||
14616 | # # | ||
14617 | # INPUT *************************************************************** # | ||
14618 | # a0 = pointer to extended precision source operand # | ||
14619 | # a1 = pointer to extended precision destination operand # | ||
14620 | # # | ||
14621 | # OUTPUT ************************************************************** # | ||
14622 | # fp0 = result # | ||
14623 | # fp1 = EXOP (if exception occurred) # | ||
14624 | # # | ||
14625 | # ALGORITHM *********************************************************** # | ||
14626 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
14627 | # norms into extended, single, and double precision. # | ||
14628 | # Do addition after scaling exponents such that exception won't # | ||
14629 | # occur. Then, check result exponent to see if exception would have # | ||
14630 | # occurred. If so, return default result and maybe EXOP. Else, insert # | ||
14631 | # the correct result exponent and return. Set FPSR bits as appropriate. # | ||
14632 | # # | ||
14633 | ######################################################################### | ||
14634 | |||
14635 | global fsadd | ||
14636 | fsadd: | ||
14637 | andi.b &0x30,%d0 # clear rnd prec | ||
14638 | ori.b &s_mode*0x10,%d0 # insert sgl prec | ||
14639 | bra.b fadd | ||
14640 | |||
14641 | global fdadd | ||
14642 | fdadd: | ||
14643 | andi.b &0x30,%d0 # clear rnd prec | ||
14644 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
14645 | |||
14646 | global fadd | ||
14647 | fadd: | ||
14648 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
14649 | |||
14650 | clr.w %d1 | ||
14651 | mov.b DTAG(%a6),%d1 | ||
14652 | lsl.b &0x3,%d1 | ||
14653 | or.b STAG(%a6),%d1 # combine src tags | ||
14654 | |||
14655 | bne.w fadd_not_norm # optimize on non-norm input | ||
14656 | |||
14657 | # | ||
14658 | # ADD: norms and denorms | ||
14659 | # | ||
14660 | fadd_norm: | ||
14661 | bsr.l addsub_scaler2 # scale exponents | ||
14662 | |||
14663 | fadd_zero_entry: | ||
14664 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14665 | |||
14666 | fmov.l &0x0,%fpsr # clear FPSR | ||
14667 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14668 | |||
14669 | fadd.x FP_SCR0(%a6),%fp0 # execute add | ||
14670 | |||
14671 | fmov.l &0x0,%fpcr # clear FPCR | ||
14672 | fmov.l %fpsr,%d1 # fetch INEX2,N,Z | ||
14673 | |||
14674 | or.l %d1,USER_FPSR(%a6) # save exc and ccode bits | ||
14675 | |||
14676 | fbeq.w fadd_zero_exit # if result is zero, end now | ||
14677 | |||
14678 | mov.l %d2,-(%sp) # save d2 | ||
14679 | |||
14680 | fmovm.x &0x01,-(%sp) # save result to stack | ||
14681 | |||
14682 | mov.w 2+L_SCR3(%a6),%d1 | ||
14683 | lsr.b &0x6,%d1 | ||
14684 | |||
14685 | mov.w (%sp),%d2 # fetch new sign, exp | ||
14686 | andi.l &0x7fff,%d2 # strip sign | ||
14687 | sub.l %d0,%d2 # add scale factor | ||
14688 | |||
14689 | cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? | ||
14690 | bge.b fadd_ovfl # yes | ||
14691 | |||
14692 | cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? | ||
14693 | blt.w fadd_unfl # yes | ||
14694 | beq.w fadd_may_unfl # maybe; go find out | ||
14695 | |||
14696 | fadd_normal: | ||
14697 | mov.w (%sp),%d1 | ||
14698 | andi.w &0x8000,%d1 # keep sign | ||
14699 | or.w %d2,%d1 # concat sign,new exp | ||
14700 | mov.w %d1,(%sp) # insert new exponent | ||
14701 | |||
14702 | fmovm.x (%sp)+,&0x80 # return result in fp0 | ||
14703 | |||
14704 | mov.l (%sp)+,%d2 # restore d2 | ||
14705 | rts | ||
14706 | |||
14707 | fadd_zero_exit: | ||
14708 | # fmov.s &0x00000000,%fp0 # return zero in fp0 | ||
14709 | rts | ||
14710 | |||
14711 | tbl_fadd_ovfl: | ||
14712 | long 0x7fff # ext ovfl | ||
14713 | long 0x407f # sgl ovfl | ||
14714 | long 0x43ff # dbl ovfl | ||
14715 | |||
14716 | tbl_fadd_unfl: | ||
14717 | long 0x0000 # ext unfl | ||
14718 | long 0x3f81 # sgl unfl | ||
14719 | long 0x3c01 # dbl unfl | ||
14720 | |||
14721 | fadd_ovfl: | ||
14722 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
14723 | |||
14724 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14725 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
14726 | bne.b fadd_ovfl_ena # yes | ||
14727 | |||
14728 | add.l &0xc,%sp | ||
14729 | fadd_ovfl_dis: | ||
14730 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
14731 | sne %d1 # set sign param accordingly | ||
14732 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd | ||
14733 | bsr.l ovf_res # calculate default result | ||
14734 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
14735 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
14736 | mov.l (%sp)+,%d2 # restore d2 | ||
14737 | rts | ||
14738 | |||
14739 | fadd_ovfl_ena: | ||
14740 | mov.b L_SCR3(%a6),%d1 | ||
14741 | andi.b &0xc0,%d1 # is precision extended? | ||
14742 | bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl | ||
14743 | |||
14744 | fadd_ovfl_ena_cont: | ||
14745 | mov.w (%sp),%d1 | ||
14746 | andi.w &0x8000,%d1 # keep sign | ||
14747 | subi.l &0x6000,%d2 # add extra bias | ||
14748 | andi.w &0x7fff,%d2 | ||
14749 | or.w %d2,%d1 # concat sign,new exp | ||
14750 | mov.w %d1,(%sp) # insert new exponent | ||
14751 | |||
14752 | fmovm.x (%sp)+,&0x40 # return EXOP in fp1 | ||
14753 | bra.b fadd_ovfl_dis | ||
14754 | |||
14755 | fadd_ovfl_ena_sd: | ||
14756 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14757 | |||
14758 | mov.l L_SCR3(%a6),%d1 | ||
14759 | andi.b &0x30,%d1 # keep rnd mode | ||
14760 | fmov.l %d1,%fpcr # set FPCR | ||
14761 | |||
14762 | fadd.x FP_SCR0(%a6),%fp0 # execute add | ||
14763 | |||
14764 | fmov.l &0x0,%fpcr # clear FPCR | ||
14765 | |||
14766 | add.l &0xc,%sp | ||
14767 | fmovm.x &0x01,-(%sp) | ||
14768 | bra.b fadd_ovfl_ena_cont | ||
14769 | |||
14770 | fadd_unfl: | ||
14771 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
14772 | |||
14773 | add.l &0xc,%sp | ||
14774 | |||
14775 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
14776 | |||
14777 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
14778 | fmov.l &0x0,%fpsr # clear FPSR | ||
14779 | |||
14780 | fadd.x FP_SCR0(%a6),%fp0 # execute add | ||
14781 | |||
14782 | fmov.l &0x0,%fpcr # clear FPCR | ||
14783 | fmov.l %fpsr,%d1 # save status | ||
14784 | |||
14785 | or.l %d1,USER_FPSR(%a6) # save INEX,N | ||
14786 | |||
14787 | mov.b FPCR_ENABLE(%a6),%d1 | ||
14788 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
14789 | bne.b fadd_unfl_ena # yes | ||
14790 | |||
14791 | fadd_unfl_dis: | ||
14792 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
14793 | |||
14794 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
14795 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
14796 | bsr.l unf_res # calculate default result | ||
14797 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set | ||
14798 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
14799 | mov.l (%sp)+,%d2 # restore d2 | ||
14800 | rts | ||
14801 | |||
14802 | fadd_unfl_ena: | ||
14803 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op | ||
14804 | |||
14805 | mov.l L_SCR3(%a6),%d1 | ||
14806 | andi.b &0xc0,%d1 # is precision extended? | ||
14807 | bne.b fadd_unfl_ena_sd # no; sgl or dbl | ||
14808 | |||
14809 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
14810 | |||
14811 | fadd_unfl_ena_cont: | ||
14812 | fmov.l &0x0,%fpsr # clear FPSR | ||
14813 | |||
14814 | fadd.x FP_SCR0(%a6),%fp1 # execute multiply | ||
14815 | |||
14816 | fmov.l &0x0,%fpcr # clear FPCR | ||
14817 | |||
14818 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack | ||
14819 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
14820 | mov.l %d1,%d2 # make a copy | ||
14821 | andi.l &0x7fff,%d1 # strip sign | ||
14822 | andi.w &0x8000,%d2 # keep old sign | ||
14823 | sub.l %d0,%d1 # add scale factor | ||
14824 | addi.l &0x6000,%d1 # add new bias | ||
14825 | andi.w &0x7fff,%d1 # clear top bit | ||
14826 | or.w %d2,%d1 # concat sign,new exp | ||
14827 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
14828 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
14829 | bra.w fadd_unfl_dis | ||
14830 | |||
14831 | fadd_unfl_ena_sd: | ||
14832 | mov.l L_SCR3(%a6),%d1 | ||
14833 | andi.b &0x30,%d1 # use only rnd mode | ||
14834 | fmov.l %d1,%fpcr # set FPCR | ||
14835 | |||
14836 | bra.b fadd_unfl_ena_cont | ||
14837 | |||
14838 | # | ||
14839 | # result is equal to the smallest normalized number in the selected precision | ||
14840 | # if the precision is extended, this result could not have come from an | ||
14841 | # underflow that rounded up. | ||
14842 | # | ||
14843 | fadd_may_unfl: | ||
14844 | mov.l L_SCR3(%a6),%d1 | ||
14845 | andi.b &0xc0,%d1 | ||
14846 | beq.w fadd_normal # yes; no underflow occurred | ||
14847 | |||
14848 | mov.l 0x4(%sp),%d1 # extract hi(man) | ||
14849 | cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? | ||
14850 | bne.w fadd_normal # no; no underflow occurred | ||
14851 | |||
14852 | tst.l 0x8(%sp) # is lo(man) = 0x0? | ||
14853 | bne.w fadd_normal # no; no underflow occurred | ||
14854 | |||
14855 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | ||
14856 | beq.w fadd_normal # no; no underflow occurred | ||
14857 | |||
14858 | # | ||
14859 | # ok, so now the result has a exponent equal to the smallest normalized | ||
14860 | # exponent for the selected precision. also, the mantissa is equal to | ||
14861 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | ||
14862 | # g,r,s. | ||
14863 | # now, we must determine whether the pre-rounded result was an underflow | ||
14864 | # rounded "up" or a normalized number rounded "down". | ||
14865 | # so, we do this be re-executing the add using RZ as the rounding mode and | ||
14866 | # seeing if the new result is smaller or equal to the current result. | ||
14867 | # | ||
14868 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 | ||
14869 | |||
14870 | mov.l L_SCR3(%a6),%d1 | ||
14871 | andi.b &0xc0,%d1 # keep rnd prec | ||
14872 | ori.b &rz_mode*0x10,%d1 # insert rnd mode | ||
14873 | fmov.l %d1,%fpcr # set FPCR | ||
14874 | fmov.l &0x0,%fpsr # clear FPSR | ||
14875 | |||
14876 | fadd.x FP_SCR0(%a6),%fp1 # execute add | ||
14877 | |||
14878 | fmov.l &0x0,%fpcr # clear FPCR | ||
14879 | |||
14880 | fabs.x %fp0 # compare absolute values | ||
14881 | fabs.x %fp1 | ||
14882 | fcmp.x %fp0,%fp1 # is first result > second? | ||
14883 | |||
14884 | fbgt.w fadd_unfl # yes; it's an underflow | ||
14885 | bra.w fadd_normal # no; it's not an underflow | ||
14886 | |||
14887 | ########################################################################## | ||
14888 | |||
14889 | # | ||
14890 | # Add: inputs are not both normalized; what are they? | ||
14891 | # | ||
14892 | fadd_not_norm: | ||
14893 | mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 | ||
14894 | jmp (tbl_fadd_op.b,%pc,%d1.w*1) | ||
14895 | |||
14896 | swbeg &48 | ||
14897 | tbl_fadd_op: | ||
14898 | short fadd_norm - tbl_fadd_op # NORM + NORM | ||
14899 | short fadd_zero_src - tbl_fadd_op # NORM + ZERO | ||
14900 | short fadd_inf_src - tbl_fadd_op # NORM + INF | ||
14901 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN | ||
14902 | short fadd_norm - tbl_fadd_op # NORM + DENORM | ||
14903 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN | ||
14904 | short tbl_fadd_op - tbl_fadd_op # | ||
14905 | short tbl_fadd_op - tbl_fadd_op # | ||
14906 | |||
14907 | short fadd_zero_dst - tbl_fadd_op # ZERO + NORM | ||
14908 | short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO | ||
14909 | short fadd_inf_src - tbl_fadd_op # ZERO + INF | ||
14910 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN | ||
14911 | short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM | ||
14912 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN | ||
14913 | short tbl_fadd_op - tbl_fadd_op # | ||
14914 | short tbl_fadd_op - tbl_fadd_op # | ||
14915 | |||
14916 | short fadd_inf_dst - tbl_fadd_op # INF + NORM | ||
14917 | short fadd_inf_dst - tbl_fadd_op # INF + ZERO | ||
14918 | short fadd_inf_2 - tbl_fadd_op # INF + INF | ||
14919 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN | ||
14920 | short fadd_inf_dst - tbl_fadd_op # INF + DENORM | ||
14921 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN | ||
14922 | short tbl_fadd_op - tbl_fadd_op # | ||
14923 | short tbl_fadd_op - tbl_fadd_op # | ||
14924 | |||
14925 | short fadd_res_qnan - tbl_fadd_op # QNAN + NORM | ||
14926 | short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO | ||
14927 | short fadd_res_qnan - tbl_fadd_op # QNAN + INF | ||
14928 | short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN | ||
14929 | short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM | ||
14930 | short fadd_res_snan - tbl_fadd_op # QNAN + SNAN | ||
14931 | short tbl_fadd_op - tbl_fadd_op # | ||
14932 | short tbl_fadd_op - tbl_fadd_op # | ||
14933 | |||
14934 | short fadd_norm - tbl_fadd_op # DENORM + NORM | ||
14935 | short fadd_zero_src - tbl_fadd_op # DENORM + ZERO | ||
14936 | short fadd_inf_src - tbl_fadd_op # DENORM + INF | ||
14937 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN | ||
14938 | short fadd_norm - tbl_fadd_op # DENORM + DENORM | ||
14939 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN | ||
14940 | short tbl_fadd_op - tbl_fadd_op # | ||
14941 | short tbl_fadd_op - tbl_fadd_op # | ||
14942 | |||
14943 | short fadd_res_snan - tbl_fadd_op # SNAN + NORM | ||
14944 | short fadd_res_snan - tbl_fadd_op # SNAN + ZERO | ||
14945 | short fadd_res_snan - tbl_fadd_op # SNAN + INF | ||
14946 | short fadd_res_snan - tbl_fadd_op # SNAN + QNAN | ||
14947 | short fadd_res_snan - tbl_fadd_op # SNAN + DENORM | ||
14948 | short fadd_res_snan - tbl_fadd_op # SNAN + SNAN | ||
14949 | short tbl_fadd_op - tbl_fadd_op # | ||
14950 | short tbl_fadd_op - tbl_fadd_op # | ||
14951 | |||
14952 | fadd_res_qnan: | ||
14953 | bra.l res_qnan | ||
14954 | fadd_res_snan: | ||
14955 | bra.l res_snan | ||
14956 | |||
14957 | # | ||
14958 | # both operands are ZEROes | ||
14959 | # | ||
14960 | fadd_zero_2: | ||
14961 | mov.b SRC_EX(%a0),%d0 # are the signs opposite | ||
14962 | mov.b DST_EX(%a1),%d1 | ||
14963 | eor.b %d0,%d1 | ||
14964 | bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) | ||
14965 | |||
14966 | # the signs are the same. so determine whether they are positive or negative | ||
14967 | # and return the appropriately signed zero. | ||
14968 | tst.b %d0 # are ZEROes positive or negative? | ||
14969 | bmi.b fadd_zero_rm # negative | ||
14970 | fmov.s &0x00000000,%fp0 # return +ZERO | ||
14971 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
14972 | rts | ||
14973 | |||
14974 | # | ||
14975 | # the ZEROes have opposite signs: | ||
14976 | # - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. | ||
14977 | # - -ZERO is returned in the case of RM. | ||
14978 | # | ||
14979 | fadd_zero_2_chk_rm: | ||
14980 | mov.b 3+L_SCR3(%a6),%d1 | ||
14981 | andi.b &0x30,%d1 # extract rnd mode | ||
14982 | cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? | ||
14983 | beq.b fadd_zero_rm # yes | ||
14984 | fmov.s &0x00000000,%fp0 # return +ZERO | ||
14985 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
14986 | rts | ||
14987 | |||
14988 | fadd_zero_rm: | ||
14989 | fmov.s &0x80000000,%fp0 # return -ZERO | ||
14990 | mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z | ||
14991 | rts | ||
14992 | |||
14993 | # | ||
14994 | # one operand is a ZERO and the other is a DENORM or NORM. scale | ||
14995 | # the DENORM or NORM and jump to the regular fadd routine. | ||
14996 | # | ||
14997 | fadd_zero_dst: | ||
14998 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
14999 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15000 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15001 | bsr.l scale_to_zero_src # scale the operand | ||
15002 | clr.w FP_SCR1_EX(%a6) | ||
15003 | clr.l FP_SCR1_HI(%a6) | ||
15004 | clr.l FP_SCR1_LO(%a6) | ||
15005 | bra.w fadd_zero_entry # go execute fadd | ||
15006 | |||
15007 | fadd_zero_src: | ||
15008 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
15009 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
15010 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
15011 | bsr.l scale_to_zero_dst # scale the operand | ||
15012 | clr.w FP_SCR0_EX(%a6) | ||
15013 | clr.l FP_SCR0_HI(%a6) | ||
15014 | clr.l FP_SCR0_LO(%a6) | ||
15015 | bra.w fadd_zero_entry # go execute fadd | ||
15016 | |||
15017 | # | ||
15018 | # both operands are INFs. an OPERR will result if the INFs have | ||
15019 | # different signs. else, an INF of the same sign is returned | ||
15020 | # | ||
15021 | fadd_inf_2: | ||
15022 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs | ||
15023 | mov.b DST_EX(%a1),%d1 | ||
15024 | eor.b %d1,%d0 | ||
15025 | bmi.l res_operr # weed out (-INF)+(+INF) | ||
15026 | |||
15027 | # ok, so it's not an OPERR. but, we do have to remember to return the | ||
15028 | # src INF since that's where the 881/882 gets the j-bit from... | ||
15029 | |||
15030 | # | ||
15031 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | ||
15032 | # | ||
15033 | fadd_inf_src: | ||
15034 | fmovm.x SRC(%a0),&0x80 # return src INF | ||
15035 | tst.b SRC_EX(%a0) # is INF positive? | ||
15036 | bpl.b fadd_inf_done # yes; we're done | ||
15037 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | ||
15038 | rts | ||
15039 | |||
15040 | # | ||
15041 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | ||
15042 | # | ||
15043 | fadd_inf_dst: | ||
15044 | fmovm.x DST(%a1),&0x80 # return dst INF | ||
15045 | tst.b DST_EX(%a1) # is INF positive? | ||
15046 | bpl.b fadd_inf_done # yes; we're done | ||
15047 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | ||
15048 | rts | ||
15049 | |||
15050 | fadd_inf_done: | ||
15051 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF | ||
15052 | rts | ||
15053 | |||
15054 | ######################################################################### | ||
15055 | # XDEF **************************************************************** # | ||
15056 | # fsub(): emulates the fsub instruction # | ||
15057 | # fssub(): emulates the fssub instruction # | ||
15058 | # fdsub(): emulates the fdsub instruction # | ||
15059 | # # | ||
15060 | # XREF **************************************************************** # | ||
15061 | # addsub_scaler2() - scale the operands so they won't take exc # | ||
15062 | # ovf_res() - return default overflow result # | ||
15063 | # unf_res() - return default underflow result # | ||
15064 | # res_qnan() - set QNAN result # | ||
15065 | # res_snan() - set SNAN result # | ||
15066 | # res_operr() - set OPERR result # | ||
15067 | # scale_to_zero_src() - set src operand exponent equal to zero # | ||
15068 | # scale_to_zero_dst() - set dst operand exponent equal to zero # | ||
15069 | # # | ||
15070 | # INPUT *************************************************************** # | ||
15071 | # a0 = pointer to extended precision source operand # | ||
15072 | # a1 = pointer to extended precision destination operand # | ||
15073 | # # | ||
15074 | # OUTPUT ************************************************************** # | ||
15075 | # fp0 = result # | ||
15076 | # fp1 = EXOP (if exception occurred) # | ||
15077 | # # | ||
15078 | # ALGORITHM *********************************************************** # | ||
15079 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
15080 | # norms into extended, single, and double precision. # | ||
15081 | # Do subtraction after scaling exponents such that exception won't# | ||
15082 | # occur. Then, check result exponent to see if exception would have # | ||
15083 | # occurred. If so, return default result and maybe EXOP. Else, insert # | ||
15084 | # the correct result exponent and return. Set FPSR bits as appropriate. # | ||
15085 | # # | ||
15086 | ######################################################################### | ||
15087 | |||
15088 | global fssub | ||
15089 | fssub: | ||
15090 | andi.b &0x30,%d0 # clear rnd prec | ||
15091 | ori.b &s_mode*0x10,%d0 # insert sgl prec | ||
15092 | bra.b fsub | ||
15093 | |||
15094 | global fdsub | ||
15095 | fdsub: | ||
15096 | andi.b &0x30,%d0 # clear rnd prec | ||
15097 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
15098 | |||
15099 | global fsub | ||
15100 | fsub: | ||
15101 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
15102 | |||
15103 | clr.w %d1 | ||
15104 | mov.b DTAG(%a6),%d1 | ||
15105 | lsl.b &0x3,%d1 | ||
15106 | or.b STAG(%a6),%d1 # combine src tags | ||
15107 | |||
15108 | bne.w fsub_not_norm # optimize on non-norm input | ||
15109 | |||
15110 | # | ||
15111 | # SUB: norms and denorms | ||
15112 | # | ||
15113 | fsub_norm: | ||
15114 | bsr.l addsub_scaler2 # scale exponents | ||
15115 | |||
15116 | fsub_zero_entry: | ||
15117 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
15118 | |||
15119 | fmov.l &0x0,%fpsr # clear FPSR | ||
15120 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15121 | |||
15122 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract | ||
15123 | |||
15124 | fmov.l &0x0,%fpcr # clear FPCR | ||
15125 | fmov.l %fpsr,%d1 # fetch INEX2, N, Z | ||
15126 | |||
15127 | or.l %d1,USER_FPSR(%a6) # save exc and ccode bits | ||
15128 | |||
15129 | fbeq.w fsub_zero_exit # if result zero, end now | ||
15130 | |||
15131 | mov.l %d2,-(%sp) # save d2 | ||
15132 | |||
15133 | fmovm.x &0x01,-(%sp) # save result to stack | ||
15134 | |||
15135 | mov.w 2+L_SCR3(%a6),%d1 | ||
15136 | lsr.b &0x6,%d1 | ||
15137 | |||
15138 | mov.w (%sp),%d2 # fetch new exponent | ||
15139 | andi.l &0x7fff,%d2 # strip sign | ||
15140 | sub.l %d0,%d2 # add scale factor | ||
15141 | |||
15142 | cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? | ||
15143 | bge.b fsub_ovfl # yes | ||
15144 | |||
15145 | cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? | ||
15146 | blt.w fsub_unfl # yes | ||
15147 | beq.w fsub_may_unfl # maybe; go find out | ||
15148 | |||
15149 | fsub_normal: | ||
15150 | mov.w (%sp),%d1 | ||
15151 | andi.w &0x8000,%d1 # keep sign | ||
15152 | or.w %d2,%d1 # insert new exponent | ||
15153 | mov.w %d1,(%sp) # insert new exponent | ||
15154 | |||
15155 | fmovm.x (%sp)+,&0x80 # return result in fp0 | ||
15156 | |||
15157 | mov.l (%sp)+,%d2 # restore d2 | ||
15158 | rts | ||
15159 | |||
15160 | fsub_zero_exit: | ||
15161 | # fmov.s &0x00000000,%fp0 # return zero in fp0 | ||
15162 | rts | ||
15163 | |||
15164 | tbl_fsub_ovfl: | ||
15165 | long 0x7fff # ext ovfl | ||
15166 | long 0x407f # sgl ovfl | ||
15167 | long 0x43ff # dbl ovfl | ||
15168 | |||
15169 | tbl_fsub_unfl: | ||
15170 | long 0x0000 # ext unfl | ||
15171 | long 0x3f81 # sgl unfl | ||
15172 | long 0x3c01 # dbl unfl | ||
15173 | |||
15174 | fsub_ovfl: | ||
15175 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
15176 | |||
15177 | mov.b FPCR_ENABLE(%a6),%d1 | ||
15178 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
15179 | bne.b fsub_ovfl_ena # yes | ||
15180 | |||
15181 | add.l &0xc,%sp | ||
15182 | fsub_ovfl_dis: | ||
15183 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
15184 | sne %d1 # set sign param accordingly | ||
15185 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd | ||
15186 | bsr.l ovf_res # calculate default result | ||
15187 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
15188 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
15189 | mov.l (%sp)+,%d2 # restore d2 | ||
15190 | rts | ||
15191 | |||
15192 | fsub_ovfl_ena: | ||
15193 | mov.b L_SCR3(%a6),%d1 | ||
15194 | andi.b &0xc0,%d1 # is precision extended? | ||
15195 | bne.b fsub_ovfl_ena_sd # no | ||
15196 | |||
15197 | fsub_ovfl_ena_cont: | ||
15198 | mov.w (%sp),%d1 # fetch {sgn,exp} | ||
15199 | andi.w &0x8000,%d1 # keep sign | ||
15200 | subi.l &0x6000,%d2 # subtract new bias | ||
15201 | andi.w &0x7fff,%d2 # clear top bit | ||
15202 | or.w %d2,%d1 # concat sign,exp | ||
15203 | mov.w %d1,(%sp) # insert new exponent | ||
15204 | |||
15205 | fmovm.x (%sp)+,&0x40 # return EXOP in fp1 | ||
15206 | bra.b fsub_ovfl_dis | ||
15207 | |||
15208 | fsub_ovfl_ena_sd: | ||
15209 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
15210 | |||
15211 | mov.l L_SCR3(%a6),%d1 | ||
15212 | andi.b &0x30,%d1 # clear rnd prec | ||
15213 | fmov.l %d1,%fpcr # set FPCR | ||
15214 | |||
15215 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract | ||
15216 | |||
15217 | fmov.l &0x0,%fpcr # clear FPCR | ||
15218 | |||
15219 | add.l &0xc,%sp | ||
15220 | fmovm.x &0x01,-(%sp) | ||
15221 | bra.b fsub_ovfl_ena_cont | ||
15222 | |||
15223 | fsub_unfl: | ||
15224 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
15225 | |||
15226 | add.l &0xc,%sp | ||
15227 | |||
15228 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op | ||
15229 | |||
15230 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
15231 | fmov.l &0x0,%fpsr # clear FPSR | ||
15232 | |||
15233 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract | ||
15234 | |||
15235 | fmov.l &0x0,%fpcr # clear FPCR | ||
15236 | fmov.l %fpsr,%d1 # save status | ||
15237 | |||
15238 | or.l %d1,USER_FPSR(%a6) | ||
15239 | |||
15240 | mov.b FPCR_ENABLE(%a6),%d1 | ||
15241 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
15242 | bne.b fsub_unfl_ena # yes | ||
15243 | |||
15244 | fsub_unfl_dis: | ||
15245 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
15246 | |||
15247 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
15248 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
15249 | bsr.l unf_res # calculate default result | ||
15250 | or.b %d0,FPSR_CC(%a6) # 'Z' may have been set | ||
15251 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
15252 | mov.l (%sp)+,%d2 # restore d2 | ||
15253 | rts | ||
15254 | |||
15255 | fsub_unfl_ena: | ||
15256 | fmovm.x FP_SCR1(%a6),&0x40 | ||
15257 | |||
15258 | mov.l L_SCR3(%a6),%d1 | ||
15259 | andi.b &0xc0,%d1 # is precision extended? | ||
15260 | bne.b fsub_unfl_ena_sd # no | ||
15261 | |||
15262 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15263 | |||
15264 | fsub_unfl_ena_cont: | ||
15265 | fmov.l &0x0,%fpsr # clear FPSR | ||
15266 | |||
15267 | fsub.x FP_SCR0(%a6),%fp1 # execute subtract | ||
15268 | |||
15269 | fmov.l &0x0,%fpcr # clear FPCR | ||
15270 | |||
15271 | fmovm.x &0x40,FP_SCR0(%a6) # store result to stack | ||
15272 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
15273 | mov.l %d1,%d2 # make a copy | ||
15274 | andi.l &0x7fff,%d1 # strip sign | ||
15275 | andi.w &0x8000,%d2 # keep old sign | ||
15276 | sub.l %d0,%d1 # add scale factor | ||
15277 | addi.l &0x6000,%d1 # subtract new bias | ||
15278 | andi.w &0x7fff,%d1 # clear top bit | ||
15279 | or.w %d2,%d1 # concat sgn,exp | ||
15280 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
15281 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
15282 | bra.w fsub_unfl_dis | ||
15283 | |||
15284 | fsub_unfl_ena_sd: | ||
15285 | mov.l L_SCR3(%a6),%d1 | ||
15286 | andi.b &0x30,%d1 # clear rnd prec | ||
15287 | fmov.l %d1,%fpcr # set FPCR | ||
15288 | |||
15289 | bra.b fsub_unfl_ena_cont | ||
15290 | |||
15291 | # | ||
15292 | # result is equal to the smallest normalized number in the selected precision | ||
15293 | # if the precision is extended, this result could not have come from an | ||
15294 | # underflow that rounded up. | ||
15295 | # | ||
15296 | fsub_may_unfl: | ||
15297 | mov.l L_SCR3(%a6),%d1 | ||
15298 | andi.b &0xc0,%d1 # fetch rnd prec | ||
15299 | beq.w fsub_normal # yes; no underflow occurred | ||
15300 | |||
15301 | mov.l 0x4(%sp),%d1 | ||
15302 | cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? | ||
15303 | bne.w fsub_normal # no; no underflow occurred | ||
15304 | |||
15305 | tst.l 0x8(%sp) # is lo(man) = 0x0? | ||
15306 | bne.w fsub_normal # no; no underflow occurred | ||
15307 | |||
15308 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | ||
15309 | beq.w fsub_normal # no; no underflow occurred | ||
15310 | |||
15311 | # | ||
15312 | # ok, so now the result has a exponent equal to the smallest normalized | ||
15313 | # exponent for the selected precision. also, the mantissa is equal to | ||
15314 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | ||
15315 | # g,r,s. | ||
15316 | # now, we must determine whether the pre-rounded result was an underflow | ||
15317 | # rounded "up" or a normalized number rounded "down". | ||
15318 | # so, we do this be re-executing the add using RZ as the rounding mode and | ||
15319 | # seeing if the new result is smaller or equal to the current result. | ||
15320 | # | ||
15321 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 | ||
15322 | |||
15323 | mov.l L_SCR3(%a6),%d1 | ||
15324 | andi.b &0xc0,%d1 # keep rnd prec | ||
15325 | ori.b &rz_mode*0x10,%d1 # insert rnd mode | ||
15326 | fmov.l %d1,%fpcr # set FPCR | ||
15327 | fmov.l &0x0,%fpsr # clear FPSR | ||
15328 | |||
15329 | fsub.x FP_SCR0(%a6),%fp1 # execute subtract | ||
15330 | |||
15331 | fmov.l &0x0,%fpcr # clear FPCR | ||
15332 | |||
15333 | fabs.x %fp0 # compare absolute values | ||
15334 | fabs.x %fp1 | ||
15335 | fcmp.x %fp0,%fp1 # is first result > second? | ||
15336 | |||
15337 | fbgt.w fsub_unfl # yes; it's an underflow | ||
15338 | bra.w fsub_normal # no; it's not an underflow | ||
15339 | |||
15340 | ########################################################################## | ||
15341 | |||
15342 | # | ||
15343 | # Sub: inputs are not both normalized; what are they? | ||
15344 | # | ||
15345 | fsub_not_norm: | ||
15346 | mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 | ||
15347 | jmp (tbl_fsub_op.b,%pc,%d1.w*1) | ||
15348 | |||
15349 | swbeg &48 | ||
15350 | tbl_fsub_op: | ||
15351 | short fsub_norm - tbl_fsub_op # NORM - NORM | ||
15352 | short fsub_zero_src - tbl_fsub_op # NORM - ZERO | ||
15353 | short fsub_inf_src - tbl_fsub_op # NORM - INF | ||
15354 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN | ||
15355 | short fsub_norm - tbl_fsub_op # NORM - DENORM | ||
15356 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN | ||
15357 | short tbl_fsub_op - tbl_fsub_op # | ||
15358 | short tbl_fsub_op - tbl_fsub_op # | ||
15359 | |||
15360 | short fsub_zero_dst - tbl_fsub_op # ZERO - NORM | ||
15361 | short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO | ||
15362 | short fsub_inf_src - tbl_fsub_op # ZERO - INF | ||
15363 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN | ||
15364 | short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM | ||
15365 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN | ||
15366 | short tbl_fsub_op - tbl_fsub_op # | ||
15367 | short tbl_fsub_op - tbl_fsub_op # | ||
15368 | |||
15369 | short fsub_inf_dst - tbl_fsub_op # INF - NORM | ||
15370 | short fsub_inf_dst - tbl_fsub_op # INF - ZERO | ||
15371 | short fsub_inf_2 - tbl_fsub_op # INF - INF | ||
15372 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN | ||
15373 | short fsub_inf_dst - tbl_fsub_op # INF - DENORM | ||
15374 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN | ||
15375 | short tbl_fsub_op - tbl_fsub_op # | ||
15376 | short tbl_fsub_op - tbl_fsub_op # | ||
15377 | |||
15378 | short fsub_res_qnan - tbl_fsub_op # QNAN - NORM | ||
15379 | short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO | ||
15380 | short fsub_res_qnan - tbl_fsub_op # QNAN - INF | ||
15381 | short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN | ||
15382 | short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM | ||
15383 | short fsub_res_snan - tbl_fsub_op # QNAN - SNAN | ||
15384 | short tbl_fsub_op - tbl_fsub_op # | ||
15385 | short tbl_fsub_op - tbl_fsub_op # | ||
15386 | |||
15387 | short fsub_norm - tbl_fsub_op # DENORM - NORM | ||
15388 | short fsub_zero_src - tbl_fsub_op # DENORM - ZERO | ||
15389 | short fsub_inf_src - tbl_fsub_op # DENORM - INF | ||
15390 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN | ||
15391 | short fsub_norm - tbl_fsub_op # DENORM - DENORM | ||
15392 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN | ||
15393 | short tbl_fsub_op - tbl_fsub_op # | ||
15394 | short tbl_fsub_op - tbl_fsub_op # | ||
15395 | |||
15396 | short fsub_res_snan - tbl_fsub_op # SNAN - NORM | ||
15397 | short fsub_res_snan - tbl_fsub_op # SNAN - ZERO | ||
15398 | short fsub_res_snan - tbl_fsub_op # SNAN - INF | ||
15399 | short fsub_res_snan - tbl_fsub_op # SNAN - QNAN | ||
15400 | short fsub_res_snan - tbl_fsub_op # SNAN - DENORM | ||
15401 | short fsub_res_snan - tbl_fsub_op # SNAN - SNAN | ||
15402 | short tbl_fsub_op - tbl_fsub_op # | ||
15403 | short tbl_fsub_op - tbl_fsub_op # | ||
15404 | |||
15405 | fsub_res_qnan: | ||
15406 | bra.l res_qnan | ||
15407 | fsub_res_snan: | ||
15408 | bra.l res_snan | ||
15409 | |||
15410 | # | ||
15411 | # both operands are ZEROes | ||
15412 | # | ||
15413 | fsub_zero_2: | ||
15414 | mov.b SRC_EX(%a0),%d0 | ||
15415 | mov.b DST_EX(%a1),%d1 | ||
15416 | eor.b %d1,%d0 | ||
15417 | bpl.b fsub_zero_2_chk_rm | ||
15418 | |||
15419 | # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO | ||
15420 | tst.b %d0 # is dst negative? | ||
15421 | bmi.b fsub_zero_2_rm # yes | ||
15422 | fmov.s &0x00000000,%fp0 # no; return +ZERO | ||
15423 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
15424 | rts | ||
15425 | |||
15426 | # | ||
15427 | # the ZEROes have the same signs: | ||
15428 | # - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP | ||
15429 | # - -ZERO is returned in the case of RM. | ||
15430 | # | ||
15431 | fsub_zero_2_chk_rm: | ||
15432 | mov.b 3+L_SCR3(%a6),%d1 | ||
15433 | andi.b &0x30,%d1 # extract rnd mode | ||
15434 | cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? | ||
15435 | beq.b fsub_zero_2_rm # yes | ||
15436 | fmov.s &0x00000000,%fp0 # no; return +ZERO | ||
15437 | mov.b &z_bmask,FPSR_CC(%a6) # set Z | ||
15438 | rts | ||
15439 | |||
15440 | fsub_zero_2_rm: | ||
15441 | fmov.s &0x80000000,%fp0 # return -ZERO | ||
15442 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG | ||
15443 | rts | ||
15444 | |||
15445 | # | ||
15446 | # one operand is a ZERO and the other is a DENORM or a NORM. | ||
15447 | # scale the DENORM or NORM and jump to the regular fsub routine. | ||
15448 | # | ||
15449 | fsub_zero_dst: | ||
15450 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
15451 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15452 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15453 | bsr.l scale_to_zero_src # scale the operand | ||
15454 | clr.w FP_SCR1_EX(%a6) | ||
15455 | clr.l FP_SCR1_HI(%a6) | ||
15456 | clr.l FP_SCR1_LO(%a6) | ||
15457 | bra.w fsub_zero_entry # go execute fsub | ||
15458 | |||
15459 | fsub_zero_src: | ||
15460 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) | ||
15461 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
15462 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
15463 | bsr.l scale_to_zero_dst # scale the operand | ||
15464 | clr.w FP_SCR0_EX(%a6) | ||
15465 | clr.l FP_SCR0_HI(%a6) | ||
15466 | clr.l FP_SCR0_LO(%a6) | ||
15467 | bra.w fsub_zero_entry # go execute fsub | ||
15468 | |||
15469 | # | ||
15470 | # both operands are INFs. an OPERR will result if the INFs have the | ||
15471 | # same signs. else, | ||
15472 | # | ||
15473 | fsub_inf_2: | ||
15474 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs | ||
15475 | mov.b DST_EX(%a1),%d1 | ||
15476 | eor.b %d1,%d0 | ||
15477 | bpl.l res_operr # weed out (-INF)+(+INF) | ||
15478 | |||
15479 | # ok, so it's not an OPERR. but we do have to remember to return | ||
15480 | # the src INF since that's where the 881/882 gets the j-bit. | ||
15481 | |||
15482 | fsub_inf_src: | ||
15483 | fmovm.x SRC(%a0),&0x80 # return src INF | ||
15484 | fneg.x %fp0 # invert sign | ||
15485 | fbge.w fsub_inf_done # sign is now positive | ||
15486 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | ||
15487 | rts | ||
15488 | |||
15489 | fsub_inf_dst: | ||
15490 | fmovm.x DST(%a1),&0x80 # return dst INF | ||
15491 | tst.b DST_EX(%a1) # is INF negative? | ||
15492 | bpl.b fsub_inf_done # no | ||
15493 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | ||
15494 | rts | ||
15495 | |||
15496 | fsub_inf_done: | ||
15497 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF | ||
15498 | rts | ||
15499 | |||
15500 | ######################################################################### | ||
15501 | # XDEF **************************************************************** # | ||
15502 | # fsqrt(): emulates the fsqrt instruction # | ||
15503 | # fssqrt(): emulates the fssqrt instruction # | ||
15504 | # fdsqrt(): emulates the fdsqrt instruction # | ||
15505 | # # | ||
15506 | # XREF **************************************************************** # | ||
15507 | # scale_sqrt() - scale the source operand # | ||
15508 | # unf_res() - return default underflow result # | ||
15509 | # ovf_res() - return default overflow result # | ||
15510 | # res_qnan_1op() - return QNAN result # | ||
15511 | # res_snan_1op() - return SNAN result # | ||
15512 | # # | ||
15513 | # INPUT *************************************************************** # | ||
15514 | # a0 = pointer to extended precision source operand # | ||
15515 | # d0 rnd prec,mode # | ||
15516 | # # | ||
15517 | # OUTPUT ************************************************************** # | ||
15518 | # fp0 = result # | ||
15519 | # fp1 = EXOP (if exception occurred) # | ||
15520 | # # | ||
15521 | # ALGORITHM *********************************************************** # | ||
15522 | # Handle NANs, infinities, and zeroes as special cases. Divide # | ||
15523 | # norms/denorms into ext/sgl/dbl precision. # | ||
15524 | # For norms/denorms, scale the exponents such that a sqrt # | ||
15525 | # instruction won't cause an exception. Use the regular fsqrt to # | ||
15526 | # compute a result. Check if the regular operands would have taken # | ||
15527 | # an exception. If so, return the default overflow/underflow result # | ||
15528 | # and return the EXOP if exceptions are enabled. Else, scale the # | ||
15529 | # result operand to the proper exponent. # | ||
15530 | # # | ||
15531 | ######################################################################### | ||
15532 | |||
15533 | global fssqrt | ||
15534 | fssqrt: | ||
15535 | andi.b &0x30,%d0 # clear rnd prec | ||
15536 | ori.b &s_mode*0x10,%d0 # insert sgl precision | ||
15537 | bra.b fsqrt | ||
15538 | |||
15539 | global fdsqrt | ||
15540 | fdsqrt: | ||
15541 | andi.b &0x30,%d0 # clear rnd prec | ||
15542 | ori.b &d_mode*0x10,%d0 # insert dbl precision | ||
15543 | |||
15544 | global fsqrt | ||
15545 | fsqrt: | ||
15546 | mov.l %d0,L_SCR3(%a6) # store rnd info | ||
15547 | clr.w %d1 | ||
15548 | mov.b STAG(%a6),%d1 | ||
15549 | bne.w fsqrt_not_norm # optimize on non-norm input | ||
15550 | |||
15551 | # | ||
15552 | # SQUARE ROOT: norms and denorms ONLY! | ||
15553 | # | ||
15554 | fsqrt_norm: | ||
15555 | tst.b SRC_EX(%a0) # is operand negative? | ||
15556 | bmi.l res_operr # yes | ||
15557 | |||
15558 | andi.b &0xc0,%d0 # is precision extended? | ||
15559 | bne.b fsqrt_not_ext # no; go handle sgl or dbl | ||
15560 | |||
15561 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15562 | fmov.l &0x0,%fpsr # clear FPSR | ||
15563 | |||
15564 | fsqrt.x (%a0),%fp0 # execute square root | ||
15565 | |||
15566 | fmov.l %fpsr,%d1 | ||
15567 | or.l %d1,USER_FPSR(%a6) # set N,INEX | ||
15568 | |||
15569 | rts | ||
15570 | |||
15571 | fsqrt_denorm: | ||
15572 | tst.b SRC_EX(%a0) # is operand negative? | ||
15573 | bmi.l res_operr # yes | ||
15574 | |||
15575 | andi.b &0xc0,%d0 # is precision extended? | ||
15576 | bne.b fsqrt_not_ext # no; go handle sgl or dbl | ||
15577 | |||
15578 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
15579 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15580 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15581 | |||
15582 | bsr.l scale_sqrt # calculate scale factor | ||
15583 | |||
15584 | bra.w fsqrt_sd_normal | ||
15585 | |||
15586 | # | ||
15587 | # operand is either single or double | ||
15588 | # | ||
15589 | fsqrt_not_ext: | ||
15590 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec | ||
15591 | bne.w fsqrt_dbl | ||
15592 | |||
15593 | # | ||
15594 | # operand is to be rounded to single precision | ||
15595 | # | ||
15596 | fsqrt_sgl: | ||
15597 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
15598 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15599 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15600 | |||
15601 | bsr.l scale_sqrt # calculate scale factor | ||
15602 | |||
15603 | cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? | ||
15604 | beq.w fsqrt_sd_may_unfl | ||
15605 | bgt.w fsqrt_sd_unfl # yes; go handle underflow | ||
15606 | cmpi.l %d0,&0x3fff-0x407f # will move in overflow? | ||
15607 | beq.w fsqrt_sd_may_ovfl # maybe; go check | ||
15608 | blt.w fsqrt_sd_ovfl # yes; go handle overflow | ||
15609 | |||
15610 | # | ||
15611 | # operand will NOT overflow or underflow when moved in to the fp reg file | ||
15612 | # | ||
15613 | fsqrt_sd_normal: | ||
15614 | fmov.l &0x0,%fpsr # clear FPSR | ||
15615 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15616 | |||
15617 | fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute | ||
15618 | |||
15619 | fmov.l %fpsr,%d1 # save FPSR | ||
15620 | fmov.l &0x0,%fpcr # clear FPCR | ||
15621 | |||
15622 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
15623 | |||
15624 | fsqrt_sd_normal_exit: | ||
15625 | mov.l %d2,-(%sp) # save d2 | ||
15626 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
15627 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp | ||
15628 | mov.l %d1,%d2 # make a copy | ||
15629 | andi.l &0x7fff,%d1 # strip sign | ||
15630 | sub.l %d0,%d1 # add scale factor | ||
15631 | andi.w &0x8000,%d2 # keep old sign | ||
15632 | or.w %d1,%d2 # concat old sign,new exp | ||
15633 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent | ||
15634 | mov.l (%sp)+,%d2 # restore d2 | ||
15635 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 | ||
15636 | rts | ||
15637 | |||
15638 | # | ||
15639 | # operand is to be rounded to double precision | ||
15640 | # | ||
15641 | fsqrt_dbl: | ||
15642 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
15643 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15644 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15645 | |||
15646 | bsr.l scale_sqrt # calculate scale factor | ||
15647 | |||
15648 | cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? | ||
15649 | beq.w fsqrt_sd_may_unfl | ||
15650 | bgt.b fsqrt_sd_unfl # yes; go handle underflow | ||
15651 | cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? | ||
15652 | beq.w fsqrt_sd_may_ovfl # maybe; go check | ||
15653 | blt.w fsqrt_sd_ovfl # yes; go handle overflow | ||
15654 | bra.w fsqrt_sd_normal # no; ho handle normalized op | ||
15655 | |||
15656 | # we're on the line here and the distinguising characteristic is whether | ||
15657 | # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number | ||
15658 | # elsewise fall through to underflow. | ||
15659 | fsqrt_sd_may_unfl: | ||
15660 | btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? | ||
15661 | bne.w fsqrt_sd_normal # yes, so no underflow | ||
15662 | |||
15663 | # | ||
15664 | # operand WILL underflow when moved in to the fp register file | ||
15665 | # | ||
15666 | fsqrt_sd_unfl: | ||
15667 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | ||
15668 | |||
15669 | fmov.l &rz_mode*0x10,%fpcr # set FPCR | ||
15670 | fmov.l &0x0,%fpsr # clear FPSR | ||
15671 | |||
15672 | fsqrt.x FP_SCR0(%a6),%fp0 # execute square root | ||
15673 | |||
15674 | fmov.l %fpsr,%d1 # save status | ||
15675 | fmov.l &0x0,%fpcr # clear FPCR | ||
15676 | |||
15677 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
15678 | |||
15679 | # if underflow or inexact is enabled, go calculate EXOP first. | ||
15680 | mov.b FPCR_ENABLE(%a6),%d1 | ||
15681 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? | ||
15682 | bne.b fsqrt_sd_unfl_ena # yes | ||
15683 | |||
15684 | fsqrt_sd_unfl_dis: | ||
15685 | fmovm.x &0x80,FP_SCR0(%a6) # store out result | ||
15686 | |||
15687 | lea FP_SCR0(%a6),%a0 # pass: result addr | ||
15688 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
15689 | bsr.l unf_res # calculate default result | ||
15690 | or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode | ||
15691 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 | ||
15692 | rts | ||
15693 | |||
15694 | # | ||
15695 | # operand will underflow AND underflow is enabled. | ||
15696 | # therefore, we must return the result rounded to extended precision. | ||
15697 | # | ||
15698 | fsqrt_sd_unfl_ena: | ||
15699 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | ||
15700 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | ||
15701 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent | ||
15702 | |||
15703 | mov.l %d2,-(%sp) # save d2 | ||
15704 | mov.l %d1,%d2 # make a copy | ||
15705 | andi.l &0x7fff,%d1 # strip sign | ||
15706 | andi.w &0x8000,%d2 # keep old sign | ||
15707 | sub.l %d0,%d1 # subtract scale factor | ||
15708 | addi.l &0x6000,%d1 # add new bias | ||
15709 | andi.w &0x7fff,%d1 | ||
15710 | or.w %d2,%d1 # concat new sign,new exp | ||
15711 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp | ||
15712 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 | ||
15713 | mov.l (%sp)+,%d2 # restore d2 | ||
15714 | bra.b fsqrt_sd_unfl_dis | ||
15715 | |||
15716 | # | ||
15717 | # operand WILL overflow. | ||
15718 | # | ||
15719 | fsqrt_sd_ovfl: | ||
15720 | fmov.l &0x0,%fpsr # clear FPSR | ||
15721 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15722 | |||
15723 | fsqrt.x FP_SCR0(%a6),%fp0 # perform square root | ||
15724 | |||
15725 | fmov.l &0x0,%fpcr # clear FPCR | ||
15726 | fmov.l %fpsr,%d1 # save FPSR | ||
15727 | |||
15728 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
15729 | |||
15730 | fsqrt_sd_ovfl_tst: | ||
15731 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
15732 | |||
15733 | mov.b FPCR_ENABLE(%a6),%d1 | ||
15734 | andi.b &0x13,%d1 # is OVFL or INEX enabled? | ||
15735 | bne.b fsqrt_sd_ovfl_ena # yes | ||
15736 | |||
15737 | # | ||
15738 | # OVFL is not enabled; therefore, we must create the default result by | ||
15739 | # calling ovf_res(). | ||
15740 | # | ||
15741 | fsqrt_sd_ovfl_dis: | ||
15742 | btst &neg_bit,FPSR_CC(%a6) # is result negative? | ||
15743 | sne %d1 # set sign param accordingly | ||
15744 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode | ||
15745 | bsr.l ovf_res # calculate default result | ||
15746 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable | ||
15747 | fmovm.x (%a0),&0x80 # return default result in fp0 | ||
15748 | rts | ||
15749 | |||
15750 | # | ||
15751 | # OVFL is enabled. | ||
15752 | # the INEX2 bit has already been updated by the round to the correct precision. | ||
15753 | # now, round to extended(and don't alter the FPSR). | ||
15754 | # | ||
15755 | fsqrt_sd_ovfl_ena: | ||
15756 | mov.l %d2,-(%sp) # save d2 | ||
15757 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} | ||
15758 | mov.l %d1,%d2 # make a copy | ||
15759 | andi.l &0x7fff,%d1 # strip sign | ||
15760 | andi.w &0x8000,%d2 # keep old sign | ||
15761 | sub.l %d0,%d1 # add scale factor | ||
15762 | subi.l &0x6000,%d1 # subtract bias | ||
15763 | andi.w &0x7fff,%d1 | ||
15764 | or.w %d2,%d1 # concat sign,exp | ||
15765 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent | ||
15766 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
15767 | mov.l (%sp)+,%d2 # restore d2 | ||
15768 | bra.b fsqrt_sd_ovfl_dis | ||
15769 | |||
15770 | # | ||
15771 | # the move in MAY underflow. so... | ||
15772 | # | ||
15773 | fsqrt_sd_may_ovfl: | ||
15774 | btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? | ||
15775 | bne.w fsqrt_sd_ovfl # yes, so overflow | ||
15776 | |||
15777 | fmov.l &0x0,%fpsr # clear FPSR | ||
15778 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
15779 | |||
15780 | fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute | ||
15781 | |||
15782 | fmov.l %fpsr,%d1 # save status | ||
15783 | fmov.l &0x0,%fpcr # clear FPCR | ||
15784 | |||
15785 | or.l %d1,USER_FPSR(%a6) # save INEX2,N | ||
15786 | |||
15787 | fmov.x %fp0,%fp1 # make a copy of result | ||
15788 | fcmp.b %fp1,&0x1 # is |result| >= 1.b? | ||
15789 | fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred | ||
15790 | |||
15791 | # no, it didn't overflow; we have correct result | ||
15792 | bra.w fsqrt_sd_normal_exit | ||
15793 | |||
15794 | ########################################################################## | ||
15795 | |||
15796 | # | ||
15797 | # input is not normalized; what is it? | ||
15798 | # | ||
15799 | fsqrt_not_norm: | ||
15800 | cmpi.b %d1,&DENORM # weed out DENORM | ||
15801 | beq.w fsqrt_denorm | ||
15802 | cmpi.b %d1,&ZERO # weed out ZERO | ||
15803 | beq.b fsqrt_zero | ||
15804 | cmpi.b %d1,&INF # weed out INF | ||
15805 | beq.b fsqrt_inf | ||
15806 | cmpi.b %d1,&SNAN # weed out SNAN | ||
15807 | beq.l res_snan_1op | ||
15808 | bra.l res_qnan_1op | ||
15809 | |||
15810 | # | ||
15811 | # fsqrt(+0) = +0 | ||
15812 | # fsqrt(-0) = -0 | ||
15813 | # fsqrt(+INF) = +INF | ||
15814 | # fsqrt(-INF) = OPERR | ||
15815 | # | ||
15816 | fsqrt_zero: | ||
15817 | tst.b SRC_EX(%a0) # is ZERO positive or negative? | ||
15818 | bmi.b fsqrt_zero_m # negative | ||
15819 | fsqrt_zero_p: | ||
15820 | fmov.s &0x00000000,%fp0 # return +ZERO | ||
15821 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit | ||
15822 | rts | ||
15823 | fsqrt_zero_m: | ||
15824 | fmov.s &0x80000000,%fp0 # return -ZERO | ||
15825 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | ||
15826 | rts | ||
15827 | |||
15828 | fsqrt_inf: | ||
15829 | tst.b SRC_EX(%a0) # is INF positive or negative? | ||
15830 | bmi.l res_operr # negative | ||
15831 | fsqrt_inf_p: | ||
15832 | fmovm.x SRC(%a0),&0x80 # return +INF in fp0 | ||
15833 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit | ||
15834 | rts | ||
15835 | |||
15836 | ########################################################################## | ||
15837 | |||
15838 | ######################################################################### | ||
15839 | # XDEF **************************************************************** # | ||
15840 | # addsub_scaler2(): scale inputs to fadd/fsub such that no # | ||
15841 | # OVFL/UNFL exceptions will result # | ||
15842 | # # | ||
15843 | # XREF **************************************************************** # | ||
15844 | # norm() - normalize mantissa after adjusting exponent # | ||
15845 | # # | ||
15846 | # INPUT *************************************************************** # | ||
15847 | # FP_SRC(a6) = fp op1(src) # | ||
15848 | # FP_DST(a6) = fp op2(dst) # | ||
15849 | # # | ||
15850 | # OUTPUT ************************************************************** # | ||
15851 | # FP_SRC(a6) = fp op1 scaled(src) # | ||
15852 | # FP_DST(a6) = fp op2 scaled(dst) # | ||
15853 | # d0 = scale amount # | ||
15854 | # # | ||
15855 | # ALGORITHM *********************************************************** # | ||
15856 | # If the DST exponent is > the SRC exponent, set the DST exponent # | ||
15857 | # equal to 0x3fff and scale the SRC exponent by the value that the # | ||
15858 | # DST exponent was scaled by. If the SRC exponent is greater or equal, # | ||
15859 | # do the opposite. Return this scale factor in d0. # | ||
15860 | # If the two exponents differ by > the number of mantissa bits # | ||
15861 | # plus two, then set the smallest exponent to a very small value as a # | ||
15862 | # quick shortcut. # | ||
15863 | # # | ||
15864 | ######################################################################### | ||
15865 | |||
15866 | global addsub_scaler2 | ||
15867 | addsub_scaler2: | ||
15868 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
15869 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) | ||
15870 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
15871 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) | ||
15872 | mov.w SRC_EX(%a0),%d0 | ||
15873 | mov.w DST_EX(%a1),%d1 | ||
15874 | mov.w %d0,FP_SCR0_EX(%a6) | ||
15875 | mov.w %d1,FP_SCR1_EX(%a6) | ||
15876 | |||
15877 | andi.w &0x7fff,%d0 | ||
15878 | andi.w &0x7fff,%d1 | ||
15879 | mov.w %d0,L_SCR1(%a6) # store src exponent | ||
15880 | mov.w %d1,2+L_SCR1(%a6) # store dst exponent | ||
15881 | |||
15882 | cmp.w %d0, %d1 # is src exp >= dst exp? | ||
15883 | bge.l src_exp_ge2 | ||
15884 | |||
15885 | # dst exp is > src exp; scale dst to exp = 0x3fff | ||
15886 | dst_exp_gt2: | ||
15887 | bsr.l scale_to_zero_dst | ||
15888 | mov.l %d0,-(%sp) # save scale factor | ||
15889 | |||
15890 | cmpi.b STAG(%a6),&DENORM # is dst denormalized? | ||
15891 | bne.b cmpexp12 | ||
15892 | |||
15893 | lea FP_SCR0(%a6),%a0 | ||
15894 | bsr.l norm # normalize the denorm; result is new exp | ||
15895 | neg.w %d0 # new exp = -(shft val) | ||
15896 | mov.w %d0,L_SCR1(%a6) # inset new exp | ||
15897 | |||
15898 | cmpexp12: | ||
15899 | mov.w 2+L_SCR1(%a6),%d0 | ||
15900 | subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp | ||
15901 | |||
15902 | cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? | ||
15903 | bge.b quick_scale12 | ||
15904 | |||
15905 | mov.w L_SCR1(%a6),%d0 | ||
15906 | add.w 0x2(%sp),%d0 # scale src exponent by scale factor | ||
15907 | mov.w FP_SCR0_EX(%a6),%d1 | ||
15908 | and.w &0x8000,%d1 | ||
15909 | or.w %d1,%d0 # concat {sgn,new exp} | ||
15910 | mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent | ||
15911 | |||
15912 | mov.l (%sp)+,%d0 # return SCALE factor | ||
15913 | rts | ||
15914 | |||
15915 | quick_scale12: | ||
15916 | andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent | ||
15917 | bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 | ||
15918 | |||
15919 | mov.l (%sp)+,%d0 # return SCALE factor | ||
15920 | rts | ||
15921 | |||
15922 | # src exp is >= dst exp; scale src to exp = 0x3fff | ||
15923 | src_exp_ge2: | ||
15924 | bsr.l scale_to_zero_src | ||
15925 | mov.l %d0,-(%sp) # save scale factor | ||
15926 | |||
15927 | cmpi.b DTAG(%a6),&DENORM # is dst denormalized? | ||
15928 | bne.b cmpexp22 | ||
15929 | lea FP_SCR1(%a6),%a0 | ||
15930 | bsr.l norm # normalize the denorm; result is new exp | ||
15931 | neg.w %d0 # new exp = -(shft val) | ||
15932 | mov.w %d0,2+L_SCR1(%a6) # inset new exp | ||
15933 | |||
15934 | cmpexp22: | ||
15935 | mov.w L_SCR1(%a6),%d0 | ||
15936 | subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp | ||
15937 | |||
15938 | cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? | ||
15939 | bge.b quick_scale22 | ||
15940 | |||
15941 | mov.w 2+L_SCR1(%a6),%d0 | ||
15942 | add.w 0x2(%sp),%d0 # scale dst exponent by scale factor | ||
15943 | mov.w FP_SCR1_EX(%a6),%d1 | ||
15944 | andi.w &0x8000,%d1 | ||
15945 | or.w %d1,%d0 # concat {sgn,new exp} | ||
15946 | mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent | ||
15947 | |||
15948 | mov.l (%sp)+,%d0 # return SCALE factor | ||
15949 | rts | ||
15950 | |||
15951 | quick_scale22: | ||
15952 | andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent | ||
15953 | bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 | ||
15954 | |||
15955 | mov.l (%sp)+,%d0 # return SCALE factor | ||
15956 | rts | ||
15957 | |||
15958 | ########################################################################## | ||
15959 | |||
15960 | ######################################################################### | ||
15961 | # XDEF **************************************************************** # | ||
15962 | # scale_to_zero_src(): scale the exponent of extended precision # | ||
15963 | # value at FP_SCR0(a6). # | ||
15964 | # # | ||
15965 | # XREF **************************************************************** # | ||
15966 | # norm() - normalize the mantissa if the operand was a DENORM # | ||
15967 | # # | ||
15968 | # INPUT *************************************************************** # | ||
15969 | # FP_SCR0(a6) = extended precision operand to be scaled # | ||
15970 | # # | ||
15971 | # OUTPUT ************************************************************** # | ||
15972 | # FP_SCR0(a6) = scaled extended precision operand # | ||
15973 | # d0 = scale value # | ||
15974 | # # | ||
15975 | # ALGORITHM *********************************************************** # | ||
15976 | # Set the exponent of the input operand to 0x3fff. Save the value # | ||
15977 | # of the difference between the original and new exponent. Then, # | ||
15978 | # normalize the operand if it was a DENORM. Add this normalization # | ||
15979 | # value to the previous value. Return the result. # | ||
15980 | # # | ||
15981 | ######################################################################### | ||
15982 | |||
15983 | global scale_to_zero_src | ||
15984 | scale_to_zero_src: | ||
15985 | mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} | ||
15986 | mov.w %d1,%d0 # make a copy | ||
15987 | |||
15988 | andi.l &0x7fff,%d1 # extract operand's exponent | ||
15989 | |||
15990 | andi.w &0x8000,%d0 # extract operand's sgn | ||
15991 | or.w &0x3fff,%d0 # insert new operand's exponent(=0) | ||
15992 | |||
15993 | mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent | ||
15994 | |||
15995 | cmpi.b STAG(%a6),&DENORM # is operand normalized? | ||
15996 | beq.b stzs_denorm # normalize the DENORM | ||
15997 | |||
15998 | stzs_norm: | ||
15999 | mov.l &0x3fff,%d0 | ||
16000 | sub.l %d1,%d0 # scale = BIAS + (-exp) | ||
16001 | |||
16002 | rts | ||
16003 | |||
16004 | stzs_denorm: | ||
16005 | lea FP_SCR0(%a6),%a0 # pass ptr to src op | ||
16006 | bsr.l norm # normalize denorm | ||
16007 | neg.l %d0 # new exponent = -(shft val) | ||
16008 | mov.l %d0,%d1 # prepare for op_norm call | ||
16009 | bra.b stzs_norm # finish scaling | ||
16010 | |||
16011 | ### | ||
16012 | |||
16013 | ######################################################################### | ||
16014 | # XDEF **************************************************************** # | ||
16015 | # scale_sqrt(): scale the input operand exponent so a subsequent # | ||
16016 | # fsqrt operation won't take an exception. # | ||
16017 | # # | ||
16018 | # XREF **************************************************************** # | ||
16019 | # norm() - normalize the mantissa if the operand was a DENORM # | ||
16020 | # # | ||
16021 | # INPUT *************************************************************** # | ||
16022 | # FP_SCR0(a6) = extended precision operand to be scaled # | ||
16023 | # # | ||
16024 | # OUTPUT ************************************************************** # | ||
16025 | # FP_SCR0(a6) = scaled extended precision operand # | ||
16026 | # d0 = scale value # | ||
16027 | # # | ||
16028 | # ALGORITHM *********************************************************** # | ||
16029 | # If the input operand is a DENORM, normalize it. # | ||
16030 | # If the exponent of the input operand is even, set the exponent # | ||
16031 | # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # | ||
16032 | # exponent of the input operand is off, set the exponent to ox3fff and # | ||
16033 | # return a scale factor of "(exp-0x3fff)/2". # | ||
16034 | # # | ||
16035 | ######################################################################### | ||
16036 | |||
16037 | global scale_sqrt | ||
16038 | scale_sqrt: | ||
16039 | cmpi.b STAG(%a6),&DENORM # is operand normalized? | ||
16040 | beq.b ss_denorm # normalize the DENORM | ||
16041 | |||
16042 | mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} | ||
16043 | andi.l &0x7fff,%d1 # extract operand's exponent | ||
16044 | |||
16045 | andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn | ||
16046 | |||
16047 | btst &0x0,%d1 # is exp even or odd? | ||
16048 | beq.b ss_norm_even | ||
16049 | |||
16050 | ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) | ||
16051 | |||
16052 | mov.l &0x3fff,%d0 | ||
16053 | sub.l %d1,%d0 # scale = BIAS + (-exp) | ||
16054 | asr.l &0x1,%d0 # divide scale factor by 2 | ||
16055 | rts | ||
16056 | |||
16057 | ss_norm_even: | ||
16058 | ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) | ||
16059 | |||
16060 | mov.l &0x3ffe,%d0 | ||
16061 | sub.l %d1,%d0 # scale = BIAS + (-exp) | ||
16062 | asr.l &0x1,%d0 # divide scale factor by 2 | ||
16063 | rts | ||
16064 | |||
16065 | ss_denorm: | ||
16066 | lea FP_SCR0(%a6),%a0 # pass ptr to src op | ||
16067 | bsr.l norm # normalize denorm | ||
16068 | |||
16069 | btst &0x0,%d0 # is exp even or odd? | ||
16070 | beq.b ss_denorm_even | ||
16071 | |||
16072 | ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) | ||
16073 | |||
16074 | add.l &0x3fff,%d0 | ||
16075 | asr.l &0x1,%d0 # divide scale factor by 2 | ||
16076 | rts | ||
16077 | |||
16078 | ss_denorm_even: | ||
16079 | ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) | ||
16080 | |||
16081 | add.l &0x3ffe,%d0 | ||
16082 | asr.l &0x1,%d0 # divide scale factor by 2 | ||
16083 | rts | ||
16084 | |||
16085 | ### | ||
16086 | |||
16087 | ######################################################################### | ||
16088 | # XDEF **************************************************************** # | ||
16089 | # scale_to_zero_dst(): scale the exponent of extended precision # | ||
16090 | # value at FP_SCR1(a6). # | ||
16091 | # # | ||
16092 | # XREF **************************************************************** # | ||
16093 | # norm() - normalize the mantissa if the operand was a DENORM # | ||
16094 | # # | ||
16095 | # INPUT *************************************************************** # | ||
16096 | # FP_SCR1(a6) = extended precision operand to be scaled # | ||
16097 | # # | ||
16098 | # OUTPUT ************************************************************** # | ||
16099 | # FP_SCR1(a6) = scaled extended precision operand # | ||
16100 | # d0 = scale value # | ||
16101 | # # | ||
16102 | # ALGORITHM *********************************************************** # | ||
16103 | # Set the exponent of the input operand to 0x3fff. Save the value # | ||
16104 | # of the difference between the original and new exponent. Then, # | ||
16105 | # normalize the operand if it was a DENORM. Add this normalization # | ||
16106 | # value to the previous value. Return the result. # | ||
16107 | # # | ||
16108 | ######################################################################### | ||
16109 | |||
16110 | global scale_to_zero_dst | ||
16111 | scale_to_zero_dst: | ||
16112 | mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} | ||
16113 | mov.w %d1,%d0 # make a copy | ||
16114 | |||
16115 | andi.l &0x7fff,%d1 # extract operand's exponent | ||
16116 | |||
16117 | andi.w &0x8000,%d0 # extract operand's sgn | ||
16118 | or.w &0x3fff,%d0 # insert new operand's exponent(=0) | ||
16119 | |||
16120 | mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent | ||
16121 | |||
16122 | cmpi.b DTAG(%a6),&DENORM # is operand normalized? | ||
16123 | beq.b stzd_denorm # normalize the DENORM | ||
16124 | |||
16125 | stzd_norm: | ||
16126 | mov.l &0x3fff,%d0 | ||
16127 | sub.l %d1,%d0 # scale = BIAS + (-exp) | ||
16128 | rts | ||
16129 | |||
16130 | stzd_denorm: | ||
16131 | lea FP_SCR1(%a6),%a0 # pass ptr to dst op | ||
16132 | bsr.l norm # normalize denorm | ||
16133 | neg.l %d0 # new exponent = -(shft val) | ||
16134 | mov.l %d0,%d1 # prepare for op_norm call | ||
16135 | bra.b stzd_norm # finish scaling | ||
16136 | |||
16137 | ########################################################################## | ||
16138 | |||
16139 | ######################################################################### | ||
16140 | # XDEF **************************************************************** # | ||
16141 | # res_qnan(): return default result w/ QNAN operand for dyadic # | ||
16142 | # res_snan(): return default result w/ SNAN operand for dyadic # | ||
16143 | # res_qnan_1op(): return dflt result w/ QNAN operand for monadic # | ||
16144 | # res_snan_1op(): return dflt result w/ SNAN operand for monadic # | ||
16145 | # # | ||
16146 | # XREF **************************************************************** # | ||
16147 | # None # | ||
16148 | # # | ||
16149 | # INPUT *************************************************************** # | ||
16150 | # FP_SRC(a6) = pointer to extended precision src operand # | ||
16151 | # FP_DST(a6) = pointer to extended precision dst operand # | ||
16152 | # # | ||
16153 | # OUTPUT ************************************************************** # | ||
16154 | # fp0 = default result # | ||
16155 | # # | ||
16156 | # ALGORITHM *********************************************************** # | ||
16157 | # If either operand (but not both operands) of an operation is a # | ||
16158 | # nonsignalling NAN, then that NAN is returned as the result. If both # | ||
16159 | # operands are nonsignalling NANs, then the destination operand # | ||
16160 | # nonsignalling NAN is returned as the result. # | ||
16161 | # If either operand to an operation is a signalling NAN (SNAN), # | ||
16162 | # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # | ||
16163 | # enable bit is set in the FPCR, then the trap is taken and the # | ||
16164 | # destination is not modified. If the SNAN trap enable bit is not set, # | ||
16165 | # then the SNAN is converted to a nonsignalling NAN (by setting the # | ||
16166 | # SNAN bit in the operand to one), and the operation continues as # | ||
16167 | # described in the preceding paragraph, for nonsignalling NANs. # | ||
16168 | # Make sure the appropriate FPSR bits are set before exiting. # | ||
16169 | # # | ||
16170 | ######################################################################### | ||
16171 | |||
16172 | global res_qnan | ||
16173 | global res_snan | ||
16174 | res_qnan: | ||
16175 | res_snan: | ||
16176 | cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? | ||
16177 | beq.b dst_snan2 | ||
16178 | cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? | ||
16179 | beq.b dst_qnan2 | ||
16180 | src_nan: | ||
16181 | cmp.b STAG(%a6), &QNAN | ||
16182 | beq.b src_qnan2 | ||
16183 | global res_snan_1op | ||
16184 | res_snan_1op: | ||
16185 | src_snan2: | ||
16186 | bset &0x6, FP_SRC_HI(%a6) # set SNAN bit | ||
16187 | or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | ||
16188 | lea FP_SRC(%a6), %a0 | ||
16189 | bra.b nan_comp | ||
16190 | global res_qnan_1op | ||
16191 | res_qnan_1op: | ||
16192 | src_qnan2: | ||
16193 | or.l &nan_mask, USER_FPSR(%a6) | ||
16194 | lea FP_SRC(%a6), %a0 | ||
16195 | bra.b nan_comp | ||
16196 | dst_snan2: | ||
16197 | or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | ||
16198 | bset &0x6, FP_DST_HI(%a6) # set SNAN bit | ||
16199 | lea FP_DST(%a6), %a0 | ||
16200 | bra.b nan_comp | ||
16201 | dst_qnan2: | ||
16202 | lea FP_DST(%a6), %a0 | ||
16203 | cmp.b STAG(%a6), &SNAN | ||
16204 | bne nan_done | ||
16205 | or.l &aiop_mask+snan_mask, USER_FPSR(%a6) | ||
16206 | nan_done: | ||
16207 | or.l &nan_mask, USER_FPSR(%a6) | ||
16208 | nan_comp: | ||
16209 | btst &0x7, FTEMP_EX(%a0) # is NAN neg? | ||
16210 | beq.b nan_not_neg | ||
16211 | or.l &neg_mask, USER_FPSR(%a6) | ||
16212 | nan_not_neg: | ||
16213 | fmovm.x (%a0), &0x80 | ||
16214 | rts | ||
16215 | |||
16216 | ######################################################################### | ||
16217 | # XDEF **************************************************************** # | ||
16218 | # res_operr(): return default result during operand error # | ||
16219 | # # | ||
16220 | # XREF **************************************************************** # | ||
16221 | # None # | ||
16222 | # # | ||
16223 | # INPUT *************************************************************** # | ||
16224 | # None # | ||
16225 | # # | ||
16226 | # OUTPUT ************************************************************** # | ||
16227 | # fp0 = default operand error result # | ||
16228 | # # | ||
16229 | # ALGORITHM *********************************************************** # | ||
16230 | # An nonsignalling NAN is returned as the default result when # | ||
16231 | # an operand error occurs for the following cases: # | ||
16232 | # # | ||
16233 | # Multiply: (Infinity x Zero) # | ||
16234 | # Divide : (Zero / Zero) || (Infinity / Infinity) # | ||
16235 | # # | ||
16236 | ######################################################################### | ||
16237 | |||
16238 | global res_operr | ||
16239 | res_operr: | ||
16240 | or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) | ||
16241 | fmovm.x nan_return(%pc), &0x80 | ||
16242 | rts | ||
16243 | |||
16244 | nan_return: | ||
16245 | long 0x7fff0000, 0xffffffff, 0xffffffff | ||
16246 | |||
16247 | ######################################################################### | ||
16248 | # fdbcc(): routine to emulate the fdbcc instruction # | ||
16249 | # # | ||
16250 | # XDEF **************************************************************** # | ||
16251 | # _fdbcc() # | ||
16252 | # # | ||
16253 | # XREF **************************************************************** # | ||
16254 | # fetch_dreg() - fetch Dn value # | ||
16255 | # store_dreg_l() - store updated Dn value # | ||
16256 | # # | ||
16257 | # INPUT *************************************************************** # | ||
16258 | # d0 = displacement # | ||
16259 | # # | ||
16260 | # OUTPUT ************************************************************** # | ||
16261 | # none # | ||
16262 | # # | ||
16263 | # ALGORITHM *********************************************************** # | ||
16264 | # This routine checks which conditional predicate is specified by # | ||
16265 | # the stacked fdbcc instruction opcode and then branches to a routine # | ||
16266 | # for that predicate. The corresponding fbcc instruction is then used # | ||
16267 | # to see whether the condition (specified by the stacked FPSR) is true # | ||
16268 | # or false. # | ||
16269 | # If a BSUN exception should be indicated, the BSUN and ABSUN # | ||
16270 | # bits are set in the stacked FPSR. If the BSUN exception is enabled, # | ||
16271 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # | ||
16272 | # enabled BSUN should not be flagged and the predicate is true, then # | ||
16273 | # Dn is fetched and decremented by one. If Dn is not equal to -1, add # | ||
16274 | # the displacement value to the stacked PC so that when an "rte" is # | ||
16275 | # finally executed, the branch occurs. # | ||
16276 | # # | ||
16277 | ######################################################################### | ||
16278 | global _fdbcc | ||
16279 | _fdbcc: | ||
16280 | mov.l %d0,L_SCR1(%a6) # save displacement | ||
16281 | |||
16282 | mov.w EXC_CMDREG(%a6),%d0 # fetch predicate | ||
16283 | |||
16284 | clr.l %d1 # clear scratch reg | ||
16285 | mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes | ||
16286 | ror.l &0x8,%d1 # rotate to top byte | ||
16287 | fmov.l %d1,%fpsr # insert into FPSR | ||
16288 | |||
16289 | mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table | ||
16290 | jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine | ||
16291 | |||
16292 | tbl_fdbcc: | ||
16293 | short fdbcc_f - tbl_fdbcc # 00 | ||
16294 | short fdbcc_eq - tbl_fdbcc # 01 | ||
16295 | short fdbcc_ogt - tbl_fdbcc # 02 | ||
16296 | short fdbcc_oge - tbl_fdbcc # 03 | ||
16297 | short fdbcc_olt - tbl_fdbcc # 04 | ||
16298 | short fdbcc_ole - tbl_fdbcc # 05 | ||
16299 | short fdbcc_ogl - tbl_fdbcc # 06 | ||
16300 | short fdbcc_or - tbl_fdbcc # 07 | ||
16301 | short fdbcc_un - tbl_fdbcc # 08 | ||
16302 | short fdbcc_ueq - tbl_fdbcc # 09 | ||
16303 | short fdbcc_ugt - tbl_fdbcc # 10 | ||
16304 | short fdbcc_uge - tbl_fdbcc # 11 | ||
16305 | short fdbcc_ult - tbl_fdbcc # 12 | ||
16306 | short fdbcc_ule - tbl_fdbcc # 13 | ||
16307 | short fdbcc_neq - tbl_fdbcc # 14 | ||
16308 | short fdbcc_t - tbl_fdbcc # 15 | ||
16309 | short fdbcc_sf - tbl_fdbcc # 16 | ||
16310 | short fdbcc_seq - tbl_fdbcc # 17 | ||
16311 | short fdbcc_gt - tbl_fdbcc # 18 | ||
16312 | short fdbcc_ge - tbl_fdbcc # 19 | ||
16313 | short fdbcc_lt - tbl_fdbcc # 20 | ||
16314 | short fdbcc_le - tbl_fdbcc # 21 | ||
16315 | short fdbcc_gl - tbl_fdbcc # 22 | ||
16316 | short fdbcc_gle - tbl_fdbcc # 23 | ||
16317 | short fdbcc_ngle - tbl_fdbcc # 24 | ||
16318 | short fdbcc_ngl - tbl_fdbcc # 25 | ||
16319 | short fdbcc_nle - tbl_fdbcc # 26 | ||
16320 | short fdbcc_nlt - tbl_fdbcc # 27 | ||
16321 | short fdbcc_nge - tbl_fdbcc # 28 | ||
16322 | short fdbcc_ngt - tbl_fdbcc # 29 | ||
16323 | short fdbcc_sneq - tbl_fdbcc # 30 | ||
16324 | short fdbcc_st - tbl_fdbcc # 31 | ||
16325 | |||
16326 | ######################################################################### | ||
16327 | # # | ||
16328 | # IEEE Nonaware tests # | ||
16329 | # # | ||
16330 | # For the IEEE nonaware tests, only the false branch changes the # | ||
16331 | # counter. However, the true branch may set bsun so we check to see # | ||
16332 | # if the NAN bit is set, in which case BSUN and AIOP will be set. # | ||
16333 | # # | ||
16334 | # The cases EQ and NE are shared by the Aware and Nonaware groups # | ||
16335 | # and are incapable of setting the BSUN exception bit. # | ||
16336 | # # | ||
16337 | # Typically, only one of the two possible branch directions could # | ||
16338 | # have the NAN bit set. # | ||
16339 | # (This is assuming the mutual exclusiveness of FPSR cc bit groupings # | ||
16340 | # is preserved.) # | ||
16341 | # # | ||
16342 | ######################################################################### | ||
16343 | |||
16344 | # | ||
16345 | # equal: | ||
16346 | # | ||
16347 | # Z | ||
16348 | # | ||
16349 | fdbcc_eq: | ||
16350 | fbeq.w fdbcc_eq_yes # equal? | ||
16351 | fdbcc_eq_no: | ||
16352 | bra.w fdbcc_false # no; go handle counter | ||
16353 | fdbcc_eq_yes: | ||
16354 | rts | ||
16355 | |||
16356 | # | ||
16357 | # not equal: | ||
16358 | # _ | ||
16359 | # Z | ||
16360 | # | ||
16361 | fdbcc_neq: | ||
16362 | fbneq.w fdbcc_neq_yes # not equal? | ||
16363 | fdbcc_neq_no: | ||
16364 | bra.w fdbcc_false # no; go handle counter | ||
16365 | fdbcc_neq_yes: | ||
16366 | rts | ||
16367 | |||
16368 | # | ||
16369 | # greater than: | ||
16370 | # _______ | ||
16371 | # NANvZvN | ||
16372 | # | ||
16373 | fdbcc_gt: | ||
16374 | fbgt.w fdbcc_gt_yes # greater than? | ||
16375 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16376 | beq.w fdbcc_false # no;go handle counter | ||
16377 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16378 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16379 | bne.w fdbcc_bsun # yes; we have an exception | ||
16380 | bra.w fdbcc_false # no; go handle counter | ||
16381 | fdbcc_gt_yes: | ||
16382 | rts # do nothing | ||
16383 | |||
16384 | # | ||
16385 | # not greater than: | ||
16386 | # | ||
16387 | # NANvZvN | ||
16388 | # | ||
16389 | fdbcc_ngt: | ||
16390 | fbngt.w fdbcc_ngt_yes # not greater than? | ||
16391 | fdbcc_ngt_no: | ||
16392 | bra.w fdbcc_false # no; go handle counter | ||
16393 | fdbcc_ngt_yes: | ||
16394 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16395 | beq.b fdbcc_ngt_done # no;go finish | ||
16396 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16397 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16398 | bne.w fdbcc_bsun # yes; we have an exception | ||
16399 | fdbcc_ngt_done: | ||
16400 | rts # no; do nothing | ||
16401 | |||
16402 | # | ||
16403 | # greater than or equal: | ||
16404 | # _____ | ||
16405 | # Zv(NANvN) | ||
16406 | # | ||
16407 | fdbcc_ge: | ||
16408 | fbge.w fdbcc_ge_yes # greater than or equal? | ||
16409 | fdbcc_ge_no: | ||
16410 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16411 | beq.w fdbcc_false # no;go handle counter | ||
16412 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16413 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16414 | bne.w fdbcc_bsun # yes; we have an exception | ||
16415 | bra.w fdbcc_false # no; go handle counter | ||
16416 | fdbcc_ge_yes: | ||
16417 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16418 | beq.b fdbcc_ge_yes_done # no;go do nothing | ||
16419 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16420 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16421 | bne.w fdbcc_bsun # yes; we have an exception | ||
16422 | fdbcc_ge_yes_done: | ||
16423 | rts # do nothing | ||
16424 | |||
16425 | # | ||
16426 | # not (greater than or equal): | ||
16427 | # _ | ||
16428 | # NANv(N^Z) | ||
16429 | # | ||
16430 | fdbcc_nge: | ||
16431 | fbnge.w fdbcc_nge_yes # not (greater than or equal)? | ||
16432 | fdbcc_nge_no: | ||
16433 | bra.w fdbcc_false # no; go handle counter | ||
16434 | fdbcc_nge_yes: | ||
16435 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16436 | beq.b fdbcc_nge_done # no;go finish | ||
16437 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16438 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16439 | bne.w fdbcc_bsun # yes; we have an exception | ||
16440 | fdbcc_nge_done: | ||
16441 | rts # no; do nothing | ||
16442 | |||
16443 | # | ||
16444 | # less than: | ||
16445 | # _____ | ||
16446 | # N^(NANvZ) | ||
16447 | # | ||
16448 | fdbcc_lt: | ||
16449 | fblt.w fdbcc_lt_yes # less than? | ||
16450 | fdbcc_lt_no: | ||
16451 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16452 | beq.w fdbcc_false # no; go handle counter | ||
16453 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16454 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16455 | bne.w fdbcc_bsun # yes; we have an exception | ||
16456 | bra.w fdbcc_false # no; go handle counter | ||
16457 | fdbcc_lt_yes: | ||
16458 | rts # do nothing | ||
16459 | |||
16460 | # | ||
16461 | # not less than: | ||
16462 | # _ | ||
16463 | # NANv(ZvN) | ||
16464 | # | ||
16465 | fdbcc_nlt: | ||
16466 | fbnlt.w fdbcc_nlt_yes # not less than? | ||
16467 | fdbcc_nlt_no: | ||
16468 | bra.w fdbcc_false # no; go handle counter | ||
16469 | fdbcc_nlt_yes: | ||
16470 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16471 | beq.b fdbcc_nlt_done # no;go finish | ||
16472 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16473 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16474 | bne.w fdbcc_bsun # yes; we have an exception | ||
16475 | fdbcc_nlt_done: | ||
16476 | rts # no; do nothing | ||
16477 | |||
16478 | # | ||
16479 | # less than or equal: | ||
16480 | # ___ | ||
16481 | # Zv(N^NAN) | ||
16482 | # | ||
16483 | fdbcc_le: | ||
16484 | fble.w fdbcc_le_yes # less than or equal? | ||
16485 | fdbcc_le_no: | ||
16486 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16487 | beq.w fdbcc_false # no; go handle counter | ||
16488 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16489 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16490 | bne.w fdbcc_bsun # yes; we have an exception | ||
16491 | bra.w fdbcc_false # no; go handle counter | ||
16492 | fdbcc_le_yes: | ||
16493 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16494 | beq.b fdbcc_le_yes_done # no; go do nothing | ||
16495 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16496 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16497 | bne.w fdbcc_bsun # yes; we have an exception | ||
16498 | fdbcc_le_yes_done: | ||
16499 | rts # do nothing | ||
16500 | |||
16501 | # | ||
16502 | # not (less than or equal): | ||
16503 | # ___ | ||
16504 | # NANv(NvZ) | ||
16505 | # | ||
16506 | fdbcc_nle: | ||
16507 | fbnle.w fdbcc_nle_yes # not (less than or equal)? | ||
16508 | fdbcc_nle_no: | ||
16509 | bra.w fdbcc_false # no; go handle counter | ||
16510 | fdbcc_nle_yes: | ||
16511 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16512 | beq.w fdbcc_nle_done # no; go finish | ||
16513 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16514 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16515 | bne.w fdbcc_bsun # yes; we have an exception | ||
16516 | fdbcc_nle_done: | ||
16517 | rts # no; do nothing | ||
16518 | |||
16519 | # | ||
16520 | # greater or less than: | ||
16521 | # _____ | ||
16522 | # NANvZ | ||
16523 | # | ||
16524 | fdbcc_gl: | ||
16525 | fbgl.w fdbcc_gl_yes # greater or less than? | ||
16526 | fdbcc_gl_no: | ||
16527 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16528 | beq.w fdbcc_false # no; handle counter | ||
16529 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16530 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16531 | bne.w fdbcc_bsun # yes; we have an exception | ||
16532 | bra.w fdbcc_false # no; go handle counter | ||
16533 | fdbcc_gl_yes: | ||
16534 | rts # do nothing | ||
16535 | |||
16536 | # | ||
16537 | # not (greater or less than): | ||
16538 | # | ||
16539 | # NANvZ | ||
16540 | # | ||
16541 | fdbcc_ngl: | ||
16542 | fbngl.w fdbcc_ngl_yes # not (greater or less than)? | ||
16543 | fdbcc_ngl_no: | ||
16544 | bra.w fdbcc_false # no; go handle counter | ||
16545 | fdbcc_ngl_yes: | ||
16546 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16547 | beq.b fdbcc_ngl_done # no; go finish | ||
16548 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16549 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16550 | bne.w fdbcc_bsun # yes; we have an exception | ||
16551 | fdbcc_ngl_done: | ||
16552 | rts # no; do nothing | ||
16553 | |||
16554 | # | ||
16555 | # greater, less, or equal: | ||
16556 | # ___ | ||
16557 | # NAN | ||
16558 | # | ||
16559 | fdbcc_gle: | ||
16560 | fbgle.w fdbcc_gle_yes # greater, less, or equal? | ||
16561 | fdbcc_gle_no: | ||
16562 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16563 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16564 | bne.w fdbcc_bsun # yes; we have an exception | ||
16565 | bra.w fdbcc_false # no; go handle counter | ||
16566 | fdbcc_gle_yes: | ||
16567 | rts # do nothing | ||
16568 | |||
16569 | # | ||
16570 | # not (greater, less, or equal): | ||
16571 | # | ||
16572 | # NAN | ||
16573 | # | ||
16574 | fdbcc_ngle: | ||
16575 | fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)? | ||
16576 | fdbcc_ngle_no: | ||
16577 | bra.w fdbcc_false # no; go handle counter | ||
16578 | fdbcc_ngle_yes: | ||
16579 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16580 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16581 | bne.w fdbcc_bsun # yes; we have an exception | ||
16582 | rts # no; do nothing | ||
16583 | |||
16584 | ######################################################################### | ||
16585 | # # | ||
16586 | # Miscellaneous tests # | ||
16587 | # # | ||
16588 | # For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # | ||
16589 | # # | ||
16590 | ######################################################################### | ||
16591 | |||
16592 | # | ||
16593 | # false: | ||
16594 | # | ||
16595 | # False | ||
16596 | # | ||
16597 | fdbcc_f: # no bsun possible | ||
16598 | bra.w fdbcc_false # go handle counter | ||
16599 | |||
16600 | # | ||
16601 | # true: | ||
16602 | # | ||
16603 | # True | ||
16604 | # | ||
16605 | fdbcc_t: # no bsun possible | ||
16606 | rts # do nothing | ||
16607 | |||
16608 | # | ||
16609 | # signalling false: | ||
16610 | # | ||
16611 | # False | ||
16612 | # | ||
16613 | fdbcc_sf: | ||
16614 | btst &nan_bit, FPSR_CC(%a6) # is NAN set? | ||
16615 | beq.w fdbcc_false # no;go handle counter | ||
16616 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16617 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16618 | bne.w fdbcc_bsun # yes; we have an exception | ||
16619 | bra.w fdbcc_false # go handle counter | ||
16620 | |||
16621 | # | ||
16622 | # signalling true: | ||
16623 | # | ||
16624 | # True | ||
16625 | # | ||
16626 | fdbcc_st: | ||
16627 | btst &nan_bit, FPSR_CC(%a6) # is NAN set? | ||
16628 | beq.b fdbcc_st_done # no;go finish | ||
16629 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16630 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16631 | bne.w fdbcc_bsun # yes; we have an exception | ||
16632 | fdbcc_st_done: | ||
16633 | rts | ||
16634 | |||
16635 | # | ||
16636 | # signalling equal: | ||
16637 | # | ||
16638 | # Z | ||
16639 | # | ||
16640 | fdbcc_seq: | ||
16641 | fbseq.w fdbcc_seq_yes # signalling equal? | ||
16642 | fdbcc_seq_no: | ||
16643 | btst &nan_bit, FPSR_CC(%a6) # is NAN set? | ||
16644 | beq.w fdbcc_false # no;go handle counter | ||
16645 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16646 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16647 | bne.w fdbcc_bsun # yes; we have an exception | ||
16648 | bra.w fdbcc_false # go handle counter | ||
16649 | fdbcc_seq_yes: | ||
16650 | btst &nan_bit, FPSR_CC(%a6) # is NAN set? | ||
16651 | beq.b fdbcc_seq_yes_done # no;go do nothing | ||
16652 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16653 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16654 | bne.w fdbcc_bsun # yes; we have an exception | ||
16655 | fdbcc_seq_yes_done: | ||
16656 | rts # yes; do nothing | ||
16657 | |||
16658 | # | ||
16659 | # signalling not equal: | ||
16660 | # _ | ||
16661 | # Z | ||
16662 | # | ||
16663 | fdbcc_sneq: | ||
16664 | fbsneq.w fdbcc_sneq_yes # signalling not equal? | ||
16665 | fdbcc_sneq_no: | ||
16666 | btst &nan_bit, FPSR_CC(%a6) # is NAN set? | ||
16667 | beq.w fdbcc_false # no;go handle counter | ||
16668 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16669 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16670 | bne.w fdbcc_bsun # yes; we have an exception | ||
16671 | bra.w fdbcc_false # go handle counter | ||
16672 | fdbcc_sneq_yes: | ||
16673 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
16674 | beq.w fdbcc_sneq_done # no;go finish | ||
16675 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
16676 | btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | ||
16677 | bne.w fdbcc_bsun # yes; we have an exception | ||
16678 | fdbcc_sneq_done: | ||
16679 | rts | ||
16680 | |||
16681 | ######################################################################### | ||
16682 | # # | ||
16683 | # IEEE Aware tests # | ||
16684 | # # | ||
16685 | # For the IEEE aware tests, action is only taken if the result is false.# | ||
16686 | # Therefore, the opposite branch type is used to jump to the decrement # | ||
16687 | # routine. # | ||
16688 | # The BSUN exception will not be set for any of these tests. # | ||
16689 | # # | ||
16690 | ######################################################################### | ||
16691 | |||
16692 | # | ||
16693 | # ordered greater than: | ||
16694 | # _______ | ||
16695 | # NANvZvN | ||
16696 | # | ||
16697 | fdbcc_ogt: | ||
16698 | fbogt.w fdbcc_ogt_yes # ordered greater than? | ||
16699 | fdbcc_ogt_no: | ||
16700 | bra.w fdbcc_false # no; go handle counter | ||
16701 | fdbcc_ogt_yes: | ||
16702 | rts # yes; do nothing | ||
16703 | |||
16704 | # | ||
16705 | # unordered or less or equal: | ||
16706 | # _______ | ||
16707 | # NANvZvN | ||
16708 | # | ||
16709 | fdbcc_ule: | ||
16710 | fbule.w fdbcc_ule_yes # unordered or less or equal? | ||
16711 | fdbcc_ule_no: | ||
16712 | bra.w fdbcc_false # no; go handle counter | ||
16713 | fdbcc_ule_yes: | ||
16714 | rts # yes; do nothing | ||
16715 | |||
16716 | # | ||
16717 | # ordered greater than or equal: | ||
16718 | # _____ | ||
16719 | # Zv(NANvN) | ||
16720 | # | ||
16721 | fdbcc_oge: | ||
16722 | fboge.w fdbcc_oge_yes # ordered greater than or equal? | ||
16723 | fdbcc_oge_no: | ||
16724 | bra.w fdbcc_false # no; go handle counter | ||
16725 | fdbcc_oge_yes: | ||
16726 | rts # yes; do nothing | ||
16727 | |||
16728 | # | ||
16729 | # unordered or less than: | ||
16730 | # _ | ||
16731 | # NANv(N^Z) | ||
16732 | # | ||
16733 | fdbcc_ult: | ||
16734 | fbult.w fdbcc_ult_yes # unordered or less than? | ||
16735 | fdbcc_ult_no: | ||
16736 | bra.w fdbcc_false # no; go handle counter | ||
16737 | fdbcc_ult_yes: | ||
16738 | rts # yes; do nothing | ||
16739 | |||
16740 | # | ||
16741 | # ordered less than: | ||
16742 | # _____ | ||
16743 | # N^(NANvZ) | ||
16744 | # | ||
16745 | fdbcc_olt: | ||
16746 | fbolt.w fdbcc_olt_yes # ordered less than? | ||
16747 | fdbcc_olt_no: | ||
16748 | bra.w fdbcc_false # no; go handle counter | ||
16749 | fdbcc_olt_yes: | ||
16750 | rts # yes; do nothing | ||
16751 | |||
16752 | # | ||
16753 | # unordered or greater or equal: | ||
16754 | # | ||
16755 | # NANvZvN | ||
16756 | # | ||
16757 | fdbcc_uge: | ||
16758 | fbuge.w fdbcc_uge_yes # unordered or greater than? | ||
16759 | fdbcc_uge_no: | ||
16760 | bra.w fdbcc_false # no; go handle counter | ||
16761 | fdbcc_uge_yes: | ||
16762 | rts # yes; do nothing | ||
16763 | |||
16764 | # | ||
16765 | # ordered less than or equal: | ||
16766 | # ___ | ||
16767 | # Zv(N^NAN) | ||
16768 | # | ||
16769 | fdbcc_ole: | ||
16770 | fbole.w fdbcc_ole_yes # ordered greater or less than? | ||
16771 | fdbcc_ole_no: | ||
16772 | bra.w fdbcc_false # no; go handle counter | ||
16773 | fdbcc_ole_yes: | ||
16774 | rts # yes; do nothing | ||
16775 | |||
16776 | # | ||
16777 | # unordered or greater than: | ||
16778 | # ___ | ||
16779 | # NANv(NvZ) | ||
16780 | # | ||
16781 | fdbcc_ugt: | ||
16782 | fbugt.w fdbcc_ugt_yes # unordered or greater than? | ||
16783 | fdbcc_ugt_no: | ||
16784 | bra.w fdbcc_false # no; go handle counter | ||
16785 | fdbcc_ugt_yes: | ||
16786 | rts # yes; do nothing | ||
16787 | |||
16788 | # | ||
16789 | # ordered greater or less than: | ||
16790 | # _____ | ||
16791 | # NANvZ | ||
16792 | # | ||
16793 | fdbcc_ogl: | ||
16794 | fbogl.w fdbcc_ogl_yes # ordered greater or less than? | ||
16795 | fdbcc_ogl_no: | ||
16796 | bra.w fdbcc_false # no; go handle counter | ||
16797 | fdbcc_ogl_yes: | ||
16798 | rts # yes; do nothing | ||
16799 | |||
16800 | # | ||
16801 | # unordered or equal: | ||
16802 | # | ||
16803 | # NANvZ | ||
16804 | # | ||
16805 | fdbcc_ueq: | ||
16806 | fbueq.w fdbcc_ueq_yes # unordered or equal? | ||
16807 | fdbcc_ueq_no: | ||
16808 | bra.w fdbcc_false # no; go handle counter | ||
16809 | fdbcc_ueq_yes: | ||
16810 | rts # yes; do nothing | ||
16811 | |||
16812 | # | ||
16813 | # ordered: | ||
16814 | # ___ | ||
16815 | # NAN | ||
16816 | # | ||
16817 | fdbcc_or: | ||
16818 | fbor.w fdbcc_or_yes # ordered? | ||
16819 | fdbcc_or_no: | ||
16820 | bra.w fdbcc_false # no; go handle counter | ||
16821 | fdbcc_or_yes: | ||
16822 | rts # yes; do nothing | ||
16823 | |||
16824 | # | ||
16825 | # unordered: | ||
16826 | # | ||
16827 | # NAN | ||
16828 | # | ||
16829 | fdbcc_un: | ||
16830 | fbun.w fdbcc_un_yes # unordered? | ||
16831 | fdbcc_un_no: | ||
16832 | bra.w fdbcc_false # no; go handle counter | ||
16833 | fdbcc_un_yes: | ||
16834 | rts # yes; do nothing | ||
16835 | |||
16836 | ####################################################################### | ||
16837 | |||
16838 | # | ||
16839 | # the bsun exception bit was not set. | ||
16840 | # | ||
16841 | # (1) subtract 1 from the count register | ||
16842 | # (2) if (cr == -1) then | ||
16843 | # pc = pc of next instruction | ||
16844 | # else | ||
16845 | # pc += sign_ext(16-bit displacement) | ||
16846 | # | ||
16847 | fdbcc_false: | ||
16848 | mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword | ||
16849 | andi.w &0x7, %d1 # extract count register | ||
16850 | |||
16851 | bsr.l fetch_dreg # fetch count value | ||
16852 | # make sure that d0 isn't corrupted between calls... | ||
16853 | |||
16854 | subq.w &0x1, %d0 # Dn - 1 -> Dn | ||
16855 | |||
16856 | bsr.l store_dreg_l # store new count value | ||
16857 | |||
16858 | cmpi.w %d0, &-0x1 # is (Dn == -1)? | ||
16859 | bne.b fdbcc_false_cont # no; | ||
16860 | rts | ||
16861 | |||
16862 | fdbcc_false_cont: | ||
16863 | mov.l L_SCR1(%a6),%d0 # fetch displacement | ||
16864 | add.l USER_FPIAR(%a6),%d0 # add instruction PC | ||
16865 | addq.l &0x4,%d0 # add instruction length | ||
16866 | mov.l %d0,EXC_PC(%a6) # set new PC | ||
16867 | rts | ||
16868 | |||
16869 | # the emulation routine set bsun and BSUN was enabled. have to | ||
16870 | # fix stack and jump to the bsun handler. | ||
16871 | # let the caller of this routine shift the stack frame up to | ||
16872 | # eliminate the effective address field. | ||
16873 | fdbcc_bsun: | ||
16874 | mov.b &fbsun_flg,SPCOND_FLG(%a6) | ||
16875 | rts | ||
16876 | |||
16877 | ######################################################################### | ||
16878 | # ftrapcc(): routine to emulate the ftrapcc instruction # | ||
16879 | # # | ||
16880 | # XDEF **************************************************************** # | ||
16881 | # _ftrapcc() # | ||
16882 | # # | ||
16883 | # XREF **************************************************************** # | ||
16884 | # none # | ||
16885 | # # | ||
16886 | # INPUT *************************************************************** # | ||
16887 | # none # | ||
16888 | # # | ||
16889 | # OUTPUT ************************************************************** # | ||
16890 | # none # | ||
16891 | # # | ||
16892 | # ALGORITHM *********************************************************** # | ||
16893 | # This routine checks which conditional predicate is specified by # | ||
16894 | # the stacked ftrapcc instruction opcode and then branches to a routine # | ||
16895 | # for that predicate. The corresponding fbcc instruction is then used # | ||
16896 | # to see whether the condition (specified by the stacked FPSR) is true # | ||
16897 | # or false. # | ||
16898 | # If a BSUN exception should be indicated, the BSUN and ABSUN # | ||
16899 | # bits are set in the stacked FPSR. If the BSUN exception is enabled, # | ||
16900 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # | ||
16901 | # enabled BSUN should not be flagged and the predicate is true, then # | ||
16902 | # the ftrapcc_flg is set in the SPCOND_FLG location. These special # | ||
16903 | # flags indicate to the calling routine to emulate the exceptional # | ||
16904 | # condition. # | ||
16905 | # # | ||
16906 | ######################################################################### | ||
16907 | |||
16908 | global _ftrapcc | ||
16909 | _ftrapcc: | ||
16910 | mov.w EXC_CMDREG(%a6),%d0 # fetch predicate | ||
16911 | |||
16912 | clr.l %d1 # clear scratch reg | ||
16913 | mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes | ||
16914 | ror.l &0x8,%d1 # rotate to top byte | ||
16915 | fmov.l %d1,%fpsr # insert into FPSR | ||
16916 | |||
16917 | mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table | ||
16918 | jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine | ||
16919 | |||
16920 | tbl_ftrapcc: | ||
16921 | short ftrapcc_f - tbl_ftrapcc # 00 | ||
16922 | short ftrapcc_eq - tbl_ftrapcc # 01 | ||
16923 | short ftrapcc_ogt - tbl_ftrapcc # 02 | ||
16924 | short ftrapcc_oge - tbl_ftrapcc # 03 | ||
16925 | short ftrapcc_olt - tbl_ftrapcc # 04 | ||
16926 | short ftrapcc_ole - tbl_ftrapcc # 05 | ||
16927 | short ftrapcc_ogl - tbl_ftrapcc # 06 | ||
16928 | short ftrapcc_or - tbl_ftrapcc # 07 | ||
16929 | short ftrapcc_un - tbl_ftrapcc # 08 | ||
16930 | short ftrapcc_ueq - tbl_ftrapcc # 09 | ||
16931 | short ftrapcc_ugt - tbl_ftrapcc # 10 | ||
16932 | short ftrapcc_uge - tbl_ftrapcc # 11 | ||
16933 | short ftrapcc_ult - tbl_ftrapcc # 12 | ||
16934 | short ftrapcc_ule - tbl_ftrapcc # 13 | ||
16935 | short ftrapcc_neq - tbl_ftrapcc # 14 | ||
16936 | short ftrapcc_t - tbl_ftrapcc # 15 | ||
16937 | short ftrapcc_sf - tbl_ftrapcc # 16 | ||
16938 | short ftrapcc_seq - tbl_ftrapcc # 17 | ||
16939 | short ftrapcc_gt - tbl_ftrapcc # 18 | ||
16940 | short ftrapcc_ge - tbl_ftrapcc # 19 | ||
16941 | short ftrapcc_lt - tbl_ftrapcc # 20 | ||
16942 | short ftrapcc_le - tbl_ftrapcc # 21 | ||
16943 | short ftrapcc_gl - tbl_ftrapcc # 22 | ||
16944 | short ftrapcc_gle - tbl_ftrapcc # 23 | ||
16945 | short ftrapcc_ngle - tbl_ftrapcc # 24 | ||
16946 | short ftrapcc_ngl - tbl_ftrapcc # 25 | ||
16947 | short ftrapcc_nle - tbl_ftrapcc # 26 | ||
16948 | short ftrapcc_nlt - tbl_ftrapcc # 27 | ||
16949 | short ftrapcc_nge - tbl_ftrapcc # 28 | ||
16950 | short ftrapcc_ngt - tbl_ftrapcc # 29 | ||
16951 | short ftrapcc_sneq - tbl_ftrapcc # 30 | ||
16952 | short ftrapcc_st - tbl_ftrapcc # 31 | ||
16953 | |||
16954 | ######################################################################### | ||
16955 | # # | ||
16956 | # IEEE Nonaware tests # | ||
16957 | # # | ||
16958 | # For the IEEE nonaware tests, we set the result based on the # | ||
16959 | # floating point condition codes. In addition, we check to see # | ||
16960 | # if the NAN bit is set, in which case BSUN and AIOP will be set. # | ||
16961 | # # | ||
16962 | # The cases EQ and NE are shared by the Aware and Nonaware groups # | ||
16963 | # and are incapable of setting the BSUN exception bit. # | ||
16964 | # # | ||
16965 | # Typically, only one of the two possible branch directions could # | ||
16966 | # have the NAN bit set. # | ||
16967 | # # | ||
16968 | ######################################################################### | ||
16969 | |||
16970 | # | ||
16971 | # equal: | ||
16972 | # | ||
16973 | # Z | ||
16974 | # | ||
16975 | ftrapcc_eq: | ||
16976 | fbeq.w ftrapcc_trap # equal? | ||
16977 | ftrapcc_eq_no: | ||
16978 | rts # do nothing | ||
16979 | |||
16980 | # | ||
16981 | # not equal: | ||
16982 | # _ | ||
16983 | # Z | ||
16984 | # | ||
16985 | ftrapcc_neq: | ||
16986 | fbneq.w ftrapcc_trap # not equal? | ||
16987 | ftrapcc_neq_no: | ||
16988 | rts # do nothing | ||
16989 | |||
16990 | # | ||
16991 | # greater than: | ||
16992 | # _______ | ||
16993 | # NANvZvN | ||
16994 | # | ||
16995 | ftrapcc_gt: | ||
16996 | fbgt.w ftrapcc_trap # greater than? | ||
16997 | ftrapcc_gt_no: | ||
16998 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
16999 | beq.b ftrapcc_gt_done # no | ||
17000 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17001 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17002 | bne.w ftrapcc_bsun # yes | ||
17003 | ftrapcc_gt_done: | ||
17004 | rts # no; do nothing | ||
17005 | |||
17006 | # | ||
17007 | # not greater than: | ||
17008 | # | ||
17009 | # NANvZvN | ||
17010 | # | ||
17011 | ftrapcc_ngt: | ||
17012 | fbngt.w ftrapcc_ngt_yes # not greater than? | ||
17013 | ftrapcc_ngt_no: | ||
17014 | rts # do nothing | ||
17015 | ftrapcc_ngt_yes: | ||
17016 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17017 | beq.w ftrapcc_trap # no; go take trap | ||
17018 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17019 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17020 | bne.w ftrapcc_bsun # yes | ||
17021 | bra.w ftrapcc_trap # no; go take trap | ||
17022 | |||
17023 | # | ||
17024 | # greater than or equal: | ||
17025 | # _____ | ||
17026 | # Zv(NANvN) | ||
17027 | # | ||
17028 | ftrapcc_ge: | ||
17029 | fbge.w ftrapcc_ge_yes # greater than or equal? | ||
17030 | ftrapcc_ge_no: | ||
17031 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17032 | beq.b ftrapcc_ge_done # no; go finish | ||
17033 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17034 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17035 | bne.w ftrapcc_bsun # yes | ||
17036 | ftrapcc_ge_done: | ||
17037 | rts # no; do nothing | ||
17038 | ftrapcc_ge_yes: | ||
17039 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17040 | beq.w ftrapcc_trap # no; go take trap | ||
17041 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17042 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17043 | bne.w ftrapcc_bsun # yes | ||
17044 | bra.w ftrapcc_trap # no; go take trap | ||
17045 | |||
17046 | # | ||
17047 | # not (greater than or equal): | ||
17048 | # _ | ||
17049 | # NANv(N^Z) | ||
17050 | # | ||
17051 | ftrapcc_nge: | ||
17052 | fbnge.w ftrapcc_nge_yes # not (greater than or equal)? | ||
17053 | ftrapcc_nge_no: | ||
17054 | rts # do nothing | ||
17055 | ftrapcc_nge_yes: | ||
17056 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17057 | beq.w ftrapcc_trap # no; go take trap | ||
17058 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17059 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17060 | bne.w ftrapcc_bsun # yes | ||
17061 | bra.w ftrapcc_trap # no; go take trap | ||
17062 | |||
17063 | # | ||
17064 | # less than: | ||
17065 | # _____ | ||
17066 | # N^(NANvZ) | ||
17067 | # | ||
17068 | ftrapcc_lt: | ||
17069 | fblt.w ftrapcc_trap # less than? | ||
17070 | ftrapcc_lt_no: | ||
17071 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17072 | beq.b ftrapcc_lt_done # no; go finish | ||
17073 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17074 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17075 | bne.w ftrapcc_bsun # yes | ||
17076 | ftrapcc_lt_done: | ||
17077 | rts # no; do nothing | ||
17078 | |||
17079 | # | ||
17080 | # not less than: | ||
17081 | # _ | ||
17082 | # NANv(ZvN) | ||
17083 | # | ||
17084 | ftrapcc_nlt: | ||
17085 | fbnlt.w ftrapcc_nlt_yes # not less than? | ||
17086 | ftrapcc_nlt_no: | ||
17087 | rts # do nothing | ||
17088 | ftrapcc_nlt_yes: | ||
17089 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17090 | beq.w ftrapcc_trap # no; go take trap | ||
17091 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17092 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17093 | bne.w ftrapcc_bsun # yes | ||
17094 | bra.w ftrapcc_trap # no; go take trap | ||
17095 | |||
17096 | # | ||
17097 | # less than or equal: | ||
17098 | # ___ | ||
17099 | # Zv(N^NAN) | ||
17100 | # | ||
17101 | ftrapcc_le: | ||
17102 | fble.w ftrapcc_le_yes # less than or equal? | ||
17103 | ftrapcc_le_no: | ||
17104 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17105 | beq.b ftrapcc_le_done # no; go finish | ||
17106 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17107 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17108 | bne.w ftrapcc_bsun # yes | ||
17109 | ftrapcc_le_done: | ||
17110 | rts # no; do nothing | ||
17111 | ftrapcc_le_yes: | ||
17112 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17113 | beq.w ftrapcc_trap # no; go take trap | ||
17114 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17115 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17116 | bne.w ftrapcc_bsun # yes | ||
17117 | bra.w ftrapcc_trap # no; go take trap | ||
17118 | |||
17119 | # | ||
17120 | # not (less than or equal): | ||
17121 | # ___ | ||
17122 | # NANv(NvZ) | ||
17123 | # | ||
17124 | ftrapcc_nle: | ||
17125 | fbnle.w ftrapcc_nle_yes # not (less than or equal)? | ||
17126 | ftrapcc_nle_no: | ||
17127 | rts # do nothing | ||
17128 | ftrapcc_nle_yes: | ||
17129 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17130 | beq.w ftrapcc_trap # no; go take trap | ||
17131 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17132 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17133 | bne.w ftrapcc_bsun # yes | ||
17134 | bra.w ftrapcc_trap # no; go take trap | ||
17135 | |||
17136 | # | ||
17137 | # greater or less than: | ||
17138 | # _____ | ||
17139 | # NANvZ | ||
17140 | # | ||
17141 | ftrapcc_gl: | ||
17142 | fbgl.w ftrapcc_trap # greater or less than? | ||
17143 | ftrapcc_gl_no: | ||
17144 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17145 | beq.b ftrapcc_gl_done # no; go finish | ||
17146 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17147 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17148 | bne.w ftrapcc_bsun # yes | ||
17149 | ftrapcc_gl_done: | ||
17150 | rts # no; do nothing | ||
17151 | |||
17152 | # | ||
17153 | # not (greater or less than): | ||
17154 | # | ||
17155 | # NANvZ | ||
17156 | # | ||
17157 | ftrapcc_ngl: | ||
17158 | fbngl.w ftrapcc_ngl_yes # not (greater or less than)? | ||
17159 | ftrapcc_ngl_no: | ||
17160 | rts # do nothing | ||
17161 | ftrapcc_ngl_yes: | ||
17162 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17163 | beq.w ftrapcc_trap # no; go take trap | ||
17164 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17165 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17166 | bne.w ftrapcc_bsun # yes | ||
17167 | bra.w ftrapcc_trap # no; go take trap | ||
17168 | |||
17169 | # | ||
17170 | # greater, less, or equal: | ||
17171 | # ___ | ||
17172 | # NAN | ||
17173 | # | ||
17174 | ftrapcc_gle: | ||
17175 | fbgle.w ftrapcc_trap # greater, less, or equal? | ||
17176 | ftrapcc_gle_no: | ||
17177 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17178 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17179 | bne.w ftrapcc_bsun # yes | ||
17180 | rts # no; do nothing | ||
17181 | |||
17182 | # | ||
17183 | # not (greater, less, or equal): | ||
17184 | # | ||
17185 | # NAN | ||
17186 | # | ||
17187 | ftrapcc_ngle: | ||
17188 | fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)? | ||
17189 | ftrapcc_ngle_no: | ||
17190 | rts # do nothing | ||
17191 | ftrapcc_ngle_yes: | ||
17192 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17193 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17194 | bne.w ftrapcc_bsun # yes | ||
17195 | bra.w ftrapcc_trap # no; go take trap | ||
17196 | |||
17197 | ######################################################################### | ||
17198 | # # | ||
17199 | # Miscellaneous tests # | ||
17200 | # # | ||
17201 | # For the IEEE aware tests, we only have to set the result based on the # | ||
17202 | # floating point condition codes. The BSUN exception will not be # | ||
17203 | # set for any of these tests. # | ||
17204 | # # | ||
17205 | ######################################################################### | ||
17206 | |||
17207 | # | ||
17208 | # false: | ||
17209 | # | ||
17210 | # False | ||
17211 | # | ||
17212 | ftrapcc_f: | ||
17213 | rts # do nothing | ||
17214 | |||
17215 | # | ||
17216 | # true: | ||
17217 | # | ||
17218 | # True | ||
17219 | # | ||
17220 | ftrapcc_t: | ||
17221 | bra.w ftrapcc_trap # go take trap | ||
17222 | |||
17223 | # | ||
17224 | # signalling false: | ||
17225 | # | ||
17226 | # False | ||
17227 | # | ||
17228 | ftrapcc_sf: | ||
17229 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17230 | beq.b ftrapcc_sf_done # no; go finish | ||
17231 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17232 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17233 | bne.w ftrapcc_bsun # yes | ||
17234 | ftrapcc_sf_done: | ||
17235 | rts # no; do nothing | ||
17236 | |||
17237 | # | ||
17238 | # signalling true: | ||
17239 | # | ||
17240 | # True | ||
17241 | # | ||
17242 | ftrapcc_st: | ||
17243 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17244 | beq.w ftrapcc_trap # no; go take trap | ||
17245 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17246 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17247 | bne.w ftrapcc_bsun # yes | ||
17248 | bra.w ftrapcc_trap # no; go take trap | ||
17249 | |||
17250 | # | ||
17251 | # signalling equal: | ||
17252 | # | ||
17253 | # Z | ||
17254 | # | ||
17255 | ftrapcc_seq: | ||
17256 | fbseq.w ftrapcc_seq_yes # signalling equal? | ||
17257 | ftrapcc_seq_no: | ||
17258 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17259 | beq.w ftrapcc_seq_done # no; go finish | ||
17260 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17261 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17262 | bne.w ftrapcc_bsun # yes | ||
17263 | ftrapcc_seq_done: | ||
17264 | rts # no; do nothing | ||
17265 | ftrapcc_seq_yes: | ||
17266 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17267 | beq.w ftrapcc_trap # no; go take trap | ||
17268 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17269 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17270 | bne.w ftrapcc_bsun # yes | ||
17271 | bra.w ftrapcc_trap # no; go take trap | ||
17272 | |||
17273 | # | ||
17274 | # signalling not equal: | ||
17275 | # _ | ||
17276 | # Z | ||
17277 | # | ||
17278 | ftrapcc_sneq: | ||
17279 | fbsneq.w ftrapcc_sneq_yes # signalling equal? | ||
17280 | ftrapcc_sneq_no: | ||
17281 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17282 | beq.w ftrapcc_sneq_no_done # no; go finish | ||
17283 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17284 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17285 | bne.w ftrapcc_bsun # yes | ||
17286 | ftrapcc_sneq_no_done: | ||
17287 | rts # do nothing | ||
17288 | ftrapcc_sneq_yes: | ||
17289 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17290 | beq.w ftrapcc_trap # no; go take trap | ||
17291 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17292 | btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | ||
17293 | bne.w ftrapcc_bsun # yes | ||
17294 | bra.w ftrapcc_trap # no; go take trap | ||
17295 | |||
17296 | ######################################################################### | ||
17297 | # # | ||
17298 | # IEEE Aware tests # | ||
17299 | # # | ||
17300 | # For the IEEE aware tests, we only have to set the result based on the # | ||
17301 | # floating point condition codes. The BSUN exception will not be # | ||
17302 | # set for any of these tests. # | ||
17303 | # # | ||
17304 | ######################################################################### | ||
17305 | |||
17306 | # | ||
17307 | # ordered greater than: | ||
17308 | # _______ | ||
17309 | # NANvZvN | ||
17310 | # | ||
17311 | ftrapcc_ogt: | ||
17312 | fbogt.w ftrapcc_trap # ordered greater than? | ||
17313 | ftrapcc_ogt_no: | ||
17314 | rts # do nothing | ||
17315 | |||
17316 | # | ||
17317 | # unordered or less or equal: | ||
17318 | # _______ | ||
17319 | # NANvZvN | ||
17320 | # | ||
17321 | ftrapcc_ule: | ||
17322 | fbule.w ftrapcc_trap # unordered or less or equal? | ||
17323 | ftrapcc_ule_no: | ||
17324 | rts # do nothing | ||
17325 | |||
17326 | # | ||
17327 | # ordered greater than or equal: | ||
17328 | # _____ | ||
17329 | # Zv(NANvN) | ||
17330 | # | ||
17331 | ftrapcc_oge: | ||
17332 | fboge.w ftrapcc_trap # ordered greater than or equal? | ||
17333 | ftrapcc_oge_no: | ||
17334 | rts # do nothing | ||
17335 | |||
17336 | # | ||
17337 | # unordered or less than: | ||
17338 | # _ | ||
17339 | # NANv(N^Z) | ||
17340 | # | ||
17341 | ftrapcc_ult: | ||
17342 | fbult.w ftrapcc_trap # unordered or less than? | ||
17343 | ftrapcc_ult_no: | ||
17344 | rts # do nothing | ||
17345 | |||
17346 | # | ||
17347 | # ordered less than: | ||
17348 | # _____ | ||
17349 | # N^(NANvZ) | ||
17350 | # | ||
17351 | ftrapcc_olt: | ||
17352 | fbolt.w ftrapcc_trap # ordered less than? | ||
17353 | ftrapcc_olt_no: | ||
17354 | rts # do nothing | ||
17355 | |||
17356 | # | ||
17357 | # unordered or greater or equal: | ||
17358 | # | ||
17359 | # NANvZvN | ||
17360 | # | ||
17361 | ftrapcc_uge: | ||
17362 | fbuge.w ftrapcc_trap # unordered or greater than? | ||
17363 | ftrapcc_uge_no: | ||
17364 | rts # do nothing | ||
17365 | |||
17366 | # | ||
17367 | # ordered less than or equal: | ||
17368 | # ___ | ||
17369 | # Zv(N^NAN) | ||
17370 | # | ||
17371 | ftrapcc_ole: | ||
17372 | fbole.w ftrapcc_trap # ordered greater or less than? | ||
17373 | ftrapcc_ole_no: | ||
17374 | rts # do nothing | ||
17375 | |||
17376 | # | ||
17377 | # unordered or greater than: | ||
17378 | # ___ | ||
17379 | # NANv(NvZ) | ||
17380 | # | ||
17381 | ftrapcc_ugt: | ||
17382 | fbugt.w ftrapcc_trap # unordered or greater than? | ||
17383 | ftrapcc_ugt_no: | ||
17384 | rts # do nothing | ||
17385 | |||
17386 | # | ||
17387 | # ordered greater or less than: | ||
17388 | # _____ | ||
17389 | # NANvZ | ||
17390 | # | ||
17391 | ftrapcc_ogl: | ||
17392 | fbogl.w ftrapcc_trap # ordered greater or less than? | ||
17393 | ftrapcc_ogl_no: | ||
17394 | rts # do nothing | ||
17395 | |||
17396 | # | ||
17397 | # unordered or equal: | ||
17398 | # | ||
17399 | # NANvZ | ||
17400 | # | ||
17401 | ftrapcc_ueq: | ||
17402 | fbueq.w ftrapcc_trap # unordered or equal? | ||
17403 | ftrapcc_ueq_no: | ||
17404 | rts # do nothing | ||
17405 | |||
17406 | # | ||
17407 | # ordered: | ||
17408 | # ___ | ||
17409 | # NAN | ||
17410 | # | ||
17411 | ftrapcc_or: | ||
17412 | fbor.w ftrapcc_trap # ordered? | ||
17413 | ftrapcc_or_no: | ||
17414 | rts # do nothing | ||
17415 | |||
17416 | # | ||
17417 | # unordered: | ||
17418 | # | ||
17419 | # NAN | ||
17420 | # | ||
17421 | ftrapcc_un: | ||
17422 | fbun.w ftrapcc_trap # unordered? | ||
17423 | ftrapcc_un_no: | ||
17424 | rts # do nothing | ||
17425 | |||
17426 | ####################################################################### | ||
17427 | |||
17428 | # the bsun exception bit was not set. | ||
17429 | # we will need to jump to the ftrapcc vector. the stack frame | ||
17430 | # is the same size as that of the fp unimp instruction. the | ||
17431 | # only difference is that the <ea> field should hold the PC | ||
17432 | # of the ftrapcc instruction and the vector offset field | ||
17433 | # should denote the ftrapcc trap. | ||
17434 | ftrapcc_trap: | ||
17435 | mov.b &ftrapcc_flg,SPCOND_FLG(%a6) | ||
17436 | rts | ||
17437 | |||
17438 | # the emulation routine set bsun and BSUN was enabled. have to | ||
17439 | # fix stack and jump to the bsun handler. | ||
17440 | # let the caller of this routine shift the stack frame up to | ||
17441 | # eliminate the effective address field. | ||
17442 | ftrapcc_bsun: | ||
17443 | mov.b &fbsun_flg,SPCOND_FLG(%a6) | ||
17444 | rts | ||
17445 | |||
17446 | ######################################################################### | ||
17447 | # fscc(): routine to emulate the fscc instruction # | ||
17448 | # # | ||
17449 | # XDEF **************************************************************** # | ||
17450 | # _fscc() # | ||
17451 | # # | ||
17452 | # XREF **************************************************************** # | ||
17453 | # store_dreg_b() - store result to data register file # | ||
17454 | # dec_areg() - decrement an areg for -(an) mode # | ||
17455 | # inc_areg() - increment an areg for (an)+ mode # | ||
17456 | # _dmem_write_byte() - store result to memory # | ||
17457 | # # | ||
17458 | # INPUT *************************************************************** # | ||
17459 | # none # | ||
17460 | # # | ||
17461 | # OUTPUT ************************************************************** # | ||
17462 | # none # | ||
17463 | # # | ||
17464 | # ALGORITHM *********************************************************** # | ||
17465 | # This routine checks which conditional predicate is specified by # | ||
17466 | # the stacked fscc instruction opcode and then branches to a routine # | ||
17467 | # for that predicate. The corresponding fbcc instruction is then used # | ||
17468 | # to see whether the condition (specified by the stacked FPSR) is true # | ||
17469 | # or false. # | ||
17470 | # If a BSUN exception should be indicated, the BSUN and ABSUN # | ||
17471 | # bits are set in the stacked FPSR. If the BSUN exception is enabled, # | ||
17472 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # | ||
17473 | # enabled BSUN should not be flagged and the predicate is true, then # | ||
17474 | # the result is stored to the data register file or memory # | ||
17475 | # # | ||
17476 | ######################################################################### | ||
17477 | |||
17478 | global _fscc | ||
17479 | _fscc: | ||
17480 | mov.w EXC_CMDREG(%a6),%d0 # fetch predicate | ||
17481 | |||
17482 | clr.l %d1 # clear scratch reg | ||
17483 | mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes | ||
17484 | ror.l &0x8,%d1 # rotate to top byte | ||
17485 | fmov.l %d1,%fpsr # insert into FPSR | ||
17486 | |||
17487 | mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table | ||
17488 | jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine | ||
17489 | |||
17490 | tbl_fscc: | ||
17491 | short fscc_f - tbl_fscc # 00 | ||
17492 | short fscc_eq - tbl_fscc # 01 | ||
17493 | short fscc_ogt - tbl_fscc # 02 | ||
17494 | short fscc_oge - tbl_fscc # 03 | ||
17495 | short fscc_olt - tbl_fscc # 04 | ||
17496 | short fscc_ole - tbl_fscc # 05 | ||
17497 | short fscc_ogl - tbl_fscc # 06 | ||
17498 | short fscc_or - tbl_fscc # 07 | ||
17499 | short fscc_un - tbl_fscc # 08 | ||
17500 | short fscc_ueq - tbl_fscc # 09 | ||
17501 | short fscc_ugt - tbl_fscc # 10 | ||
17502 | short fscc_uge - tbl_fscc # 11 | ||
17503 | short fscc_ult - tbl_fscc # 12 | ||
17504 | short fscc_ule - tbl_fscc # 13 | ||
17505 | short fscc_neq - tbl_fscc # 14 | ||
17506 | short fscc_t - tbl_fscc # 15 | ||
17507 | short fscc_sf - tbl_fscc # 16 | ||
17508 | short fscc_seq - tbl_fscc # 17 | ||
17509 | short fscc_gt - tbl_fscc # 18 | ||
17510 | short fscc_ge - tbl_fscc # 19 | ||
17511 | short fscc_lt - tbl_fscc # 20 | ||
17512 | short fscc_le - tbl_fscc # 21 | ||
17513 | short fscc_gl - tbl_fscc # 22 | ||
17514 | short fscc_gle - tbl_fscc # 23 | ||
17515 | short fscc_ngle - tbl_fscc # 24 | ||
17516 | short fscc_ngl - tbl_fscc # 25 | ||
17517 | short fscc_nle - tbl_fscc # 26 | ||
17518 | short fscc_nlt - tbl_fscc # 27 | ||
17519 | short fscc_nge - tbl_fscc # 28 | ||
17520 | short fscc_ngt - tbl_fscc # 29 | ||
17521 | short fscc_sneq - tbl_fscc # 30 | ||
17522 | short fscc_st - tbl_fscc # 31 | ||
17523 | |||
17524 | ######################################################################### | ||
17525 | # # | ||
17526 | # IEEE Nonaware tests # | ||
17527 | # # | ||
17528 | # For the IEEE nonaware tests, we set the result based on the # | ||
17529 | # floating point condition codes. In addition, we check to see # | ||
17530 | # if the NAN bit is set, in which case BSUN and AIOP will be set. # | ||
17531 | # # | ||
17532 | # The cases EQ and NE are shared by the Aware and Nonaware groups # | ||
17533 | # and are incapable of setting the BSUN exception bit. # | ||
17534 | # # | ||
17535 | # Typically, only one of the two possible branch directions could # | ||
17536 | # have the NAN bit set. # | ||
17537 | # # | ||
17538 | ######################################################################### | ||
17539 | |||
17540 | # | ||
17541 | # equal: | ||
17542 | # | ||
17543 | # Z | ||
17544 | # | ||
17545 | fscc_eq: | ||
17546 | fbeq.w fscc_eq_yes # equal? | ||
17547 | fscc_eq_no: | ||
17548 | clr.b %d0 # set false | ||
17549 | bra.w fscc_done # go finish | ||
17550 | fscc_eq_yes: | ||
17551 | st %d0 # set true | ||
17552 | bra.w fscc_done # go finish | ||
17553 | |||
17554 | # | ||
17555 | # not equal: | ||
17556 | # _ | ||
17557 | # Z | ||
17558 | # | ||
17559 | fscc_neq: | ||
17560 | fbneq.w fscc_neq_yes # not equal? | ||
17561 | fscc_neq_no: | ||
17562 | clr.b %d0 # set false | ||
17563 | bra.w fscc_done # go finish | ||
17564 | fscc_neq_yes: | ||
17565 | st %d0 # set true | ||
17566 | bra.w fscc_done # go finish | ||
17567 | |||
17568 | # | ||
17569 | # greater than: | ||
17570 | # _______ | ||
17571 | # NANvZvN | ||
17572 | # | ||
17573 | fscc_gt: | ||
17574 | fbgt.w fscc_gt_yes # greater than? | ||
17575 | fscc_gt_no: | ||
17576 | clr.b %d0 # set false | ||
17577 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17578 | beq.w fscc_done # no;go finish | ||
17579 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17580 | bra.w fscc_chk_bsun # go finish | ||
17581 | fscc_gt_yes: | ||
17582 | st %d0 # set true | ||
17583 | bra.w fscc_done # go finish | ||
17584 | |||
17585 | # | ||
17586 | # not greater than: | ||
17587 | # | ||
17588 | # NANvZvN | ||
17589 | # | ||
17590 | fscc_ngt: | ||
17591 | fbngt.w fscc_ngt_yes # not greater than? | ||
17592 | fscc_ngt_no: | ||
17593 | clr.b %d0 # set false | ||
17594 | bra.w fscc_done # go finish | ||
17595 | fscc_ngt_yes: | ||
17596 | st %d0 # set true | ||
17597 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17598 | beq.w fscc_done # no;go finish | ||
17599 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17600 | bra.w fscc_chk_bsun # go finish | ||
17601 | |||
17602 | # | ||
17603 | # greater than or equal: | ||
17604 | # _____ | ||
17605 | # Zv(NANvN) | ||
17606 | # | ||
17607 | fscc_ge: | ||
17608 | fbge.w fscc_ge_yes # greater than or equal? | ||
17609 | fscc_ge_no: | ||
17610 | clr.b %d0 # set false | ||
17611 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17612 | beq.w fscc_done # no;go finish | ||
17613 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17614 | bra.w fscc_chk_bsun # go finish | ||
17615 | fscc_ge_yes: | ||
17616 | st %d0 # set true | ||
17617 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17618 | beq.w fscc_done # no;go finish | ||
17619 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17620 | bra.w fscc_chk_bsun # go finish | ||
17621 | |||
17622 | # | ||
17623 | # not (greater than or equal): | ||
17624 | # _ | ||
17625 | # NANv(N^Z) | ||
17626 | # | ||
17627 | fscc_nge: | ||
17628 | fbnge.w fscc_nge_yes # not (greater than or equal)? | ||
17629 | fscc_nge_no: | ||
17630 | clr.b %d0 # set false | ||
17631 | bra.w fscc_done # go finish | ||
17632 | fscc_nge_yes: | ||
17633 | st %d0 # set true | ||
17634 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17635 | beq.w fscc_done # no;go finish | ||
17636 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17637 | bra.w fscc_chk_bsun # go finish | ||
17638 | |||
17639 | # | ||
17640 | # less than: | ||
17641 | # _____ | ||
17642 | # N^(NANvZ) | ||
17643 | # | ||
17644 | fscc_lt: | ||
17645 | fblt.w fscc_lt_yes # less than? | ||
17646 | fscc_lt_no: | ||
17647 | clr.b %d0 # set false | ||
17648 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17649 | beq.w fscc_done # no;go finish | ||
17650 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17651 | bra.w fscc_chk_bsun # go finish | ||
17652 | fscc_lt_yes: | ||
17653 | st %d0 # set true | ||
17654 | bra.w fscc_done # go finish | ||
17655 | |||
17656 | # | ||
17657 | # not less than: | ||
17658 | # _ | ||
17659 | # NANv(ZvN) | ||
17660 | # | ||
17661 | fscc_nlt: | ||
17662 | fbnlt.w fscc_nlt_yes # not less than? | ||
17663 | fscc_nlt_no: | ||
17664 | clr.b %d0 # set false | ||
17665 | bra.w fscc_done # go finish | ||
17666 | fscc_nlt_yes: | ||
17667 | st %d0 # set true | ||
17668 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17669 | beq.w fscc_done # no;go finish | ||
17670 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17671 | bra.w fscc_chk_bsun # go finish | ||
17672 | |||
17673 | # | ||
17674 | # less than or equal: | ||
17675 | # ___ | ||
17676 | # Zv(N^NAN) | ||
17677 | # | ||
17678 | fscc_le: | ||
17679 | fble.w fscc_le_yes # less than or equal? | ||
17680 | fscc_le_no: | ||
17681 | clr.b %d0 # set false | ||
17682 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17683 | beq.w fscc_done # no;go finish | ||
17684 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17685 | bra.w fscc_chk_bsun # go finish | ||
17686 | fscc_le_yes: | ||
17687 | st %d0 # set true | ||
17688 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17689 | beq.w fscc_done # no;go finish | ||
17690 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17691 | bra.w fscc_chk_bsun # go finish | ||
17692 | |||
17693 | # | ||
17694 | # not (less than or equal): | ||
17695 | # ___ | ||
17696 | # NANv(NvZ) | ||
17697 | # | ||
17698 | fscc_nle: | ||
17699 | fbnle.w fscc_nle_yes # not (less than or equal)? | ||
17700 | fscc_nle_no: | ||
17701 | clr.b %d0 # set false | ||
17702 | bra.w fscc_done # go finish | ||
17703 | fscc_nle_yes: | ||
17704 | st %d0 # set true | ||
17705 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17706 | beq.w fscc_done # no;go finish | ||
17707 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17708 | bra.w fscc_chk_bsun # go finish | ||
17709 | |||
17710 | # | ||
17711 | # greater or less than: | ||
17712 | # _____ | ||
17713 | # NANvZ | ||
17714 | # | ||
17715 | fscc_gl: | ||
17716 | fbgl.w fscc_gl_yes # greater or less than? | ||
17717 | fscc_gl_no: | ||
17718 | clr.b %d0 # set false | ||
17719 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17720 | beq.w fscc_done # no;go finish | ||
17721 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17722 | bra.w fscc_chk_bsun # go finish | ||
17723 | fscc_gl_yes: | ||
17724 | st %d0 # set true | ||
17725 | bra.w fscc_done # go finish | ||
17726 | |||
17727 | # | ||
17728 | # not (greater or less than): | ||
17729 | # | ||
17730 | # NANvZ | ||
17731 | # | ||
17732 | fscc_ngl: | ||
17733 | fbngl.w fscc_ngl_yes # not (greater or less than)? | ||
17734 | fscc_ngl_no: | ||
17735 | clr.b %d0 # set false | ||
17736 | bra.w fscc_done # go finish | ||
17737 | fscc_ngl_yes: | ||
17738 | st %d0 # set true | ||
17739 | btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? | ||
17740 | beq.w fscc_done # no;go finish | ||
17741 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17742 | bra.w fscc_chk_bsun # go finish | ||
17743 | |||
17744 | # | ||
17745 | # greater, less, or equal: | ||
17746 | # ___ | ||
17747 | # NAN | ||
17748 | # | ||
17749 | fscc_gle: | ||
17750 | fbgle.w fscc_gle_yes # greater, less, or equal? | ||
17751 | fscc_gle_no: | ||
17752 | clr.b %d0 # set false | ||
17753 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17754 | bra.w fscc_chk_bsun # go finish | ||
17755 | fscc_gle_yes: | ||
17756 | st %d0 # set true | ||
17757 | bra.w fscc_done # go finish | ||
17758 | |||
17759 | # | ||
17760 | # not (greater, less, or equal): | ||
17761 | # | ||
17762 | # NAN | ||
17763 | # | ||
17764 | fscc_ngle: | ||
17765 | fbngle.w fscc_ngle_yes # not (greater, less, or equal)? | ||
17766 | fscc_ngle_no: | ||
17767 | clr.b %d0 # set false | ||
17768 | bra.w fscc_done # go finish | ||
17769 | fscc_ngle_yes: | ||
17770 | st %d0 # set true | ||
17771 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17772 | bra.w fscc_chk_bsun # go finish | ||
17773 | |||
17774 | ######################################################################### | ||
17775 | # # | ||
17776 | # Miscellaneous tests # | ||
17777 | # # | ||
17778 | # For the IEEE aware tests, we only have to set the result based on the # | ||
17779 | # floating point condition codes. The BSUN exception will not be # | ||
17780 | # set for any of these tests. # | ||
17781 | # # | ||
17782 | ######################################################################### | ||
17783 | |||
17784 | # | ||
17785 | # false: | ||
17786 | # | ||
17787 | # False | ||
17788 | # | ||
17789 | fscc_f: | ||
17790 | clr.b %d0 # set false | ||
17791 | bra.w fscc_done # go finish | ||
17792 | |||
17793 | # | ||
17794 | # true: | ||
17795 | # | ||
17796 | # True | ||
17797 | # | ||
17798 | fscc_t: | ||
17799 | st %d0 # set true | ||
17800 | bra.w fscc_done # go finish | ||
17801 | |||
17802 | # | ||
17803 | # signalling false: | ||
17804 | # | ||
17805 | # False | ||
17806 | # | ||
17807 | fscc_sf: | ||
17808 | clr.b %d0 # set false | ||
17809 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17810 | beq.w fscc_done # no;go finish | ||
17811 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17812 | bra.w fscc_chk_bsun # go finish | ||
17813 | |||
17814 | # | ||
17815 | # signalling true: | ||
17816 | # | ||
17817 | # True | ||
17818 | # | ||
17819 | fscc_st: | ||
17820 | st %d0 # set false | ||
17821 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17822 | beq.w fscc_done # no;go finish | ||
17823 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17824 | bra.w fscc_chk_bsun # go finish | ||
17825 | |||
17826 | # | ||
17827 | # signalling equal: | ||
17828 | # | ||
17829 | # Z | ||
17830 | # | ||
17831 | fscc_seq: | ||
17832 | fbseq.w fscc_seq_yes # signalling equal? | ||
17833 | fscc_seq_no: | ||
17834 | clr.b %d0 # set false | ||
17835 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17836 | beq.w fscc_done # no;go finish | ||
17837 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17838 | bra.w fscc_chk_bsun # go finish | ||
17839 | fscc_seq_yes: | ||
17840 | st %d0 # set true | ||
17841 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17842 | beq.w fscc_done # no;go finish | ||
17843 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17844 | bra.w fscc_chk_bsun # go finish | ||
17845 | |||
17846 | # | ||
17847 | # signalling not equal: | ||
17848 | # _ | ||
17849 | # Z | ||
17850 | # | ||
17851 | fscc_sneq: | ||
17852 | fbsneq.w fscc_sneq_yes # signalling equal? | ||
17853 | fscc_sneq_no: | ||
17854 | clr.b %d0 # set false | ||
17855 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17856 | beq.w fscc_done # no;go finish | ||
17857 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17858 | bra.w fscc_chk_bsun # go finish | ||
17859 | fscc_sneq_yes: | ||
17860 | st %d0 # set true | ||
17861 | btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit | ||
17862 | beq.w fscc_done # no;go finish | ||
17863 | ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | ||
17864 | bra.w fscc_chk_bsun # go finish | ||
17865 | |||
17866 | ######################################################################### | ||
17867 | # # | ||
17868 | # IEEE Aware tests # | ||
17869 | # # | ||
17870 | # For the IEEE aware tests, we only have to set the result based on the # | ||
17871 | # floating point condition codes. The BSUN exception will not be # | ||
17872 | # set for any of these tests. # | ||
17873 | # # | ||
17874 | ######################################################################### | ||
17875 | |||
17876 | # | ||
17877 | # ordered greater than: | ||
17878 | # _______ | ||
17879 | # NANvZvN | ||
17880 | # | ||
17881 | fscc_ogt: | ||
17882 | fbogt.w fscc_ogt_yes # ordered greater than? | ||
17883 | fscc_ogt_no: | ||
17884 | clr.b %d0 # set false | ||
17885 | bra.w fscc_done # go finish | ||
17886 | fscc_ogt_yes: | ||
17887 | st %d0 # set true | ||
17888 | bra.w fscc_done # go finish | ||
17889 | |||
17890 | # | ||
17891 | # unordered or less or equal: | ||
17892 | # _______ | ||
17893 | # NANvZvN | ||
17894 | # | ||
17895 | fscc_ule: | ||
17896 | fbule.w fscc_ule_yes # unordered or less or equal? | ||
17897 | fscc_ule_no: | ||
17898 | clr.b %d0 # set false | ||
17899 | bra.w fscc_done # go finish | ||
17900 | fscc_ule_yes: | ||
17901 | st %d0 # set true | ||
17902 | bra.w fscc_done # go finish | ||
17903 | |||
17904 | # | ||
17905 | # ordered greater than or equal: | ||
17906 | # _____ | ||
17907 | # Zv(NANvN) | ||
17908 | # | ||
17909 | fscc_oge: | ||
17910 | fboge.w fscc_oge_yes # ordered greater than or equal? | ||
17911 | fscc_oge_no: | ||
17912 | clr.b %d0 # set false | ||
17913 | bra.w fscc_done # go finish | ||
17914 | fscc_oge_yes: | ||
17915 | st %d0 # set true | ||
17916 | bra.w fscc_done # go finish | ||
17917 | |||
17918 | # | ||
17919 | # unordered or less than: | ||
17920 | # _ | ||
17921 | # NANv(N^Z) | ||
17922 | # | ||
17923 | fscc_ult: | ||
17924 | fbult.w fscc_ult_yes # unordered or less than? | ||
17925 | fscc_ult_no: | ||
17926 | clr.b %d0 # set false | ||
17927 | bra.w fscc_done # go finish | ||
17928 | fscc_ult_yes: | ||
17929 | st %d0 # set true | ||
17930 | bra.w fscc_done # go finish | ||
17931 | |||
17932 | # | ||
17933 | # ordered less than: | ||
17934 | # _____ | ||
17935 | # N^(NANvZ) | ||
17936 | # | ||
17937 | fscc_olt: | ||
17938 | fbolt.w fscc_olt_yes # ordered less than? | ||
17939 | fscc_olt_no: | ||
17940 | clr.b %d0 # set false | ||
17941 | bra.w fscc_done # go finish | ||
17942 | fscc_olt_yes: | ||
17943 | st %d0 # set true | ||
17944 | bra.w fscc_done # go finish | ||
17945 | |||
17946 | # | ||
17947 | # unordered or greater or equal: | ||
17948 | # | ||
17949 | # NANvZvN | ||
17950 | # | ||
17951 | fscc_uge: | ||
17952 | fbuge.w fscc_uge_yes # unordered or greater than? | ||
17953 | fscc_uge_no: | ||
17954 | clr.b %d0 # set false | ||
17955 | bra.w fscc_done # go finish | ||
17956 | fscc_uge_yes: | ||
17957 | st %d0 # set true | ||
17958 | bra.w fscc_done # go finish | ||
17959 | |||
17960 | # | ||
17961 | # ordered less than or equal: | ||
17962 | # ___ | ||
17963 | # Zv(N^NAN) | ||
17964 | # | ||
17965 | fscc_ole: | ||
17966 | fbole.w fscc_ole_yes # ordered greater or less than? | ||
17967 | fscc_ole_no: | ||
17968 | clr.b %d0 # set false | ||
17969 | bra.w fscc_done # go finish | ||
17970 | fscc_ole_yes: | ||
17971 | st %d0 # set true | ||
17972 | bra.w fscc_done # go finish | ||
17973 | |||
17974 | # | ||
17975 | # unordered or greater than: | ||
17976 | # ___ | ||
17977 | # NANv(NvZ) | ||
17978 | # | ||
17979 | fscc_ugt: | ||
17980 | fbugt.w fscc_ugt_yes # unordered or greater than? | ||
17981 | fscc_ugt_no: | ||
17982 | clr.b %d0 # set false | ||
17983 | bra.w fscc_done # go finish | ||
17984 | fscc_ugt_yes: | ||
17985 | st %d0 # set true | ||
17986 | bra.w fscc_done # go finish | ||
17987 | |||
17988 | # | ||
17989 | # ordered greater or less than: | ||
17990 | # _____ | ||
17991 | # NANvZ | ||
17992 | # | ||
17993 | fscc_ogl: | ||
17994 | fbogl.w fscc_ogl_yes # ordered greater or less than? | ||
17995 | fscc_ogl_no: | ||
17996 | clr.b %d0 # set false | ||
17997 | bra.w fscc_done # go finish | ||
17998 | fscc_ogl_yes: | ||
17999 | st %d0 # set true | ||
18000 | bra.w fscc_done # go finish | ||
18001 | |||
18002 | # | ||
18003 | # unordered or equal: | ||
18004 | # | ||
18005 | # NANvZ | ||
18006 | # | ||
18007 | fscc_ueq: | ||
18008 | fbueq.w fscc_ueq_yes # unordered or equal? | ||
18009 | fscc_ueq_no: | ||
18010 | clr.b %d0 # set false | ||
18011 | bra.w fscc_done # go finish | ||
18012 | fscc_ueq_yes: | ||
18013 | st %d0 # set true | ||
18014 | bra.w fscc_done # go finish | ||
18015 | |||
18016 | # | ||
18017 | # ordered: | ||
18018 | # ___ | ||
18019 | # NAN | ||
18020 | # | ||
18021 | fscc_or: | ||
18022 | fbor.w fscc_or_yes # ordered? | ||
18023 | fscc_or_no: | ||
18024 | clr.b %d0 # set false | ||
18025 | bra.w fscc_done # go finish | ||
18026 | fscc_or_yes: | ||
18027 | st %d0 # set true | ||
18028 | bra.w fscc_done # go finish | ||
18029 | |||
18030 | # | ||
18031 | # unordered: | ||
18032 | # | ||
18033 | # NAN | ||
18034 | # | ||
18035 | fscc_un: | ||
18036 | fbun.w fscc_un_yes # unordered? | ||
18037 | fscc_un_no: | ||
18038 | clr.b %d0 # set false | ||
18039 | bra.w fscc_done # go finish | ||
18040 | fscc_un_yes: | ||
18041 | st %d0 # set true | ||
18042 | bra.w fscc_done # go finish | ||
18043 | |||
18044 | ####################################################################### | ||
18045 | |||
18046 | # | ||
18047 | # the bsun exception bit was set. now, check to see is BSUN | ||
18048 | # is enabled. if so, don't store result and correct stack frame | ||
18049 | # for a bsun exception. | ||
18050 | # | ||
18051 | fscc_chk_bsun: | ||
18052 | btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? | ||
18053 | bne.w fscc_bsun | ||
18054 | |||
18055 | # | ||
18056 | # the bsun exception bit was not set. | ||
18057 | # the result has been selected. | ||
18058 | # now, check to see if the result is to be stored in the data register | ||
18059 | # file or in memory. | ||
18060 | # | ||
18061 | fscc_done: | ||
18062 | mov.l %d0,%a0 # save result for a moment | ||
18063 | |||
18064 | mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword | ||
18065 | mov.l %d1,%d0 # make a copy | ||
18066 | andi.b &0x38,%d1 # extract src mode | ||
18067 | |||
18068 | bne.b fscc_mem_op # it's a memory operation | ||
18069 | |||
18070 | mov.l %d0,%d1 | ||
18071 | andi.w &0x7,%d1 # pass index in d1 | ||
18072 | mov.l %a0,%d0 # pass result in d0 | ||
18073 | bsr.l store_dreg_b # save result in regfile | ||
18074 | rts | ||
18075 | |||
18076 | # | ||
18077 | # the stacked <ea> is correct with the exception of: | ||
18078 | # -> Dn : <ea> is garbage | ||
18079 | # | ||
18080 | # if the addressing mode is post-increment or pre-decrement, | ||
18081 | # then the address registers have not been updated. | ||
18082 | # | ||
18083 | fscc_mem_op: | ||
18084 | cmpi.b %d1,&0x18 # is <ea> (An)+ ? | ||
18085 | beq.b fscc_mem_inc # yes | ||
18086 | cmpi.b %d1,&0x20 # is <ea> -(An) ? | ||
18087 | beq.b fscc_mem_dec # yes | ||
18088 | |||
18089 | mov.l %a0,%d0 # pass result in d0 | ||
18090 | mov.l EXC_EA(%a6),%a0 # fetch <ea> | ||
18091 | bsr.l _dmem_write_byte # write result byte | ||
18092 | |||
18093 | tst.l %d1 # did dstore fail? | ||
18094 | bne.w fscc_err # yes | ||
18095 | |||
18096 | rts | ||
18097 | |||
18098 | # addresing mode is post-increment. write the result byte. if the write | ||
18099 | # fails then don't update the address register. if write passes then | ||
18100 | # call inc_areg() to update the address register. | ||
18101 | fscc_mem_inc: | ||
18102 | mov.l %a0,%d0 # pass result in d0 | ||
18103 | mov.l EXC_EA(%a6),%a0 # fetch <ea> | ||
18104 | bsr.l _dmem_write_byte # write result byte | ||
18105 | |||
18106 | tst.l %d1 # did dstore fail? | ||
18107 | bne.w fscc_err # yes | ||
18108 | |||
18109 | mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword | ||
18110 | andi.w &0x7,%d1 # pass index in d1 | ||
18111 | movq.l &0x1,%d0 # pass amt to inc by | ||
18112 | bsr.l inc_areg # increment address register | ||
18113 | |||
18114 | rts | ||
18115 | |||
18116 | # addressing mode is pre-decrement. write the result byte. if the write | ||
18117 | # fails then don't update the address register. if the write passes then | ||
18118 | # call dec_areg() to update the address register. | ||
18119 | fscc_mem_dec: | ||
18120 | mov.l %a0,%d0 # pass result in d0 | ||
18121 | mov.l EXC_EA(%a6),%a0 # fetch <ea> | ||
18122 | bsr.l _dmem_write_byte # write result byte | ||
18123 | |||
18124 | tst.l %d1 # did dstore fail? | ||
18125 | bne.w fscc_err # yes | ||
18126 | |||
18127 | mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword | ||
18128 | andi.w &0x7,%d1 # pass index in d1 | ||
18129 | movq.l &0x1,%d0 # pass amt to dec by | ||
18130 | bsr.l dec_areg # decrement address register | ||
18131 | |||
18132 | rts | ||
18133 | |||
18134 | # the emulation routine set bsun and BSUN was enabled. have to | ||
18135 | # fix stack and jump to the bsun handler. | ||
18136 | # let the caller of this routine shift the stack frame up to | ||
18137 | # eliminate the effective address field. | ||
18138 | fscc_bsun: | ||
18139 | mov.b &fbsun_flg,SPCOND_FLG(%a6) | ||
18140 | rts | ||
18141 | |||
18142 | # the byte write to memory has failed. pass the failing effective address | ||
18143 | # and a FSLW to funimp_dacc(). | ||
18144 | fscc_err: | ||
18145 | mov.w &0x00a1,EXC_VOFF(%a6) | ||
18146 | bra.l facc_finish | ||
18147 | |||
18148 | ######################################################################### | ||
18149 | # XDEF **************************************************************** # | ||
18150 | # fmovm_dynamic(): emulate "fmovm" dynamic instruction # | ||
18151 | # # | ||
18152 | # XREF **************************************************************** # | ||
18153 | # fetch_dreg() - fetch data register # | ||
18154 | # {i,d,}mem_read() - fetch data from memory # | ||
18155 | # _mem_write() - write data to memory # | ||
18156 | # iea_iacc() - instruction memory access error occurred # | ||
18157 | # iea_dacc() - data memory access error occurred # | ||
18158 | # restore() - restore An index regs if access error occurred # | ||
18159 | # # | ||
18160 | # INPUT *************************************************************** # | ||
18161 | # None # | ||
18162 | # # | ||
18163 | # OUTPUT ************************************************************** # | ||
18164 | # If instr is "fmovm Dn,-(A7)" from supervisor mode, # | ||
18165 | # d0 = size of dump # | ||
18166 | # d1 = Dn # | ||
18167 | # Else if instruction access error, # | ||
18168 | # d0 = FSLW # | ||
18169 | # Else if data access error, # | ||
18170 | # d0 = FSLW # | ||
18171 | # a0 = address of fault # | ||
18172 | # Else # | ||
18173 | # none. # | ||
18174 | # # | ||
18175 | # ALGORITHM *********************************************************** # | ||
18176 | # The effective address must be calculated since this is entered # | ||
18177 | # from an "Unimplemented Effective Address" exception handler. So, we # | ||
18178 | # have our own fcalc_ea() routine here. If an access error is flagged # | ||
18179 | # by a _{i,d,}mem_read() call, we must exit through the special # | ||
18180 | # handler. # | ||
18181 | # The data register is determined and its value loaded to get the # | ||
18182 | # string of FP registers affected. This value is used as an index into # | ||
18183 | # a lookup table such that we can determine the number of bytes # | ||
18184 | # involved. # | ||
18185 | # If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # | ||
18186 | # to read in all FP values. Again, _mem_read() may fail and require a # | ||
18187 | # special exit. # | ||
18188 | # If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # | ||
18189 | # to write all FP values. _mem_write() may also fail. # | ||
18190 | # If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # | ||
18191 | # then we return the size of the dump and the string to the caller # | ||
18192 | # so that the move can occur outside of this routine. This special # | ||
18193 | # case is required so that moves to the system stack are handled # | ||
18194 | # correctly. # | ||
18195 | # # | ||
18196 | # DYNAMIC: # | ||
18197 | # fmovm.x dn, <ea> # | ||
18198 | # fmovm.x <ea>, dn # | ||
18199 | # # | ||
18200 | # <WORD 1> <WORD2> # | ||
18201 | # 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # | ||
18202 | # # | ||
18203 | # & = (0): predecrement addressing mode # | ||
18204 | # (1): postincrement or control addressing mode # | ||
18205 | # @ = (0): move listed regs from memory to the FPU # | ||
18206 | # (1): move listed regs from the FPU to memory # | ||
18207 | # $$$ : index of data register holding reg select mask # | ||
18208 | # # | ||
18209 | # NOTES: # | ||
18210 | # If the data register holds a zero, then the # | ||
18211 | # instruction is a nop. # | ||
18212 | # # | ||
18213 | ######################################################################### | ||
18214 | |||
18215 | global fmovm_dynamic | ||
18216 | fmovm_dynamic: | ||
18217 | |||
18218 | # extract the data register in which the bit string resides... | ||
18219 | mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword | ||
18220 | andi.w &0x70,%d1 # extract reg bits | ||
18221 | lsr.b &0x4,%d1 # shift into lo bits | ||
18222 | |||
18223 | # fetch the bit string into d0... | ||
18224 | bsr.l fetch_dreg # fetch reg string | ||
18225 | |||
18226 | andi.l &0x000000ff,%d0 # keep only lo byte | ||
18227 | |||
18228 | mov.l %d0,-(%sp) # save strg | ||
18229 | mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 | ||
18230 | mov.l %d0,-(%sp) # save size | ||
18231 | bsr.l fmovm_calc_ea # calculate <ea> | ||
18232 | mov.l (%sp)+,%d0 # restore size | ||
18233 | mov.l (%sp)+,%d1 # restore strg | ||
18234 | |||
18235 | # if the bit string is a zero, then the operation is a no-op | ||
18236 | # but, make sure that we've calculated ea and advanced the opword pointer | ||
18237 | beq.w fmovm_data_done | ||
18238 | |||
18239 | # separate move ins from move outs... | ||
18240 | btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? | ||
18241 | beq.w fmovm_data_in # it's a move out | ||
18242 | |||
18243 | ############# | ||
18244 | # MOVE OUT: # | ||
18245 | ############# | ||
18246 | fmovm_data_out: | ||
18247 | btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? | ||
18248 | bne.w fmovm_out_ctrl # control | ||
18249 | |||
18250 | ############################ | ||
18251 | fmovm_out_predec: | ||
18252 | # for predecrement mode, the bit string is the opposite of both control | ||
18253 | # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) | ||
18254 | # here, we convert it to be just like the others... | ||
18255 | mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 | ||
18256 | |||
18257 | btst &0x5,EXC_SR(%a6) # user or supervisor mode? | ||
18258 | beq.b fmovm_out_ctrl # user | ||
18259 | |||
18260 | fmovm_out_predec_s: | ||
18261 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | ||
18262 | bne.b fmovm_out_ctrl | ||
18263 | |||
18264 | # the operation was unfortunately an: fmovm.x dn,-(sp) | ||
18265 | # called from supervisor mode. | ||
18266 | # we're also passing "size" and "strg" back to the calling routine | ||
18267 | rts | ||
18268 | |||
18269 | ############################ | ||
18270 | fmovm_out_ctrl: | ||
18271 | mov.l %a0,%a1 # move <ea> to a1 | ||
18272 | |||
18273 | sub.l %d0,%sp # subtract size of dump | ||
18274 | lea (%sp),%a0 | ||
18275 | |||
18276 | tst.b %d1 # should FP0 be moved? | ||
18277 | bpl.b fmovm_out_ctrl_fp1 # no | ||
18278 | |||
18279 | mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes | ||
18280 | mov.l 0x4+EXC_FP0(%a6),(%a0)+ | ||
18281 | mov.l 0x8+EXC_FP0(%a6),(%a0)+ | ||
18282 | |||
18283 | fmovm_out_ctrl_fp1: | ||
18284 | lsl.b &0x1,%d1 # should FP1 be moved? | ||
18285 | bpl.b fmovm_out_ctrl_fp2 # no | ||
18286 | |||
18287 | mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes | ||
18288 | mov.l 0x4+EXC_FP1(%a6),(%a0)+ | ||
18289 | mov.l 0x8+EXC_FP1(%a6),(%a0)+ | ||
18290 | |||
18291 | fmovm_out_ctrl_fp2: | ||
18292 | lsl.b &0x1,%d1 # should FP2 be moved? | ||
18293 | bpl.b fmovm_out_ctrl_fp3 # no | ||
18294 | |||
18295 | fmovm.x &0x20,(%a0) # yes | ||
18296 | add.l &0xc,%a0 | ||
18297 | |||
18298 | fmovm_out_ctrl_fp3: | ||
18299 | lsl.b &0x1,%d1 # should FP3 be moved? | ||
18300 | bpl.b fmovm_out_ctrl_fp4 # no | ||
18301 | |||
18302 | fmovm.x &0x10,(%a0) # yes | ||
18303 | add.l &0xc,%a0 | ||
18304 | |||
18305 | fmovm_out_ctrl_fp4: | ||
18306 | lsl.b &0x1,%d1 # should FP4 be moved? | ||
18307 | bpl.b fmovm_out_ctrl_fp5 # no | ||
18308 | |||
18309 | fmovm.x &0x08,(%a0) # yes | ||
18310 | add.l &0xc,%a0 | ||
18311 | |||
18312 | fmovm_out_ctrl_fp5: | ||
18313 | lsl.b &0x1,%d1 # should FP5 be moved? | ||
18314 | bpl.b fmovm_out_ctrl_fp6 # no | ||
18315 | |||
18316 | fmovm.x &0x04,(%a0) # yes | ||
18317 | add.l &0xc,%a0 | ||
18318 | |||
18319 | fmovm_out_ctrl_fp6: | ||
18320 | lsl.b &0x1,%d1 # should FP6 be moved? | ||
18321 | bpl.b fmovm_out_ctrl_fp7 # no | ||
18322 | |||
18323 | fmovm.x &0x02,(%a0) # yes | ||
18324 | add.l &0xc,%a0 | ||
18325 | |||
18326 | fmovm_out_ctrl_fp7: | ||
18327 | lsl.b &0x1,%d1 # should FP7 be moved? | ||
18328 | bpl.b fmovm_out_ctrl_done # no | ||
18329 | |||
18330 | fmovm.x &0x01,(%a0) # yes | ||
18331 | add.l &0xc,%a0 | ||
18332 | |||
18333 | fmovm_out_ctrl_done: | ||
18334 | mov.l %a1,L_SCR1(%a6) | ||
18335 | |||
18336 | lea (%sp),%a0 # pass: supervisor src | ||
18337 | mov.l %d0,-(%sp) # save size | ||
18338 | bsr.l _dmem_write # copy data to user mem | ||
18339 | |||
18340 | mov.l (%sp)+,%d0 | ||
18341 | add.l %d0,%sp # clear fpreg data from stack | ||
18342 | |||
18343 | tst.l %d1 # did dstore err? | ||
18344 | bne.w fmovm_out_err # yes | ||
18345 | |||
18346 | rts | ||
18347 | |||
18348 | ############ | ||
18349 | # MOVE IN: # | ||
18350 | ############ | ||
18351 | fmovm_data_in: | ||
18352 | mov.l %a0,L_SCR1(%a6) | ||
18353 | |||
18354 | sub.l %d0,%sp # make room for fpregs | ||
18355 | lea (%sp),%a1 | ||
18356 | |||
18357 | mov.l %d1,-(%sp) # save bit string for later | ||
18358 | mov.l %d0,-(%sp) # save # of bytes | ||
18359 | |||
18360 | bsr.l _dmem_read # copy data from user mem | ||
18361 | |||
18362 | mov.l (%sp)+,%d0 # retrieve # of bytes | ||
18363 | |||
18364 | tst.l %d1 # did dfetch fail? | ||
18365 | bne.w fmovm_in_err # yes | ||
18366 | |||
18367 | mov.l (%sp)+,%d1 # load bit string | ||
18368 | |||
18369 | lea (%sp),%a0 # addr of stack | ||
18370 | |||
18371 | tst.b %d1 # should FP0 be moved? | ||
18372 | bpl.b fmovm_data_in_fp1 # no | ||
18373 | |||
18374 | mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes | ||
18375 | mov.l (%a0)+,0x4+EXC_FP0(%a6) | ||
18376 | mov.l (%a0)+,0x8+EXC_FP0(%a6) | ||
18377 | |||
18378 | fmovm_data_in_fp1: | ||
18379 | lsl.b &0x1,%d1 # should FP1 be moved? | ||
18380 | bpl.b fmovm_data_in_fp2 # no | ||
18381 | |||
18382 | mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes | ||
18383 | mov.l (%a0)+,0x4+EXC_FP1(%a6) | ||
18384 | mov.l (%a0)+,0x8+EXC_FP1(%a6) | ||
18385 | |||
18386 | fmovm_data_in_fp2: | ||
18387 | lsl.b &0x1,%d1 # should FP2 be moved? | ||
18388 | bpl.b fmovm_data_in_fp3 # no | ||
18389 | |||
18390 | fmovm.x (%a0)+,&0x20 # yes | ||
18391 | |||
18392 | fmovm_data_in_fp3: | ||
18393 | lsl.b &0x1,%d1 # should FP3 be moved? | ||
18394 | bpl.b fmovm_data_in_fp4 # no | ||
18395 | |||
18396 | fmovm.x (%a0)+,&0x10 # yes | ||
18397 | |||
18398 | fmovm_data_in_fp4: | ||
18399 | lsl.b &0x1,%d1 # should FP4 be moved? | ||
18400 | bpl.b fmovm_data_in_fp5 # no | ||
18401 | |||
18402 | fmovm.x (%a0)+,&0x08 # yes | ||
18403 | |||
18404 | fmovm_data_in_fp5: | ||
18405 | lsl.b &0x1,%d1 # should FP5 be moved? | ||
18406 | bpl.b fmovm_data_in_fp6 # no | ||
18407 | |||
18408 | fmovm.x (%a0)+,&0x04 # yes | ||
18409 | |||
18410 | fmovm_data_in_fp6: | ||
18411 | lsl.b &0x1,%d1 # should FP6 be moved? | ||
18412 | bpl.b fmovm_data_in_fp7 # no | ||
18413 | |||
18414 | fmovm.x (%a0)+,&0x02 # yes | ||
18415 | |||
18416 | fmovm_data_in_fp7: | ||
18417 | lsl.b &0x1,%d1 # should FP7 be moved? | ||
18418 | bpl.b fmovm_data_in_done # no | ||
18419 | |||
18420 | fmovm.x (%a0)+,&0x01 # yes | ||
18421 | |||
18422 | fmovm_data_in_done: | ||
18423 | add.l %d0,%sp # remove fpregs from stack | ||
18424 | rts | ||
18425 | |||
18426 | ##################################### | ||
18427 | |||
18428 | fmovm_data_done: | ||
18429 | rts | ||
18430 | |||
18431 | ############################################################################## | ||
18432 | |||
18433 | # | ||
18434 | # table indexed by the operation's bit string that gives the number | ||
18435 | # of bytes that will be moved. | ||
18436 | # | ||
18437 | # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) | ||
18438 | # | ||
18439 | tbl_fmovm_size: | ||
18440 | byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 | ||
18441 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | ||
18442 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | ||
18443 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18444 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | ||
18445 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18446 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18447 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18448 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | ||
18449 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18450 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18451 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18452 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18453 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18454 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18455 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | ||
18456 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | ||
18457 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18458 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18459 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18460 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18461 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18462 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18463 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | ||
18464 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | ||
18465 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18466 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18467 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | ||
18468 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | ||
18469 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | ||
18470 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | ||
18471 | byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 | ||
18472 | |||
18473 | # | ||
18474 | # table to convert a pre-decrement bit string into a post-increment | ||
18475 | # or control bit string. | ||
18476 | # ex: 0x00 ==> 0x00 | ||
18477 | # 0x01 ==> 0x80 | ||
18478 | # 0x02 ==> 0x40 | ||
18479 | # . | ||
18480 | # . | ||
18481 | # 0xfd ==> 0xbf | ||
18482 | # 0xfe ==> 0x7f | ||
18483 | # 0xff ==> 0xff | ||
18484 | # | ||
18485 | tbl_fmovm_convert: | ||
18486 | byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 | ||
18487 | byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 | ||
18488 | byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 | ||
18489 | byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 | ||
18490 | byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 | ||
18491 | byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 | ||
18492 | byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec | ||
18493 | byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc | ||
18494 | byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 | ||
18495 | byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 | ||
18496 | byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea | ||
18497 | byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa | ||
18498 | byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 | ||
18499 | byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 | ||
18500 | byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee | ||
18501 | byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe | ||
18502 | byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 | ||
18503 | byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 | ||
18504 | byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 | ||
18505 | byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 | ||
18506 | byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 | ||
18507 | byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 | ||
18508 | byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed | ||
18509 | byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd | ||
18510 | byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 | ||
18511 | byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 | ||
18512 | byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb | ||
18513 | byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb | ||
18514 | byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 | ||
18515 | byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 | ||
18516 | byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef | ||
18517 | byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff | ||
18518 | |||
18519 | global fmovm_calc_ea | ||
18520 | ############################################### | ||
18521 | # _fmovm_calc_ea: calculate effective address # | ||
18522 | ############################################### | ||
18523 | fmovm_calc_ea: | ||
18524 | mov.l %d0,%a0 # move # bytes to a0 | ||
18525 | |||
18526 | # currently, MODE and REG are taken from the EXC_OPWORD. this could be | ||
18527 | # easily changed if they were inputs passed in registers. | ||
18528 | mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word | ||
18529 | mov.w %d0,%d1 # make a copy | ||
18530 | |||
18531 | andi.w &0x3f,%d0 # extract mode field | ||
18532 | andi.l &0x7,%d1 # extract reg field | ||
18533 | |||
18534 | # jump to the corresponding function for each {MODE,REG} pair. | ||
18535 | mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance | ||
18536 | jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode | ||
18537 | |||
18538 | swbeg &64 | ||
18539 | tbl_fea_mode: | ||
18540 | short tbl_fea_mode - tbl_fea_mode | ||
18541 | short tbl_fea_mode - tbl_fea_mode | ||
18542 | short tbl_fea_mode - tbl_fea_mode | ||
18543 | short tbl_fea_mode - tbl_fea_mode | ||
18544 | short tbl_fea_mode - tbl_fea_mode | ||
18545 | short tbl_fea_mode - tbl_fea_mode | ||
18546 | short tbl_fea_mode - tbl_fea_mode | ||
18547 | short tbl_fea_mode - tbl_fea_mode | ||
18548 | |||
18549 | short tbl_fea_mode - tbl_fea_mode | ||
18550 | short tbl_fea_mode - tbl_fea_mode | ||
18551 | short tbl_fea_mode - tbl_fea_mode | ||
18552 | short tbl_fea_mode - tbl_fea_mode | ||
18553 | short tbl_fea_mode - tbl_fea_mode | ||
18554 | short tbl_fea_mode - tbl_fea_mode | ||
18555 | short tbl_fea_mode - tbl_fea_mode | ||
18556 | short tbl_fea_mode - tbl_fea_mode | ||
18557 | |||
18558 | short faddr_ind_a0 - tbl_fea_mode | ||
18559 | short faddr_ind_a1 - tbl_fea_mode | ||
18560 | short faddr_ind_a2 - tbl_fea_mode | ||
18561 | short faddr_ind_a3 - tbl_fea_mode | ||
18562 | short faddr_ind_a4 - tbl_fea_mode | ||
18563 | short faddr_ind_a5 - tbl_fea_mode | ||
18564 | short faddr_ind_a6 - tbl_fea_mode | ||
18565 | short faddr_ind_a7 - tbl_fea_mode | ||
18566 | |||
18567 | short faddr_ind_p_a0 - tbl_fea_mode | ||
18568 | short faddr_ind_p_a1 - tbl_fea_mode | ||
18569 | short faddr_ind_p_a2 - tbl_fea_mode | ||
18570 | short faddr_ind_p_a3 - tbl_fea_mode | ||
18571 | short faddr_ind_p_a4 - tbl_fea_mode | ||
18572 | short faddr_ind_p_a5 - tbl_fea_mode | ||
18573 | short faddr_ind_p_a6 - tbl_fea_mode | ||
18574 | short faddr_ind_p_a7 - tbl_fea_mode | ||
18575 | |||
18576 | short faddr_ind_m_a0 - tbl_fea_mode | ||
18577 | short faddr_ind_m_a1 - tbl_fea_mode | ||
18578 | short faddr_ind_m_a2 - tbl_fea_mode | ||
18579 | short faddr_ind_m_a3 - tbl_fea_mode | ||
18580 | short faddr_ind_m_a4 - tbl_fea_mode | ||
18581 | short faddr_ind_m_a5 - tbl_fea_mode | ||
18582 | short faddr_ind_m_a6 - tbl_fea_mode | ||
18583 | short faddr_ind_m_a7 - tbl_fea_mode | ||
18584 | |||
18585 | short faddr_ind_disp_a0 - tbl_fea_mode | ||
18586 | short faddr_ind_disp_a1 - tbl_fea_mode | ||
18587 | short faddr_ind_disp_a2 - tbl_fea_mode | ||
18588 | short faddr_ind_disp_a3 - tbl_fea_mode | ||
18589 | short faddr_ind_disp_a4 - tbl_fea_mode | ||
18590 | short faddr_ind_disp_a5 - tbl_fea_mode | ||
18591 | short faddr_ind_disp_a6 - tbl_fea_mode | ||
18592 | short faddr_ind_disp_a7 - tbl_fea_mode | ||
18593 | |||
18594 | short faddr_ind_ext - tbl_fea_mode | ||
18595 | short faddr_ind_ext - tbl_fea_mode | ||
18596 | short faddr_ind_ext - tbl_fea_mode | ||
18597 | short faddr_ind_ext - tbl_fea_mode | ||
18598 | short faddr_ind_ext - tbl_fea_mode | ||
18599 | short faddr_ind_ext - tbl_fea_mode | ||
18600 | short faddr_ind_ext - tbl_fea_mode | ||
18601 | short faddr_ind_ext - tbl_fea_mode | ||
18602 | |||
18603 | short fabs_short - tbl_fea_mode | ||
18604 | short fabs_long - tbl_fea_mode | ||
18605 | short fpc_ind - tbl_fea_mode | ||
18606 | short fpc_ind_ext - tbl_fea_mode | ||
18607 | short tbl_fea_mode - tbl_fea_mode | ||
18608 | short tbl_fea_mode - tbl_fea_mode | ||
18609 | short tbl_fea_mode - tbl_fea_mode | ||
18610 | short tbl_fea_mode - tbl_fea_mode | ||
18611 | |||
18612 | ################################### | ||
18613 | # Address register indirect: (An) # | ||
18614 | ################################### | ||
18615 | faddr_ind_a0: | ||
18616 | mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 | ||
18617 | rts | ||
18618 | |||
18619 | faddr_ind_a1: | ||
18620 | mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 | ||
18621 | rts | ||
18622 | |||
18623 | faddr_ind_a2: | ||
18624 | mov.l %a2,%a0 # Get current a2 | ||
18625 | rts | ||
18626 | |||
18627 | faddr_ind_a3: | ||
18628 | mov.l %a3,%a0 # Get current a3 | ||
18629 | rts | ||
18630 | |||
18631 | faddr_ind_a4: | ||
18632 | mov.l %a4,%a0 # Get current a4 | ||
18633 | rts | ||
18634 | |||
18635 | faddr_ind_a5: | ||
18636 | mov.l %a5,%a0 # Get current a5 | ||
18637 | rts | ||
18638 | |||
18639 | faddr_ind_a6: | ||
18640 | mov.l (%a6),%a0 # Get current a6 | ||
18641 | rts | ||
18642 | |||
18643 | faddr_ind_a7: | ||
18644 | mov.l EXC_A7(%a6),%a0 # Get current a7 | ||
18645 | rts | ||
18646 | |||
18647 | ##################################################### | ||
18648 | # Address register indirect w/ postincrement: (An)+ # | ||
18649 | ##################################################### | ||
18650 | faddr_ind_p_a0: | ||
18651 | mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 | ||
18652 | mov.l %d0,%d1 | ||
18653 | add.l %a0,%d1 # Increment | ||
18654 | mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value | ||
18655 | mov.l %d0,%a0 | ||
18656 | rts | ||
18657 | |||
18658 | faddr_ind_p_a1: | ||
18659 | mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 | ||
18660 | mov.l %d0,%d1 | ||
18661 | add.l %a0,%d1 # Increment | ||
18662 | mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value | ||
18663 | mov.l %d0,%a0 | ||
18664 | rts | ||
18665 | |||
18666 | faddr_ind_p_a2: | ||
18667 | mov.l %a2,%d0 # Get current a2 | ||
18668 | mov.l %d0,%d1 | ||
18669 | add.l %a0,%d1 # Increment | ||
18670 | mov.l %d1,%a2 # Save incr value | ||
18671 | mov.l %d0,%a0 | ||
18672 | rts | ||
18673 | |||
18674 | faddr_ind_p_a3: | ||
18675 | mov.l %a3,%d0 # Get current a3 | ||
18676 | mov.l %d0,%d1 | ||
18677 | add.l %a0,%d1 # Increment | ||
18678 | mov.l %d1,%a3 # Save incr value | ||
18679 | mov.l %d0,%a0 | ||
18680 | rts | ||
18681 | |||
18682 | faddr_ind_p_a4: | ||
18683 | mov.l %a4,%d0 # Get current a4 | ||
18684 | mov.l %d0,%d1 | ||
18685 | add.l %a0,%d1 # Increment | ||
18686 | mov.l %d1,%a4 # Save incr value | ||
18687 | mov.l %d0,%a0 | ||
18688 | rts | ||
18689 | |||
18690 | faddr_ind_p_a5: | ||
18691 | mov.l %a5,%d0 # Get current a5 | ||
18692 | mov.l %d0,%d1 | ||
18693 | add.l %a0,%d1 # Increment | ||
18694 | mov.l %d1,%a5 # Save incr value | ||
18695 | mov.l %d0,%a0 | ||
18696 | rts | ||
18697 | |||
18698 | faddr_ind_p_a6: | ||
18699 | mov.l (%a6),%d0 # Get current a6 | ||
18700 | mov.l %d0,%d1 | ||
18701 | add.l %a0,%d1 # Increment | ||
18702 | mov.l %d1,(%a6) # Save incr value | ||
18703 | mov.l %d0,%a0 | ||
18704 | rts | ||
18705 | |||
18706 | faddr_ind_p_a7: | ||
18707 | mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag | ||
18708 | |||
18709 | mov.l EXC_A7(%a6),%d0 # Get current a7 | ||
18710 | mov.l %d0,%d1 | ||
18711 | add.l %a0,%d1 # Increment | ||
18712 | mov.l %d1,EXC_A7(%a6) # Save incr value | ||
18713 | mov.l %d0,%a0 | ||
18714 | rts | ||
18715 | |||
18716 | #################################################### | ||
18717 | # Address register indirect w/ predecrement: -(An) # | ||
18718 | #################################################### | ||
18719 | faddr_ind_m_a0: | ||
18720 | mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 | ||
18721 | sub.l %a0,%d0 # Decrement | ||
18722 | mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value | ||
18723 | mov.l %d0,%a0 | ||
18724 | rts | ||
18725 | |||
18726 | faddr_ind_m_a1: | ||
18727 | mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 | ||
18728 | sub.l %a0,%d0 # Decrement | ||
18729 | mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value | ||
18730 | mov.l %d0,%a0 | ||
18731 | rts | ||
18732 | |||
18733 | faddr_ind_m_a2: | ||
18734 | mov.l %a2,%d0 # Get current a2 | ||
18735 | sub.l %a0,%d0 # Decrement | ||
18736 | mov.l %d0,%a2 # Save decr value | ||
18737 | mov.l %d0,%a0 | ||
18738 | rts | ||
18739 | |||
18740 | faddr_ind_m_a3: | ||
18741 | mov.l %a3,%d0 # Get current a3 | ||
18742 | sub.l %a0,%d0 # Decrement | ||
18743 | mov.l %d0,%a3 # Save decr value | ||
18744 | mov.l %d0,%a0 | ||
18745 | rts | ||
18746 | |||
18747 | faddr_ind_m_a4: | ||
18748 | mov.l %a4,%d0 # Get current a4 | ||
18749 | sub.l %a0,%d0 # Decrement | ||
18750 | mov.l %d0,%a4 # Save decr value | ||
18751 | mov.l %d0,%a0 | ||
18752 | rts | ||
18753 | |||
18754 | faddr_ind_m_a5: | ||
18755 | mov.l %a5,%d0 # Get current a5 | ||
18756 | sub.l %a0,%d0 # Decrement | ||
18757 | mov.l %d0,%a5 # Save decr value | ||
18758 | mov.l %d0,%a0 | ||
18759 | rts | ||
18760 | |||
18761 | faddr_ind_m_a6: | ||
18762 | mov.l (%a6),%d0 # Get current a6 | ||
18763 | sub.l %a0,%d0 # Decrement | ||
18764 | mov.l %d0,(%a6) # Save decr value | ||
18765 | mov.l %d0,%a0 | ||
18766 | rts | ||
18767 | |||
18768 | faddr_ind_m_a7: | ||
18769 | mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag | ||
18770 | |||
18771 | mov.l EXC_A7(%a6),%d0 # Get current a7 | ||
18772 | sub.l %a0,%d0 # Decrement | ||
18773 | mov.l %d0,EXC_A7(%a6) # Save decr value | ||
18774 | mov.l %d0,%a0 | ||
18775 | rts | ||
18776 | |||
18777 | ######################################################## | ||
18778 | # Address register indirect w/ displacement: (d16, An) # | ||
18779 | ######################################################## | ||
18780 | faddr_ind_disp_a0: | ||
18781 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18782 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18783 | bsr.l _imem_read_word | ||
18784 | |||
18785 | tst.l %d1 # did ifetch fail? | ||
18786 | bne.l iea_iacc # yes | ||
18787 | |||
18788 | mov.w %d0,%a0 # sign extend displacement | ||
18789 | |||
18790 | add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 | ||
18791 | rts | ||
18792 | |||
18793 | faddr_ind_disp_a1: | ||
18794 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18795 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18796 | bsr.l _imem_read_word | ||
18797 | |||
18798 | tst.l %d1 # did ifetch fail? | ||
18799 | bne.l iea_iacc # yes | ||
18800 | |||
18801 | mov.w %d0,%a0 # sign extend displacement | ||
18802 | |||
18803 | add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 | ||
18804 | rts | ||
18805 | |||
18806 | faddr_ind_disp_a2: | ||
18807 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18808 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18809 | bsr.l _imem_read_word | ||
18810 | |||
18811 | tst.l %d1 # did ifetch fail? | ||
18812 | bne.l iea_iacc # yes | ||
18813 | |||
18814 | mov.w %d0,%a0 # sign extend displacement | ||
18815 | |||
18816 | add.l %a2,%a0 # a2 + d16 | ||
18817 | rts | ||
18818 | |||
18819 | faddr_ind_disp_a3: | ||
18820 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18821 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18822 | bsr.l _imem_read_word | ||
18823 | |||
18824 | tst.l %d1 # did ifetch fail? | ||
18825 | bne.l iea_iacc # yes | ||
18826 | |||
18827 | mov.w %d0,%a0 # sign extend displacement | ||
18828 | |||
18829 | add.l %a3,%a0 # a3 + d16 | ||
18830 | rts | ||
18831 | |||
18832 | faddr_ind_disp_a4: | ||
18833 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18834 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18835 | bsr.l _imem_read_word | ||
18836 | |||
18837 | tst.l %d1 # did ifetch fail? | ||
18838 | bne.l iea_iacc # yes | ||
18839 | |||
18840 | mov.w %d0,%a0 # sign extend displacement | ||
18841 | |||
18842 | add.l %a4,%a0 # a4 + d16 | ||
18843 | rts | ||
18844 | |||
18845 | faddr_ind_disp_a5: | ||
18846 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18847 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18848 | bsr.l _imem_read_word | ||
18849 | |||
18850 | tst.l %d1 # did ifetch fail? | ||
18851 | bne.l iea_iacc # yes | ||
18852 | |||
18853 | mov.w %d0,%a0 # sign extend displacement | ||
18854 | |||
18855 | add.l %a5,%a0 # a5 + d16 | ||
18856 | rts | ||
18857 | |||
18858 | faddr_ind_disp_a6: | ||
18859 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18860 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18861 | bsr.l _imem_read_word | ||
18862 | |||
18863 | tst.l %d1 # did ifetch fail? | ||
18864 | bne.l iea_iacc # yes | ||
18865 | |||
18866 | mov.w %d0,%a0 # sign extend displacement | ||
18867 | |||
18868 | add.l (%a6),%a0 # a6 + d16 | ||
18869 | rts | ||
18870 | |||
18871 | faddr_ind_disp_a7: | ||
18872 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18873 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18874 | bsr.l _imem_read_word | ||
18875 | |||
18876 | tst.l %d1 # did ifetch fail? | ||
18877 | bne.l iea_iacc # yes | ||
18878 | |||
18879 | mov.w %d0,%a0 # sign extend displacement | ||
18880 | |||
18881 | add.l EXC_A7(%a6),%a0 # a7 + d16 | ||
18882 | rts | ||
18883 | |||
18884 | ######################################################################## | ||
18885 | # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # | ||
18886 | # " " " w/ " (base displacement): (bd, An, Xn) # | ||
18887 | # Memory indirect postindexed: ([bd, An], Xn, od) # | ||
18888 | # Memory indirect preindexed: ([bd, An, Xn], od) # | ||
18889 | ######################################################################## | ||
18890 | faddr_ind_ext: | ||
18891 | addq.l &0x8,%d1 | ||
18892 | bsr.l fetch_dreg # fetch base areg | ||
18893 | mov.l %d0,-(%sp) | ||
18894 | |||
18895 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18896 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18897 | bsr.l _imem_read_word # fetch extword in d0 | ||
18898 | |||
18899 | tst.l %d1 # did ifetch fail? | ||
18900 | bne.l iea_iacc # yes | ||
18901 | |||
18902 | mov.l (%sp)+,%a0 | ||
18903 | |||
18904 | btst &0x8,%d0 | ||
18905 | bne.w fcalc_mem_ind | ||
18906 | |||
18907 | mov.l %d0,L_SCR1(%a6) # hold opword | ||
18908 | |||
18909 | mov.l %d0,%d1 | ||
18910 | rol.w &0x4,%d1 | ||
18911 | andi.w &0xf,%d1 # extract index regno | ||
18912 | |||
18913 | # count on fetch_dreg() not to alter a0... | ||
18914 | bsr.l fetch_dreg # fetch index | ||
18915 | |||
18916 | mov.l %d2,-(%sp) # save d2 | ||
18917 | mov.l L_SCR1(%a6),%d2 # fetch opword | ||
18918 | |||
18919 | btst &0xb,%d2 # is it word or long? | ||
18920 | bne.b faii8_long | ||
18921 | ext.l %d0 # sign extend word index | ||
18922 | faii8_long: | ||
18923 | mov.l %d2,%d1 | ||
18924 | rol.w &0x7,%d1 | ||
18925 | andi.l &0x3,%d1 # extract scale value | ||
18926 | |||
18927 | lsl.l %d1,%d0 # shift index by scale | ||
18928 | |||
18929 | extb.l %d2 # sign extend displacement | ||
18930 | add.l %d2,%d0 # index + disp | ||
18931 | add.l %d0,%a0 # An + (index + disp) | ||
18932 | |||
18933 | mov.l (%sp)+,%d2 # restore old d2 | ||
18934 | rts | ||
18935 | |||
18936 | ########################### | ||
18937 | # Absolute short: (XXX).W # | ||
18938 | ########################### | ||
18939 | fabs_short: | ||
18940 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18941 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18942 | bsr.l _imem_read_word # fetch short address | ||
18943 | |||
18944 | tst.l %d1 # did ifetch fail? | ||
18945 | bne.l iea_iacc # yes | ||
18946 | |||
18947 | mov.w %d0,%a0 # return <ea> in a0 | ||
18948 | rts | ||
18949 | |||
18950 | ########################## | ||
18951 | # Absolute long: (XXX).L # | ||
18952 | ########################## | ||
18953 | fabs_long: | ||
18954 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18955 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18956 | bsr.l _imem_read_long # fetch long address | ||
18957 | |||
18958 | tst.l %d1 # did ifetch fail? | ||
18959 | bne.l iea_iacc # yes | ||
18960 | |||
18961 | mov.l %d0,%a0 # return <ea> in a0 | ||
18962 | rts | ||
18963 | |||
18964 | ####################################################### | ||
18965 | # Program counter indirect w/ displacement: (d16, PC) # | ||
18966 | ####################################################### | ||
18967 | fpc_ind: | ||
18968 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18969 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18970 | bsr.l _imem_read_word # fetch word displacement | ||
18971 | |||
18972 | tst.l %d1 # did ifetch fail? | ||
18973 | bne.l iea_iacc # yes | ||
18974 | |||
18975 | mov.w %d0,%a0 # sign extend displacement | ||
18976 | |||
18977 | add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 | ||
18978 | |||
18979 | # _imem_read_word() increased the extwptr by 2. need to adjust here. | ||
18980 | subq.l &0x2,%a0 # adjust <ea> | ||
18981 | rts | ||
18982 | |||
18983 | ########################################################## | ||
18984 | # PC indirect w/ index(8-bit displacement): (d8, PC, An) # | ||
18985 | # " " w/ " (base displacement): (bd, PC, An) # | ||
18986 | # PC memory indirect postindexed: ([bd, PC], Xn, od) # | ||
18987 | # PC memory indirect preindexed: ([bd, PC, Xn], od) # | ||
18988 | ########################################################## | ||
18989 | fpc_ind_ext: | ||
18990 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
18991 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
18992 | bsr.l _imem_read_word # fetch ext word | ||
18993 | |||
18994 | tst.l %d1 # did ifetch fail? | ||
18995 | bne.l iea_iacc # yes | ||
18996 | |||
18997 | mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 | ||
18998 | subq.l &0x2,%a0 # adjust base | ||
18999 | |||
19000 | btst &0x8,%d0 # is disp only 8 bits? | ||
19001 | bne.w fcalc_mem_ind # calc memory indirect | ||
19002 | |||
19003 | mov.l %d0,L_SCR1(%a6) # store opword | ||
19004 | |||
19005 | mov.l %d0,%d1 # make extword copy | ||
19006 | rol.w &0x4,%d1 # rotate reg num into place | ||
19007 | andi.w &0xf,%d1 # extract register number | ||
19008 | |||
19009 | # count on fetch_dreg() not to alter a0... | ||
19010 | bsr.l fetch_dreg # fetch index | ||
19011 | |||
19012 | mov.l %d2,-(%sp) # save d2 | ||
19013 | mov.l L_SCR1(%a6),%d2 # fetch opword | ||
19014 | |||
19015 | btst &0xb,%d2 # is index word or long? | ||
19016 | bne.b fpii8_long # long | ||
19017 | ext.l %d0 # sign extend word index | ||
19018 | fpii8_long: | ||
19019 | mov.l %d2,%d1 | ||
19020 | rol.w &0x7,%d1 # rotate scale value into place | ||
19021 | andi.l &0x3,%d1 # extract scale value | ||
19022 | |||
19023 | lsl.l %d1,%d0 # shift index by scale | ||
19024 | |||
19025 | extb.l %d2 # sign extend displacement | ||
19026 | add.l %d2,%d0 # disp + index | ||
19027 | add.l %d0,%a0 # An + (index + disp) | ||
19028 | |||
19029 | mov.l (%sp)+,%d2 # restore temp register | ||
19030 | rts | ||
19031 | |||
19032 | # d2 = index | ||
19033 | # d3 = base | ||
19034 | # d4 = od | ||
19035 | # d5 = extword | ||
19036 | fcalc_mem_ind: | ||
19037 | btst &0x6,%d0 # is the index suppressed? | ||
19038 | beq.b fcalc_index | ||
19039 | |||
19040 | movm.l &0x3c00,-(%sp) # save d2-d5 | ||
19041 | |||
19042 | mov.l %d0,%d5 # put extword in d5 | ||
19043 | mov.l %a0,%d3 # put base in d3 | ||
19044 | |||
19045 | clr.l %d2 # yes, so index = 0 | ||
19046 | bra.b fbase_supp_ck | ||
19047 | |||
19048 | # index: | ||
19049 | fcalc_index: | ||
19050 | mov.l %d0,L_SCR1(%a6) # save d0 (opword) | ||
19051 | bfextu %d0{&16:&4},%d1 # fetch dreg index | ||
19052 | bsr.l fetch_dreg | ||
19053 | |||
19054 | movm.l &0x3c00,-(%sp) # save d2-d5 | ||
19055 | mov.l %d0,%d2 # put index in d2 | ||
19056 | mov.l L_SCR1(%a6),%d5 | ||
19057 | mov.l %a0,%d3 | ||
19058 | |||
19059 | btst &0xb,%d5 # is index word or long? | ||
19060 | bne.b fno_ext | ||
19061 | ext.l %d2 | ||
19062 | |||
19063 | fno_ext: | ||
19064 | bfextu %d5{&21:&2},%d0 | ||
19065 | lsl.l %d0,%d2 | ||
19066 | |||
19067 | # base address (passed as parameter in d3): | ||
19068 | # we clear the value here if it should actually be suppressed. | ||
19069 | fbase_supp_ck: | ||
19070 | btst &0x7,%d5 # is the bd suppressed? | ||
19071 | beq.b fno_base_sup | ||
19072 | clr.l %d3 | ||
19073 | |||
19074 | # base displacement: | ||
19075 | fno_base_sup: | ||
19076 | bfextu %d5{&26:&2},%d0 # get bd size | ||
19077 | # beq.l fmovm_error # if (size == 0) it's reserved | ||
19078 | |||
19079 | cmpi.b %d0,&0x2 | ||
19080 | blt.b fno_bd | ||
19081 | beq.b fget_word_bd | ||
19082 | |||
19083 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19084 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19085 | bsr.l _imem_read_long | ||
19086 | |||
19087 | tst.l %d1 # did ifetch fail? | ||
19088 | bne.l fcea_iacc # yes | ||
19089 | |||
19090 | bra.b fchk_ind | ||
19091 | |||
19092 | fget_word_bd: | ||
19093 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19094 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19095 | bsr.l _imem_read_word | ||
19096 | |||
19097 | tst.l %d1 # did ifetch fail? | ||
19098 | bne.l fcea_iacc # yes | ||
19099 | |||
19100 | ext.l %d0 # sign extend bd | ||
19101 | |||
19102 | fchk_ind: | ||
19103 | add.l %d0,%d3 # base += bd | ||
19104 | |||
19105 | # outer displacement: | ||
19106 | fno_bd: | ||
19107 | bfextu %d5{&30:&2},%d0 # is od suppressed? | ||
19108 | beq.w faii_bd | ||
19109 | |||
19110 | cmpi.b %d0,&0x2 | ||
19111 | blt.b fnull_od | ||
19112 | beq.b fword_od | ||
19113 | |||
19114 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19115 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19116 | bsr.l _imem_read_long | ||
19117 | |||
19118 | tst.l %d1 # did ifetch fail? | ||
19119 | bne.l fcea_iacc # yes | ||
19120 | |||
19121 | bra.b fadd_them | ||
19122 | |||
19123 | fword_od: | ||
19124 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19125 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19126 | bsr.l _imem_read_word | ||
19127 | |||
19128 | tst.l %d1 # did ifetch fail? | ||
19129 | bne.l fcea_iacc # yes | ||
19130 | |||
19131 | ext.l %d0 # sign extend od | ||
19132 | bra.b fadd_them | ||
19133 | |||
19134 | fnull_od: | ||
19135 | clr.l %d0 | ||
19136 | |||
19137 | fadd_them: | ||
19138 | mov.l %d0,%d4 | ||
19139 | |||
19140 | btst &0x2,%d5 # pre or post indexing? | ||
19141 | beq.b fpre_indexed | ||
19142 | |||
19143 | mov.l %d3,%a0 | ||
19144 | bsr.l _dmem_read_long | ||
19145 | |||
19146 | tst.l %d1 # did dfetch fail? | ||
19147 | bne.w fcea_err # yes | ||
19148 | |||
19149 | add.l %d2,%d0 # <ea> += index | ||
19150 | add.l %d4,%d0 # <ea> += od | ||
19151 | bra.b fdone_ea | ||
19152 | |||
19153 | fpre_indexed: | ||
19154 | add.l %d2,%d3 # preindexing | ||
19155 | mov.l %d3,%a0 | ||
19156 | bsr.l _dmem_read_long | ||
19157 | |||
19158 | tst.l %d1 # did dfetch fail? | ||
19159 | bne.w fcea_err # yes | ||
19160 | |||
19161 | add.l %d4,%d0 # ea += od | ||
19162 | bra.b fdone_ea | ||
19163 | |||
19164 | faii_bd: | ||
19165 | add.l %d2,%d3 # ea = (base + bd) + index | ||
19166 | mov.l %d3,%d0 | ||
19167 | fdone_ea: | ||
19168 | mov.l %d0,%a0 | ||
19169 | |||
19170 | movm.l (%sp)+,&0x003c # restore d2-d5 | ||
19171 | rts | ||
19172 | |||
19173 | ######################################################### | ||
19174 | fcea_err: | ||
19175 | mov.l %d3,%a0 | ||
19176 | |||
19177 | movm.l (%sp)+,&0x003c # restore d2-d5 | ||
19178 | mov.w &0x0101,%d0 | ||
19179 | bra.l iea_dacc | ||
19180 | |||
19181 | fcea_iacc: | ||
19182 | movm.l (%sp)+,&0x003c # restore d2-d5 | ||
19183 | bra.l iea_iacc | ||
19184 | |||
19185 | fmovm_out_err: | ||
19186 | bsr.l restore | ||
19187 | mov.w &0x00e1,%d0 | ||
19188 | bra.b fmovm_err | ||
19189 | |||
19190 | fmovm_in_err: | ||
19191 | bsr.l restore | ||
19192 | mov.w &0x0161,%d0 | ||
19193 | |||
19194 | fmovm_err: | ||
19195 | mov.l L_SCR1(%a6),%a0 | ||
19196 | bra.l iea_dacc | ||
19197 | |||
19198 | ######################################################################### | ||
19199 | # XDEF **************************************************************** # | ||
19200 | # fmovm_ctrl(): emulate fmovm.l of control registers instr # | ||
19201 | # # | ||
19202 | # XREF **************************************************************** # | ||
19203 | # _imem_read_long() - read longword from memory # | ||
19204 | # iea_iacc() - _imem_read_long() failed; error recovery # | ||
19205 | # # | ||
19206 | # INPUT *************************************************************** # | ||
19207 | # None # | ||
19208 | # # | ||
19209 | # OUTPUT ************************************************************** # | ||
19210 | # If _imem_read_long() doesn't fail: # | ||
19211 | # USER_FPCR(a6) = new FPCR value # | ||
19212 | # USER_FPSR(a6) = new FPSR value # | ||
19213 | # USER_FPIAR(a6) = new FPIAR value # | ||
19214 | # # | ||
19215 | # ALGORITHM *********************************************************** # | ||
19216 | # Decode the instruction type by looking at the extension word # | ||
19217 | # in order to see how many control registers to fetch from memory. # | ||
19218 | # Fetch them using _imem_read_long(). If this fetch fails, exit through # | ||
19219 | # the special access error exit handler iea_iacc(). # | ||
19220 | # # | ||
19221 | # Instruction word decoding: # | ||
19222 | # # | ||
19223 | # fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # | ||
19224 | # # | ||
19225 | # WORD1 WORD2 # | ||
19226 | # 1111 0010 00 111100 100$ $$00 0000 0000 # | ||
19227 | # # | ||
19228 | # $$$ (100): FPCR # | ||
19229 | # (010): FPSR # | ||
19230 | # (001): FPIAR # | ||
19231 | # (000): FPIAR # | ||
19232 | # # | ||
19233 | ######################################################################### | ||
19234 | |||
19235 | global fmovm_ctrl | ||
19236 | fmovm_ctrl: | ||
19237 | mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits | ||
19238 | cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? | ||
19239 | beq.w fctrl_in_7 # yes | ||
19240 | cmpi.b %d0,&0x98 # fpcr & fpsr ? | ||
19241 | beq.w fctrl_in_6 # yes | ||
19242 | cmpi.b %d0,&0x94 # fpcr & fpiar ? | ||
19243 | beq.b fctrl_in_5 # yes | ||
19244 | |||
19245 | # fmovem.l #<data>, fpsr/fpiar | ||
19246 | fctrl_in_3: | ||
19247 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19248 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19249 | bsr.l _imem_read_long # fetch FPSR from mem | ||
19250 | |||
19251 | tst.l %d1 # did ifetch fail? | ||
19252 | bne.l iea_iacc # yes | ||
19253 | |||
19254 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack | ||
19255 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19256 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19257 | bsr.l _imem_read_long # fetch FPIAR from mem | ||
19258 | |||
19259 | tst.l %d1 # did ifetch fail? | ||
19260 | bne.l iea_iacc # yes | ||
19261 | |||
19262 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack | ||
19263 | rts | ||
19264 | |||
19265 | # fmovem.l #<data>, fpcr/fpiar | ||
19266 | fctrl_in_5: | ||
19267 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19268 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19269 | bsr.l _imem_read_long # fetch FPCR from mem | ||
19270 | |||
19271 | tst.l %d1 # did ifetch fail? | ||
19272 | bne.l iea_iacc # yes | ||
19273 | |||
19274 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack | ||
19275 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19276 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19277 | bsr.l _imem_read_long # fetch FPIAR from mem | ||
19278 | |||
19279 | tst.l %d1 # did ifetch fail? | ||
19280 | bne.l iea_iacc # yes | ||
19281 | |||
19282 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack | ||
19283 | rts | ||
19284 | |||
19285 | # fmovem.l #<data>, fpcr/fpsr | ||
19286 | fctrl_in_6: | ||
19287 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19288 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19289 | bsr.l _imem_read_long # fetch FPCR from mem | ||
19290 | |||
19291 | tst.l %d1 # did ifetch fail? | ||
19292 | bne.l iea_iacc # yes | ||
19293 | |||
19294 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem | ||
19295 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19296 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19297 | bsr.l _imem_read_long # fetch FPSR from mem | ||
19298 | |||
19299 | tst.l %d1 # did ifetch fail? | ||
19300 | bne.l iea_iacc # yes | ||
19301 | |||
19302 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem | ||
19303 | rts | ||
19304 | |||
19305 | # fmovem.l #<data>, fpcr/fpsr/fpiar | ||
19306 | fctrl_in_7: | ||
19307 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19308 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19309 | bsr.l _imem_read_long # fetch FPCR from mem | ||
19310 | |||
19311 | tst.l %d1 # did ifetch fail? | ||
19312 | bne.l iea_iacc # yes | ||
19313 | |||
19314 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem | ||
19315 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19316 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19317 | bsr.l _imem_read_long # fetch FPSR from mem | ||
19318 | |||
19319 | tst.l %d1 # did ifetch fail? | ||
19320 | bne.l iea_iacc # yes | ||
19321 | |||
19322 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem | ||
19323 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr | ||
19324 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr | ||
19325 | bsr.l _imem_read_long # fetch FPIAR from mem | ||
19326 | |||
19327 | tst.l %d1 # did ifetch fail? | ||
19328 | bne.l iea_iacc # yes | ||
19329 | |||
19330 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem | ||
19331 | rts | ||
19332 | |||
19333 | ######################################################################### | ||
19334 | # XDEF **************************************************************** # | ||
19335 | # _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # | ||
19336 | # # | ||
19337 | # XREF **************************************************************** # | ||
19338 | # inc_areg() - increment an address register # | ||
19339 | # dec_areg() - decrement an address register # | ||
19340 | # # | ||
19341 | # INPUT *************************************************************** # | ||
19342 | # d0 = number of bytes to adjust <ea> by # | ||
19343 | # # | ||
19344 | # OUTPUT ************************************************************** # | ||
19345 | # None # | ||
19346 | # # | ||
19347 | # ALGORITHM *********************************************************** # | ||
19348 | # "Dummy" CALCulate Effective Address: # | ||
19349 | # The stacked <ea> for FP unimplemented instructions and opclass # | ||
19350 | # two packed instructions is correct with the exception of... # | ||
19351 | # # | ||
19352 | # 1) -(An) : The register is not updated regardless of size. # | ||
19353 | # Also, for extended precision and packed, the # | ||
19354 | # stacked <ea> value is 8 bytes too big # | ||
19355 | # 2) (An)+ : The register is not updated. # | ||
19356 | # 3) #<data> : The upper longword of the immediate operand is # | ||
19357 | # stacked b,w,l and s sizes are completely stacked. # | ||
19358 | # d,x, and p are not. # | ||
19359 | # # | ||
19360 | ######################################################################### | ||
19361 | |||
19362 | global _dcalc_ea | ||
19363 | _dcalc_ea: | ||
19364 | mov.l %d0, %a0 # move # bytes to %a0 | ||
19365 | |||
19366 | mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word | ||
19367 | mov.l %d0, %d1 # make a copy | ||
19368 | |||
19369 | andi.w &0x38, %d0 # extract mode field | ||
19370 | andi.l &0x7, %d1 # extract reg field | ||
19371 | |||
19372 | cmpi.b %d0,&0x18 # is mode (An)+ ? | ||
19373 | beq.b dcea_pi # yes | ||
19374 | |||
19375 | cmpi.b %d0,&0x20 # is mode -(An) ? | ||
19376 | beq.b dcea_pd # yes | ||
19377 | |||
19378 | or.w %d1,%d0 # concat mode,reg | ||
19379 | cmpi.b %d0,&0x3c # is mode #<data>? | ||
19380 | |||
19381 | beq.b dcea_imm # yes | ||
19382 | |||
19383 | mov.l EXC_EA(%a6),%a0 # return <ea> | ||
19384 | rts | ||
19385 | |||
19386 | # need to set immediate data flag here since we'll need to do | ||
19387 | # an imem_read to fetch this later. | ||
19388 | dcea_imm: | ||
19389 | mov.b &immed_flg,SPCOND_FLG(%a6) | ||
19390 | lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> | ||
19391 | rts | ||
19392 | |||
19393 | # here, the <ea> is stacked correctly. however, we must update the | ||
19394 | # address register... | ||
19395 | dcea_pi: | ||
19396 | mov.l %a0,%d0 # pass amt to inc by | ||
19397 | bsr.l inc_areg # inc addr register | ||
19398 | |||
19399 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
19400 | rts | ||
19401 | |||
19402 | # the <ea> is stacked correctly for all but extended and packed which | ||
19403 | # the <ea>s are 8 bytes too large. | ||
19404 | # it would make no sense to have a pre-decrement to a7 in supervisor | ||
19405 | # mode so we don't even worry about this tricky case here : ) | ||
19406 | dcea_pd: | ||
19407 | mov.l %a0,%d0 # pass amt to dec by | ||
19408 | bsr.l dec_areg # dec addr register | ||
19409 | |||
19410 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
19411 | |||
19412 | cmpi.b %d0,&0xc # is opsize ext or packed? | ||
19413 | beq.b dcea_pd2 # yes | ||
19414 | rts | ||
19415 | dcea_pd2: | ||
19416 | sub.l &0x8,%a0 # correct <ea> | ||
19417 | mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack | ||
19418 | rts | ||
19419 | |||
19420 | ######################################################################### | ||
19421 | # XDEF **************************************************************** # | ||
19422 | # _calc_ea_fout(): calculate correct stacked <ea> for extended # | ||
19423 | # and packed data opclass 3 operations. # | ||
19424 | # # | ||
19425 | # XREF **************************************************************** # | ||
19426 | # None # | ||
19427 | # # | ||
19428 | # INPUT *************************************************************** # | ||
19429 | # None # | ||
19430 | # # | ||
19431 | # OUTPUT ************************************************************** # | ||
19432 | # a0 = return correct effective address # | ||
19433 | # # | ||
19434 | # ALGORITHM *********************************************************** # | ||
19435 | # For opclass 3 extended and packed data operations, the <ea> # | ||
19436 | # stacked for the exception is incorrect for -(an) and (an)+ addressing # | ||
19437 | # modes. Also, while we're at it, the index register itself must get # | ||
19438 | # updated. # | ||
19439 | # So, for -(an), we must subtract 8 off of the stacked <ea> value # | ||
19440 | # and return that value as the correct <ea> and store that value in An. # | ||
19441 | # For (an)+, the stacked <ea> is correct but we must adjust An by +12. # | ||
19442 | # # | ||
19443 | ######################################################################### | ||
19444 | |||
19445 | # This calc_ea is currently used to retrieve the correct <ea> | ||
19446 | # for fmove outs of type extended and packed. | ||
19447 | global _calc_ea_fout | ||
19448 | _calc_ea_fout: | ||
19449 | mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word | ||
19450 | mov.l %d0,%d1 # make a copy | ||
19451 | |||
19452 | andi.w &0x38,%d0 # extract mode field | ||
19453 | andi.l &0x7,%d1 # extract reg field | ||
19454 | |||
19455 | cmpi.b %d0,&0x18 # is mode (An)+ ? | ||
19456 | beq.b ceaf_pi # yes | ||
19457 | |||
19458 | cmpi.b %d0,&0x20 # is mode -(An) ? | ||
19459 | beq.w ceaf_pd # yes | ||
19460 | |||
19461 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
19462 | rts | ||
19463 | |||
19464 | # (An)+ : extended and packed fmove out | ||
19465 | # : stacked <ea> is correct | ||
19466 | # : "An" not updated | ||
19467 | ceaf_pi: | ||
19468 | mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 | ||
19469 | mov.l EXC_EA(%a6),%a0 | ||
19470 | jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) | ||
19471 | |||
19472 | swbeg &0x8 | ||
19473 | tbl_ceaf_pi: | ||
19474 | short ceaf_pi0 - tbl_ceaf_pi | ||
19475 | short ceaf_pi1 - tbl_ceaf_pi | ||
19476 | short ceaf_pi2 - tbl_ceaf_pi | ||
19477 | short ceaf_pi3 - tbl_ceaf_pi | ||
19478 | short ceaf_pi4 - tbl_ceaf_pi | ||
19479 | short ceaf_pi5 - tbl_ceaf_pi | ||
19480 | short ceaf_pi6 - tbl_ceaf_pi | ||
19481 | short ceaf_pi7 - tbl_ceaf_pi | ||
19482 | |||
19483 | ceaf_pi0: | ||
19484 | addi.l &0xc,EXC_DREGS+0x8(%a6) | ||
19485 | rts | ||
19486 | ceaf_pi1: | ||
19487 | addi.l &0xc,EXC_DREGS+0xc(%a6) | ||
19488 | rts | ||
19489 | ceaf_pi2: | ||
19490 | add.l &0xc,%a2 | ||
19491 | rts | ||
19492 | ceaf_pi3: | ||
19493 | add.l &0xc,%a3 | ||
19494 | rts | ||
19495 | ceaf_pi4: | ||
19496 | add.l &0xc,%a4 | ||
19497 | rts | ||
19498 | ceaf_pi5: | ||
19499 | add.l &0xc,%a5 | ||
19500 | rts | ||
19501 | ceaf_pi6: | ||
19502 | addi.l &0xc,EXC_A6(%a6) | ||
19503 | rts | ||
19504 | ceaf_pi7: | ||
19505 | mov.b &mia7_flg,SPCOND_FLG(%a6) | ||
19506 | addi.l &0xc,EXC_A7(%a6) | ||
19507 | rts | ||
19508 | |||
19509 | # -(An) : extended and packed fmove out | ||
19510 | # : stacked <ea> = actual <ea> + 8 | ||
19511 | # : "An" not updated | ||
19512 | ceaf_pd: | ||
19513 | mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 | ||
19514 | mov.l EXC_EA(%a6),%a0 | ||
19515 | sub.l &0x8,%a0 | ||
19516 | sub.l &0x8,EXC_EA(%a6) | ||
19517 | jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) | ||
19518 | |||
19519 | swbeg &0x8 | ||
19520 | tbl_ceaf_pd: | ||
19521 | short ceaf_pd0 - tbl_ceaf_pd | ||
19522 | short ceaf_pd1 - tbl_ceaf_pd | ||
19523 | short ceaf_pd2 - tbl_ceaf_pd | ||
19524 | short ceaf_pd3 - tbl_ceaf_pd | ||
19525 | short ceaf_pd4 - tbl_ceaf_pd | ||
19526 | short ceaf_pd5 - tbl_ceaf_pd | ||
19527 | short ceaf_pd6 - tbl_ceaf_pd | ||
19528 | short ceaf_pd7 - tbl_ceaf_pd | ||
19529 | |||
19530 | ceaf_pd0: | ||
19531 | mov.l %a0,EXC_DREGS+0x8(%a6) | ||
19532 | rts | ||
19533 | ceaf_pd1: | ||
19534 | mov.l %a0,EXC_DREGS+0xc(%a6) | ||
19535 | rts | ||
19536 | ceaf_pd2: | ||
19537 | mov.l %a0,%a2 | ||
19538 | rts | ||
19539 | ceaf_pd3: | ||
19540 | mov.l %a0,%a3 | ||
19541 | rts | ||
19542 | ceaf_pd4: | ||
19543 | mov.l %a0,%a4 | ||
19544 | rts | ||
19545 | ceaf_pd5: | ||
19546 | mov.l %a0,%a5 | ||
19547 | rts | ||
19548 | ceaf_pd6: | ||
19549 | mov.l %a0,EXC_A6(%a6) | ||
19550 | rts | ||
19551 | ceaf_pd7: | ||
19552 | mov.l %a0,EXC_A7(%a6) | ||
19553 | mov.b &mda7_flg,SPCOND_FLG(%a6) | ||
19554 | rts | ||
19555 | |||
19556 | ######################################################################### | ||
19557 | # XDEF **************************************************************** # | ||
19558 | # _load_fop(): load operand for unimplemented FP exception # | ||
19559 | # # | ||
19560 | # XREF **************************************************************** # | ||
19561 | # set_tag_x() - determine ext prec optype tag # | ||
19562 | # set_tag_s() - determine sgl prec optype tag # | ||
19563 | # set_tag_d() - determine dbl prec optype tag # | ||
19564 | # unnorm_fix() - convert normalized number to denorm or zero # | ||
19565 | # norm() - normalize a denormalized number # | ||
19566 | # get_packed() - fetch a packed operand from memory # | ||
19567 | # _dcalc_ea() - calculate <ea>, fixing An in process # | ||
19568 | # # | ||
19569 | # _imem_read_{word,long}() - read from instruction memory # | ||
19570 | # _dmem_read() - read from data memory # | ||
19571 | # _dmem_read_{byte,word,long}() - read from data memory # | ||
19572 | # # | ||
19573 | # facc_in_{b,w,l,d,x}() - mem read failed; special exit point # | ||
19574 | # # | ||
19575 | # INPUT *************************************************************** # | ||
19576 | # None # | ||
19577 | # # | ||
19578 | # OUTPUT ************************************************************** # | ||
19579 | # If memory access doesn't fail: # | ||
19580 | # FP_SRC(a6) = source operand in extended precision # | ||
19581 | # FP_DST(a6) = destination operand in extended precision # | ||
19582 | # # | ||
19583 | # ALGORITHM *********************************************************** # | ||
19584 | # This is called from the Unimplemented FP exception handler in # | ||
19585 | # order to load the source and maybe destination operand into # | ||
19586 | # FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load # | ||
19587 | # the source and destination from the FP register file. Set the optype # | ||
19588 | # tags for both if dyadic, one for monadic. If a number is an UNNORM, # | ||
19589 | # convert it to a DENORM or a ZERO. # | ||
19590 | # If the instruction is opclass two (memory->reg), then fetch # | ||
19591 | # the destination from the register file and the source operand from # | ||
19592 | # memory. Tag and fix both as above w/ opclass zero instructions. # | ||
19593 | # If the source operand is byte,word,long, or single, it may be # | ||
19594 | # in the data register file. If it's actually out in memory, use one of # | ||
19595 | # the mem_read() routines to fetch it. If the mem_read() access returns # | ||
19596 | # a failing value, exit through the special facc_in() routine which # | ||
19597 | # will create an access error exception frame from the current exception # | ||
19598 | # frame. # | ||
19599 | # Immediate data and regular data accesses are separated because # | ||
19600 | # if an immediate data access fails, the resulting fault status # | ||
19601 | # longword stacked for the access error exception must have the # | ||
19602 | # instruction bit set. # | ||
19603 | # # | ||
19604 | ######################################################################### | ||
19605 | |||
19606 | global _load_fop | ||
19607 | _load_fop: | ||
19608 | |||
19609 | # 15 13 12 10 9 7 6 0 | ||
19610 | # / \ / \ / \ / \ | ||
19611 | # --------------------------------- | ||
19612 | # | opclass | RX | RY | EXTENSION | (2nd word of general FP instruction) | ||
19613 | # --------------------------------- | ||
19614 | # | ||
19615 | |||
19616 | # bfextu EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass | ||
19617 | # cmpi.b %d0, &0x2 # which class is it? ('000,'010,'011) | ||
19618 | # beq.w op010 # handle <ea> -> fpn | ||
19619 | # bgt.w op011 # handle fpn -> <ea> | ||
19620 | |||
19621 | # we're not using op011 for now... | ||
19622 | btst &0x6,EXC_CMDREG(%a6) | ||
19623 | bne.b op010 | ||
19624 | |||
19625 | ############################ | ||
19626 | # OPCLASS '000: reg -> reg # | ||
19627 | ############################ | ||
19628 | op000: | ||
19629 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension word lo | ||
19630 | btst &0x5,%d0 # testing extension bits | ||
19631 | beq.b op000_src # (bit 5 == 0) => monadic | ||
19632 | btst &0x4,%d0 # (bit 5 == 1) | ||
19633 | beq.b op000_dst # (bit 4 == 0) => dyadic | ||
19634 | and.w &0x007f,%d0 # extract extension bits {6:0} | ||
19635 | cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? | ||
19636 | bne.b op000_src # it's an fcmp | ||
19637 | |||
19638 | op000_dst: | ||
19639 | bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | ||
19640 | bsr.l load_fpn2 # fetch dst fpreg into FP_DST | ||
19641 | |||
19642 | bsr.l set_tag_x # get dst optype tag | ||
19643 | |||
19644 | cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? | ||
19645 | beq.b op000_dst_unnorm # yes | ||
19646 | op000_dst_cont: | ||
19647 | mov.b %d0, DTAG(%a6) # store the dst optype tag | ||
19648 | |||
19649 | op000_src: | ||
19650 | bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field | ||
19651 | bsr.l load_fpn1 # fetch src fpreg into FP_SRC | ||
19652 | |||
19653 | bsr.l set_tag_x # get src optype tag | ||
19654 | |||
19655 | cmpi.b %d0, &UNNORM # is src fpreg an UNNORM? | ||
19656 | beq.b op000_src_unnorm # yes | ||
19657 | op000_src_cont: | ||
19658 | mov.b %d0, STAG(%a6) # store the src optype tag | ||
19659 | rts | ||
19660 | |||
19661 | op000_dst_unnorm: | ||
19662 | bsr.l unnorm_fix # fix the dst UNNORM | ||
19663 | bra.b op000_dst_cont | ||
19664 | op000_src_unnorm: | ||
19665 | bsr.l unnorm_fix # fix the src UNNORM | ||
19666 | bra.b op000_src_cont | ||
19667 | |||
19668 | ############################# | ||
19669 | # OPCLASS '010: <ea> -> reg # | ||
19670 | ############################# | ||
19671 | op010: | ||
19672 | mov.w EXC_CMDREG(%a6),%d0 # fetch extension word | ||
19673 | btst &0x5,%d0 # testing extension bits | ||
19674 | beq.b op010_src # (bit 5 == 0) => monadic | ||
19675 | btst &0x4,%d0 # (bit 5 == 1) | ||
19676 | beq.b op010_dst # (bit 4 == 0) => dyadic | ||
19677 | and.w &0x007f,%d0 # extract extension bits {6:0} | ||
19678 | cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? | ||
19679 | bne.b op010_src # it's an fcmp | ||
19680 | |||
19681 | op010_dst: | ||
19682 | bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | ||
19683 | bsr.l load_fpn2 # fetch dst fpreg ptr | ||
19684 | |||
19685 | bsr.l set_tag_x # get dst type tag | ||
19686 | |||
19687 | cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? | ||
19688 | beq.b op010_dst_unnorm # yes | ||
19689 | op010_dst_cont: | ||
19690 | mov.b %d0, DTAG(%a6) # store the dst optype tag | ||
19691 | |||
19692 | op010_src: | ||
19693 | bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field | ||
19694 | |||
19695 | bfextu EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field | ||
19696 | bne.w fetch_from_mem # src op is in memory | ||
19697 | |||
19698 | op010_dreg: | ||
19699 | clr.b STAG(%a6) # either NORM or ZERO | ||
19700 | bfextu EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field | ||
19701 | |||
19702 | mov.w (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype | ||
19703 | jmp (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg | ||
19704 | |||
19705 | op010_dst_unnorm: | ||
19706 | bsr.l unnorm_fix # fix the dst UNNORM | ||
19707 | bra.b op010_dst_cont | ||
19708 | |||
19709 | swbeg &0x8 | ||
19710 | tbl_op010_dreg: | ||
19711 | short opd_long - tbl_op010_dreg | ||
19712 | short opd_sgl - tbl_op010_dreg | ||
19713 | short tbl_op010_dreg - tbl_op010_dreg | ||
19714 | short tbl_op010_dreg - tbl_op010_dreg | ||
19715 | short opd_word - tbl_op010_dreg | ||
19716 | short tbl_op010_dreg - tbl_op010_dreg | ||
19717 | short opd_byte - tbl_op010_dreg | ||
19718 | short tbl_op010_dreg - tbl_op010_dreg | ||
19719 | |||
19720 | # | ||
19721 | # LONG: can be either NORM or ZERO... | ||
19722 | # | ||
19723 | opd_long: | ||
19724 | bsr.l fetch_dreg # fetch long in d0 | ||
19725 | fmov.l %d0, %fp0 # load a long | ||
19726 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19727 | fbeq.w opd_long_zero # long is a ZERO | ||
19728 | rts | ||
19729 | opd_long_zero: | ||
19730 | mov.b &ZERO, STAG(%a6) # set ZERO optype flag | ||
19731 | rts | ||
19732 | |||
19733 | # | ||
19734 | # WORD: can be either NORM or ZERO... | ||
19735 | # | ||
19736 | opd_word: | ||
19737 | bsr.l fetch_dreg # fetch word in d0 | ||
19738 | fmov.w %d0, %fp0 # load a word | ||
19739 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19740 | fbeq.w opd_word_zero # WORD is a ZERO | ||
19741 | rts | ||
19742 | opd_word_zero: | ||
19743 | mov.b &ZERO, STAG(%a6) # set ZERO optype flag | ||
19744 | rts | ||
19745 | |||
19746 | # | ||
19747 | # BYTE: can be either NORM or ZERO... | ||
19748 | # | ||
19749 | opd_byte: | ||
19750 | bsr.l fetch_dreg # fetch word in d0 | ||
19751 | fmov.b %d0, %fp0 # load a byte | ||
19752 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19753 | fbeq.w opd_byte_zero # byte is a ZERO | ||
19754 | rts | ||
19755 | opd_byte_zero: | ||
19756 | mov.b &ZERO, STAG(%a6) # set ZERO optype flag | ||
19757 | rts | ||
19758 | |||
19759 | # | ||
19760 | # SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM | ||
19761 | # | ||
19762 | # separate SNANs and DENORMs so they can be loaded w/ special care. | ||
19763 | # all others can simply be moved "in" using fmove. | ||
19764 | # | ||
19765 | opd_sgl: | ||
19766 | bsr.l fetch_dreg # fetch sgl in d0 | ||
19767 | mov.l %d0,L_SCR1(%a6) | ||
19768 | |||
19769 | lea L_SCR1(%a6), %a0 # pass: ptr to the sgl | ||
19770 | bsr.l set_tag_s # determine sgl type | ||
19771 | mov.b %d0, STAG(%a6) # save the src tag | ||
19772 | |||
19773 | cmpi.b %d0, &SNAN # is it an SNAN? | ||
19774 | beq.w get_sgl_snan # yes | ||
19775 | |||
19776 | cmpi.b %d0, &DENORM # is it a DENORM? | ||
19777 | beq.w get_sgl_denorm # yes | ||
19778 | |||
19779 | fmov.s (%a0), %fp0 # no, so can load it regular | ||
19780 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19781 | rts | ||
19782 | |||
19783 | ############################################################################## | ||
19784 | |||
19785 | ######################################################################### | ||
19786 | # fetch_from_mem(): # | ||
19787 | # - src is out in memory. must: # | ||
19788 | # (1) calc ea - must read AFTER you know the src type since # | ||
19789 | # if the ea is -() or ()+, need to know # of bytes. # | ||
19790 | # (2) read it in from either user or supervisor space # | ||
19791 | # (3) if (b || w || l) then simply read in # | ||
19792 | # if (s || d || x) then check for SNAN,UNNORM,DENORM # | ||
19793 | # if (packed) then punt for now # | ||
19794 | # INPUT: # | ||
19795 | # %d0 : src type field # | ||
19796 | ######################################################################### | ||
19797 | fetch_from_mem: | ||
19798 | clr.b STAG(%a6) # either NORM or ZERO | ||
19799 | |||
19800 | mov.w (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field | ||
19801 | jmp (tbl_fp_type.b,%pc,%d0.w*1) | ||
19802 | |||
19803 | swbeg &0x8 | ||
19804 | tbl_fp_type: | ||
19805 | short load_long - tbl_fp_type | ||
19806 | short load_sgl - tbl_fp_type | ||
19807 | short load_ext - tbl_fp_type | ||
19808 | short load_packed - tbl_fp_type | ||
19809 | short load_word - tbl_fp_type | ||
19810 | short load_dbl - tbl_fp_type | ||
19811 | short load_byte - tbl_fp_type | ||
19812 | short tbl_fp_type - tbl_fp_type | ||
19813 | |||
19814 | ######################################### | ||
19815 | # load a LONG into %fp0: # | ||
19816 | # -number can't fault # | ||
19817 | # (1) calc ea # | ||
19818 | # (2) read 4 bytes into L_SCR1 # | ||
19819 | # (3) fmov.l into %fp0 # | ||
19820 | ######################################### | ||
19821 | load_long: | ||
19822 | movq.l &0x4, %d0 # pass: 4 (bytes) | ||
19823 | bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 | ||
19824 | |||
19825 | cmpi.b SPCOND_FLG(%a6),&immed_flg | ||
19826 | beq.b load_long_immed | ||
19827 | |||
19828 | bsr.l _dmem_read_long # fetch src operand from memory | ||
19829 | |||
19830 | tst.l %d1 # did dfetch fail? | ||
19831 | bne.l facc_in_l # yes | ||
19832 | |||
19833 | load_long_cont: | ||
19834 | fmov.l %d0, %fp0 # read into %fp0;convert to xprec | ||
19835 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19836 | |||
19837 | fbeq.w load_long_zero # src op is a ZERO | ||
19838 | rts | ||
19839 | load_long_zero: | ||
19840 | mov.b &ZERO, STAG(%a6) # set optype tag to ZERO | ||
19841 | rts | ||
19842 | |||
19843 | load_long_immed: | ||
19844 | bsr.l _imem_read_long # fetch src operand immed data | ||
19845 | |||
19846 | tst.l %d1 # did ifetch fail? | ||
19847 | bne.l funimp_iacc # yes | ||
19848 | bra.b load_long_cont | ||
19849 | |||
19850 | ######################################### | ||
19851 | # load a WORD into %fp0: # | ||
19852 | # -number can't fault # | ||
19853 | # (1) calc ea # | ||
19854 | # (2) read 2 bytes into L_SCR1 # | ||
19855 | # (3) fmov.w into %fp0 # | ||
19856 | ######################################### | ||
19857 | load_word: | ||
19858 | movq.l &0x2, %d0 # pass: 2 (bytes) | ||
19859 | bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 | ||
19860 | |||
19861 | cmpi.b SPCOND_FLG(%a6),&immed_flg | ||
19862 | beq.b load_word_immed | ||
19863 | |||
19864 | bsr.l _dmem_read_word # fetch src operand from memory | ||
19865 | |||
19866 | tst.l %d1 # did dfetch fail? | ||
19867 | bne.l facc_in_w # yes | ||
19868 | |||
19869 | load_word_cont: | ||
19870 | fmov.w %d0, %fp0 # read into %fp0;convert to xprec | ||
19871 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19872 | |||
19873 | fbeq.w load_word_zero # src op is a ZERO | ||
19874 | rts | ||
19875 | load_word_zero: | ||
19876 | mov.b &ZERO, STAG(%a6) # set optype tag to ZERO | ||
19877 | rts | ||
19878 | |||
19879 | load_word_immed: | ||
19880 | bsr.l _imem_read_word # fetch src operand immed data | ||
19881 | |||
19882 | tst.l %d1 # did ifetch fail? | ||
19883 | bne.l funimp_iacc # yes | ||
19884 | bra.b load_word_cont | ||
19885 | |||
19886 | ######################################### | ||
19887 | # load a BYTE into %fp0: # | ||
19888 | # -number can't fault # | ||
19889 | # (1) calc ea # | ||
19890 | # (2) read 1 byte into L_SCR1 # | ||
19891 | # (3) fmov.b into %fp0 # | ||
19892 | ######################################### | ||
19893 | load_byte: | ||
19894 | movq.l &0x1, %d0 # pass: 1 (byte) | ||
19895 | bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 | ||
19896 | |||
19897 | cmpi.b SPCOND_FLG(%a6),&immed_flg | ||
19898 | beq.b load_byte_immed | ||
19899 | |||
19900 | bsr.l _dmem_read_byte # fetch src operand from memory | ||
19901 | |||
19902 | tst.l %d1 # did dfetch fail? | ||
19903 | bne.l facc_in_b # yes | ||
19904 | |||
19905 | load_byte_cont: | ||
19906 | fmov.b %d0, %fp0 # read into %fp0;convert to xprec | ||
19907 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19908 | |||
19909 | fbeq.w load_byte_zero # src op is a ZERO | ||
19910 | rts | ||
19911 | load_byte_zero: | ||
19912 | mov.b &ZERO, STAG(%a6) # set optype tag to ZERO | ||
19913 | rts | ||
19914 | |||
19915 | load_byte_immed: | ||
19916 | bsr.l _imem_read_word # fetch src operand immed data | ||
19917 | |||
19918 | tst.l %d1 # did ifetch fail? | ||
19919 | bne.l funimp_iacc # yes | ||
19920 | bra.b load_byte_cont | ||
19921 | |||
19922 | ######################################### | ||
19923 | # load a SGL into %fp0: # | ||
19924 | # -number can't fault # | ||
19925 | # (1) calc ea # | ||
19926 | # (2) read 4 bytes into L_SCR1 # | ||
19927 | # (3) fmov.s into %fp0 # | ||
19928 | ######################################### | ||
19929 | load_sgl: | ||
19930 | movq.l &0x4, %d0 # pass: 4 (bytes) | ||
19931 | bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 | ||
19932 | |||
19933 | cmpi.b SPCOND_FLG(%a6),&immed_flg | ||
19934 | beq.b load_sgl_immed | ||
19935 | |||
19936 | bsr.l _dmem_read_long # fetch src operand from memory | ||
19937 | mov.l %d0, L_SCR1(%a6) # store src op on stack | ||
19938 | |||
19939 | tst.l %d1 # did dfetch fail? | ||
19940 | bne.l facc_in_l # yes | ||
19941 | |||
19942 | load_sgl_cont: | ||
19943 | lea L_SCR1(%a6), %a0 # pass: ptr to sgl src op | ||
19944 | bsr.l set_tag_s # determine src type tag | ||
19945 | mov.b %d0, STAG(%a6) # save src optype tag on stack | ||
19946 | |||
19947 | cmpi.b %d0, &DENORM # is it a sgl DENORM? | ||
19948 | beq.w get_sgl_denorm # yes | ||
19949 | |||
19950 | cmpi.b %d0, &SNAN # is it a sgl SNAN? | ||
19951 | beq.w get_sgl_snan # yes | ||
19952 | |||
19953 | fmov.s L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec | ||
19954 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
19955 | rts | ||
19956 | |||
19957 | load_sgl_immed: | ||
19958 | bsr.l _imem_read_long # fetch src operand immed data | ||
19959 | |||
19960 | tst.l %d1 # did ifetch fail? | ||
19961 | bne.l funimp_iacc # yes | ||
19962 | bra.b load_sgl_cont | ||
19963 | |||
19964 | # must convert sgl denorm format to an Xprec denorm fmt suitable for | ||
19965 | # normalization... | ||
19966 | # %a0 : points to sgl denorm | ||
19967 | get_sgl_denorm: | ||
19968 | clr.w FP_SRC_EX(%a6) | ||
19969 | bfextu (%a0){&9:&23}, %d0 # fetch sgl hi(_mantissa) | ||
19970 | lsl.l &0x8, %d0 | ||
19971 | mov.l %d0, FP_SRC_HI(%a6) # set ext hi(_mantissa) | ||
19972 | clr.l FP_SRC_LO(%a6) # set ext lo(_mantissa) | ||
19973 | |||
19974 | clr.w FP_SRC_EX(%a6) | ||
19975 | btst &0x7, (%a0) # is sgn bit set? | ||
19976 | beq.b sgl_dnrm_norm | ||
19977 | bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value | ||
19978 | |||
19979 | sgl_dnrm_norm: | ||
19980 | lea FP_SRC(%a6), %a0 | ||
19981 | bsr.l norm # normalize number | ||
19982 | mov.w &0x3f81, %d1 # xprec exp = 0x3f81 | ||
19983 | sub.w %d0, %d1 # exp = 0x3f81 - shft amt. | ||
19984 | or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} | ||
19985 | |||
19986 | mov.b &NORM, STAG(%a6) # fix src type tag | ||
19987 | rts | ||
19988 | |||
19989 | # convert sgl to ext SNAN | ||
19990 | # %a0 : points to sgl SNAN | ||
19991 | get_sgl_snan: | ||
19992 | mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | ||
19993 | bfextu (%a0){&9:&23}, %d0 | ||
19994 | lsl.l &0x8, %d0 # extract and insert hi(man) | ||
19995 | mov.l %d0, FP_SRC_HI(%a6) | ||
19996 | clr.l FP_SRC_LO(%a6) | ||
19997 | |||
19998 | btst &0x7, (%a0) # see if sign of SNAN is set | ||
19999 | beq.b no_sgl_snan_sgn | ||
20000 | bset &0x7, FP_SRC_EX(%a6) | ||
20001 | no_sgl_snan_sgn: | ||
20002 | rts | ||
20003 | |||
20004 | ######################################### | ||
20005 | # load a DBL into %fp0: # | ||
20006 | # -number can't fault # | ||
20007 | # (1) calc ea # | ||
20008 | # (2) read 8 bytes into L_SCR(1,2)# | ||
20009 | # (3) fmov.d into %fp0 # | ||
20010 | ######################################### | ||
20011 | load_dbl: | ||
20012 | movq.l &0x8, %d0 # pass: 8 (bytes) | ||
20013 | bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 | ||
20014 | |||
20015 | cmpi.b SPCOND_FLG(%a6),&immed_flg | ||
20016 | beq.b load_dbl_immed | ||
20017 | |||
20018 | lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space | ||
20019 | movq.l &0x8, %d0 # pass: # bytes to read | ||
20020 | bsr.l _dmem_read # fetch src operand from memory | ||
20021 | |||
20022 | tst.l %d1 # did dfetch fail? | ||
20023 | bne.l facc_in_d # yes | ||
20024 | |||
20025 | load_dbl_cont: | ||
20026 | lea L_SCR1(%a6), %a0 # pass: ptr to input dbl | ||
20027 | bsr.l set_tag_d # determine src type tag | ||
20028 | mov.b %d0, STAG(%a6) # set src optype tag | ||
20029 | |||
20030 | cmpi.b %d0, &DENORM # is it a dbl DENORM? | ||
20031 | beq.w get_dbl_denorm # yes | ||
20032 | |||
20033 | cmpi.b %d0, &SNAN # is it a dbl SNAN? | ||
20034 | beq.w get_dbl_snan # yes | ||
20035 | |||
20036 | fmov.d L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec | ||
20037 | fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC | ||
20038 | rts | ||
20039 | |||
20040 | load_dbl_immed: | ||
20041 | lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space | ||
20042 | movq.l &0x8, %d0 # pass: # bytes to read | ||
20043 | bsr.l _imem_read # fetch src operand from memory | ||
20044 | |||
20045 | tst.l %d1 # did ifetch fail? | ||
20046 | bne.l funimp_iacc # yes | ||
20047 | bra.b load_dbl_cont | ||
20048 | |||
20049 | # must convert dbl denorm format to an Xprec denorm fmt suitable for | ||
20050 | # normalization... | ||
20051 | # %a0 : loc. of dbl denorm | ||
20052 | get_dbl_denorm: | ||
20053 | clr.w FP_SRC_EX(%a6) | ||
20054 | bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) | ||
20055 | mov.l %d0, FP_SRC_HI(%a6) | ||
20056 | bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) | ||
20057 | mov.l &0xb, %d1 | ||
20058 | lsl.l %d1, %d0 | ||
20059 | mov.l %d0, FP_SRC_LO(%a6) | ||
20060 | |||
20061 | btst &0x7, (%a0) # is sgn bit set? | ||
20062 | beq.b dbl_dnrm_norm | ||
20063 | bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value | ||
20064 | |||
20065 | dbl_dnrm_norm: | ||
20066 | lea FP_SRC(%a6), %a0 | ||
20067 | bsr.l norm # normalize number | ||
20068 | mov.w &0x3c01, %d1 # xprec exp = 0x3c01 | ||
20069 | sub.w %d0, %d1 # exp = 0x3c01 - shft amt. | ||
20070 | or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} | ||
20071 | |||
20072 | mov.b &NORM, STAG(%a6) # fix src type tag | ||
20073 | rts | ||
20074 | |||
20075 | # convert dbl to ext SNAN | ||
20076 | # %a0 : points to dbl SNAN | ||
20077 | get_dbl_snan: | ||
20078 | mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | ||
20079 | |||
20080 | bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) | ||
20081 | mov.l %d0, FP_SRC_HI(%a6) | ||
20082 | bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) | ||
20083 | mov.l &0xb, %d1 | ||
20084 | lsl.l %d1, %d0 | ||
20085 | mov.l %d0, FP_SRC_LO(%a6) | ||
20086 | |||
20087 | btst &0x7, (%a0) # see if sign of SNAN is set | ||
20088 | beq.b no_dbl_snan_sgn | ||
20089 | bset &0x7, FP_SRC_EX(%a6) | ||
20090 | no_dbl_snan_sgn: | ||
20091 | rts | ||
20092 | |||
20093 | ################################################# | ||
20094 | # load a Xprec into %fp0: # | ||
20095 | # -number can't fault # | ||
20096 | # (1) calc ea # | ||
20097 | # (2) read 12 bytes into L_SCR(1,2) # | ||
20098 | # (3) fmov.x into %fp0 # | ||
20099 | ################################################# | ||
20100 | load_ext: | ||
20101 | mov.l &0xc, %d0 # pass: 12 (bytes) | ||
20102 | bsr.l _dcalc_ea # calc <ea> | ||
20103 | |||
20104 | lea FP_SRC(%a6), %a1 # pass: ptr to input ext tmp space | ||
20105 | mov.l &0xc, %d0 # pass: # of bytes to read | ||
20106 | bsr.l _dmem_read # fetch src operand from memory | ||
20107 | |||
20108 | tst.l %d1 # did dfetch fail? | ||
20109 | bne.l facc_in_x # yes | ||
20110 | |||
20111 | lea FP_SRC(%a6), %a0 # pass: ptr to src op | ||
20112 | bsr.l set_tag_x # determine src type tag | ||
20113 | |||
20114 | cmpi.b %d0, &UNNORM # is the src op an UNNORM? | ||
20115 | beq.b load_ext_unnorm # yes | ||
20116 | |||
20117 | mov.b %d0, STAG(%a6) # store the src optype tag | ||
20118 | rts | ||
20119 | |||
20120 | load_ext_unnorm: | ||
20121 | bsr.l unnorm_fix # fix the src UNNORM | ||
20122 | mov.b %d0, STAG(%a6) # store the src optype tag | ||
20123 | rts | ||
20124 | |||
20125 | ################################################# | ||
20126 | # load a packed into %fp0: # | ||
20127 | # -number can't fault # | ||
20128 | # (1) calc ea # | ||
20129 | # (2) read 12 bytes into L_SCR(1,2,3) # | ||
20130 | # (3) fmov.x into %fp0 # | ||
20131 | ################################################# | ||
20132 | load_packed: | ||
20133 | bsr.l get_packed | ||
20134 | |||
20135 | lea FP_SRC(%a6),%a0 # pass ptr to src op | ||
20136 | bsr.l set_tag_x # determine src type tag | ||
20137 | cmpi.b %d0,&UNNORM # is the src op an UNNORM ZERO? | ||
20138 | beq.b load_packed_unnorm # yes | ||
20139 | |||
20140 | mov.b %d0,STAG(%a6) # store the src optype tag | ||
20141 | rts | ||
20142 | |||
20143 | load_packed_unnorm: | ||
20144 | bsr.l unnorm_fix # fix the UNNORM ZERO | ||
20145 | mov.b %d0,STAG(%a6) # store the src optype tag | ||
20146 | rts | ||
20147 | |||
20148 | ######################################################################### | ||
20149 | # XDEF **************************************************************** # | ||
20150 | # fout(): move from fp register to memory or data register # | ||
20151 | # # | ||
20152 | # XREF **************************************************************** # | ||
20153 | # _round() - needed to create EXOP for sgl/dbl precision # | ||
20154 | # norm() - needed to create EXOP for extended precision # | ||
20155 | # ovf_res() - create default overflow result for sgl/dbl precision# | ||
20156 | # unf_res() - create default underflow result for sgl/dbl prec. # | ||
20157 | # dst_dbl() - create rounded dbl precision result. # | ||
20158 | # dst_sgl() - create rounded sgl precision result. # | ||
20159 | # fetch_dreg() - fetch dynamic k-factor reg for packed. # | ||
20160 | # bindec() - convert FP binary number to packed number. # | ||
20161 | # _mem_write() - write data to memory. # | ||
20162 | # _mem_write2() - write data to memory unless supv mode -(a7) exc.# | ||
20163 | # _dmem_write_{byte,word,long}() - write data to memory. # | ||
20164 | # store_dreg_{b,w,l}() - store data to data register file. # | ||
20165 | # facc_out_{b,w,l,d,x}() - data access error occurred. # | ||
20166 | # # | ||
20167 | # INPUT *************************************************************** # | ||
20168 | # a0 = pointer to extended precision source operand # | ||
20169 | # d0 = round prec,mode # | ||
20170 | # # | ||
20171 | # OUTPUT ************************************************************** # | ||
20172 | # fp0 : intermediate underflow or overflow result if # | ||
20173 | # OVFL/UNFL occurred for a sgl or dbl operand # | ||
20174 | # # | ||
20175 | # ALGORITHM *********************************************************** # | ||
20176 | # This routine is accessed by many handlers that need to do an # | ||
20177 | # opclass three move of an operand out to memory. # | ||
20178 | # Decode an fmove out (opclass 3) instruction to determine if # | ||
20179 | # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # | ||
20180 | # register or memory. The algorithm uses a standard "fmove" to create # | ||
20181 | # the rounded result. Also, since exceptions are disabled, this also # | ||
20182 | # create the correct OPERR default result if appropriate. # | ||
20183 | # For sgl or dbl precision, overflow or underflow can occur. If # | ||
20184 | # either occurs and is enabled, the EXOP. # | ||
20185 | # For extended precision, the stacked <ea> must be fixed along # | ||
20186 | # w/ the address index register as appropriate w/ _calc_ea_fout(). If # | ||
20187 | # the source is a denorm and if underflow is enabled, an EXOP must be # | ||
20188 | # created. # | ||
20189 | # For packed, the k-factor must be fetched from the instruction # | ||
20190 | # word or a data register. The <ea> must be fixed as w/ extended # | ||
20191 | # precision. Then, bindec() is called to create the appropriate # | ||
20192 | # packed result. # | ||
20193 | # If at any time an access error is flagged by one of the move- # | ||
20194 | # to-memory routines, then a special exit must be made so that the # | ||
20195 | # access error can be handled properly. # | ||
20196 | # # | ||
20197 | ######################################################################### | ||
20198 | |||
20199 | global fout | ||
20200 | fout: | ||
20201 | bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt | ||
20202 | mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index | ||
20203 | jmp (tbl_fout.b,%pc,%a1) # jump to routine | ||
20204 | |||
20205 | swbeg &0x8 | ||
20206 | tbl_fout: | ||
20207 | short fout_long - tbl_fout | ||
20208 | short fout_sgl - tbl_fout | ||
20209 | short fout_ext - tbl_fout | ||
20210 | short fout_pack - tbl_fout | ||
20211 | short fout_word - tbl_fout | ||
20212 | short fout_dbl - tbl_fout | ||
20213 | short fout_byte - tbl_fout | ||
20214 | short fout_pack - tbl_fout | ||
20215 | |||
20216 | ################################################################# | ||
20217 | # fmove.b out ################################################### | ||
20218 | ################################################################# | ||
20219 | |||
20220 | # Only "Unimplemented Data Type" exceptions enter here. The operand | ||
20221 | # is either a DENORM or a NORM. | ||
20222 | fout_byte: | ||
20223 | tst.b STAG(%a6) # is operand normalized? | ||
20224 | bne.b fout_byte_denorm # no | ||
20225 | |||
20226 | fmovm.x SRC(%a0),&0x80 # load value | ||
20227 | |||
20228 | fout_byte_norm: | ||
20229 | fmov.l %d0,%fpcr # insert rnd prec,mode | ||
20230 | |||
20231 | fmov.b %fp0,%d0 # exec move out w/ correct rnd mode | ||
20232 | |||
20233 | fmov.l &0x0,%fpcr # clear FPCR | ||
20234 | fmov.l %fpsr,%d1 # fetch FPSR | ||
20235 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits | ||
20236 | |||
20237 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20238 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20239 | beq.b fout_byte_dn # must save to integer regfile | ||
20240 | |||
20241 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20242 | bsr.l _dmem_write_byte # write byte | ||
20243 | |||
20244 | tst.l %d1 # did dstore fail? | ||
20245 | bne.l facc_out_b # yes | ||
20246 | |||
20247 | rts | ||
20248 | |||
20249 | fout_byte_dn: | ||
20250 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20251 | andi.w &0x7,%d1 | ||
20252 | bsr.l store_dreg_b | ||
20253 | rts | ||
20254 | |||
20255 | fout_byte_denorm: | ||
20256 | mov.l SRC_EX(%a0),%d1 | ||
20257 | andi.l &0x80000000,%d1 # keep DENORM sign | ||
20258 | ori.l &0x00800000,%d1 # make smallest sgl | ||
20259 | fmov.s %d1,%fp0 | ||
20260 | bra.b fout_byte_norm | ||
20261 | |||
20262 | ################################################################# | ||
20263 | # fmove.w out ################################################### | ||
20264 | ################################################################# | ||
20265 | |||
20266 | # Only "Unimplemented Data Type" exceptions enter here. The operand | ||
20267 | # is either a DENORM or a NORM. | ||
20268 | fout_word: | ||
20269 | tst.b STAG(%a6) # is operand normalized? | ||
20270 | bne.b fout_word_denorm # no | ||
20271 | |||
20272 | fmovm.x SRC(%a0),&0x80 # load value | ||
20273 | |||
20274 | fout_word_norm: | ||
20275 | fmov.l %d0,%fpcr # insert rnd prec:mode | ||
20276 | |||
20277 | fmov.w %fp0,%d0 # exec move out w/ correct rnd mode | ||
20278 | |||
20279 | fmov.l &0x0,%fpcr # clear FPCR | ||
20280 | fmov.l %fpsr,%d1 # fetch FPSR | ||
20281 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits | ||
20282 | |||
20283 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20284 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20285 | beq.b fout_word_dn # must save to integer regfile | ||
20286 | |||
20287 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20288 | bsr.l _dmem_write_word # write word | ||
20289 | |||
20290 | tst.l %d1 # did dstore fail? | ||
20291 | bne.l facc_out_w # yes | ||
20292 | |||
20293 | rts | ||
20294 | |||
20295 | fout_word_dn: | ||
20296 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20297 | andi.w &0x7,%d1 | ||
20298 | bsr.l store_dreg_w | ||
20299 | rts | ||
20300 | |||
20301 | fout_word_denorm: | ||
20302 | mov.l SRC_EX(%a0),%d1 | ||
20303 | andi.l &0x80000000,%d1 # keep DENORM sign | ||
20304 | ori.l &0x00800000,%d1 # make smallest sgl | ||
20305 | fmov.s %d1,%fp0 | ||
20306 | bra.b fout_word_norm | ||
20307 | |||
20308 | ################################################################# | ||
20309 | # fmove.l out ################################################### | ||
20310 | ################################################################# | ||
20311 | |||
20312 | # Only "Unimplemented Data Type" exceptions enter here. The operand | ||
20313 | # is either a DENORM or a NORM. | ||
20314 | fout_long: | ||
20315 | tst.b STAG(%a6) # is operand normalized? | ||
20316 | bne.b fout_long_denorm # no | ||
20317 | |||
20318 | fmovm.x SRC(%a0),&0x80 # load value | ||
20319 | |||
20320 | fout_long_norm: | ||
20321 | fmov.l %d0,%fpcr # insert rnd prec:mode | ||
20322 | |||
20323 | fmov.l %fp0,%d0 # exec move out w/ correct rnd mode | ||
20324 | |||
20325 | fmov.l &0x0,%fpcr # clear FPCR | ||
20326 | fmov.l %fpsr,%d1 # fetch FPSR | ||
20327 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits | ||
20328 | |||
20329 | fout_long_write: | ||
20330 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20331 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20332 | beq.b fout_long_dn # must save to integer regfile | ||
20333 | |||
20334 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20335 | bsr.l _dmem_write_long # write long | ||
20336 | |||
20337 | tst.l %d1 # did dstore fail? | ||
20338 | bne.l facc_out_l # yes | ||
20339 | |||
20340 | rts | ||
20341 | |||
20342 | fout_long_dn: | ||
20343 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20344 | andi.w &0x7,%d1 | ||
20345 | bsr.l store_dreg_l | ||
20346 | rts | ||
20347 | |||
20348 | fout_long_denorm: | ||
20349 | mov.l SRC_EX(%a0),%d1 | ||
20350 | andi.l &0x80000000,%d1 # keep DENORM sign | ||
20351 | ori.l &0x00800000,%d1 # make smallest sgl | ||
20352 | fmov.s %d1,%fp0 | ||
20353 | bra.b fout_long_norm | ||
20354 | |||
20355 | ################################################################# | ||
20356 | # fmove.x out ################################################### | ||
20357 | ################################################################# | ||
20358 | |||
20359 | # Only "Unimplemented Data Type" exceptions enter here. The operand | ||
20360 | # is either a DENORM or a NORM. | ||
20361 | # The DENORM causes an Underflow exception. | ||
20362 | fout_ext: | ||
20363 | |||
20364 | # we copy the extended precision result to FP_SCR0 so that the reserved | ||
20365 | # 16-bit field gets zeroed. we do this since we promise not to disturb | ||
20366 | # what's at SRC(a0). | ||
20367 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
20368 | clr.w 2+FP_SCR0_EX(%a6) # clear reserved field | ||
20369 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
20370 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
20371 | |||
20372 | fmovm.x SRC(%a0),&0x80 # return result | ||
20373 | |||
20374 | bsr.l _calc_ea_fout # fix stacked <ea> | ||
20375 | |||
20376 | mov.l %a0,%a1 # pass: dst addr | ||
20377 | lea FP_SCR0(%a6),%a0 # pass: src addr | ||
20378 | mov.l &0xc,%d0 # pass: opsize is 12 bytes | ||
20379 | |||
20380 | # we must not yet write the extended precision data to the stack | ||
20381 | # in the pre-decrement case from supervisor mode or else we'll corrupt | ||
20382 | # the stack frame. so, leave it in FP_SRC for now and deal with it later... | ||
20383 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
20384 | beq.b fout_ext_a7 | ||
20385 | |||
20386 | bsr.l _dmem_write # write ext prec number to memory | ||
20387 | |||
20388 | tst.l %d1 # did dstore fail? | ||
20389 | bne.w fout_ext_err # yes | ||
20390 | |||
20391 | tst.b STAG(%a6) # is operand normalized? | ||
20392 | bne.b fout_ext_denorm # no | ||
20393 | rts | ||
20394 | |||
20395 | # the number is a DENORM. must set the underflow exception bit | ||
20396 | fout_ext_denorm: | ||
20397 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit | ||
20398 | |||
20399 | mov.b FPCR_ENABLE(%a6),%d0 | ||
20400 | andi.b &0x0a,%d0 # is UNFL or INEX enabled? | ||
20401 | bne.b fout_ext_exc # yes | ||
20402 | rts | ||
20403 | |||
20404 | # we don't want to do the write if the exception occurred in supervisor mode | ||
20405 | # so _mem_write2() handles this for us. | ||
20406 | fout_ext_a7: | ||
20407 | bsr.l _mem_write2 # write ext prec number to memory | ||
20408 | |||
20409 | tst.l %d1 # did dstore fail? | ||
20410 | bne.w fout_ext_err # yes | ||
20411 | |||
20412 | tst.b STAG(%a6) # is operand normalized? | ||
20413 | bne.b fout_ext_denorm # no | ||
20414 | rts | ||
20415 | |||
20416 | fout_ext_exc: | ||
20417 | lea FP_SCR0(%a6),%a0 | ||
20418 | bsr.l norm # normalize the mantissa | ||
20419 | neg.w %d0 # new exp = -(shft amt) | ||
20420 | andi.w &0x7fff,%d0 | ||
20421 | andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign | ||
20422 | or.w %d0,FP_SCR0_EX(%a6) # insert new exponent | ||
20423 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
20424 | rts | ||
20425 | |||
20426 | fout_ext_err: | ||
20427 | mov.l EXC_A6(%a6),(%a6) # fix stacked a6 | ||
20428 | bra.l facc_out_x | ||
20429 | |||
20430 | ######################################################################### | ||
20431 | # fmove.s out ########################################################### | ||
20432 | ######################################################################### | ||
20433 | fout_sgl: | ||
20434 | andi.b &0x30,%d0 # clear rnd prec | ||
20435 | ori.b &s_mode*0x10,%d0 # insert sgl prec | ||
20436 | mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack | ||
20437 | |||
20438 | # | ||
20439 | # operand is a normalized number. first, we check to see if the move out | ||
20440 | # would cause either an underflow or overflow. these cases are handled | ||
20441 | # separately. otherwise, set the FPCR to the proper rounding mode and | ||
20442 | # execute the move. | ||
20443 | # | ||
20444 | mov.w SRC_EX(%a0),%d0 # extract exponent | ||
20445 | andi.w &0x7fff,%d0 # strip sign | ||
20446 | |||
20447 | cmpi.w %d0,&SGL_HI # will operand overflow? | ||
20448 | bgt.w fout_sgl_ovfl # yes; go handle OVFL | ||
20449 | beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL | ||
20450 | cmpi.w %d0,&SGL_LO # will operand underflow? | ||
20451 | blt.w fout_sgl_unfl # yes; go handle underflow | ||
20452 | |||
20453 | # | ||
20454 | # NORMs(in range) can be stored out by a simple "fmov.s" | ||
20455 | # Unnormalized inputs can come through this point. | ||
20456 | # | ||
20457 | fout_sgl_exg: | ||
20458 | fmovm.x SRC(%a0),&0x80 # fetch fop from stack | ||
20459 | |||
20460 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
20461 | fmov.l &0x0,%fpsr # clear FPSR | ||
20462 | |||
20463 | fmov.s %fp0,%d0 # store does convert and round | ||
20464 | |||
20465 | fmov.l &0x0,%fpcr # clear FPCR | ||
20466 | fmov.l %fpsr,%d1 # save FPSR | ||
20467 | |||
20468 | or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex | ||
20469 | |||
20470 | fout_sgl_exg_write: | ||
20471 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20472 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20473 | beq.b fout_sgl_exg_write_dn # must save to integer regfile | ||
20474 | |||
20475 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20476 | bsr.l _dmem_write_long # write long | ||
20477 | |||
20478 | tst.l %d1 # did dstore fail? | ||
20479 | bne.l facc_out_l # yes | ||
20480 | |||
20481 | rts | ||
20482 | |||
20483 | fout_sgl_exg_write_dn: | ||
20484 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20485 | andi.w &0x7,%d1 | ||
20486 | bsr.l store_dreg_l | ||
20487 | rts | ||
20488 | |||
20489 | # | ||
20490 | # here, we know that the operand would UNFL if moved out to single prec, | ||
20491 | # so, denorm and round and then use generic store single routine to | ||
20492 | # write the value to memory. | ||
20493 | # | ||
20494 | fout_sgl_unfl: | ||
20495 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | ||
20496 | |||
20497 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
20498 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
20499 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
20500 | mov.l %a0,-(%sp) | ||
20501 | |||
20502 | clr.l %d0 # pass: S.F. = 0 | ||
20503 | |||
20504 | cmpi.b STAG(%a6),&DENORM # fetch src optype tag | ||
20505 | bne.b fout_sgl_unfl_cont # let DENORMs fall through | ||
20506 | |||
20507 | lea FP_SCR0(%a6),%a0 | ||
20508 | bsr.l norm # normalize the DENORM | ||
20509 | |||
20510 | fout_sgl_unfl_cont: | ||
20511 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
20512 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
20513 | bsr.l unf_res # calc default underflow result | ||
20514 | |||
20515 | lea FP_SCR0(%a6),%a0 # pass: ptr to fop | ||
20516 | bsr.l dst_sgl # convert to single prec | ||
20517 | |||
20518 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20519 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20520 | beq.b fout_sgl_unfl_dn # must save to integer regfile | ||
20521 | |||
20522 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20523 | bsr.l _dmem_write_long # write long | ||
20524 | |||
20525 | tst.l %d1 # did dstore fail? | ||
20526 | bne.l facc_out_l # yes | ||
20527 | |||
20528 | bra.b fout_sgl_unfl_chkexc | ||
20529 | |||
20530 | fout_sgl_unfl_dn: | ||
20531 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20532 | andi.w &0x7,%d1 | ||
20533 | bsr.l store_dreg_l | ||
20534 | |||
20535 | fout_sgl_unfl_chkexc: | ||
20536 | mov.b FPCR_ENABLE(%a6),%d1 | ||
20537 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? | ||
20538 | bne.w fout_sd_exc_unfl # yes | ||
20539 | addq.l &0x4,%sp | ||
20540 | rts | ||
20541 | |||
20542 | # | ||
20543 | # it's definitely an overflow so call ovf_res to get the correct answer | ||
20544 | # | ||
20545 | fout_sgl_ovfl: | ||
20546 | tst.b 3+SRC_HI(%a0) # is result inexact? | ||
20547 | bne.b fout_sgl_ovfl_inex2 | ||
20548 | tst.l SRC_LO(%a0) # is result inexact? | ||
20549 | bne.b fout_sgl_ovfl_inex2 | ||
20550 | ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
20551 | bra.b fout_sgl_ovfl_cont | ||
20552 | fout_sgl_ovfl_inex2: | ||
20553 | ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | ||
20554 | |||
20555 | fout_sgl_ovfl_cont: | ||
20556 | mov.l %a0,-(%sp) | ||
20557 | |||
20558 | # call ovf_res() w/ sgl prec and the correct rnd mode to create the default | ||
20559 | # overflow result. DON'T save the returned ccodes from ovf_res() since | ||
20560 | # fmove out doesn't alter them. | ||
20561 | tst.b SRC_EX(%a0) # is operand negative? | ||
20562 | smi %d1 # set if so | ||
20563 | mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode | ||
20564 | bsr.l ovf_res # calc OVFL result | ||
20565 | fmovm.x (%a0),&0x80 # load default overflow result | ||
20566 | fmov.s %fp0,%d0 # store to single | ||
20567 | |||
20568 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode | ||
20569 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) | ||
20570 | beq.b fout_sgl_ovfl_dn # must save to integer regfile | ||
20571 | |||
20572 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct | ||
20573 | bsr.l _dmem_write_long # write long | ||
20574 | |||
20575 | tst.l %d1 # did dstore fail? | ||
20576 | bne.l facc_out_l # yes | ||
20577 | |||
20578 | bra.b fout_sgl_ovfl_chkexc | ||
20579 | |||
20580 | fout_sgl_ovfl_dn: | ||
20581 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn | ||
20582 | andi.w &0x7,%d1 | ||
20583 | bsr.l store_dreg_l | ||
20584 | |||
20585 | fout_sgl_ovfl_chkexc: | ||
20586 | mov.b FPCR_ENABLE(%a6),%d1 | ||
20587 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? | ||
20588 | bne.w fout_sd_exc_ovfl # yes | ||
20589 | addq.l &0x4,%sp | ||
20590 | rts | ||
20591 | |||
20592 | # | ||
20593 | # move out MAY overflow: | ||
20594 | # (1) force the exp to 0x3fff | ||
20595 | # (2) do a move w/ appropriate rnd mode | ||
20596 | # (3) if exp still equals zero, then insert original exponent | ||
20597 | # for the correct result. | ||
20598 | # if exp now equals one, then it overflowed so call ovf_res. | ||
20599 | # | ||
20600 | fout_sgl_may_ovfl: | ||
20601 | mov.w SRC_EX(%a0),%d1 # fetch current sign | ||
20602 | andi.w &0x8000,%d1 # keep it,clear exp | ||
20603 | ori.w &0x3fff,%d1 # insert exp = 0 | ||
20604 | mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp | ||
20605 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | ||
20606 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | ||
20607 | |||
20608 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
20609 | |||
20610 | fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded | ||
20611 | fmov.l &0x0,%fpcr # clear FPCR | ||
20612 | |||
20613 | fabs.x %fp0 # need absolute value | ||
20614 | fcmp.b %fp0,&0x2 # did exponent increase? | ||
20615 | fblt.w fout_sgl_exg # no; go finish NORM | ||
20616 | bra.w fout_sgl_ovfl # yes; go handle overflow | ||
20617 | |||
20618 | ################ | ||
20619 | |||
20620 | fout_sd_exc_unfl: | ||
20621 | mov.l (%sp)+,%a0 | ||
20622 | |||
20623 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
20624 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
20625 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
20626 | |||
20627 | cmpi.b STAG(%a6),&DENORM # was src a DENORM? | ||
20628 | bne.b fout_sd_exc_cont # no | ||
20629 | |||
20630 | lea FP_SCR0(%a6),%a0 | ||
20631 | bsr.l norm | ||
20632 | neg.l %d0 | ||
20633 | andi.w &0x7fff,%d0 | ||
20634 | bfins %d0,FP_SCR0_EX(%a6){&1:&15} | ||
20635 | bra.b fout_sd_exc_cont | ||
20636 | |||
20637 | fout_sd_exc: | ||
20638 | fout_sd_exc_ovfl: | ||
20639 | mov.l (%sp)+,%a0 # restore a0 | ||
20640 | |||
20641 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
20642 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
20643 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
20644 | |||
20645 | fout_sd_exc_cont: | ||
20646 | bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit | ||
20647 | sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit | ||
20648 | lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM | ||
20649 | |||
20650 | mov.b 3+L_SCR3(%a6),%d1 | ||
20651 | lsr.b &0x4,%d1 | ||
20652 | andi.w &0x0c,%d1 | ||
20653 | swap %d1 | ||
20654 | mov.b 3+L_SCR3(%a6),%d1 | ||
20655 | lsr.b &0x4,%d1 | ||
20656 | andi.w &0x03,%d1 | ||
20657 | clr.l %d0 # pass: zero g,r,s | ||
20658 | bsr.l _round # round the DENORM | ||
20659 | |||
20660 | tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? | ||
20661 | beq.b fout_sd_exc_done # no | ||
20662 | bset &0x7,FP_SCR0_EX(%a6) # yes | ||
20663 | |||
20664 | fout_sd_exc_done: | ||
20665 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 | ||
20666 | rts | ||
20667 | |||
20668 | ################################################################# | ||
20669 | # fmove.d out ################################################### | ||
20670 | ################################################################# | ||
20671 | fout_dbl: | ||
20672 | andi.b &0x30,%d0 # clear rnd prec | ||
20673 | ori.b &d_mode*0x10,%d0 # insert dbl prec | ||
20674 | mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack | ||
20675 | |||
20676 | # | ||
20677 | # operand is a normalized number. first, we check to see if the move out | ||
20678 | # would cause either an underflow or overflow. these cases are handled | ||
20679 | # separately. otherwise, set the FPCR to the proper rounding mode and | ||
20680 | # execute the move. | ||
20681 | # | ||
20682 | mov.w SRC_EX(%a0),%d0 # extract exponent | ||
20683 | andi.w &0x7fff,%d0 # strip sign | ||
20684 | |||
20685 | cmpi.w %d0,&DBL_HI # will operand overflow? | ||
20686 | bgt.w fout_dbl_ovfl # yes; go handle OVFL | ||
20687 | beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL | ||
20688 | cmpi.w %d0,&DBL_LO # will operand underflow? | ||
20689 | blt.w fout_dbl_unfl # yes; go handle underflow | ||
20690 | |||
20691 | # | ||
20692 | # NORMs(in range) can be stored out by a simple "fmov.d" | ||
20693 | # Unnormalized inputs can come through this point. | ||
20694 | # | ||
20695 | fout_dbl_exg: | ||
20696 | fmovm.x SRC(%a0),&0x80 # fetch fop from stack | ||
20697 | |||
20698 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
20699 | fmov.l &0x0,%fpsr # clear FPSR | ||
20700 | |||
20701 | fmov.d %fp0,L_SCR1(%a6) # store does convert and round | ||
20702 | |||
20703 | fmov.l &0x0,%fpcr # clear FPCR | ||
20704 | fmov.l %fpsr,%d0 # save FPSR | ||
20705 | |||
20706 | or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex | ||
20707 | |||
20708 | mov.l EXC_EA(%a6),%a1 # pass: dst addr | ||
20709 | lea L_SCR1(%a6),%a0 # pass: src addr | ||
20710 | movq.l &0x8,%d0 # pass: opsize is 8 bytes | ||
20711 | bsr.l _dmem_write # store dbl fop to memory | ||
20712 | |||
20713 | tst.l %d1 # did dstore fail? | ||
20714 | bne.l facc_out_d # yes | ||
20715 | |||
20716 | rts # no; so we're finished | ||
20717 | |||
20718 | # | ||
20719 | # here, we know that the operand would UNFL if moved out to double prec, | ||
20720 | # so, denorm and round and then use generic store double routine to | ||
20721 | # write the value to memory. | ||
20722 | # | ||
20723 | fout_dbl_unfl: | ||
20724 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | ||
20725 | |||
20726 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) | ||
20727 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) | ||
20728 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) | ||
20729 | mov.l %a0,-(%sp) | ||
20730 | |||
20731 | clr.l %d0 # pass: S.F. = 0 | ||
20732 | |||
20733 | cmpi.b STAG(%a6),&DENORM # fetch src optype tag | ||
20734 | bne.b fout_dbl_unfl_cont # let DENORMs fall through | ||
20735 | |||
20736 | lea FP_SCR0(%a6),%a0 | ||
20737 | bsr.l norm # normalize the DENORM | ||
20738 | |||
20739 | fout_dbl_unfl_cont: | ||
20740 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand | ||
20741 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode | ||
20742 | bsr.l unf_res # calc default underflow result | ||
20743 | |||
20744 | lea FP_SCR0(%a6),%a0 # pass: ptr to fop | ||
20745 | bsr.l dst_dbl # convert to single prec | ||
20746 | mov.l %d0,L_SCR1(%a6) | ||
20747 | mov.l %d1,L_SCR2(%a6) | ||
20748 | |||
20749 | mov.l EXC_EA(%a6),%a1 # pass: dst addr | ||
20750 | lea L_SCR1(%a6),%a0 # pass: src addr | ||
20751 | movq.l &0x8,%d0 # pass: opsize is 8 bytes | ||
20752 | bsr.l _dmem_write # store dbl fop to memory | ||
20753 | |||
20754 | tst.l %d1 # did dstore fail? | ||
20755 | bne.l facc_out_d # yes | ||
20756 | |||
20757 | mov.b FPCR_ENABLE(%a6),%d1 | ||
20758 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? | ||
20759 | bne.w fout_sd_exc_unfl # yes | ||
20760 | addq.l &0x4,%sp | ||
20761 | rts | ||
20762 | |||
20763 | # | ||
20764 | # it's definitely an overflow so call ovf_res to get the correct answer | ||
20765 | # | ||
20766 | fout_dbl_ovfl: | ||
20767 | mov.w 2+SRC_LO(%a0),%d0 | ||
20768 | andi.w &0x7ff,%d0 | ||
20769 | bne.b fout_dbl_ovfl_inex2 | ||
20770 | |||
20771 | ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | ||
20772 | bra.b fout_dbl_ovfl_cont | ||
20773 | fout_dbl_ovfl_inex2: | ||
20774 | ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | ||
20775 | |||
20776 | fout_dbl_ovfl_cont: | ||
20777 | mov.l %a0,-(%sp) | ||
20778 | |||
20779 | # call ovf_res() w/ dbl prec and the correct rnd mode to create the default | ||
20780 | # overflow result. DON'T save the returned ccodes from ovf_res() since | ||
20781 | # fmove out doesn't alter them. | ||
20782 | tst.b SRC_EX(%a0) # is operand negative? | ||
20783 | smi %d1 # set if so | ||
20784 | mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode | ||
20785 | bsr.l ovf_res # calc OVFL result | ||
20786 | fmovm.x (%a0),&0x80 # load default overflow result | ||
20787 | fmov.d %fp0,L_SCR1(%a6) # store to double | ||
20788 | |||
20789 | mov.l EXC_EA(%a6),%a1 # pass: dst addr | ||
20790 | lea L_SCR1(%a6),%a0 # pass: src addr | ||
20791 | movq.l &0x8,%d0 # pass: opsize is 8 bytes | ||
20792 | bsr.l _dmem_write # store dbl fop to memory | ||
20793 | |||
20794 | tst.l %d1 # did dstore fail? | ||
20795 | bne.l facc_out_d # yes | ||
20796 | |||
20797 | mov.b FPCR_ENABLE(%a6),%d1 | ||
20798 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? | ||
20799 | bne.w fout_sd_exc_ovfl # yes | ||
20800 | addq.l &0x4,%sp | ||
20801 | rts | ||
20802 | |||
20803 | # | ||
20804 | # move out MAY overflow: | ||
20805 | # (1) force the exp to 0x3fff | ||
20806 | # (2) do a move w/ appropriate rnd mode | ||
20807 | # (3) if exp still equals zero, then insert original exponent | ||
20808 | # for the correct result. | ||
20809 | # if exp now equals one, then it overflowed so call ovf_res. | ||
20810 | # | ||
20811 | fout_dbl_may_ovfl: | ||
20812 | mov.w SRC_EX(%a0),%d1 # fetch current sign | ||
20813 | andi.w &0x8000,%d1 # keep it,clear exp | ||
20814 | ori.w &0x3fff,%d1 # insert exp = 0 | ||
20815 | mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp | ||
20816 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | ||
20817 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | ||
20818 | |||
20819 | fmov.l L_SCR3(%a6),%fpcr # set FPCR | ||
20820 | |||
20821 | fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded | ||
20822 | fmov.l &0x0,%fpcr # clear FPCR | ||
20823 | |||
20824 | fabs.x %fp0 # need absolute value | ||
20825 | fcmp.b %fp0,&0x2 # did exponent increase? | ||
20826 | fblt.w fout_dbl_exg # no; go finish NORM | ||
20827 | bra.w fout_dbl_ovfl # yes; go handle overflow | ||
20828 | |||
20829 | ######################################################################### | ||
20830 | # XDEF **************************************************************** # | ||
20831 | # dst_dbl(): create double precision value from extended prec. # | ||
20832 | # # | ||
20833 | # XREF **************************************************************** # | ||
20834 | # None # | ||
20835 | # # | ||
20836 | # INPUT *************************************************************** # | ||
20837 | # a0 = pointer to source operand in extended precision # | ||
20838 | # # | ||
20839 | # OUTPUT ************************************************************** # | ||
20840 | # d0 = hi(double precision result) # | ||
20841 | # d1 = lo(double precision result) # | ||
20842 | # # | ||
20843 | # ALGORITHM *********************************************************** # | ||
20844 | # # | ||
20845 | # Changes extended precision to double precision. # | ||
20846 | # Note: no attempt is made to round the extended value to double. # | ||
20847 | # dbl_sign = ext_sign # | ||
20848 | # dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # | ||
20849 | # get rid of ext integer bit # | ||
20850 | # dbl_mant = ext_mant{62:12} # | ||
20851 | # # | ||
20852 | # --------------- --------------- --------------- # | ||
20853 | # extended -> |s| exp | |1| ms mant | | ls mant | # | ||
20854 | # --------------- --------------- --------------- # | ||
20855 | # 95 64 63 62 32 31 11 0 # | ||
20856 | # | | # | ||
20857 | # | | # | ||
20858 | # | | # | ||
20859 | # v v # | ||
20860 | # --------------- --------------- # | ||
20861 | # double -> |s|exp| mant | | mant | # | ||
20862 | # --------------- --------------- # | ||
20863 | # 63 51 32 31 0 # | ||
20864 | # # | ||
20865 | ######################################################################### | ||
20866 | |||
20867 | dst_dbl: | ||
20868 | clr.l %d0 # clear d0 | ||
20869 | mov.w FTEMP_EX(%a0),%d0 # get exponent | ||
20870 | subi.w &EXT_BIAS,%d0 # subtract extended precision bias | ||
20871 | addi.w &DBL_BIAS,%d0 # add double precision bias | ||
20872 | tst.b FTEMP_HI(%a0) # is number a denorm? | ||
20873 | bmi.b dst_get_dupper # no | ||
20874 | subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 | ||
20875 | dst_get_dupper: | ||
20876 | swap %d0 # d0 now in upper word | ||
20877 | lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp | ||
20878 | tst.b FTEMP_EX(%a0) # test sign | ||
20879 | bpl.b dst_get_dman # if postive, go process mantissa | ||
20880 | bset &0x1f,%d0 # if negative, set sign | ||
20881 | dst_get_dman: | ||
20882 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa | ||
20883 | bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms | ||
20884 | or.l %d1,%d0 # put these bits in ms word of double | ||
20885 | mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack | ||
20886 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa | ||
20887 | mov.l &21,%d0 # load shift count | ||
20888 | lsl.l %d0,%d1 # put lower 11 bits in upper bits | ||
20889 | mov.l %d1,L_SCR2(%a6) # build lower lword in memory | ||
20890 | mov.l FTEMP_LO(%a0),%d1 # get ls mantissa | ||
20891 | bfextu %d1{&0:&21},%d0 # get ls 21 bits of double | ||
20892 | mov.l L_SCR2(%a6),%d1 | ||
20893 | or.l %d0,%d1 # put them in double result | ||
20894 | mov.l L_SCR1(%a6),%d0 | ||
20895 | rts | ||
20896 | |||
20897 | ######################################################################### | ||
20898 | # XDEF **************************************************************** # | ||
20899 | # dst_sgl(): create single precision value from extended prec # | ||
20900 | # # | ||
20901 | # XREF **************************************************************** # | ||
20902 | # # | ||
20903 | # INPUT *************************************************************** # | ||
20904 | # a0 = pointer to source operand in extended precision # | ||
20905 | # # | ||
20906 | # OUTPUT ************************************************************** # | ||
20907 | # d0 = single precision result # | ||
20908 | # # | ||
20909 | # ALGORITHM *********************************************************** # | ||
20910 | # # | ||
20911 | # Changes extended precision to single precision. # | ||
20912 | # sgl_sign = ext_sign # | ||
20913 | # sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # | ||
20914 | # get rid of ext integer bit # | ||
20915 | # sgl_mant = ext_mant{62:12} # | ||
20916 | # # | ||
20917 | # --------------- --------------- --------------- # | ||
20918 | # extended -> |s| exp | |1| ms mant | | ls mant | # | ||
20919 | # --------------- --------------- --------------- # | ||
20920 | # 95 64 63 62 40 32 31 12 0 # | ||
20921 | # | | # | ||
20922 | # | | # | ||
20923 | # | | # | ||
20924 | # v v # | ||
20925 | # --------------- # | ||
20926 | # single -> |s|exp| mant | # | ||
20927 | # --------------- # | ||
20928 | # 31 22 0 # | ||
20929 | # # | ||
20930 | ######################################################################### | ||
20931 | |||
20932 | dst_sgl: | ||
20933 | clr.l %d0 | ||
20934 | mov.w FTEMP_EX(%a0),%d0 # get exponent | ||
20935 | subi.w &EXT_BIAS,%d0 # subtract extended precision bias | ||
20936 | addi.w &SGL_BIAS,%d0 # add single precision bias | ||
20937 | tst.b FTEMP_HI(%a0) # is number a denorm? | ||
20938 | bmi.b dst_get_supper # no | ||
20939 | subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 | ||
20940 | dst_get_supper: | ||
20941 | swap %d0 # put exp in upper word of d0 | ||
20942 | lsl.l &0x7,%d0 # shift it into single exp bits | ||
20943 | tst.b FTEMP_EX(%a0) # test sign | ||
20944 | bpl.b dst_get_sman # if positive, continue | ||
20945 | bset &0x1f,%d0 # if negative, put in sign first | ||
20946 | dst_get_sman: | ||
20947 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa | ||
20948 | andi.l &0x7fffff00,%d1 # get upper 23 bits of ms | ||
20949 | lsr.l &0x8,%d1 # and put them flush right | ||
20950 | or.l %d1,%d0 # put these bits in ms word of single | ||
20951 | rts | ||
20952 | |||
20953 | ############################################################################## | ||
20954 | fout_pack: | ||
20955 | bsr.l _calc_ea_fout # fetch the <ea> | ||
20956 | mov.l %a0,-(%sp) | ||
20957 | |||
20958 | mov.b STAG(%a6),%d0 # fetch input type | ||
20959 | bne.w fout_pack_not_norm # input is not NORM | ||
20960 | |||
20961 | fout_pack_norm: | ||
20962 | btst &0x4,EXC_CMDREG(%a6) # static or dynamic? | ||
20963 | beq.b fout_pack_s # static | ||
20964 | |||
20965 | fout_pack_d: | ||
20966 | mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg | ||
20967 | lsr.b &0x4,%d1 | ||
20968 | andi.w &0x7,%d1 | ||
20969 | |||
20970 | bsr.l fetch_dreg # fetch Dn w/ k-factor | ||
20971 | |||
20972 | bra.b fout_pack_type | ||
20973 | fout_pack_s: | ||
20974 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field | ||
20975 | |||
20976 | fout_pack_type: | ||
20977 | bfexts %d0{&25:&7},%d0 # extract k-factor | ||
20978 | mov.l %d0,-(%sp) | ||
20979 | |||
20980 | lea FP_SRC(%a6),%a0 # pass: ptr to input | ||
20981 | |||
20982 | # bindec is currently scrambling FP_SRC for denorm inputs. | ||
20983 | # we'll have to change this, but for now, tough luck!!! | ||
20984 | bsr.l bindec # convert xprec to packed | ||
20985 | |||
20986 | # andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields | ||
20987 | andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields | ||
20988 | |||
20989 | mov.l (%sp)+,%d0 | ||
20990 | |||
20991 | tst.b 3+FP_SCR0_EX(%a6) | ||
20992 | bne.b fout_pack_set | ||
20993 | tst.l FP_SCR0_HI(%a6) | ||
20994 | bne.b fout_pack_set | ||
20995 | tst.l FP_SCR0_LO(%a6) | ||
20996 | bne.b fout_pack_set | ||
20997 | |||
20998 | # add the extra condition that only if the k-factor was zero, too, should | ||
20999 | # we zero the exponent | ||
21000 | tst.l %d0 | ||
21001 | bne.b fout_pack_set | ||
21002 | # "mantissa" is all zero which means that the answer is zero. but, the '040 | ||
21003 | # algorithm allows the exponent to be non-zero. the 881/2 do not. therefore, | ||
21004 | # if the mantissa is zero, I will zero the exponent, too. | ||
21005 | # the question now is whether the exponents sign bit is allowed to be non-zero | ||
21006 | # for a zero, also... | ||
21007 | andi.w &0xf000,FP_SCR0(%a6) | ||
21008 | |||
21009 | fout_pack_set: | ||
21010 | |||
21011 | lea FP_SCR0(%a6),%a0 # pass: src addr | ||
21012 | |||
21013 | fout_pack_write: | ||
21014 | mov.l (%sp)+,%a1 # pass: dst addr | ||
21015 | mov.l &0xc,%d0 # pass: opsize is 12 bytes | ||
21016 | |||
21017 | cmpi.b SPCOND_FLG(%a6),&mda7_flg | ||
21018 | beq.b fout_pack_a7 | ||
21019 | |||
21020 | bsr.l _dmem_write # write ext prec number to memory | ||
21021 | |||
21022 | tst.l %d1 # did dstore fail? | ||
21023 | bne.w fout_ext_err # yes | ||
21024 | |||
21025 | rts | ||
21026 | |||
21027 | # we don't want to do the write if the exception occurred in supervisor mode | ||
21028 | # so _mem_write2() handles this for us. | ||
21029 | fout_pack_a7: | ||
21030 | bsr.l _mem_write2 # write ext prec number to memory | ||
21031 | |||
21032 | tst.l %d1 # did dstore fail? | ||
21033 | bne.w fout_ext_err # yes | ||
21034 | |||
21035 | rts | ||
21036 | |||
21037 | fout_pack_not_norm: | ||
21038 | cmpi.b %d0,&DENORM # is it a DENORM? | ||
21039 | beq.w fout_pack_norm # yes | ||
21040 | lea FP_SRC(%a6),%a0 | ||
21041 | clr.w 2+FP_SRC_EX(%a6) | ||
21042 | cmpi.b %d0,&SNAN # is it an SNAN? | ||
21043 | beq.b fout_pack_snan # yes | ||
21044 | bra.b fout_pack_write # no | ||
21045 | |||
21046 | fout_pack_snan: | ||
21047 | ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP | ||
21048 | bset &0x6,FP_SRC_HI(%a6) # set snan bit | ||
21049 | bra.b fout_pack_write | ||
21050 | |||
21051 | ######################################################################### | ||
21052 | # XDEF **************************************************************** # | ||
21053 | # fetch_dreg(): fetch register according to index in d1 # | ||
21054 | # # | ||
21055 | # XREF **************************************************************** # | ||
21056 | # None # | ||
21057 | # # | ||
21058 | # INPUT *************************************************************** # | ||
21059 | # d1 = index of register to fetch from # | ||
21060 | # # | ||
21061 | # OUTPUT ************************************************************** # | ||
21062 | # d0 = value of register fetched # | ||
21063 | # # | ||
21064 | # ALGORITHM *********************************************************** # | ||
21065 | # According to the index value in d1 which can range from zero # | ||
21066 | # to fifteen, load the corresponding register file value (where # | ||
21067 | # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # | ||
21068 | # stack. The rest should still be in their original places. # | ||
21069 | # # | ||
21070 | ######################################################################### | ||
21071 | |||
21072 | # this routine leaves d1 intact for subsequent store_dreg calls. | ||
21073 | global fetch_dreg | ||
21074 | fetch_dreg: | ||
21075 | mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 | ||
21076 | jmp (tbl_fdreg.b,%pc,%d0.w*1) | ||
21077 | |||
21078 | tbl_fdreg: | ||
21079 | short fdreg0 - tbl_fdreg | ||
21080 | short fdreg1 - tbl_fdreg | ||
21081 | short fdreg2 - tbl_fdreg | ||
21082 | short fdreg3 - tbl_fdreg | ||
21083 | short fdreg4 - tbl_fdreg | ||
21084 | short fdreg5 - tbl_fdreg | ||
21085 | short fdreg6 - tbl_fdreg | ||
21086 | short fdreg7 - tbl_fdreg | ||
21087 | short fdreg8 - tbl_fdreg | ||
21088 | short fdreg9 - tbl_fdreg | ||
21089 | short fdrega - tbl_fdreg | ||
21090 | short fdregb - tbl_fdreg | ||
21091 | short fdregc - tbl_fdreg | ||
21092 | short fdregd - tbl_fdreg | ||
21093 | short fdrege - tbl_fdreg | ||
21094 | short fdregf - tbl_fdreg | ||
21095 | |||
21096 | fdreg0: | ||
21097 | mov.l EXC_DREGS+0x0(%a6),%d0 | ||
21098 | rts | ||
21099 | fdreg1: | ||
21100 | mov.l EXC_DREGS+0x4(%a6),%d0 | ||
21101 | rts | ||
21102 | fdreg2: | ||
21103 | mov.l %d2,%d0 | ||
21104 | rts | ||
21105 | fdreg3: | ||
21106 | mov.l %d3,%d0 | ||
21107 | rts | ||
21108 | fdreg4: | ||
21109 | mov.l %d4,%d0 | ||
21110 | rts | ||
21111 | fdreg5: | ||
21112 | mov.l %d5,%d0 | ||
21113 | rts | ||
21114 | fdreg6: | ||
21115 | mov.l %d6,%d0 | ||
21116 | rts | ||
21117 | fdreg7: | ||
21118 | mov.l %d7,%d0 | ||
21119 | rts | ||
21120 | fdreg8: | ||
21121 | mov.l EXC_DREGS+0x8(%a6),%d0 | ||
21122 | rts | ||
21123 | fdreg9: | ||
21124 | mov.l EXC_DREGS+0xc(%a6),%d0 | ||
21125 | rts | ||
21126 | fdrega: | ||
21127 | mov.l %a2,%d0 | ||
21128 | rts | ||
21129 | fdregb: | ||
21130 | mov.l %a3,%d0 | ||
21131 | rts | ||
21132 | fdregc: | ||
21133 | mov.l %a4,%d0 | ||
21134 | rts | ||
21135 | fdregd: | ||
21136 | mov.l %a5,%d0 | ||
21137 | rts | ||
21138 | fdrege: | ||
21139 | mov.l (%a6),%d0 | ||
21140 | rts | ||
21141 | fdregf: | ||
21142 | mov.l EXC_A7(%a6),%d0 | ||
21143 | rts | ||
21144 | |||
21145 | ######################################################################### | ||
21146 | # XDEF **************************************************************** # | ||
21147 | # store_dreg_l(): store longword to data register specified by d1 # | ||
21148 | # # | ||
21149 | # XREF **************************************************************** # | ||
21150 | # None # | ||
21151 | # # | ||
21152 | # INPUT *************************************************************** # | ||
21153 | # d0 = longowrd value to store # | ||
21154 | # d1 = index of register to fetch from # | ||
21155 | # # | ||
21156 | # OUTPUT ************************************************************** # | ||
21157 | # (data register is updated) # | ||
21158 | # # | ||
21159 | # ALGORITHM *********************************************************** # | ||
21160 | # According to the index value in d1, store the longword value # | ||
21161 | # in d0 to the corresponding data register. D0/D1 are on the stack # | ||
21162 | # while the rest are in their initial places. # | ||
21163 | # # | ||
21164 | ######################################################################### | ||
21165 | |||
21166 | global store_dreg_l | ||
21167 | store_dreg_l: | ||
21168 | mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 | ||
21169 | jmp (tbl_sdregl.b,%pc,%d1.w*1) | ||
21170 | |||
21171 | tbl_sdregl: | ||
21172 | short sdregl0 - tbl_sdregl | ||
21173 | short sdregl1 - tbl_sdregl | ||
21174 | short sdregl2 - tbl_sdregl | ||
21175 | short sdregl3 - tbl_sdregl | ||
21176 | short sdregl4 - tbl_sdregl | ||
21177 | short sdregl5 - tbl_sdregl | ||
21178 | short sdregl6 - tbl_sdregl | ||
21179 | short sdregl7 - tbl_sdregl | ||
21180 | |||
21181 | sdregl0: | ||
21182 | mov.l %d0,EXC_DREGS+0x0(%a6) | ||
21183 | rts | ||
21184 | sdregl1: | ||
21185 | mov.l %d0,EXC_DREGS+0x4(%a6) | ||
21186 | rts | ||
21187 | sdregl2: | ||
21188 | mov.l %d0,%d2 | ||
21189 | rts | ||
21190 | sdregl3: | ||
21191 | mov.l %d0,%d3 | ||
21192 | rts | ||
21193 | sdregl4: | ||
21194 | mov.l %d0,%d4 | ||
21195 | rts | ||
21196 | sdregl5: | ||
21197 | mov.l %d0,%d5 | ||
21198 | rts | ||
21199 | sdregl6: | ||
21200 | mov.l %d0,%d6 | ||
21201 | rts | ||
21202 | sdregl7: | ||
21203 | mov.l %d0,%d7 | ||
21204 | rts | ||
21205 | |||
21206 | ######################################################################### | ||
21207 | # XDEF **************************************************************** # | ||
21208 | # store_dreg_w(): store word to data register specified by d1 # | ||
21209 | # # | ||
21210 | # XREF **************************************************************** # | ||
21211 | # None # | ||
21212 | # # | ||
21213 | # INPUT *************************************************************** # | ||
21214 | # d0 = word value to store # | ||
21215 | # d1 = index of register to fetch from # | ||
21216 | # # | ||
21217 | # OUTPUT ************************************************************** # | ||
21218 | # (data register is updated) # | ||
21219 | # # | ||
21220 | # ALGORITHM *********************************************************** # | ||
21221 | # According to the index value in d1, store the word value # | ||
21222 | # in d0 to the corresponding data register. D0/D1 are on the stack # | ||
21223 | # while the rest are in their initial places. # | ||
21224 | # # | ||
21225 | ######################################################################### | ||
21226 | |||
21227 | global store_dreg_w | ||
21228 | store_dreg_w: | ||
21229 | mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 | ||
21230 | jmp (tbl_sdregw.b,%pc,%d1.w*1) | ||
21231 | |||
21232 | tbl_sdregw: | ||
21233 | short sdregw0 - tbl_sdregw | ||
21234 | short sdregw1 - tbl_sdregw | ||
21235 | short sdregw2 - tbl_sdregw | ||
21236 | short sdregw3 - tbl_sdregw | ||
21237 | short sdregw4 - tbl_sdregw | ||
21238 | short sdregw5 - tbl_sdregw | ||
21239 | short sdregw6 - tbl_sdregw | ||
21240 | short sdregw7 - tbl_sdregw | ||
21241 | |||
21242 | sdregw0: | ||
21243 | mov.w %d0,2+EXC_DREGS+0x0(%a6) | ||
21244 | rts | ||
21245 | sdregw1: | ||
21246 | mov.w %d0,2+EXC_DREGS+0x4(%a6) | ||
21247 | rts | ||
21248 | sdregw2: | ||
21249 | mov.w %d0,%d2 | ||
21250 | rts | ||
21251 | sdregw3: | ||
21252 | mov.w %d0,%d3 | ||
21253 | rts | ||
21254 | sdregw4: | ||
21255 | mov.w %d0,%d4 | ||
21256 | rts | ||
21257 | sdregw5: | ||
21258 | mov.w %d0,%d5 | ||
21259 | rts | ||
21260 | sdregw6: | ||
21261 | mov.w %d0,%d6 | ||
21262 | rts | ||
21263 | sdregw7: | ||
21264 | mov.w %d0,%d7 | ||
21265 | rts | ||
21266 | |||
21267 | ######################################################################### | ||
21268 | # XDEF **************************************************************** # | ||
21269 | # store_dreg_b(): store byte to data register specified by d1 # | ||
21270 | # # | ||
21271 | # XREF **************************************************************** # | ||
21272 | # None # | ||
21273 | # # | ||
21274 | # INPUT *************************************************************** # | ||
21275 | # d0 = byte value to store # | ||
21276 | # d1 = index of register to fetch from # | ||
21277 | # # | ||
21278 | # OUTPUT ************************************************************** # | ||
21279 | # (data register is updated) # | ||
21280 | # # | ||
21281 | # ALGORITHM *********************************************************** # | ||
21282 | # According to the index value in d1, store the byte value # | ||
21283 | # in d0 to the corresponding data register. D0/D1 are on the stack # | ||
21284 | # while the rest are in their initial places. # | ||
21285 | # # | ||
21286 | ######################################################################### | ||
21287 | |||
21288 | global store_dreg_b | ||
21289 | store_dreg_b: | ||
21290 | mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 | ||
21291 | jmp (tbl_sdregb.b,%pc,%d1.w*1) | ||
21292 | |||
21293 | tbl_sdregb: | ||
21294 | short sdregb0 - tbl_sdregb | ||
21295 | short sdregb1 - tbl_sdregb | ||
21296 | short sdregb2 - tbl_sdregb | ||
21297 | short sdregb3 - tbl_sdregb | ||
21298 | short sdregb4 - tbl_sdregb | ||
21299 | short sdregb5 - tbl_sdregb | ||
21300 | short sdregb6 - tbl_sdregb | ||
21301 | short sdregb7 - tbl_sdregb | ||
21302 | |||
21303 | sdregb0: | ||
21304 | mov.b %d0,3+EXC_DREGS+0x0(%a6) | ||
21305 | rts | ||
21306 | sdregb1: | ||
21307 | mov.b %d0,3+EXC_DREGS+0x4(%a6) | ||
21308 | rts | ||
21309 | sdregb2: | ||
21310 | mov.b %d0,%d2 | ||
21311 | rts | ||
21312 | sdregb3: | ||
21313 | mov.b %d0,%d3 | ||
21314 | rts | ||
21315 | sdregb4: | ||
21316 | mov.b %d0,%d4 | ||
21317 | rts | ||
21318 | sdregb5: | ||
21319 | mov.b %d0,%d5 | ||
21320 | rts | ||
21321 | sdregb6: | ||
21322 | mov.b %d0,%d6 | ||
21323 | rts | ||
21324 | sdregb7: | ||
21325 | mov.b %d0,%d7 | ||
21326 | rts | ||
21327 | |||
21328 | ######################################################################### | ||
21329 | # XDEF **************************************************************** # | ||
21330 | # inc_areg(): increment an address register by the value in d0 # | ||
21331 | # # | ||
21332 | # XREF **************************************************************** # | ||
21333 | # None # | ||
21334 | # # | ||
21335 | # INPUT *************************************************************** # | ||
21336 | # d0 = amount to increment by # | ||
21337 | # d1 = index of address register to increment # | ||
21338 | # # | ||
21339 | # OUTPUT ************************************************************** # | ||
21340 | # (address register is updated) # | ||
21341 | # # | ||
21342 | # ALGORITHM *********************************************************** # | ||
21343 | # Typically used for an instruction w/ a post-increment <ea>, # | ||
21344 | # this routine adds the increment value in d0 to the address register # | ||
21345 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # | ||
21346 | # in their original places. # | ||
21347 | # For a7, if the increment amount is one, then we have to # | ||
21348 | # increment by two. For any a7 update, set the mia7_flag so that if # | ||
21349 | # an access error exception occurs later in emulation, this address # | ||
21350 | # register update can be undone. # | ||
21351 | # # | ||
21352 | ######################################################################### | ||
21353 | |||
21354 | global inc_areg | ||
21355 | inc_areg: | ||
21356 | mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 | ||
21357 | jmp (tbl_iareg.b,%pc,%d1.w*1) | ||
21358 | |||
21359 | tbl_iareg: | ||
21360 | short iareg0 - tbl_iareg | ||
21361 | short iareg1 - tbl_iareg | ||
21362 | short iareg2 - tbl_iareg | ||
21363 | short iareg3 - tbl_iareg | ||
21364 | short iareg4 - tbl_iareg | ||
21365 | short iareg5 - tbl_iareg | ||
21366 | short iareg6 - tbl_iareg | ||
21367 | short iareg7 - tbl_iareg | ||
21368 | |||
21369 | iareg0: add.l %d0,EXC_DREGS+0x8(%a6) | ||
21370 | rts | ||
21371 | iareg1: add.l %d0,EXC_DREGS+0xc(%a6) | ||
21372 | rts | ||
21373 | iareg2: add.l %d0,%a2 | ||
21374 | rts | ||
21375 | iareg3: add.l %d0,%a3 | ||
21376 | rts | ||
21377 | iareg4: add.l %d0,%a4 | ||
21378 | rts | ||
21379 | iareg5: add.l %d0,%a5 | ||
21380 | rts | ||
21381 | iareg6: add.l %d0,(%a6) | ||
21382 | rts | ||
21383 | iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) | ||
21384 | cmpi.b %d0,&0x1 | ||
21385 | beq.b iareg7b | ||
21386 | add.l %d0,EXC_A7(%a6) | ||
21387 | rts | ||
21388 | iareg7b: | ||
21389 | addq.l &0x2,EXC_A7(%a6) | ||
21390 | rts | ||
21391 | |||
21392 | ######################################################################### | ||
21393 | # XDEF **************************************************************** # | ||
21394 | # dec_areg(): decrement an address register by the value in d0 # | ||
21395 | # # | ||
21396 | # XREF **************************************************************** # | ||
21397 | # None # | ||
21398 | # # | ||
21399 | # INPUT *************************************************************** # | ||
21400 | # d0 = amount to decrement by # | ||
21401 | # d1 = index of address register to decrement # | ||
21402 | # # | ||
21403 | # OUTPUT ************************************************************** # | ||
21404 | # (address register is updated) # | ||
21405 | # # | ||
21406 | # ALGORITHM *********************************************************** # | ||
21407 | # Typically used for an instruction w/ a pre-decrement <ea>, # | ||
21408 | # this routine adds the decrement value in d0 to the address register # | ||
21409 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # | ||
21410 | # in their original places. # | ||
21411 | # For a7, if the decrement amount is one, then we have to # | ||
21412 | # decrement by two. For any a7 update, set the mda7_flag so that if # | ||
21413 | # an access error exception occurs later in emulation, this address # | ||
21414 | # register update can be undone. # | ||
21415 | # # | ||
21416 | ######################################################################### | ||
21417 | |||
21418 | global dec_areg | ||
21419 | dec_areg: | ||
21420 | mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 | ||
21421 | jmp (tbl_dareg.b,%pc,%d1.w*1) | ||
21422 | |||
21423 | tbl_dareg: | ||
21424 | short dareg0 - tbl_dareg | ||
21425 | short dareg1 - tbl_dareg | ||
21426 | short dareg2 - tbl_dareg | ||
21427 | short dareg3 - tbl_dareg | ||
21428 | short dareg4 - tbl_dareg | ||
21429 | short dareg5 - tbl_dareg | ||
21430 | short dareg6 - tbl_dareg | ||
21431 | short dareg7 - tbl_dareg | ||
21432 | |||
21433 | dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) | ||
21434 | rts | ||
21435 | dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) | ||
21436 | rts | ||
21437 | dareg2: sub.l %d0,%a2 | ||
21438 | rts | ||
21439 | dareg3: sub.l %d0,%a3 | ||
21440 | rts | ||
21441 | dareg4: sub.l %d0,%a4 | ||
21442 | rts | ||
21443 | dareg5: sub.l %d0,%a5 | ||
21444 | rts | ||
21445 | dareg6: sub.l %d0,(%a6) | ||
21446 | rts | ||
21447 | dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) | ||
21448 | cmpi.b %d0,&0x1 | ||
21449 | beq.b dareg7b | ||
21450 | sub.l %d0,EXC_A7(%a6) | ||
21451 | rts | ||
21452 | dareg7b: | ||
21453 | subq.l &0x2,EXC_A7(%a6) | ||
21454 | rts | ||
21455 | |||
21456 | ############################################################################## | ||
21457 | |||
21458 | ######################################################################### | ||
21459 | # XDEF **************************************************************** # | ||
21460 | # load_fpn1(): load FP register value into FP_SRC(a6). # | ||
21461 | # # | ||
21462 | # XREF **************************************************************** # | ||
21463 | # None # | ||
21464 | # # | ||
21465 | # INPUT *************************************************************** # | ||
21466 | # d0 = index of FP register to load # | ||
21467 | # # | ||
21468 | # OUTPUT ************************************************************** # | ||
21469 | # FP_SRC(a6) = value loaded from FP register file # | ||
21470 | # # | ||
21471 | # ALGORITHM *********************************************************** # | ||
21472 | # Using the index in d0, load FP_SRC(a6) with a number from the # | ||
21473 | # FP register file. # | ||
21474 | # # | ||
21475 | ######################################################################### | ||
21476 | |||
21477 | global load_fpn1 | ||
21478 | load_fpn1: | ||
21479 | mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 | ||
21480 | jmp (tbl_load_fpn1.b,%pc,%d0.w*1) | ||
21481 | |||
21482 | tbl_load_fpn1: | ||
21483 | short load_fpn1_0 - tbl_load_fpn1 | ||
21484 | short load_fpn1_1 - tbl_load_fpn1 | ||
21485 | short load_fpn1_2 - tbl_load_fpn1 | ||
21486 | short load_fpn1_3 - tbl_load_fpn1 | ||
21487 | short load_fpn1_4 - tbl_load_fpn1 | ||
21488 | short load_fpn1_5 - tbl_load_fpn1 | ||
21489 | short load_fpn1_6 - tbl_load_fpn1 | ||
21490 | short load_fpn1_7 - tbl_load_fpn1 | ||
21491 | |||
21492 | load_fpn1_0: | ||
21493 | mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) | ||
21494 | mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) | ||
21495 | mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) | ||
21496 | lea FP_SRC(%a6), %a0 | ||
21497 | rts | ||
21498 | load_fpn1_1: | ||
21499 | mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) | ||
21500 | mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) | ||
21501 | mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) | ||
21502 | lea FP_SRC(%a6), %a0 | ||
21503 | rts | ||
21504 | load_fpn1_2: | ||
21505 | fmovm.x &0x20, FP_SRC(%a6) | ||
21506 | lea FP_SRC(%a6), %a0 | ||
21507 | rts | ||
21508 | load_fpn1_3: | ||
21509 | fmovm.x &0x10, FP_SRC(%a6) | ||
21510 | lea FP_SRC(%a6), %a0 | ||
21511 | rts | ||
21512 | load_fpn1_4: | ||
21513 | fmovm.x &0x08, FP_SRC(%a6) | ||
21514 | lea FP_SRC(%a6), %a0 | ||
21515 | rts | ||
21516 | load_fpn1_5: | ||
21517 | fmovm.x &0x04, FP_SRC(%a6) | ||
21518 | lea FP_SRC(%a6), %a0 | ||
21519 | rts | ||
21520 | load_fpn1_6: | ||
21521 | fmovm.x &0x02, FP_SRC(%a6) | ||
21522 | lea FP_SRC(%a6), %a0 | ||
21523 | rts | ||
21524 | load_fpn1_7: | ||
21525 | fmovm.x &0x01, FP_SRC(%a6) | ||
21526 | lea FP_SRC(%a6), %a0 | ||
21527 | rts | ||
21528 | |||
21529 | ############################################################################# | ||
21530 | |||
21531 | ######################################################################### | ||
21532 | # XDEF **************************************************************** # | ||
21533 | # load_fpn2(): load FP register value into FP_DST(a6). # | ||
21534 | # # | ||
21535 | # XREF **************************************************************** # | ||
21536 | # None # | ||
21537 | # # | ||
21538 | # INPUT *************************************************************** # | ||
21539 | # d0 = index of FP register to load # | ||
21540 | # # | ||
21541 | # OUTPUT ************************************************************** # | ||
21542 | # FP_DST(a6) = value loaded from FP register file # | ||
21543 | # # | ||
21544 | # ALGORITHM *********************************************************** # | ||
21545 | # Using the index in d0, load FP_DST(a6) with a number from the # | ||
21546 | # FP register file. # | ||
21547 | # # | ||
21548 | ######################################################################### | ||
21549 | |||
21550 | global load_fpn2 | ||
21551 | load_fpn2: | ||
21552 | mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 | ||
21553 | jmp (tbl_load_fpn2.b,%pc,%d0.w*1) | ||
21554 | |||
21555 | tbl_load_fpn2: | ||
21556 | short load_fpn2_0 - tbl_load_fpn2 | ||
21557 | short load_fpn2_1 - tbl_load_fpn2 | ||
21558 | short load_fpn2_2 - tbl_load_fpn2 | ||
21559 | short load_fpn2_3 - tbl_load_fpn2 | ||
21560 | short load_fpn2_4 - tbl_load_fpn2 | ||
21561 | short load_fpn2_5 - tbl_load_fpn2 | ||
21562 | short load_fpn2_6 - tbl_load_fpn2 | ||
21563 | short load_fpn2_7 - tbl_load_fpn2 | ||
21564 | |||
21565 | load_fpn2_0: | ||
21566 | mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) | ||
21567 | mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) | ||
21568 | mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) | ||
21569 | lea FP_DST(%a6), %a0 | ||
21570 | rts | ||
21571 | load_fpn2_1: | ||
21572 | mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) | ||
21573 | mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) | ||
21574 | mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) | ||
21575 | lea FP_DST(%a6), %a0 | ||
21576 | rts | ||
21577 | load_fpn2_2: | ||
21578 | fmovm.x &0x20, FP_DST(%a6) | ||
21579 | lea FP_DST(%a6), %a0 | ||
21580 | rts | ||
21581 | load_fpn2_3: | ||
21582 | fmovm.x &0x10, FP_DST(%a6) | ||
21583 | lea FP_DST(%a6), %a0 | ||
21584 | rts | ||
21585 | load_fpn2_4: | ||
21586 | fmovm.x &0x08, FP_DST(%a6) | ||
21587 | lea FP_DST(%a6), %a0 | ||
21588 | rts | ||
21589 | load_fpn2_5: | ||
21590 | fmovm.x &0x04, FP_DST(%a6) | ||
21591 | lea FP_DST(%a6), %a0 | ||
21592 | rts | ||
21593 | load_fpn2_6: | ||
21594 | fmovm.x &0x02, FP_DST(%a6) | ||
21595 | lea FP_DST(%a6), %a0 | ||
21596 | rts | ||
21597 | load_fpn2_7: | ||
21598 | fmovm.x &0x01, FP_DST(%a6) | ||
21599 | lea FP_DST(%a6), %a0 | ||
21600 | rts | ||
21601 | |||
21602 | ############################################################################# | ||
21603 | |||
21604 | ######################################################################### | ||
21605 | # XDEF **************************************************************** # | ||
21606 | # store_fpreg(): store an fp value to the fpreg designated d0. # | ||
21607 | # # | ||
21608 | # XREF **************************************************************** # | ||
21609 | # None # | ||
21610 | # # | ||
21611 | # INPUT *************************************************************** # | ||
21612 | # fp0 = extended precision value to store # | ||
21613 | # d0 = index of floating-point register # | ||
21614 | # # | ||
21615 | # OUTPUT ************************************************************** # | ||
21616 | # None # | ||
21617 | # # | ||
21618 | # ALGORITHM *********************************************************** # | ||
21619 | # Store the value in fp0 to the FP register designated by the # | ||
21620 | # value in d0. The FP number can be DENORM or SNAN so we have to be # | ||
21621 | # careful that we don't take an exception here. # | ||
21622 | # # | ||
21623 | ######################################################################### | ||
21624 | |||
21625 | global store_fpreg | ||
21626 | store_fpreg: | ||
21627 | mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 | ||
21628 | jmp (tbl_store_fpreg.b,%pc,%d0.w*1) | ||
21629 | |||
21630 | tbl_store_fpreg: | ||
21631 | short store_fpreg_0 - tbl_store_fpreg | ||
21632 | short store_fpreg_1 - tbl_store_fpreg | ||
21633 | short store_fpreg_2 - tbl_store_fpreg | ||
21634 | short store_fpreg_3 - tbl_store_fpreg | ||
21635 | short store_fpreg_4 - tbl_store_fpreg | ||
21636 | short store_fpreg_5 - tbl_store_fpreg | ||
21637 | short store_fpreg_6 - tbl_store_fpreg | ||
21638 | short store_fpreg_7 - tbl_store_fpreg | ||
21639 | |||
21640 | store_fpreg_0: | ||
21641 | fmovm.x &0x80, EXC_FP0(%a6) | ||
21642 | rts | ||
21643 | store_fpreg_1: | ||
21644 | fmovm.x &0x80, EXC_FP1(%a6) | ||
21645 | rts | ||
21646 | store_fpreg_2: | ||
21647 | fmovm.x &0x01, -(%sp) | ||
21648 | fmovm.x (%sp)+, &0x20 | ||
21649 | rts | ||
21650 | store_fpreg_3: | ||
21651 | fmovm.x &0x01, -(%sp) | ||
21652 | fmovm.x (%sp)+, &0x10 | ||
21653 | rts | ||
21654 | store_fpreg_4: | ||
21655 | fmovm.x &0x01, -(%sp) | ||
21656 | fmovm.x (%sp)+, &0x08 | ||
21657 | rts | ||
21658 | store_fpreg_5: | ||
21659 | fmovm.x &0x01, -(%sp) | ||
21660 | fmovm.x (%sp)+, &0x04 | ||
21661 | rts | ||
21662 | store_fpreg_6: | ||
21663 | fmovm.x &0x01, -(%sp) | ||
21664 | fmovm.x (%sp)+, &0x02 | ||
21665 | rts | ||
21666 | store_fpreg_7: | ||
21667 | fmovm.x &0x01, -(%sp) | ||
21668 | fmovm.x (%sp)+, &0x01 | ||
21669 | rts | ||
21670 | |||
21671 | ######################################################################### | ||
21672 | # XDEF **************************************************************** # | ||
21673 | # _denorm(): denormalize an intermediate result # | ||
21674 | # # | ||
21675 | # XREF **************************************************************** # | ||
21676 | # None # | ||
21677 | # # | ||
21678 | # INPUT *************************************************************** # | ||
21679 | # a0 = points to the operand to be denormalized # | ||
21680 | # (in the internal extended format) # | ||
21681 | # # | ||
21682 | # d0 = rounding precision # | ||
21683 | # # | ||
21684 | # OUTPUT ************************************************************** # | ||
21685 | # a0 = pointer to the denormalized result # | ||
21686 | # (in the internal extended format) # | ||
21687 | # # | ||
21688 | # d0 = guard,round,sticky # | ||
21689 | # # | ||
21690 | # ALGORITHM *********************************************************** # | ||
21691 | # According to the exponent underflow threshold for the given # | ||
21692 | # precision, shift the mantissa bits to the right in order raise the # | ||
21693 | # exponent of the operand to the threshold value. While shifting the # | ||
21694 | # mantissa bits right, maintain the value of the guard, round, and # | ||
21695 | # sticky bits. # | ||
21696 | # other notes: # | ||
21697 | # (1) _denorm() is called by the underflow routines # | ||
21698 | # (2) _denorm() does NOT affect the status register # | ||
21699 | # # | ||
21700 | ######################################################################### | ||
21701 | |||
21702 | # | ||
21703 | # table of exponent threshold values for each precision | ||
21704 | # | ||
21705 | tbl_thresh: | ||
21706 | short 0x0 | ||
21707 | short sgl_thresh | ||
21708 | short dbl_thresh | ||
21709 | |||
21710 | global _denorm | ||
21711 | _denorm: | ||
21712 | # | ||
21713 | # Load the exponent threshold for the precision selected and check | ||
21714 | # to see if (threshold - exponent) is > 65 in which case we can | ||
21715 | # simply calculate the sticky bit and zero the mantissa. otherwise | ||
21716 | # we have to call the denormalization routine. | ||
21717 | # | ||
21718 | lsr.b &0x2, %d0 # shift prec to lo bits | ||
21719 | mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold | ||
21720 | mov.w %d1, %d0 # copy d1 into d0 | ||
21721 | sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp | ||
21722 | cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) | ||
21723 | bpl.b denorm_set_stky # yes; just calc sticky | ||
21724 | |||
21725 | clr.l %d0 # clear g,r,s | ||
21726 | btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? | ||
21727 | beq.b denorm_call # no; don't change anything | ||
21728 | bset &29, %d0 # yes; set sticky bit | ||
21729 | |||
21730 | denorm_call: | ||
21731 | bsr.l dnrm_lp # denormalize the number | ||
21732 | rts | ||
21733 | |||
21734 | # | ||
21735 | # all bit would have been shifted off during the denorm so simply | ||
21736 | # calculate if the sticky should be set and clear the entire mantissa. | ||
21737 | # | ||
21738 | denorm_set_stky: | ||
21739 | mov.l &0x20000000, %d0 # set sticky bit in return value | ||
21740 | mov.w %d1, FTEMP_EX(%a0) # load exp with threshold | ||
21741 | clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) | ||
21742 | clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) | ||
21743 | rts | ||
21744 | |||
21745 | # # | ||
21746 | # dnrm_lp(): normalize exponent/mantissa to specified threshhold # | ||
21747 | # # | ||
21748 | # INPUT: # | ||
21749 | # %a0 : points to the operand to be denormalized # | ||
21750 | # %d0{31:29} : initial guard,round,sticky # | ||
21751 | # %d1{15:0} : denormalization threshold # | ||
21752 | # OUTPUT: # | ||
21753 | # %a0 : points to the denormalized operand # | ||
21754 | # %d0{31:29} : final guard,round,sticky # | ||
21755 | # # | ||
21756 | |||
21757 | # *** Local Equates *** # | ||
21758 | set GRS, L_SCR2 # g,r,s temp storage | ||
21759 | set FTEMP_LO2, L_SCR1 # FTEMP_LO copy | ||
21760 | |||
21761 | global dnrm_lp | ||
21762 | dnrm_lp: | ||
21763 | |||
21764 | # | ||
21765 | # make a copy of FTEMP_LO and place the g,r,s bits directly after it | ||
21766 | # in memory so as to make the bitfield extraction for denormalization easier. | ||
21767 | # | ||
21768 | mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy | ||
21769 | mov.l %d0, GRS(%a6) # place g,r,s after it | ||
21770 | |||
21771 | # | ||
21772 | # check to see how much less than the underflow threshold the operand | ||
21773 | # exponent is. | ||
21774 | # | ||
21775 | mov.l %d1, %d0 # copy the denorm threshold | ||
21776 | sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent | ||
21777 | ble.b dnrm_no_lp # d1 <= 0 | ||
21778 | cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? | ||
21779 | blt.b case_1 # yes | ||
21780 | cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? | ||
21781 | blt.b case_2 # yes | ||
21782 | bra.w case_3 # (d1 >= 64) | ||
21783 | |||
21784 | # | ||
21785 | # No normalization necessary | ||
21786 | # | ||
21787 | dnrm_no_lp: | ||
21788 | mov.l GRS(%a6), %d0 # restore original g,r,s | ||
21789 | rts | ||
21790 | |||
21791 | # | ||
21792 | # case (0<d1<32) | ||
21793 | # | ||
21794 | # %d0 = denorm threshold | ||
21795 | # %d1 = "n" = amt to shift | ||
21796 | # | ||
21797 | # --------------------------------------------------------- | ||
21798 | # | FTEMP_HI | FTEMP_LO |grs000.........000| | ||
21799 | # --------------------------------------------------------- | ||
21800 | # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | ||
21801 | # \ \ \ \ | ||
21802 | # \ \ \ \ | ||
21803 | # \ \ \ \ | ||
21804 | # \ \ \ \ | ||
21805 | # \ \ \ \ | ||
21806 | # \ \ \ \ | ||
21807 | # \ \ \ \ | ||
21808 | # \ \ \ \ | ||
21809 | # <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> | ||
21810 | # --------------------------------------------------------- | ||
21811 | # |0.....0| NEW_HI | NEW_FTEMP_LO |grs | | ||
21812 | # --------------------------------------------------------- | ||
21813 | # | ||
21814 | case_1: | ||
21815 | mov.l %d2, -(%sp) # create temp storage | ||
21816 | |||
21817 | mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold | ||
21818 | mov.l &32, %d0 | ||
21819 | sub.w %d1, %d0 # %d0 = 32 - %d1 | ||
21820 | |||
21821 | cmpi.w %d1, &29 # is shft amt >= 29 | ||
21822 | blt.b case1_extract # no; no fix needed | ||
21823 | mov.b GRS(%a6), %d2 | ||
21824 | or.b %d2, 3+FTEMP_LO2(%a6) | ||
21825 | |||
21826 | case1_extract: | ||
21827 | bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI | ||
21828 | bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO | ||
21829 | bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S | ||
21830 | |||
21831 | mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI | ||
21832 | mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO | ||
21833 | |||
21834 | bftst %d0{&2:&30} # were bits shifted off? | ||
21835 | beq.b case1_sticky_clear # no; go finish | ||
21836 | bset &rnd_stky_bit, %d0 # yes; set sticky bit | ||
21837 | |||
21838 | case1_sticky_clear: | ||
21839 | and.l &0xe0000000, %d0 # clear all but G,R,S | ||
21840 | mov.l (%sp)+, %d2 # restore temp register | ||
21841 | rts | ||
21842 | |||
21843 | # | ||
21844 | # case (32<=d1<64) | ||
21845 | # | ||
21846 | # %d0 = denorm threshold | ||
21847 | # %d1 = "n" = amt to shift | ||
21848 | # | ||
21849 | # --------------------------------------------------------- | ||
21850 | # | FTEMP_HI | FTEMP_LO |grs000.........000| | ||
21851 | # --------------------------------------------------------- | ||
21852 | # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | ||
21853 | # \ \ \ | ||
21854 | # \ \ \ | ||
21855 | # \ \ ------------------- | ||
21856 | # \ -------------------- \ | ||
21857 | # ------------------- \ \ | ||
21858 | # \ \ \ | ||
21859 | # \ \ \ | ||
21860 | # \ \ \ | ||
21861 | # <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> | ||
21862 | # --------------------------------------------------------- | ||
21863 | # |0...............0|0....0| NEW_LO |grs | | ||
21864 | # --------------------------------------------------------- | ||
21865 | # | ||
21866 | case_2: | ||
21867 | mov.l %d2, -(%sp) # create temp storage | ||
21868 | |||
21869 | mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold | ||
21870 | subi.w &0x20, %d1 # %d1 now between 0 and 32 | ||
21871 | mov.l &0x20, %d0 | ||
21872 | sub.w %d1, %d0 # %d0 = 32 - %d1 | ||
21873 | |||
21874 | # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize | ||
21875 | # the number of bits to check for the sticky detect. | ||
21876 | # it only plays a role in shift amounts of 61-63. | ||
21877 | mov.b GRS(%a6), %d2 | ||
21878 | or.b %d2, 3+FTEMP_LO2(%a6) | ||
21879 | |||
21880 | bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO | ||
21881 | bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S | ||
21882 | |||
21883 | bftst %d1{&2:&30} # were any bits shifted off? | ||
21884 | bne.b case2_set_sticky # yes; set sticky bit | ||
21885 | bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? | ||
21886 | bne.b case2_set_sticky # yes; set sticky bit | ||
21887 | |||
21888 | mov.l %d1, %d0 # move new G,R,S to %d0 | ||
21889 | bra.b case2_end | ||
21890 | |||
21891 | case2_set_sticky: | ||
21892 | mov.l %d1, %d0 # move new G,R,S to %d0 | ||
21893 | bset &rnd_stky_bit, %d0 # set sticky bit | ||
21894 | |||
21895 | case2_end: | ||
21896 | clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 | ||
21897 | mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO | ||
21898 | and.l &0xe0000000, %d0 # clear all but G,R,S | ||
21899 | |||
21900 | mov.l (%sp)+,%d2 # restore temp register | ||
21901 | rts | ||
21902 | |||
21903 | # | ||
21904 | # case (d1>=64) | ||
21905 | # | ||
21906 | # %d0 = denorm threshold | ||
21907 | # %d1 = amt to shift | ||
21908 | # | ||
21909 | case_3: | ||
21910 | mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold | ||
21911 | |||
21912 | cmpi.w %d1, &65 # is shift amt > 65? | ||
21913 | blt.b case3_64 # no; it's == 64 | ||
21914 | beq.b case3_65 # no; it's == 65 | ||
21915 | |||
21916 | # | ||
21917 | # case (d1>65) | ||
21918 | # | ||
21919 | # Shift value is > 65 and out of range. All bits are shifted off. | ||
21920 | # Return a zero mantissa with the sticky bit set | ||
21921 | # | ||
21922 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) | ||
21923 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) | ||
21924 | mov.l &0x20000000, %d0 # set sticky bit | ||
21925 | rts | ||
21926 | |||
21927 | # | ||
21928 | # case (d1 == 64) | ||
21929 | # | ||
21930 | # --------------------------------------------------------- | ||
21931 | # | FTEMP_HI | FTEMP_LO |grs000.........000| | ||
21932 | # --------------------------------------------------------- | ||
21933 | # <-------(32)------> | ||
21934 | # \ \ | ||
21935 | # \ \ | ||
21936 | # \ \ | ||
21937 | # \ ------------------------------ | ||
21938 | # ------------------------------- \ | ||
21939 | # \ \ | ||
21940 | # \ \ | ||
21941 | # \ \ | ||
21942 | # <-------(32)------> | ||
21943 | # --------------------------------------------------------- | ||
21944 | # |0...............0|0................0|grs | | ||
21945 | # --------------------------------------------------------- | ||
21946 | # | ||
21947 | case3_64: | ||
21948 | mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) | ||
21949 | mov.l %d0, %d1 # make a copy | ||
21950 | and.l &0xc0000000, %d0 # extract G,R | ||
21951 | and.l &0x3fffffff, %d1 # extract other bits | ||
21952 | |||
21953 | bra.b case3_complete | ||
21954 | |||
21955 | # | ||
21956 | # case (d1 == 65) | ||
21957 | # | ||
21958 | # --------------------------------------------------------- | ||
21959 | # | FTEMP_HI | FTEMP_LO |grs000.........000| | ||
21960 | # --------------------------------------------------------- | ||
21961 | # <-------(32)------> | ||
21962 | # \ \ | ||
21963 | # \ \ | ||
21964 | # \ \ | ||
21965 | # \ ------------------------------ | ||
21966 | # -------------------------------- \ | ||
21967 | # \ \ | ||
21968 | # \ \ | ||
21969 | # \ \ | ||
21970 | # <-------(31)-----> | ||
21971 | # --------------------------------------------------------- | ||
21972 | # |0...............0|0................0|0rs | | ||
21973 | # --------------------------------------------------------- | ||
21974 | # | ||
21975 | case3_65: | ||
21976 | mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) | ||
21977 | and.l &0x80000000, %d0 # extract R bit | ||
21978 | lsr.l &0x1, %d0 # shift high bit into R bit | ||
21979 | and.l &0x7fffffff, %d1 # extract other bits | ||
21980 | |||
21981 | case3_complete: | ||
21982 | # last operation done was an "and" of the bits shifted off so the condition | ||
21983 | # codes are already set so branch accordingly. | ||
21984 | bne.b case3_set_sticky # yes; go set new sticky | ||
21985 | tst.l FTEMP_LO(%a0) # were any bits shifted off? | ||
21986 | bne.b case3_set_sticky # yes; go set new sticky | ||
21987 | tst.b GRS(%a6) # were any bits shifted off? | ||
21988 | bne.b case3_set_sticky # yes; go set new sticky | ||
21989 | |||
21990 | # | ||
21991 | # no bits were shifted off so don't set the sticky bit. | ||
21992 | # the guard and | ||
21993 | # the entire mantissa is zero. | ||
21994 | # | ||
21995 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) | ||
21996 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) | ||
21997 | rts | ||
21998 | |||
21999 | # | ||
22000 | # some bits were shifted off so set the sticky bit. | ||
22001 | # the entire mantissa is zero. | ||
22002 | # | ||
22003 | case3_set_sticky: | ||
22004 | bset &rnd_stky_bit,%d0 # set new sticky bit | ||
22005 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) | ||
22006 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) | ||
22007 | rts | ||
22008 | |||
22009 | ######################################################################### | ||
22010 | # XDEF **************************************************************** # | ||
22011 | # _round(): round result according to precision/mode # | ||
22012 | # # | ||
22013 | # XREF **************************************************************** # | ||
22014 | # None # | ||
22015 | # # | ||
22016 | # INPUT *************************************************************** # | ||
22017 | # a0 = ptr to input operand in internal extended format # | ||
22018 | # d1(hi) = contains rounding precision: # | ||
22019 | # ext = $0000xxxx # | ||
22020 | # sgl = $0004xxxx # | ||
22021 | # dbl = $0008xxxx # | ||
22022 | # d1(lo) = contains rounding mode: # | ||
22023 | # RN = $xxxx0000 # | ||
22024 | # RZ = $xxxx0001 # | ||
22025 | # RM = $xxxx0002 # | ||
22026 | # RP = $xxxx0003 # | ||
22027 | # d0{31:29} = contains the g,r,s bits (extended) # | ||
22028 | # # | ||
22029 | # OUTPUT ************************************************************** # | ||
22030 | # a0 = pointer to rounded result # | ||
22031 | # # | ||
22032 | # ALGORITHM *********************************************************** # | ||
22033 | # On return the value pointed to by a0 is correctly rounded, # | ||
22034 | # a0 is preserved and the g-r-s bits in d0 are cleared. # | ||
22035 | # The result is not typed - the tag field is invalid. The # | ||
22036 | # result is still in the internal extended format. # | ||
22037 | # # | ||
22038 | # The INEX bit of USER_FPSR will be set if the rounded result was # | ||
22039 | # inexact (i.e. if any of the g-r-s bits were set). # | ||
22040 | # # | ||
22041 | ######################################################################### | ||
22042 | |||
22043 | global _round | ||
22044 | _round: | ||
22045 | # | ||
22046 | # ext_grs() looks at the rounding precision and sets the appropriate | ||
22047 | # G,R,S bits. | ||
22048 | # If (G,R,S == 0) then result is exact and round is done, else set | ||
22049 | # the inex flag in status reg and continue. | ||
22050 | # | ||
22051 | bsr.l ext_grs # extract G,R,S | ||
22052 | |||
22053 | tst.l %d0 # are G,R,S zero? | ||
22054 | beq.w truncate # yes; round is complete | ||
22055 | |||
22056 | or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex | ||
22057 | |||
22058 | # | ||
22059 | # Use rounding mode as an index into a jump table for these modes. | ||
22060 | # All of the following assumes grs != 0. | ||
22061 | # | ||
22062 | mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset | ||
22063 | jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler | ||
22064 | |||
22065 | tbl_mode: | ||
22066 | short rnd_near - tbl_mode | ||
22067 | short truncate - tbl_mode # RZ always truncates | ||
22068 | short rnd_mnus - tbl_mode | ||
22069 | short rnd_plus - tbl_mode | ||
22070 | |||
22071 | ################################################################# | ||
22072 | # ROUND PLUS INFINITY # | ||
22073 | # # | ||
22074 | # If sign of fp number = 0 (positive), then add 1 to l. # | ||
22075 | ################################################################# | ||
22076 | rnd_plus: | ||
22077 | tst.b FTEMP_SGN(%a0) # check for sign | ||
22078 | bmi.w truncate # if positive then truncate | ||
22079 | |||
22080 | mov.l &0xffffffff, %d0 # force g,r,s to be all f's | ||
22081 | swap %d1 # set up d1 for round prec. | ||
22082 | |||
22083 | cmpi.b %d1, &s_mode # is prec = sgl? | ||
22084 | beq.w add_sgl # yes | ||
22085 | bgt.w add_dbl # no; it's dbl | ||
22086 | bra.w add_ext # no; it's ext | ||
22087 | |||
22088 | ################################################################# | ||
22089 | # ROUND MINUS INFINITY # | ||
22090 | # # | ||
22091 | # If sign of fp number = 1 (negative), then add 1 to l. # | ||
22092 | ################################################################# | ||
22093 | rnd_mnus: | ||
22094 | tst.b FTEMP_SGN(%a0) # check for sign | ||
22095 | bpl.w truncate # if negative then truncate | ||
22096 | |||
22097 | mov.l &0xffffffff, %d0 # force g,r,s to be all f's | ||
22098 | swap %d1 # set up d1 for round prec. | ||
22099 | |||
22100 | cmpi.b %d1, &s_mode # is prec = sgl? | ||
22101 | beq.w add_sgl # yes | ||
22102 | bgt.w add_dbl # no; it's dbl | ||
22103 | bra.w add_ext # no; it's ext | ||
22104 | |||
22105 | ################################################################# | ||
22106 | # ROUND NEAREST # | ||
22107 | # # | ||
22108 | # If (g=1), then add 1 to l and if (r=s=0), then clear l # | ||
22109 | # Note that this will round to even in case of a tie. # | ||
22110 | ################################################################# | ||
22111 | rnd_near: | ||
22112 | asl.l &0x1, %d0 # shift g-bit to c-bit | ||
22113 | bcc.w truncate # if (g=1) then | ||
22114 | |||
22115 | swap %d1 # set up d1 for round prec. | ||
22116 | |||
22117 | cmpi.b %d1, &s_mode # is prec = sgl? | ||
22118 | beq.w add_sgl # yes | ||
22119 | bgt.w add_dbl # no; it's dbl | ||
22120 | bra.w add_ext # no; it's ext | ||
22121 | |||
22122 | # *** LOCAL EQUATES *** | ||
22123 | set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec | ||
22124 | set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec | ||
22125 | |||
22126 | ######################### | ||
22127 | # ADD SINGLE # | ||
22128 | ######################### | ||
22129 | add_sgl: | ||
22130 | add.l &ad_1_sgl, FTEMP_HI(%a0) | ||
22131 | bcc.b scc_clr # no mantissa overflow | ||
22132 | roxr.w FTEMP_HI(%a0) # shift v-bit back in | ||
22133 | roxr.w FTEMP_HI+2(%a0) # shift v-bit back in | ||
22134 | add.w &0x1, FTEMP_EX(%a0) # and incr exponent | ||
22135 | scc_clr: | ||
22136 | tst.l %d0 # test for rs = 0 | ||
22137 | bne.b sgl_done | ||
22138 | and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit | ||
22139 | sgl_done: | ||
22140 | and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit | ||
22141 | clr.l FTEMP_LO(%a0) # clear d2 | ||
22142 | rts | ||
22143 | |||
22144 | ######################### | ||
22145 | # ADD EXTENDED # | ||
22146 | ######################### | ||
22147 | add_ext: | ||
22148 | addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit | ||
22149 | bcc.b xcc_clr # test for carry out | ||
22150 | addq.l &1,FTEMP_HI(%a0) # propagate carry | ||
22151 | bcc.b xcc_clr | ||
22152 | roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit | ||
22153 | roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit | ||
22154 | roxr.w FTEMP_LO(%a0) | ||
22155 | roxr.w FTEMP_LO+2(%a0) | ||
22156 | add.w &0x1,FTEMP_EX(%a0) # and inc exp | ||
22157 | xcc_clr: | ||
22158 | tst.l %d0 # test rs = 0 | ||
22159 | bne.b add_ext_done | ||
22160 | and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit | ||
22161 | add_ext_done: | ||
22162 | rts | ||
22163 | |||
22164 | ######################### | ||
22165 | # ADD DOUBLE # | ||
22166 | ######################### | ||
22167 | add_dbl: | ||
22168 | add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb | ||
22169 | bcc.b dcc_clr # no carry | ||
22170 | addq.l &0x1, FTEMP_HI(%a0) # propagate carry | ||
22171 | bcc.b dcc_clr # no carry | ||
22172 | |||
22173 | roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit | ||
22174 | roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit | ||
22175 | roxr.w FTEMP_LO(%a0) | ||
22176 | roxr.w FTEMP_LO+2(%a0) | ||
22177 | addq.w &0x1, FTEMP_EX(%a0) # incr exponent | ||
22178 | dcc_clr: | ||
22179 | tst.l %d0 # test for rs = 0 | ||
22180 | bne.b dbl_done | ||
22181 | and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit | ||
22182 | |||
22183 | dbl_done: | ||
22184 | and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit | ||
22185 | rts | ||
22186 | |||
22187 | ########################### | ||
22188 | # Truncate all other bits # | ||
22189 | ########################### | ||
22190 | truncate: | ||
22191 | swap %d1 # select rnd prec | ||
22192 | |||
22193 | cmpi.b %d1, &s_mode # is prec sgl? | ||
22194 | beq.w sgl_done # yes | ||
22195 | bgt.b dbl_done # no; it's dbl | ||
22196 | rts # no; it's ext | ||
22197 | |||
22198 | |||
22199 | # | ||
22200 | # ext_grs(): extract guard, round and sticky bits according to | ||
22201 | # rounding precision. | ||
22202 | # | ||
22203 | # INPUT | ||
22204 | # d0 = extended precision g,r,s (in d0{31:29}) | ||
22205 | # d1 = {PREC,ROUND} | ||
22206 | # OUTPUT | ||
22207 | # d0{31:29} = guard, round, sticky | ||
22208 | # | ||
22209 | # The ext_grs extract the guard/round/sticky bits according to the | ||
22210 | # selected rounding precision. It is called by the round subroutine | ||
22211 | # only. All registers except d0 are kept intact. d0 becomes an | ||
22212 | # updated guard,round,sticky in d0{31:29} | ||
22213 | # | ||
22214 | # Notes: the ext_grs uses the round PREC, and therefore has to swap d1 | ||
22215 | # prior to usage, and needs to restore d1 to original. this | ||
22216 | # routine is tightly tied to the round routine and not meant to | ||
22217 | # uphold standard subroutine calling practices. | ||
22218 | # | ||
22219 | |||
22220 | ext_grs: | ||
22221 | swap %d1 # have d1.w point to round precision | ||
22222 | tst.b %d1 # is rnd prec = extended? | ||
22223 | bne.b ext_grs_not_ext # no; go handle sgl or dbl | ||
22224 | |||
22225 | # | ||
22226 | # %d0 actually already hold g,r,s since _round() had it before calling | ||
22227 | # this function. so, as long as we don't disturb it, we are "returning" it. | ||
22228 | # | ||
22229 | ext_grs_ext: | ||
22230 | swap %d1 # yes; return to correct positions | ||
22231 | rts | ||
22232 | |||
22233 | ext_grs_not_ext: | ||
22234 | movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} | ||
22235 | |||
22236 | cmpi.b %d1, &s_mode # is rnd prec = sgl? | ||
22237 | bne.b ext_grs_dbl # no; go handle dbl | ||
22238 | |||
22239 | # | ||
22240 | # sgl: | ||
22241 | # 96 64 40 32 0 | ||
22242 | # ----------------------------------------------------- | ||
22243 | # | EXP |XXXXXXX| |xx | |grs| | ||
22244 | # ----------------------------------------------------- | ||
22245 | # <--(24)--->nn\ / | ||
22246 | # ee --------------------- | ||
22247 | # ww | | ||
22248 | # v | ||
22249 | # gr new sticky | ||
22250 | # | ||
22251 | ext_grs_sgl: | ||
22252 | bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right | ||
22253 | mov.l &30, %d2 # of the sgl prec. limits | ||
22254 | lsl.l %d2, %d3 # shift g-r bits to MSB of d3 | ||
22255 | mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test | ||
22256 | and.l &0x0000003f, %d2 # s bit is the or of all other | ||
22257 | bne.b ext_grs_st_stky # bits to the right of g-r | ||
22258 | tst.l FTEMP_LO(%a0) # test lower mantissa | ||
22259 | bne.b ext_grs_st_stky # if any are set, set sticky | ||
22260 | tst.l %d0 # test original g,r,s | ||
22261 | bne.b ext_grs_st_stky # if any are set, set sticky | ||
22262 | bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit | ||
22263 | |||
22264 | # | ||
22265 | # dbl: | ||
22266 | # 96 64 32 11 0 | ||
22267 | # ----------------------------------------------------- | ||
22268 | # | EXP |XXXXXXX| | |xx |grs| | ||
22269 | # ----------------------------------------------------- | ||
22270 | # nn\ / | ||
22271 | # ee ------- | ||
22272 | # ww | | ||
22273 | # v | ||
22274 | # gr new sticky | ||
22275 | # | ||
22276 | ext_grs_dbl: | ||
22277 | bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right | ||
22278 | mov.l &30, %d2 # of the dbl prec. limits | ||
22279 | lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 | ||
22280 | mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test | ||
22281 | and.l &0x000001ff, %d2 # s bit is the or-ing of all | ||
22282 | bne.b ext_grs_st_stky # other bits to the right of g-r | ||
22283 | tst.l %d0 # test word original g,r,s | ||
22284 | bne.b ext_grs_st_stky # if any are set, set sticky | ||
22285 | bra.b ext_grs_end_sd # if clear, exit | ||
22286 | |||
22287 | ext_grs_st_stky: | ||
22288 | bset &rnd_stky_bit, %d3 # set sticky bit | ||
22289 | ext_grs_end_sd: | ||
22290 | mov.l %d3, %d0 # return grs to d0 | ||
22291 | |||
22292 | movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} | ||
22293 | |||
22294 | swap %d1 # restore d1 to original | ||
22295 | rts | ||
22296 | |||
22297 | ######################################################################### | ||
22298 | # norm(): normalize the mantissa of an extended precision input. the # | ||
22299 | # input operand should not be normalized already. # | ||
22300 | # # | ||
22301 | # XDEF **************************************************************** # | ||
22302 | # norm() # | ||
22303 | # # | ||
22304 | # XREF **************************************************************** # | ||
22305 | # none # | ||
22306 | # # | ||
22307 | # INPUT *************************************************************** # | ||
22308 | # a0 = pointer fp extended precision operand to normalize # | ||
22309 | # # | ||
22310 | # OUTPUT ************************************************************** # | ||
22311 | # d0 = number of bit positions the mantissa was shifted # | ||
22312 | # a0 = the input operand's mantissa is normalized; the exponent # | ||
22313 | # is unchanged. # | ||
22314 | # # | ||
22315 | ######################################################################### | ||
22316 | global norm | ||
22317 | norm: | ||
22318 | mov.l %d2, -(%sp) # create some temp regs | ||
22319 | mov.l %d3, -(%sp) | ||
22320 | |||
22321 | mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) | ||
22322 | mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) | ||
22323 | |||
22324 | bfffo %d0{&0:&32}, %d2 # how many places to shift? | ||
22325 | beq.b norm_lo # hi(man) is all zeroes! | ||
22326 | |||
22327 | norm_hi: | ||
22328 | lsl.l %d2, %d0 # left shift hi(man) | ||
22329 | bfextu %d1{&0:%d2}, %d3 # extract lo bits | ||
22330 | |||
22331 | or.l %d3, %d0 # create hi(man) | ||
22332 | lsl.l %d2, %d1 # create lo(man) | ||
22333 | |||
22334 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) | ||
22335 | mov.l %d1, FTEMP_LO(%a0) # store new lo(man) | ||
22336 | |||
22337 | mov.l %d2, %d0 # return shift amount | ||
22338 | |||
22339 | mov.l (%sp)+, %d3 # restore temp regs | ||
22340 | mov.l (%sp)+, %d2 | ||
22341 | |||
22342 | rts | ||
22343 | |||
22344 | norm_lo: | ||
22345 | bfffo %d1{&0:&32}, %d2 # how many places to shift? | ||
22346 | lsl.l %d2, %d1 # shift lo(man) | ||
22347 | add.l &32, %d2 # add 32 to shft amount | ||
22348 | |||
22349 | mov.l %d1, FTEMP_HI(%a0) # store hi(man) | ||
22350 | clr.l FTEMP_LO(%a0) # lo(man) is now zero | ||
22351 | |||
22352 | mov.l %d2, %d0 # return shift amount | ||
22353 | |||
22354 | mov.l (%sp)+, %d3 # restore temp regs | ||
22355 | mov.l (%sp)+, %d2 | ||
22356 | |||
22357 | rts | ||
22358 | |||
22359 | ######################################################################### | ||
22360 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # | ||
22361 | # - returns corresponding optype tag # | ||
22362 | # # | ||
22363 | # XDEF **************************************************************** # | ||
22364 | # unnorm_fix() # | ||
22365 | # # | ||
22366 | # XREF **************************************************************** # | ||
22367 | # norm() - normalize the mantissa # | ||
22368 | # # | ||
22369 | # INPUT *************************************************************** # | ||
22370 | # a0 = pointer to unnormalized extended precision number # | ||
22371 | # # | ||
22372 | # OUTPUT ************************************************************** # | ||
22373 | # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # | ||
22374 | # a0 = input operand has been converted to a norm, denorm, or # | ||
22375 | # zero; both the exponent and mantissa are changed. # | ||
22376 | # # | ||
22377 | ######################################################################### | ||
22378 | |||
22379 | global unnorm_fix | ||
22380 | unnorm_fix: | ||
22381 | bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? | ||
22382 | bne.b unnorm_shift # hi(man) is not all zeroes | ||
22383 | |||
22384 | # | ||
22385 | # hi(man) is all zeroes so see if any bits in lo(man) are set | ||
22386 | # | ||
22387 | unnorm_chk_lo: | ||
22388 | bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? | ||
22389 | beq.w unnorm_zero # yes | ||
22390 | |||
22391 | add.w &32, %d0 # no; fix shift distance | ||
22392 | |||
22393 | # | ||
22394 | # d0 = # shifts needed for complete normalization | ||
22395 | # | ||
22396 | unnorm_shift: | ||
22397 | clr.l %d1 # clear top word | ||
22398 | mov.w FTEMP_EX(%a0), %d1 # extract exponent | ||
22399 | and.w &0x7fff, %d1 # strip off sgn | ||
22400 | |||
22401 | cmp.w %d0, %d1 # will denorm push exp < 0? | ||
22402 | bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 | ||
22403 | |||
22404 | # | ||
22405 | # exponent would not go < 0. therefore, number stays normalized | ||
22406 | # | ||
22407 | sub.w %d0, %d1 # shift exponent value | ||
22408 | mov.w FTEMP_EX(%a0), %d0 # load old exponent | ||
22409 | and.w &0x8000, %d0 # save old sign | ||
22410 | or.w %d0, %d1 # {sgn,new exp} | ||
22411 | mov.w %d1, FTEMP_EX(%a0) # insert new exponent | ||
22412 | |||
22413 | bsr.l norm # normalize UNNORM | ||
22414 | |||
22415 | mov.b &NORM, %d0 # return new optype tag | ||
22416 | rts | ||
22417 | |||
22418 | # | ||
22419 | # exponent would go < 0, so only denormalize until exp = 0 | ||
22420 | # | ||
22421 | unnorm_nrm_zero: | ||
22422 | cmp.b %d1, &32 # is exp <= 32? | ||
22423 | bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent | ||
22424 | |||
22425 | bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) | ||
22426 | mov.l %d0, FTEMP_HI(%a0) # save new hi(man) | ||
22427 | |||
22428 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) | ||
22429 | lsl.l %d1, %d0 # extract new lo(man) | ||
22430 | mov.l %d0, FTEMP_LO(%a0) # save new lo(man) | ||
22431 | |||
22432 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 | ||
22433 | |||
22434 | mov.b &DENORM, %d0 # return new optype tag | ||
22435 | rts | ||
22436 | |||
22437 | # | ||
22438 | # only mantissa bits set are in lo(man) | ||
22439 | # | ||
22440 | unnorm_nrm_zero_lrg: | ||
22441 | sub.w &32, %d1 # adjust shft amt by 32 | ||
22442 | |||
22443 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) | ||
22444 | lsl.l %d1, %d0 # left shift lo(man) | ||
22445 | |||
22446 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) | ||
22447 | clr.l FTEMP_LO(%a0) # lo(man) = 0 | ||
22448 | |||
22449 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 | ||
22450 | |||
22451 | mov.b &DENORM, %d0 # return new optype tag | ||
22452 | rts | ||
22453 | |||
22454 | # | ||
22455 | # whole mantissa is zero so this UNNORM is actually a zero | ||
22456 | # | ||
22457 | unnorm_zero: | ||
22458 | and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero | ||
22459 | |||
22460 | mov.b &ZERO, %d0 # fix optype tag | ||
22461 | rts | ||
22462 | |||
22463 | ######################################################################### | ||
22464 | # XDEF **************************************************************** # | ||
22465 | # set_tag_x(): return the optype of the input ext fp number # | ||
22466 | # # | ||
22467 | # XREF **************************************************************** # | ||
22468 | # None # | ||
22469 | # # | ||
22470 | # INPUT *************************************************************** # | ||
22471 | # a0 = pointer to extended precision operand # | ||
22472 | # # | ||
22473 | # OUTPUT ************************************************************** # | ||
22474 | # d0 = value of type tag # | ||
22475 | # one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # | ||
22476 | # # | ||
22477 | # ALGORITHM *********************************************************** # | ||
22478 | # Simply test the exponent, j-bit, and mantissa values to # | ||
22479 | # determine the type of operand. # | ||
22480 | # If it's an unnormalized zero, alter the operand and force it # | ||
22481 | # to be a normal zero. # | ||
22482 | # # | ||
22483 | ######################################################################### | ||
22484 | |||
22485 | global set_tag_x | ||
22486 | set_tag_x: | ||
22487 | mov.w FTEMP_EX(%a0), %d0 # extract exponent | ||
22488 | andi.w &0x7fff, %d0 # strip off sign | ||
22489 | cmpi.w %d0, &0x7fff # is (EXP == MAX)? | ||
22490 | beq.b inf_or_nan_x | ||
22491 | not_inf_or_nan_x: | ||
22492 | btst &0x7,FTEMP_HI(%a0) | ||
22493 | beq.b not_norm_x | ||
22494 | is_norm_x: | ||
22495 | mov.b &NORM, %d0 | ||
22496 | rts | ||
22497 | not_norm_x: | ||
22498 | tst.w %d0 # is exponent = 0? | ||
22499 | bne.b is_unnorm_x | ||
22500 | not_unnorm_x: | ||
22501 | tst.l FTEMP_HI(%a0) | ||
22502 | bne.b is_denorm_x | ||
22503 | tst.l FTEMP_LO(%a0) | ||
22504 | bne.b is_denorm_x | ||
22505 | is_zero_x: | ||
22506 | mov.b &ZERO, %d0 | ||
22507 | rts | ||
22508 | is_denorm_x: | ||
22509 | mov.b &DENORM, %d0 | ||
22510 | rts | ||
22511 | # must distinguish now "Unnormalized zeroes" which we | ||
22512 | # must convert to zero. | ||
22513 | is_unnorm_x: | ||
22514 | tst.l FTEMP_HI(%a0) | ||
22515 | bne.b is_unnorm_reg_x | ||
22516 | tst.l FTEMP_LO(%a0) | ||
22517 | bne.b is_unnorm_reg_x | ||
22518 | # it's an "unnormalized zero". let's convert it to an actual zero... | ||
22519 | andi.w &0x8000,FTEMP_EX(%a0) # clear exponent | ||
22520 | mov.b &ZERO, %d0 | ||
22521 | rts | ||
22522 | is_unnorm_reg_x: | ||
22523 | mov.b &UNNORM, %d0 | ||
22524 | rts | ||
22525 | inf_or_nan_x: | ||
22526 | tst.l FTEMP_LO(%a0) | ||
22527 | bne.b is_nan_x | ||
22528 | mov.l FTEMP_HI(%a0), %d0 | ||
22529 | and.l &0x7fffffff, %d0 # msb is a don't care! | ||
22530 | bne.b is_nan_x | ||
22531 | is_inf_x: | ||
22532 | mov.b &INF, %d0 | ||
22533 | rts | ||
22534 | is_nan_x: | ||
22535 | btst &0x6, FTEMP_HI(%a0) | ||
22536 | beq.b is_snan_x | ||
22537 | mov.b &QNAN, %d0 | ||
22538 | rts | ||
22539 | is_snan_x: | ||
22540 | mov.b &SNAN, %d0 | ||
22541 | rts | ||
22542 | |||
22543 | ######################################################################### | ||
22544 | # XDEF **************************************************************** # | ||
22545 | # set_tag_d(): return the optype of the input dbl fp number # | ||
22546 | # # | ||
22547 | # XREF **************************************************************** # | ||
22548 | # None # | ||
22549 | # # | ||
22550 | # INPUT *************************************************************** # | ||
22551 | # a0 = points to double precision operand # | ||
22552 | # # | ||
22553 | # OUTPUT ************************************************************** # | ||
22554 | # d0 = value of type tag # | ||
22555 | # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # | ||
22556 | # # | ||
22557 | # ALGORITHM *********************************************************** # | ||
22558 | # Simply test the exponent, j-bit, and mantissa values to # | ||
22559 | # determine the type of operand. # | ||
22560 | # # | ||
22561 | ######################################################################### | ||
22562 | |||
22563 | global set_tag_d | ||
22564 | set_tag_d: | ||
22565 | mov.l FTEMP(%a0), %d0 | ||
22566 | mov.l %d0, %d1 | ||
22567 | |||
22568 | andi.l &0x7ff00000, %d0 | ||
22569 | beq.b zero_or_denorm_d | ||
22570 | |||
22571 | cmpi.l %d0, &0x7ff00000 | ||
22572 | beq.b inf_or_nan_d | ||
22573 | |||
22574 | is_norm_d: | ||
22575 | mov.b &NORM, %d0 | ||
22576 | rts | ||
22577 | zero_or_denorm_d: | ||
22578 | and.l &0x000fffff, %d1 | ||
22579 | bne is_denorm_d | ||
22580 | tst.l 4+FTEMP(%a0) | ||
22581 | bne is_denorm_d | ||
22582 | is_zero_d: | ||
22583 | mov.b &ZERO, %d0 | ||
22584 | rts | ||
22585 | is_denorm_d: | ||
22586 | mov.b &DENORM, %d0 | ||
22587 | rts | ||
22588 | inf_or_nan_d: | ||
22589 | and.l &0x000fffff, %d1 | ||
22590 | bne is_nan_d | ||
22591 | tst.l 4+FTEMP(%a0) | ||
22592 | bne is_nan_d | ||
22593 | is_inf_d: | ||
22594 | mov.b &INF, %d0 | ||
22595 | rts | ||
22596 | is_nan_d: | ||
22597 | btst &19, %d1 | ||
22598 | bne is_qnan_d | ||
22599 | is_snan_d: | ||
22600 | mov.b &SNAN, %d0 | ||
22601 | rts | ||
22602 | is_qnan_d: | ||
22603 | mov.b &QNAN, %d0 | ||
22604 | rts | ||
22605 | |||
22606 | ######################################################################### | ||
22607 | # XDEF **************************************************************** # | ||
22608 | # set_tag_s(): return the optype of the input sgl fp number # | ||
22609 | # # | ||
22610 | # XREF **************************************************************** # | ||
22611 | # None # | ||
22612 | # # | ||
22613 | # INPUT *************************************************************** # | ||
22614 | # a0 = pointer to single precision operand # | ||
22615 | # # | ||
22616 | # OUTPUT ************************************************************** # | ||
22617 | # d0 = value of type tag # | ||
22618 | # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # | ||
22619 | # # | ||
22620 | # ALGORITHM *********************************************************** # | ||
22621 | # Simply test the exponent, j-bit, and mantissa values to # | ||
22622 | # determine the type of operand. # | ||
22623 | # # | ||
22624 | ######################################################################### | ||
22625 | |||
22626 | global set_tag_s | ||
22627 | set_tag_s: | ||
22628 | mov.l FTEMP(%a0), %d0 | ||
22629 | mov.l %d0, %d1 | ||
22630 | |||
22631 | andi.l &0x7f800000, %d0 | ||
22632 | beq.b zero_or_denorm_s | ||
22633 | |||
22634 | cmpi.l %d0, &0x7f800000 | ||
22635 | beq.b inf_or_nan_s | ||
22636 | |||
22637 | is_norm_s: | ||
22638 | mov.b &NORM, %d0 | ||
22639 | rts | ||
22640 | zero_or_denorm_s: | ||
22641 | and.l &0x007fffff, %d1 | ||
22642 | bne is_denorm_s | ||
22643 | is_zero_s: | ||
22644 | mov.b &ZERO, %d0 | ||
22645 | rts | ||
22646 | is_denorm_s: | ||
22647 | mov.b &DENORM, %d0 | ||
22648 | rts | ||
22649 | inf_or_nan_s: | ||
22650 | and.l &0x007fffff, %d1 | ||
22651 | bne is_nan_s | ||
22652 | is_inf_s: | ||
22653 | mov.b &INF, %d0 | ||
22654 | rts | ||
22655 | is_nan_s: | ||
22656 | btst &22, %d1 | ||
22657 | bne is_qnan_s | ||
22658 | is_snan_s: | ||
22659 | mov.b &SNAN, %d0 | ||
22660 | rts | ||
22661 | is_qnan_s: | ||
22662 | mov.b &QNAN, %d0 | ||
22663 | rts | ||
22664 | |||
22665 | ######################################################################### | ||
22666 | # XDEF **************************************************************** # | ||
22667 | # unf_res(): routine to produce default underflow result of a # | ||
22668 | # scaled extended precision number; this is used by # | ||
22669 | # fadd/fdiv/fmul/etc. emulation routines. # | ||
22670 | # unf_res4(): same as above but for fsglmul/fsgldiv which use # | ||
22671 | # single round prec and extended prec mode. # | ||
22672 | # # | ||
22673 | # XREF **************************************************************** # | ||
22674 | # _denorm() - denormalize according to scale factor # | ||
22675 | # _round() - round denormalized number according to rnd prec # | ||
22676 | # # | ||
22677 | # INPUT *************************************************************** # | ||
22678 | # a0 = pointer to extended precison operand # | ||
22679 | # d0 = scale factor # | ||
22680 | # d1 = rounding precision/mode # | ||
22681 | # # | ||
22682 | # OUTPUT ************************************************************** # | ||
22683 | # a0 = pointer to default underflow result in extended precision # | ||
22684 | # d0.b = result FPSR_cc which caller may or may not want to save # | ||
22685 | # # | ||
22686 | # ALGORITHM *********************************************************** # | ||
22687 | # Convert the input operand to "internal format" which means the # | ||
22688 | # exponent is extended to 16 bits and the sign is stored in the unused # | ||
22689 | # portion of the extended precison operand. Denormalize the number # | ||
22690 | # according to the scale factor passed in d0. Then, round the # | ||
22691 | # denormalized result. # | ||
22692 | # Set the FPSR_exc bits as appropriate but return the cc bits in # | ||
22693 | # d0 in case the caller doesn't want to save them (as is the case for # | ||
22694 | # fmove out). # | ||
22695 | # unf_res4() for fsglmul/fsgldiv forces the denorm to extended # | ||
22696 | # precision and the rounding mode to single. # | ||
22697 | # # | ||
22698 | ######################################################################### | ||
22699 | global unf_res | ||
22700 | unf_res: | ||
22701 | mov.l %d1, -(%sp) # save rnd prec,mode on stack | ||
22702 | |||
22703 | btst &0x7, FTEMP_EX(%a0) # make "internal" format | ||
22704 | sne FTEMP_SGN(%a0) | ||
22705 | |||
22706 | mov.w FTEMP_EX(%a0), %d1 # extract exponent | ||
22707 | and.w &0x7fff, %d1 | ||
22708 | sub.w %d0, %d1 | ||
22709 | mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent | ||
22710 | |||
22711 | mov.l %a0, -(%sp) # save operand ptr during calls | ||
22712 | |||
22713 | mov.l 0x4(%sp),%d0 # pass rnd prec. | ||
22714 | andi.w &0x00c0,%d0 | ||
22715 | lsr.w &0x4,%d0 | ||
22716 | bsr.l _denorm # denorm result | ||
22717 | |||
22718 | mov.l (%sp),%a0 | ||
22719 | mov.w 0x6(%sp),%d1 # load prec:mode into %d1 | ||
22720 | andi.w &0xc0,%d1 # extract rnd prec | ||
22721 | lsr.w &0x4,%d1 | ||
22722 | swap %d1 | ||
22723 | mov.w 0x6(%sp),%d1 | ||
22724 | andi.w &0x30,%d1 | ||
22725 | lsr.w &0x4,%d1 | ||
22726 | bsr.l _round # round the denorm | ||
22727 | |||
22728 | mov.l (%sp)+, %a0 | ||
22729 | |||
22730 | # result is now rounded properly. convert back to normal format | ||
22731 | bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue | ||
22732 | tst.b FTEMP_SGN(%a0) # is "internal result" sign set? | ||
22733 | beq.b unf_res_chkifzero # no; result is positive | ||
22734 | bset &0x7, FTEMP_EX(%a0) # set result sgn | ||
22735 | clr.b FTEMP_SGN(%a0) # clear temp sign | ||
22736 | |||
22737 | # the number may have become zero after rounding. set ccodes accordingly. | ||
22738 | unf_res_chkifzero: | ||
22739 | clr.l %d0 | ||
22740 | tst.l FTEMP_HI(%a0) # is value now a zero? | ||
22741 | bne.b unf_res_cont # no | ||
22742 | tst.l FTEMP_LO(%a0) | ||
22743 | bne.b unf_res_cont # no | ||
22744 | # bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit | ||
22745 | bset &z_bit, %d0 # yes; set zero ccode bit | ||
22746 | |||
22747 | unf_res_cont: | ||
22748 | |||
22749 | # | ||
22750 | # can inex1 also be set along with unfl and inex2??? | ||
22751 | # | ||
22752 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | ||
22753 | # | ||
22754 | btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? | ||
22755 | beq.b unf_res_end # no | ||
22756 | bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl | ||
22757 | |||
22758 | unf_res_end: | ||
22759 | add.l &0x4, %sp # clear stack | ||
22760 | rts | ||
22761 | |||
22762 | # unf_res() for fsglmul() and fsgldiv(). | ||
22763 | global unf_res4 | ||
22764 | unf_res4: | ||
22765 | mov.l %d1,-(%sp) # save rnd prec,mode on stack | ||
22766 | |||
22767 | btst &0x7,FTEMP_EX(%a0) # make "internal" format | ||
22768 | sne FTEMP_SGN(%a0) | ||
22769 | |||
22770 | mov.w FTEMP_EX(%a0),%d1 # extract exponent | ||
22771 | and.w &0x7fff,%d1 | ||
22772 | sub.w %d0,%d1 | ||
22773 | mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent | ||
22774 | |||
22775 | mov.l %a0,-(%sp) # save operand ptr during calls | ||
22776 | |||
22777 | clr.l %d0 # force rnd prec = ext | ||
22778 | bsr.l _denorm # denorm result | ||
22779 | |||
22780 | mov.l (%sp),%a0 | ||
22781 | mov.w &s_mode,%d1 # force rnd prec = sgl | ||
22782 | swap %d1 | ||
22783 | mov.w 0x6(%sp),%d1 # load rnd mode | ||
22784 | andi.w &0x30,%d1 # extract rnd prec | ||
22785 | lsr.w &0x4,%d1 | ||
22786 | bsr.l _round # round the denorm | ||
22787 | |||
22788 | mov.l (%sp)+,%a0 | ||
22789 | |||
22790 | # result is now rounded properly. convert back to normal format | ||
22791 | bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue | ||
22792 | tst.b FTEMP_SGN(%a0) # is "internal result" sign set? | ||
22793 | beq.b unf_res4_chkifzero # no; result is positive | ||
22794 | bset &0x7,FTEMP_EX(%a0) # set result sgn | ||
22795 | clr.b FTEMP_SGN(%a0) # clear temp sign | ||
22796 | |||
22797 | # the number may have become zero after rounding. set ccodes accordingly. | ||
22798 | unf_res4_chkifzero: | ||
22799 | clr.l %d0 | ||
22800 | tst.l FTEMP_HI(%a0) # is value now a zero? | ||
22801 | bne.b unf_res4_cont # no | ||
22802 | tst.l FTEMP_LO(%a0) | ||
22803 | bne.b unf_res4_cont # no | ||
22804 | # bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit | ||
22805 | bset &z_bit,%d0 # yes; set zero ccode bit | ||
22806 | |||
22807 | unf_res4_cont: | ||
22808 | |||
22809 | # | ||
22810 | # can inex1 also be set along with unfl and inex2??? | ||
22811 | # | ||
22812 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | ||
22813 | # | ||
22814 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | ||
22815 | beq.b unf_res4_end # no | ||
22816 | bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl | ||
22817 | |||
22818 | unf_res4_end: | ||
22819 | add.l &0x4,%sp # clear stack | ||
22820 | rts | ||
22821 | |||
22822 | ######################################################################### | ||
22823 | # XDEF **************************************************************** # | ||
22824 | # ovf_res(): routine to produce the default overflow result of # | ||
22825 | # an overflowing number. # | ||
22826 | # ovf_res2(): same as above but the rnd mode/prec are passed # | ||
22827 | # differently. # | ||
22828 | # # | ||
22829 | # XREF **************************************************************** # | ||
22830 | # none # | ||
22831 | # # | ||
22832 | # INPUT *************************************************************** # | ||
22833 | # d1.b = '-1' => (-); '0' => (+) # | ||
22834 | # ovf_res(): # | ||
22835 | # d0 = rnd mode/prec # | ||
22836 | # ovf_res2(): # | ||
22837 | # hi(d0) = rnd prec # | ||
22838 | # lo(d0) = rnd mode # | ||
22839 | # # | ||
22840 | # OUTPUT ************************************************************** # | ||
22841 | # a0 = points to extended precision result # | ||
22842 | # d0.b = condition code bits # | ||
22843 | # # | ||
22844 | # ALGORITHM *********************************************************** # | ||
22845 | # The default overflow result can be determined by the sign of # | ||
22846 | # the result and the rounding mode/prec in effect. These bits are # | ||
22847 | # concatenated together to create an index into the default result # | ||
22848 | # table. A pointer to the correct result is returned in a0. The # | ||
22849 | # resulting condition codes are returned in d0 in case the caller # | ||
22850 | # doesn't want FPSR_cc altered (as is the case for fmove out). # | ||
22851 | # # | ||
22852 | ######################################################################### | ||
22853 | |||
22854 | global ovf_res | ||
22855 | ovf_res: | ||
22856 | andi.w &0x10,%d1 # keep result sign | ||
22857 | lsr.b &0x4,%d0 # shift prec/mode | ||
22858 | or.b %d0,%d1 # concat the two | ||
22859 | mov.w %d1,%d0 # make a copy | ||
22860 | lsl.b &0x1,%d1 # multiply d1 by 2 | ||
22861 | bra.b ovf_res_load | ||
22862 | |||
22863 | global ovf_res2 | ||
22864 | ovf_res2: | ||
22865 | and.w &0x10, %d1 # keep result sign | ||
22866 | or.b %d0, %d1 # insert rnd mode | ||
22867 | swap %d0 | ||
22868 | or.b %d0, %d1 # insert rnd prec | ||
22869 | mov.w %d1, %d0 # make a copy | ||
22870 | lsl.b &0x1, %d1 # shift left by 1 | ||
22871 | |||
22872 | # | ||
22873 | # use the rounding mode, precision, and result sign as in index into the | ||
22874 | # two tables below to fetch the default result and the result ccodes. | ||
22875 | # | ||
22876 | ovf_res_load: | ||
22877 | mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes | ||
22878 | lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr | ||
22879 | |||
22880 | rts | ||
22881 | |||
22882 | tbl_ovfl_cc: | ||
22883 | byte 0x2, 0x0, 0x0, 0x2 | ||
22884 | byte 0x2, 0x0, 0x0, 0x2 | ||
22885 | byte 0x2, 0x0, 0x0, 0x2 | ||
22886 | byte 0x0, 0x0, 0x0, 0x0 | ||
22887 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 | ||
22888 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 | ||
22889 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 | ||
22890 | |||
22891 | tbl_ovfl_result: | ||
22892 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | ||
22893 | long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ | ||
22894 | long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM | ||
22895 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | ||
22896 | |||
22897 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | ||
22898 | long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ | ||
22899 | long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM | ||
22900 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | ||
22901 | |||
22902 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | ||
22903 | long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ | ||
22904 | long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM | ||
22905 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | ||
22906 | |||
22907 | long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
22908 | long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
22909 | long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
22910 | long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
22911 | |||
22912 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | ||
22913 | long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ | ||
22914 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | ||
22915 | long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP | ||
22916 | |||
22917 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | ||
22918 | long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ | ||
22919 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | ||
22920 | long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP | ||
22921 | |||
22922 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | ||
22923 | long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ | ||
22924 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | ||
22925 | long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP | ||
22926 | |||
22927 | ######################################################################### | ||
22928 | # XDEF **************************************************************** # | ||
22929 | # get_packed(): fetch a packed operand from memory and then # | ||
22930 | # convert it to a floating-point binary number. # | ||
22931 | # # | ||
22932 | # XREF **************************************************************** # | ||
22933 | # _dcalc_ea() - calculate the correct <ea> # | ||
22934 | # _mem_read() - fetch the packed operand from memory # | ||
22935 | # facc_in_x() - the fetch failed so jump to special exit code # | ||
22936 | # decbin() - convert packed to binary extended precision # | ||
22937 | # # | ||
22938 | # INPUT *************************************************************** # | ||
22939 | # None # | ||
22940 | # # | ||
22941 | # OUTPUT ************************************************************** # | ||
22942 | # If no failure on _mem_read(): # | ||
22943 | # FP_SRC(a6) = packed operand now as a binary FP number # | ||
22944 | # # | ||
22945 | # ALGORITHM *********************************************************** # | ||
22946 | # Get the correct <ea> whihc is the value on the exception stack # | ||
22947 | # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # | ||
22948 | # Then, fetch the operand from memory. If the fetch fails, exit # | ||
22949 | # through facc_in_x(). # | ||
22950 | # If the packed operand is a ZERO,NAN, or INF, convert it to # | ||
22951 | # its binary representation here. Else, call decbin() which will # | ||
22952 | # convert the packed value to an extended precision binary value. # | ||
22953 | # # | ||
22954 | ######################################################################### | ||
22955 | |||
22956 | # the stacked <ea> for packed is correct except for -(An). | ||
22957 | # the base reg must be updated for both -(An) and (An)+. | ||
22958 | global get_packed | ||
22959 | get_packed: | ||
22960 | mov.l &0xc,%d0 # packed is 12 bytes | ||
22961 | bsr.l _dcalc_ea # fetch <ea>; correct An | ||
22962 | |||
22963 | lea FP_SRC(%a6),%a1 # pass: ptr to super dst | ||
22964 | mov.l &0xc,%d0 # pass: 12 bytes | ||
22965 | bsr.l _dmem_read # read packed operand | ||
22966 | |||
22967 | tst.l %d1 # did dfetch fail? | ||
22968 | bne.l facc_in_x # yes | ||
22969 | |||
22970 | # The packed operand is an INF or a NAN if the exponent field is all ones. | ||
22971 | bfextu FP_SRC(%a6){&1:&15},%d0 # get exp | ||
22972 | cmpi.w %d0,&0x7fff # INF or NAN? | ||
22973 | bne.b gp_try_zero # no | ||
22974 | rts # operand is an INF or NAN | ||
22975 | |||
22976 | # The packed operand is a zero if the mantissa is all zero, else it's | ||
22977 | # a normal packed op. | ||
22978 | gp_try_zero: | ||
22979 | mov.b 3+FP_SRC(%a6),%d0 # get byte 4 | ||
22980 | andi.b &0x0f,%d0 # clear all but last nybble | ||
22981 | bne.b gp_not_spec # not a zero | ||
22982 | tst.l FP_SRC_HI(%a6) # is lw 2 zero? | ||
22983 | bne.b gp_not_spec # not a zero | ||
22984 | tst.l FP_SRC_LO(%a6) # is lw 3 zero? | ||
22985 | bne.b gp_not_spec # not a zero | ||
22986 | rts # operand is a ZERO | ||
22987 | gp_not_spec: | ||
22988 | lea FP_SRC(%a6),%a0 # pass: ptr to packed op | ||
22989 | bsr.l decbin # convert to extended | ||
22990 | fmovm.x &0x80,FP_SRC(%a6) # make this the srcop | ||
22991 | rts | ||
22992 | |||
22993 | ######################################################################### | ||
22994 | # decbin(): Converts normalized packed bcd value pointed to by register # | ||
22995 | # a0 to extended-precision value in fp0. # | ||
22996 | # # | ||
22997 | # INPUT *************************************************************** # | ||
22998 | # a0 = pointer to normalized packed bcd value # | ||
22999 | # # | ||
23000 | # OUTPUT ************************************************************** # | ||
23001 | # fp0 = exact fp representation of the packed bcd value. # | ||
23002 | # # | ||
23003 | # ALGORITHM *********************************************************** # | ||
23004 | # Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # | ||
23005 | # and NaN operands are dispatched without entering this routine) # | ||
23006 | # value in 68881/882 format at location (a0). # | ||
23007 | # # | ||
23008 | # A1. Convert the bcd exponent to binary by successive adds and # | ||
23009 | # muls. Set the sign according to SE. Subtract 16 to compensate # | ||
23010 | # for the mantissa which is to be interpreted as 17 integer # | ||
23011 | # digits, rather than 1 integer and 16 fraction digits. # | ||
23012 | # Note: this operation can never overflow. # | ||
23013 | # # | ||
23014 | # A2. Convert the bcd mantissa to binary by successive # | ||
23015 | # adds and muls in FP0. Set the sign according to SM. # | ||
23016 | # The mantissa digits will be converted with the decimal point # | ||
23017 | # assumed following the least-significant digit. # | ||
23018 | # Note: this operation can never overflow. # | ||
23019 | # # | ||
23020 | # A3. Count the number of leading/trailing zeros in the # | ||
23021 | # bcd string. If SE is positive, count the leading zeros; # | ||
23022 | # if negative, count the trailing zeros. Set the adjusted # | ||
23023 | # exponent equal to the exponent from A1 and the zero count # | ||
23024 | # added if SM = 1 and subtracted if SM = 0. Scale the # | ||
23025 | # mantissa the equivalent of forcing in the bcd value: # | ||
23026 | # # | ||
23027 | # SM = 0 a non-zero digit in the integer position # | ||
23028 | # SM = 1 a non-zero digit in Mant0, lsd of the fraction # | ||
23029 | # # | ||
23030 | # this will insure that any value, regardless of its # | ||
23031 | # representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # | ||
23032 | # consistently. # | ||
23033 | # # | ||
23034 | # A4. Calculate the factor 10^exp in FP1 using a table of # | ||
23035 | # 10^(2^n) values. To reduce the error in forming factors # | ||
23036 | # greater than 10^27, a directed rounding scheme is used with # | ||
23037 | # tables rounded to RN, RM, and RP, according to the table # | ||
23038 | # in the comments of the pwrten section. # | ||
23039 | # # | ||
23040 | # A5. Form the final binary number by scaling the mantissa by # | ||
23041 | # the exponent factor. This is done by multiplying the # | ||
23042 | # mantissa in FP0 by the factor in FP1 if the adjusted # | ||
23043 | # exponent sign is positive, and dividing FP0 by FP1 if # | ||
23044 | # it is negative. # | ||
23045 | # # | ||
23046 | # Clean up and return. Check if the final mul or div was inexact. # | ||
23047 | # If so, set INEX1 in USER_FPSR. # | ||
23048 | # # | ||
23049 | ######################################################################### | ||
23050 | |||
23051 | # | ||
23052 | # PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded | ||
23053 | # to nearest, minus, and plus, respectively. The tables include | ||
23054 | # 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding | ||
23055 | # is required until the power is greater than 27, however, all | ||
23056 | # tables include the first 5 for ease of indexing. | ||
23057 | # | ||
23058 | RTABLE: | ||
23059 | byte 0,0,0,0 | ||
23060 | byte 2,3,2,3 | ||
23061 | byte 2,3,3,2 | ||
23062 | byte 3,2,2,3 | ||
23063 | |||
23064 | set FNIBS,7 | ||
23065 | set FSTRT,0 | ||
23066 | |||
23067 | set ESTRT,4 | ||
23068 | set EDIGITS,2 | ||
23069 | |||
23070 | global decbin | ||
23071 | decbin: | ||
23072 | mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input | ||
23073 | mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it | ||
23074 | mov.l 0x8(%a0),FP_SCR0_LO(%a6) | ||
23075 | |||
23076 | lea FP_SCR0(%a6),%a0 | ||
23077 | |||
23078 | movm.l &0x3c00,-(%sp) # save d2-d5 | ||
23079 | fmovm.x &0x1,-(%sp) # save fp1 | ||
23080 | # | ||
23081 | # Calculate exponent: | ||
23082 | # 1. Copy bcd value in memory for use as a working copy. | ||
23083 | # 2. Calculate absolute value of exponent in d1 by mul and add. | ||
23084 | # 3. Correct for exponent sign. | ||
23085 | # 4. Subtract 16 to compensate for interpreting the mant as all integer digits. | ||
23086 | # (i.e., all digits assumed left of the decimal point.) | ||
23087 | # | ||
23088 | # Register usage: | ||
23089 | # | ||
23090 | # calc_e: | ||
23091 | # (*) d0: temp digit storage | ||
23092 | # (*) d1: accumulator for binary exponent | ||
23093 | # (*) d2: digit count | ||
23094 | # (*) d3: offset pointer | ||
23095 | # ( ) d4: first word of bcd | ||
23096 | # ( ) a0: pointer to working bcd value | ||
23097 | # ( ) a6: pointer to original bcd value | ||
23098 | # (*) FP_SCR1: working copy of original bcd value | ||
23099 | # (*) L_SCR1: copy of original exponent word | ||
23100 | # | ||
23101 | calc_e: | ||
23102 | mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part | ||
23103 | mov.l &ESTRT,%d3 # counter to pick up digits | ||
23104 | mov.l (%a0),%d4 # get first word of bcd | ||
23105 | clr.l %d1 # zero d1 for accumulator | ||
23106 | e_gd: | ||
23107 | mulu.l &0xa,%d1 # mul partial product by one digit place | ||
23108 | bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 | ||
23109 | add.l %d0,%d1 # d1 = d1 + d0 | ||
23110 | addq.b &4,%d3 # advance d3 to the next digit | ||
23111 | dbf.w %d2,e_gd # if we have used all 3 digits, exit loop | ||
23112 | btst &30,%d4 # get SE | ||
23113 | beq.b e_pos # don't negate if pos | ||
23114 | neg.l %d1 # negate before subtracting | ||
23115 | e_pos: | ||
23116 | sub.l &16,%d1 # sub to compensate for shift of mant | ||
23117 | bge.b e_save # if still pos, do not neg | ||
23118 | neg.l %d1 # now negative, make pos and set SE | ||
23119 | or.l &0x40000000,%d4 # set SE in d4, | ||
23120 | or.l &0x40000000,(%a0) # and in working bcd | ||
23121 | e_save: | ||
23122 | mov.l %d1,-(%sp) # save exp on stack | ||
23123 | # | ||
23124 | # | ||
23125 | # Calculate mantissa: | ||
23126 | # 1. Calculate absolute value of mantissa in fp0 by mul and add. | ||
23127 | # 2. Correct for mantissa sign. | ||
23128 | # (i.e., all digits assumed left of the decimal point.) | ||
23129 | # | ||
23130 | # Register usage: | ||
23131 | # | ||
23132 | # calc_m: | ||
23133 | # (*) d0: temp digit storage | ||
23134 | # (*) d1: lword counter | ||
23135 | # (*) d2: digit count | ||
23136 | # (*) d3: offset pointer | ||
23137 | # ( ) d4: words 2 and 3 of bcd | ||
23138 | # ( ) a0: pointer to working bcd value | ||
23139 | # ( ) a6: pointer to original bcd value | ||
23140 | # (*) fp0: mantissa accumulator | ||
23141 | # ( ) FP_SCR1: working copy of original bcd value | ||
23142 | # ( ) L_SCR1: copy of original exponent word | ||
23143 | # | ||
23144 | calc_m: | ||
23145 | mov.l &1,%d1 # word counter, init to 1 | ||
23146 | fmov.s &0x00000000,%fp0 # accumulator | ||
23147 | # | ||
23148 | # | ||
23149 | # Since the packed number has a long word between the first & second parts, | ||
23150 | # get the integer digit then skip down & get the rest of the | ||
23151 | # mantissa. We will unroll the loop once. | ||
23152 | # | ||
23153 | bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word | ||
23154 | fadd.b %d0,%fp0 # add digit to sum in fp0 | ||
23155 | # | ||
23156 | # | ||
23157 | # Get the rest of the mantissa. | ||
23158 | # | ||
23159 | loadlw: | ||
23160 | mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 | ||
23161 | mov.l &FSTRT,%d3 # counter to pick up digits | ||
23162 | mov.l &FNIBS,%d2 # reset number of digits per a0 ptr | ||
23163 | md2b: | ||
23164 | fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 | ||
23165 | bfextu %d4{%d3:&4},%d0 # get the digit and zero extend | ||
23166 | fadd.b %d0,%fp0 # fp0 = fp0 + digit | ||
23167 | # | ||
23168 | # | ||
23169 | # If all the digits (8) in that long word have been converted (d2=0), | ||
23170 | # then inc d1 (=2) to point to the next long word and reset d3 to 0 | ||
23171 | # to initialize the digit offset, and set d2 to 7 for the digit count; | ||
23172 | # else continue with this long word. | ||
23173 | # | ||
23174 | addq.b &4,%d3 # advance d3 to the next digit | ||
23175 | dbf.w %d2,md2b # check for last digit in this lw | ||
23176 | nextlw: | ||
23177 | addq.l &1,%d1 # inc lw pointer in mantissa | ||
23178 | cmp.l %d1,&2 # test for last lw | ||
23179 | ble.b loadlw # if not, get last one | ||
23180 | # | ||
23181 | # Check the sign of the mant and make the value in fp0 the same sign. | ||
23182 | # | ||
23183 | m_sign: | ||
23184 | btst &31,(%a0) # test sign of the mantissa | ||
23185 | beq.b ap_st_z # if clear, go to append/strip zeros | ||
23186 | fneg.x %fp0 # if set, negate fp0 | ||
23187 | # | ||
23188 | # Append/strip zeros: | ||
23189 | # | ||
23190 | # For adjusted exponents which have an absolute value greater than 27*, | ||
23191 | # this routine calculates the amount needed to normalize the mantissa | ||
23192 | # for the adjusted exponent. That number is subtracted from the exp | ||
23193 | # if the exp was positive, and added if it was negative. The purpose | ||
23194 | # of this is to reduce the value of the exponent and the possibility | ||
23195 | # of error in calculation of pwrten. | ||
23196 | # | ||
23197 | # 1. Branch on the sign of the adjusted exponent. | ||
23198 | # 2p.(positive exp) | ||
23199 | # 2. Check M16 and the digits in lwords 2 and 3 in decending order. | ||
23200 | # 3. Add one for each zero encountered until a non-zero digit. | ||
23201 | # 4. Subtract the count from the exp. | ||
23202 | # 5. Check if the exp has crossed zero in #3 above; make the exp abs | ||
23203 | # and set SE. | ||
23204 | # 6. Multiply the mantissa by 10**count. | ||
23205 | # 2n.(negative exp) | ||
23206 | # 2. Check the digits in lwords 3 and 2 in decending order. | ||
23207 | # 3. Add one for each zero encountered until a non-zero digit. | ||
23208 | # 4. Add the count to the exp. | ||
23209 | # 5. Check if the exp has crossed zero in #3 above; clear SE. | ||
23210 | # 6. Divide the mantissa by 10**count. | ||
23211 | # | ||
23212 | # *Why 27? If the adjusted exponent is within -28 < expA < 28, than | ||
23213 | # any adjustment due to append/strip zeros will drive the resultane | ||
23214 | # exponent towards zero. Since all pwrten constants with a power | ||
23215 | # of 27 or less are exact, there is no need to use this routine to | ||
23216 | # attempt to lessen the resultant exponent. | ||
23217 | # | ||
23218 | # Register usage: | ||
23219 | # | ||
23220 | # ap_st_z: | ||
23221 | # (*) d0: temp digit storage | ||
23222 | # (*) d1: zero count | ||
23223 | # (*) d2: digit count | ||
23224 | # (*) d3: offset pointer | ||
23225 | # ( ) d4: first word of bcd | ||
23226 | # (*) d5: lword counter | ||
23227 | # ( ) a0: pointer to working bcd value | ||
23228 | # ( ) FP_SCR1: working copy of original bcd value | ||
23229 | # ( ) L_SCR1: copy of original exponent word | ||
23230 | # | ||
23231 | # | ||
23232 | # First check the absolute value of the exponent to see if this | ||
23233 | # routine is necessary. If so, then check the sign of the exponent | ||
23234 | # and do append (+) or strip (-) zeros accordingly. | ||
23235 | # This section handles a positive adjusted exponent. | ||
23236 | # | ||
23237 | ap_st_z: | ||
23238 | mov.l (%sp),%d1 # load expA for range test | ||
23239 | cmp.l %d1,&27 # test is with 27 | ||
23240 | ble.w pwrten # if abs(expA) <28, skip ap/st zeros | ||
23241 | btst &30,(%a0) # check sign of exp | ||
23242 | bne.b ap_st_n # if neg, go to neg side | ||
23243 | clr.l %d1 # zero count reg | ||
23244 | mov.l (%a0),%d4 # load lword 1 to d4 | ||
23245 | bfextu %d4{&28:&4},%d0 # get M16 in d0 | ||
23246 | bne.b ap_p_fx # if M16 is non-zero, go fix exp | ||
23247 | addq.l &1,%d1 # inc zero count | ||
23248 | mov.l &1,%d5 # init lword counter | ||
23249 | mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 | ||
23250 | bne.b ap_p_cl # if lw 2 is zero, skip it | ||
23251 | addq.l &8,%d1 # and inc count by 8 | ||
23252 | addq.l &1,%d5 # inc lword counter | ||
23253 | mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 | ||
23254 | ap_p_cl: | ||
23255 | clr.l %d3 # init offset reg | ||
23256 | mov.l &7,%d2 # init digit counter | ||
23257 | ap_p_gd: | ||
23258 | bfextu %d4{%d3:&4},%d0 # get digit | ||
23259 | bne.b ap_p_fx # if non-zero, go to fix exp | ||
23260 | addq.l &4,%d3 # point to next digit | ||
23261 | addq.l &1,%d1 # inc digit counter | ||
23262 | dbf.w %d2,ap_p_gd # get next digit | ||
23263 | ap_p_fx: | ||
23264 | mov.l %d1,%d0 # copy counter to d2 | ||
23265 | mov.l (%sp),%d1 # get adjusted exp from memory | ||
23266 | sub.l %d0,%d1 # subtract count from exp | ||
23267 | bge.b ap_p_fm # if still pos, go to pwrten | ||
23268 | neg.l %d1 # now its neg; get abs | ||
23269 | mov.l (%a0),%d4 # load lword 1 to d4 | ||
23270 | or.l &0x40000000,%d4 # and set SE in d4 | ||
23271 | or.l &0x40000000,(%a0) # and in memory | ||
23272 | # | ||
23273 | # Calculate the mantissa multiplier to compensate for the striping of | ||
23274 | # zeros from the mantissa. | ||
23275 | # | ||
23276 | ap_p_fm: | ||
23277 | lea.l PTENRN(%pc),%a1 # get address of power-of-ten table | ||
23278 | clr.l %d3 # init table index | ||
23279 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 | ||
23280 | mov.l &3,%d2 # init d2 to count bits in counter | ||
23281 | ap_p_el: | ||
23282 | asr.l &1,%d0 # shift lsb into carry | ||
23283 | bcc.b ap_p_en # if 1, mul fp1 by pwrten factor | ||
23284 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) | ||
23285 | ap_p_en: | ||
23286 | add.l &12,%d3 # inc d3 to next rtable entry | ||
23287 | tst.l %d0 # check if d0 is zero | ||
23288 | bne.b ap_p_el # if not, get next bit | ||
23289 | fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) | ||
23290 | bra.b pwrten # go calc pwrten | ||
23291 | # | ||
23292 | # This section handles a negative adjusted exponent. | ||
23293 | # | ||
23294 | ap_st_n: | ||
23295 | clr.l %d1 # clr counter | ||
23296 | mov.l &2,%d5 # set up d5 to point to lword 3 | ||
23297 | mov.l (%a0,%d5.L*4),%d4 # get lword 3 | ||
23298 | bne.b ap_n_cl # if not zero, check digits | ||
23299 | sub.l &1,%d5 # dec d5 to point to lword 2 | ||
23300 | addq.l &8,%d1 # inc counter by 8 | ||
23301 | mov.l (%a0,%d5.L*4),%d4 # get lword 2 | ||
23302 | ap_n_cl: | ||
23303 | mov.l &28,%d3 # point to last digit | ||
23304 | mov.l &7,%d2 # init digit counter | ||
23305 | ap_n_gd: | ||
23306 | bfextu %d4{%d3:&4},%d0 # get digit | ||
23307 | bne.b ap_n_fx # if non-zero, go to exp fix | ||
23308 | subq.l &4,%d3 # point to previous digit | ||
23309 | addq.l &1,%d1 # inc digit counter | ||
23310 | dbf.w %d2,ap_n_gd # get next digit | ||
23311 | ap_n_fx: | ||
23312 | mov.l %d1,%d0 # copy counter to d0 | ||
23313 | mov.l (%sp),%d1 # get adjusted exp from memory | ||
23314 | sub.l %d0,%d1 # subtract count from exp | ||
23315 | bgt.b ap_n_fm # if still pos, go fix mantissa | ||
23316 | neg.l %d1 # take abs of exp and clr SE | ||
23317 | mov.l (%a0),%d4 # load lword 1 to d4 | ||
23318 | and.l &0xbfffffff,%d4 # and clr SE in d4 | ||
23319 | and.l &0xbfffffff,(%a0) # and in memory | ||
23320 | # | ||
23321 | # Calculate the mantissa multiplier to compensate for the appending of | ||
23322 | # zeros to the mantissa. | ||
23323 | # | ||
23324 | ap_n_fm: | ||
23325 | lea.l PTENRN(%pc),%a1 # get address of power-of-ten table | ||
23326 | clr.l %d3 # init table index | ||
23327 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 | ||
23328 | mov.l &3,%d2 # init d2 to count bits in counter | ||
23329 | ap_n_el: | ||
23330 | asr.l &1,%d0 # shift lsb into carry | ||
23331 | bcc.b ap_n_en # if 1, mul fp1 by pwrten factor | ||
23332 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) | ||
23333 | ap_n_en: | ||
23334 | add.l &12,%d3 # inc d3 to next rtable entry | ||
23335 | tst.l %d0 # check if d0 is zero | ||
23336 | bne.b ap_n_el # if not, get next bit | ||
23337 | fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) | ||
23338 | # | ||
23339 | # | ||
23340 | # Calculate power-of-ten factor from adjusted and shifted exponent. | ||
23341 | # | ||
23342 | # Register usage: | ||
23343 | # | ||
23344 | # pwrten: | ||
23345 | # (*) d0: temp | ||
23346 | # ( ) d1: exponent | ||
23347 | # (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp | ||
23348 | # (*) d3: FPCR work copy | ||
23349 | # ( ) d4: first word of bcd | ||
23350 | # (*) a1: RTABLE pointer | ||
23351 | # calc_p: | ||
23352 | # (*) d0: temp | ||
23353 | # ( ) d1: exponent | ||
23354 | # (*) d3: PWRTxx table index | ||
23355 | # ( ) a0: pointer to working copy of bcd | ||
23356 | # (*) a1: PWRTxx pointer | ||
23357 | # (*) fp1: power-of-ten accumulator | ||
23358 | # | ||
23359 | # Pwrten calculates the exponent factor in the selected rounding mode | ||
23360 | # according to the following table: | ||
23361 | # | ||
23362 | # Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode | ||
23363 | # | ||
23364 | # ANY ANY RN RN | ||
23365 | # | ||
23366 | # + + RP RP | ||
23367 | # - + RP RM | ||
23368 | # + - RP RM | ||
23369 | # - - RP RP | ||
23370 | # | ||
23371 | # + + RM RM | ||
23372 | # - + RM RP | ||
23373 | # + - RM RP | ||
23374 | # - - RM RM | ||
23375 | # | ||
23376 | # + + RZ RM | ||
23377 | # - + RZ RM | ||
23378 | # + - RZ RP | ||
23379 | # - - RZ RP | ||
23380 | # | ||
23381 | # | ||
23382 | pwrten: | ||
23383 | mov.l USER_FPCR(%a6),%d3 # get user's FPCR | ||
23384 | bfextu %d3{&26:&2},%d2 # isolate rounding mode bits | ||
23385 | mov.l (%a0),%d4 # reload 1st bcd word to d4 | ||
23386 | asl.l &2,%d2 # format d2 to be | ||
23387 | bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} | ||
23388 | add.l %d0,%d2 # in d2 as index into RTABLE | ||
23389 | lea.l RTABLE(%pc),%a1 # load rtable base | ||
23390 | mov.b (%a1,%d2),%d0 # load new rounding bits from table | ||
23391 | clr.l %d3 # clear d3 to force no exc and extended | ||
23392 | bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR | ||
23393 | fmov.l %d3,%fpcr # write new FPCR | ||
23394 | asr.l &1,%d0 # write correct PTENxx table | ||
23395 | bcc.b not_rp # to a1 | ||
23396 | lea.l PTENRP(%pc),%a1 # it is RP | ||
23397 | bra.b calc_p # go to init section | ||
23398 | not_rp: | ||
23399 | asr.l &1,%d0 # keep checking | ||
23400 | bcc.b not_rm | ||
23401 | lea.l PTENRM(%pc),%a1 # it is RM | ||
23402 | bra.b calc_p # go to init section | ||
23403 | not_rm: | ||
23404 | lea.l PTENRN(%pc),%a1 # it is RN | ||
23405 | calc_p: | ||
23406 | mov.l %d1,%d0 # copy exp to d0;use d0 | ||
23407 | bpl.b no_neg # if exp is negative, | ||
23408 | neg.l %d0 # invert it | ||
23409 | or.l &0x40000000,(%a0) # and set SE bit | ||
23410 | no_neg: | ||
23411 | clr.l %d3 # table index | ||
23412 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 | ||
23413 | e_loop: | ||
23414 | asr.l &1,%d0 # shift next bit into carry | ||
23415 | bcc.b e_next # if zero, skip the mul | ||
23416 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) | ||
23417 | e_next: | ||
23418 | add.l &12,%d3 # inc d3 to next rtable entry | ||
23419 | tst.l %d0 # check if d0 is zero | ||
23420 | bne.b e_loop # not zero, continue shifting | ||
23421 | # | ||
23422 | # | ||
23423 | # Check the sign of the adjusted exp and make the value in fp0 the | ||
23424 | # same sign. If the exp was pos then multiply fp1*fp0; | ||
23425 | # else divide fp0/fp1. | ||
23426 | # | ||
23427 | # Register Usage: | ||
23428 | # norm: | ||
23429 | # ( ) a0: pointer to working bcd value | ||
23430 | # (*) fp0: mantissa accumulator | ||
23431 | # ( ) fp1: scaling factor - 10**(abs(exp)) | ||
23432 | # | ||
23433 | pnorm: | ||
23434 | btst &30,(%a0) # test the sign of the exponent | ||
23435 | beq.b mul # if clear, go to multiply | ||
23436 | div: | ||
23437 | fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp | ||
23438 | bra.b end_dec | ||
23439 | mul: | ||
23440 | fmul.x %fp1,%fp0 # exp is positive, so multiply by exp | ||
23441 | # | ||
23442 | # | ||
23443 | # Clean up and return with result in fp0. | ||
23444 | # | ||
23445 | # If the final mul/div in decbin incurred an inex exception, | ||
23446 | # it will be inex2, but will be reported as inex1 by get_op. | ||
23447 | # | ||
23448 | end_dec: | ||
23449 | fmov.l %fpsr,%d0 # get status register | ||
23450 | bclr &inex2_bit+8,%d0 # test for inex2 and clear it | ||
23451 | beq.b no_exc # skip this if no exc | ||
23452 | ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX | ||
23453 | no_exc: | ||
23454 | add.l &0x4,%sp # clear 1 lw param | ||
23455 | fmovm.x (%sp)+,&0x40 # restore fp1 | ||
23456 | movm.l (%sp)+,&0x3c # restore d2-d5 | ||
23457 | fmov.l &0x0,%fpcr | ||
23458 | fmov.l &0x0,%fpsr | ||
23459 | rts | ||
23460 | |||
23461 | ######################################################################### | ||
23462 | # bindec(): Converts an input in extended precision format to bcd format# | ||
23463 | # # | ||
23464 | # INPUT *************************************************************** # | ||
23465 | # a0 = pointer to the input extended precision value in memory. # | ||
23466 | # the input may be either normalized, unnormalized, or # | ||
23467 | # denormalized. # | ||
23468 | # d0 = contains the k-factor sign-extended to 32-bits. # | ||
23469 | # # | ||
23470 | # OUTPUT ************************************************************** # | ||
23471 | # FP_SCR0(a6) = bcd format result on the stack. # | ||
23472 | # # | ||
23473 | # ALGORITHM *********************************************************** # | ||
23474 | # # | ||
23475 | # A1. Set RM and size ext; Set SIGMA = sign of input. # | ||
23476 | # The k-factor is saved for use in d7. Clear the # | ||
23477 | # BINDEC_FLG for separating normalized/denormalized # | ||
23478 | # input. If input is unnormalized or denormalized, # | ||
23479 | # normalize it. # | ||
23480 | # # | ||
23481 | # A2. Set X = abs(input). # | ||
23482 | # # | ||
23483 | # A3. Compute ILOG. # | ||
23484 | # ILOG is the log base 10 of the input value. It is # | ||
23485 | # approximated by adding e + 0.f when the original # | ||
23486 | # value is viewed as 2^^e * 1.f in extended precision. # | ||
23487 | # This value is stored in d6. # | ||
23488 | # # | ||
23489 | # A4. Clr INEX bit. # | ||
23490 | # The operation in A3 above may have set INEX2. # | ||
23491 | # # | ||
23492 | # A5. Set ICTR = 0; # | ||
23493 | # ICTR is a flag used in A13. It must be set before the # | ||
23494 | # loop entry A6. # | ||
23495 | # # | ||
23496 | # A6. Calculate LEN. # | ||
23497 | # LEN is the number of digits to be displayed. The # | ||
23498 | # k-factor can dictate either the total number of digits, # | ||
23499 | # if it is a positive number, or the number of digits # | ||
23500 | # after the decimal point which are to be included as # | ||
23501 | # significant. See the 68882 manual for examples. # | ||
23502 | # If LEN is computed to be greater than 17, set OPERR in # | ||
23503 | # USER_FPSR. LEN is stored in d4. # | ||
23504 | # # | ||
23505 | # A7. Calculate SCALE. # | ||
23506 | # SCALE is equal to 10^ISCALE, where ISCALE is the number # | ||
23507 | # of decimal places needed to insure LEN integer digits # | ||
23508 | # in the output before conversion to bcd. LAMBDA is the # | ||
23509 | # sign of ISCALE, used in A9. Fp1 contains # | ||
23510 | # 10^^(abs(ISCALE)) using a rounding mode which is a # | ||
23511 | # function of the original rounding mode and the signs # | ||
23512 | # of ISCALE and X. A table is given in the code. # | ||
23513 | # # | ||
23514 | # A8. Clr INEX; Force RZ. # | ||
23515 | # The operation in A3 above may have set INEX2. # | ||
23516 | # RZ mode is forced for the scaling operation to insure # | ||
23517 | # only one rounding error. The grs bits are collected in # | ||
23518 | # the INEX flag for use in A10. # | ||
23519 | # # | ||
23520 | # A9. Scale X -> Y. # | ||
23521 | # The mantissa is scaled to the desired number of # | ||
23522 | # significant digits. The excess digits are collected # | ||
23523 | # in INEX2. # | ||
23524 | # # | ||
23525 | # A10. Or in INEX. # | ||
23526 | # If INEX is set, round error occurred. This is # | ||
23527 | # compensated for by 'or-ing' in the INEX2 flag to # | ||
23528 | # the lsb of Y. # | ||
23529 | # # | ||
23530 | # A11. Restore original FPCR; set size ext. # | ||
23531 | # Perform FINT operation in the user's rounding mode. # | ||
23532 | # Keep the size to extended. # | ||
23533 | # # | ||
23534 | # A12. Calculate YINT = FINT(Y) according to user's rounding # | ||
23535 | # mode. The FPSP routine sintd0 is used. The output # | ||
23536 | # is in fp0. # | ||
23537 | # # | ||
23538 | # A13. Check for LEN digits. # | ||
23539 | # If the int operation results in more than LEN digits, # | ||
23540 | # or less than LEN -1 digits, adjust ILOG and repeat from # | ||
23541 | # A6. This test occurs only on the first pass. If the # | ||
23542 | # result is exactly 10^LEN, decrement ILOG and divide # | ||
23543 | # the mantissa by 10. # | ||
23544 | # # | ||
23545 | # A14. Convert the mantissa to bcd. # | ||
23546 | # The binstr routine is used to convert the LEN digit # | ||
23547 | # mantissa to bcd in memory. The input to binstr is # | ||
23548 | # to be a fraction; i.e. (mantissa)/10^LEN and adjusted # | ||
23549 | # such that the decimal point is to the left of bit 63. # | ||
23550 | # The bcd digits are stored in the correct position in # | ||
23551 | # the final string area in memory. # | ||
23552 | # # | ||
23553 | # A15. Convert the exponent to bcd. # | ||
23554 | # As in A14 above, the exp is converted to bcd and the # | ||
23555 | # digits are stored in the final string. # | ||
23556 | # Test the length of the final exponent string. If the # | ||
23557 | # length is 4, set operr. # | ||
23558 | # # | ||
23559 | # A16. Write sign bits to final string. # | ||
23560 | # # | ||
23561 | ######################################################################### | ||
23562 | |||
23563 | set BINDEC_FLG, EXC_TEMP # DENORM flag | ||
23564 | |||
23565 | # Constants in extended precision | ||
23566 | PLOG2: | ||
23567 | long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 | ||
23568 | PLOG2UP1: | ||
23569 | long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 | ||
23570 | |||
23571 | # Constants in single precision | ||
23572 | FONE: | ||
23573 | long 0x3F800000,0x00000000,0x00000000,0x00000000 | ||
23574 | FTWO: | ||
23575 | long 0x40000000,0x00000000,0x00000000,0x00000000 | ||
23576 | FTEN: | ||
23577 | long 0x41200000,0x00000000,0x00000000,0x00000000 | ||
23578 | F4933: | ||
23579 | long 0x459A2800,0x00000000,0x00000000,0x00000000 | ||
23580 | |||
23581 | RBDTBL: | ||
23582 | byte 0,0,0,0 | ||
23583 | byte 3,3,2,2 | ||
23584 | byte 3,2,2,3 | ||
23585 | byte 2,3,3,2 | ||
23586 | |||
23587 | # Implementation Notes: | ||
23588 | # | ||
23589 | # The registers are used as follows: | ||
23590 | # | ||
23591 | # d0: scratch; LEN input to binstr | ||
23592 | # d1: scratch | ||
23593 | # d2: upper 32-bits of mantissa for binstr | ||
23594 | # d3: scratch;lower 32-bits of mantissa for binstr | ||
23595 | # d4: LEN | ||
23596 | # d5: LAMBDA/ICTR | ||
23597 | # d6: ILOG | ||
23598 | # d7: k-factor | ||
23599 | # a0: ptr for original operand/final result | ||
23600 | # a1: scratch pointer | ||
23601 | # a2: pointer to FP_X; abs(original value) in ext | ||
23602 | # fp0: scratch | ||
23603 | # fp1: scratch | ||
23604 | # fp2: scratch | ||
23605 | # F_SCR1: | ||
23606 | # F_SCR2: | ||
23607 | # L_SCR1: | ||
23608 | # L_SCR2: | ||
23609 | |||
23610 | global bindec | ||
23611 | bindec: | ||
23612 | movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} | ||
23613 | fmovm.x &0x7,-(%sp) # {%fp0-%fp2} | ||
23614 | |||
23615 | # A1. Set RM and size ext. Set SIGMA = sign input; | ||
23616 | # The k-factor is saved for use in d7. Clear BINDEC_FLG for | ||
23617 | # separating normalized/denormalized input. If the input | ||
23618 | # is a denormalized number, set the BINDEC_FLG memory word | ||
23619 | # to signal denorm. If the input is unnormalized, normalize | ||
23620 | # the input and test for denormalized result. | ||
23621 | # | ||
23622 | fmov.l &rm_mode*0x10,%fpcr # set RM and ext | ||
23623 | mov.l (%a0),L_SCR2(%a6) # save exponent for sign check | ||
23624 | mov.l %d0,%d7 # move k-factor to d7 | ||
23625 | |||
23626 | clr.b BINDEC_FLG(%a6) # clr norm/denorm flag | ||
23627 | cmpi.b STAG(%a6),&DENORM # is input a DENORM? | ||
23628 | bne.w A2_str # no; input is a NORM | ||
23629 | |||
23630 | # | ||
23631 | # Normalize the denorm | ||
23632 | # | ||
23633 | un_de_norm: | ||
23634 | mov.w (%a0),%d0 | ||
23635 | and.w &0x7fff,%d0 # strip sign of normalized exp | ||
23636 | mov.l 4(%a0),%d1 | ||
23637 | mov.l 8(%a0),%d2 | ||
23638 | norm_loop: | ||
23639 | sub.w &1,%d0 | ||
23640 | lsl.l &1,%d2 | ||
23641 | roxl.l &1,%d1 | ||
23642 | tst.l %d1 | ||
23643 | bge.b norm_loop | ||
23644 | # | ||
23645 | # Test if the normalized input is denormalized | ||
23646 | # | ||
23647 | tst.w %d0 | ||
23648 | bgt.b pos_exp # if greater than zero, it is a norm | ||
23649 | st BINDEC_FLG(%a6) # set flag for denorm | ||
23650 | pos_exp: | ||
23651 | and.w &0x7fff,%d0 # strip sign of normalized exp | ||
23652 | mov.w %d0,(%a0) | ||
23653 | mov.l %d1,4(%a0) | ||
23654 | mov.l %d2,8(%a0) | ||
23655 | |||
23656 | # A2. Set X = abs(input). | ||
23657 | # | ||
23658 | A2_str: | ||
23659 | mov.l (%a0),FP_SCR1(%a6) # move input to work space | ||
23660 | mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space | ||
23661 | mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space | ||
23662 | and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) | ||
23663 | |||
23664 | # A3. Compute ILOG. | ||
23665 | # ILOG is the log base 10 of the input value. It is approx- | ||
23666 | # imated by adding e + 0.f when the original value is viewed | ||
23667 | # as 2^^e * 1.f in extended precision. This value is stored | ||
23668 | # in d6. | ||
23669 | # | ||
23670 | # Register usage: | ||
23671 | # Input/Output | ||
23672 | # d0: k-factor/exponent | ||
23673 | # d2: x/x | ||
23674 | # d3: x/x | ||
23675 | # d4: x/x | ||
23676 | # d5: x/x | ||
23677 | # d6: x/ILOG | ||
23678 | # d7: k-factor/Unchanged | ||
23679 | # a0: ptr for original operand/final result | ||
23680 | # a1: x/x | ||
23681 | # a2: x/x | ||
23682 | # fp0: x/float(ILOG) | ||
23683 | # fp1: x/x | ||
23684 | # fp2: x/x | ||
23685 | # F_SCR1:x/x | ||
23686 | # F_SCR2:Abs(X)/Abs(X) with $3fff exponent | ||
23687 | # L_SCR1:x/x | ||
23688 | # L_SCR2:first word of X packed/Unchanged | ||
23689 | |||
23690 | tst.b BINDEC_FLG(%a6) # check for denorm | ||
23691 | beq.b A3_cont # if clr, continue with norm | ||
23692 | mov.l &-4933,%d6 # force ILOG = -4933 | ||
23693 | bra.b A4_str | ||
23694 | A3_cont: | ||
23695 | mov.w FP_SCR1(%a6),%d0 # move exp to d0 | ||
23696 | mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff | ||
23697 | fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f | ||
23698 | sub.w &0x3fff,%d0 # strip off bias | ||
23699 | fadd.w %d0,%fp0 # add in exp | ||
23700 | fsub.s FONE(%pc),%fp0 # subtract off 1.0 | ||
23701 | fbge.w pos_res # if pos, branch | ||
23702 | fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 | ||
23703 | fmov.l %fp0,%d6 # put ILOG in d6 as a lword | ||
23704 | bra.b A4_str # go move out ILOG | ||
23705 | pos_res: | ||
23706 | fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 | ||
23707 | fmov.l %fp0,%d6 # put ILOG in d6 as a lword | ||
23708 | |||
23709 | |||
23710 | # A4. Clr INEX bit. | ||
23711 | # The operation in A3 above may have set INEX2. | ||
23712 | |||
23713 | A4_str: | ||
23714 | fmov.l &0,%fpsr # zero all of fpsr - nothing needed | ||
23715 | |||
23716 | |||
23717 | # A5. Set ICTR = 0; | ||
23718 | # ICTR is a flag used in A13. It must be set before the | ||
23719 | # loop entry A6. The lower word of d5 is used for ICTR. | ||
23720 | |||
23721 | clr.w %d5 # clear ICTR | ||
23722 | |||
23723 | # A6. Calculate LEN. | ||
23724 | # LEN is the number of digits to be displayed. The k-factor | ||
23725 | # can dictate either the total number of digits, if it is | ||
23726 | # a positive number, or the number of digits after the | ||
23727 | # original decimal point which are to be included as | ||
23728 | # significant. See the 68882 manual for examples. | ||
23729 | # If LEN is computed to be greater than 17, set OPERR in | ||
23730 | # USER_FPSR. LEN is stored in d4. | ||
23731 | # | ||
23732 | # Register usage: | ||
23733 | # Input/Output | ||
23734 | # d0: exponent/Unchanged | ||
23735 | # d2: x/x/scratch | ||
23736 | # d3: x/x | ||
23737 | # d4: exc picture/LEN | ||
23738 | # d5: ICTR/Unchanged | ||
23739 | # d6: ILOG/Unchanged | ||
23740 | # d7: k-factor/Unchanged | ||
23741 | # a0: ptr for original operand/final result | ||
23742 | # a1: x/x | ||
23743 | # a2: x/x | ||
23744 | # fp0: float(ILOG)/Unchanged | ||
23745 | # fp1: x/x | ||
23746 | # fp2: x/x | ||
23747 | # F_SCR1:x/x | ||
23748 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged | ||
23749 | # L_SCR1:x/x | ||
23750 | # L_SCR2:first word of X packed/Unchanged | ||
23751 | |||
23752 | A6_str: | ||
23753 | tst.l %d7 # branch on sign of k | ||
23754 | ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k | ||
23755 | mov.l %d7,%d4 # if k > 0, LEN = k | ||
23756 | bra.b len_ck # skip to LEN check | ||
23757 | k_neg: | ||
23758 | mov.l %d6,%d4 # first load ILOG to d4 | ||
23759 | sub.l %d7,%d4 # subtract off k | ||
23760 | addq.l &1,%d4 # add in the 1 | ||
23761 | len_ck: | ||
23762 | tst.l %d4 # LEN check: branch on sign of LEN | ||
23763 | ble.b LEN_ng # if neg, set LEN = 1 | ||
23764 | cmp.l %d4,&17 # test if LEN > 17 | ||
23765 | ble.b A7_str # if not, forget it | ||
23766 | mov.l &17,%d4 # set max LEN = 17 | ||
23767 | tst.l %d7 # if negative, never set OPERR | ||
23768 | ble.b A7_str # if positive, continue | ||
23769 | or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR | ||
23770 | bra.b A7_str # finished here | ||
23771 | LEN_ng: | ||
23772 | mov.l &1,%d4 # min LEN is 1 | ||
23773 | |||
23774 | |||
23775 | # A7. Calculate SCALE. | ||
23776 | # SCALE is equal to 10^ISCALE, where ISCALE is the number | ||
23777 | # of decimal places needed to insure LEN integer digits | ||
23778 | # in the output before conversion to bcd. LAMBDA is the sign | ||
23779 | # of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using | ||
23780 | # the rounding mode as given in the following table (see | ||
23781 | # Coonen, p. 7.23 as ref.; however, the SCALE variable is | ||
23782 | # of opposite sign in bindec.sa from Coonen). | ||
23783 | # | ||
23784 | # Initial USE | ||
23785 | # FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] | ||
23786 | # ---------------------------------------------- | ||
23787 | # RN 00 0 0 00/0 RN | ||
23788 | # RN 00 0 1 00/0 RN | ||
23789 | # RN 00 1 0 00/0 RN | ||
23790 | # RN 00 1 1 00/0 RN | ||
23791 | # RZ 01 0 0 11/3 RP | ||
23792 | # RZ 01 0 1 11/3 RP | ||
23793 | # RZ 01 1 0 10/2 RM | ||
23794 | # RZ 01 1 1 10/2 RM | ||
23795 | # RM 10 0 0 11/3 RP | ||
23796 | # RM 10 0 1 10/2 RM | ||
23797 | # RM 10 1 0 10/2 RM | ||
23798 | # RM 10 1 1 11/3 RP | ||
23799 | # RP 11 0 0 10/2 RM | ||
23800 | # RP 11 0 1 11/3 RP | ||
23801 | # RP 11 1 0 11/3 RP | ||
23802 | # RP 11 1 1 10/2 RM | ||
23803 | # | ||
23804 | # Register usage: | ||
23805 | # Input/Output | ||
23806 | # d0: exponent/scratch - final is 0 | ||
23807 | # d2: x/0 or 24 for A9 | ||
23808 | # d3: x/scratch - offset ptr into PTENRM array | ||
23809 | # d4: LEN/Unchanged | ||
23810 | # d5: 0/ICTR:LAMBDA | ||
23811 | # d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) | ||
23812 | # d7: k-factor/Unchanged | ||
23813 | # a0: ptr for original operand/final result | ||
23814 | # a1: x/ptr to PTENRM array | ||
23815 | # a2: x/x | ||
23816 | # fp0: float(ILOG)/Unchanged | ||
23817 | # fp1: x/10^ISCALE | ||
23818 | # fp2: x/x | ||
23819 | # F_SCR1:x/x | ||
23820 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged | ||
23821 | # L_SCR1:x/x | ||
23822 | # L_SCR2:first word of X packed/Unchanged | ||
23823 | |||
23824 | A7_str: | ||
23825 | tst.l %d7 # test sign of k | ||
23826 | bgt.b k_pos # if pos and > 0, skip this | ||
23827 | cmp.l %d7,%d6 # test k - ILOG | ||
23828 | blt.b k_pos # if ILOG >= k, skip this | ||
23829 | mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k | ||
23830 | k_pos: | ||
23831 | mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 | ||
23832 | addq.l &1,%d0 # add the 1 | ||
23833 | sub.l %d4,%d0 # sub off LEN | ||
23834 | swap %d5 # use upper word of d5 for LAMBDA | ||
23835 | clr.w %d5 # set it zero initially | ||
23836 | clr.w %d2 # set up d2 for very small case | ||
23837 | tst.l %d0 # test sign of ISCALE | ||
23838 | bge.b iscale # if pos, skip next inst | ||
23839 | addq.w &1,%d5 # if neg, set LAMBDA true | ||
23840 | cmp.l %d0,&0xffffecd4 # test iscale <= -4908 | ||
23841 | bgt.b no_inf # if false, skip rest | ||
23842 | add.l &24,%d0 # add in 24 to iscale | ||
23843 | mov.l &24,%d2 # put 24 in d2 for A9 | ||
23844 | no_inf: | ||
23845 | neg.l %d0 # and take abs of ISCALE | ||
23846 | iscale: | ||
23847 | fmov.s FONE(%pc),%fp1 # init fp1 to 1 | ||
23848 | bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits | ||
23849 | lsl.w &1,%d1 # put them in bits 2:1 | ||
23850 | add.w %d5,%d1 # add in LAMBDA | ||
23851 | lsl.w &1,%d1 # put them in bits 3:1 | ||
23852 | tst.l L_SCR2(%a6) # test sign of original x | ||
23853 | bge.b x_pos # if pos, don't set bit 0 | ||
23854 | addq.l &1,%d1 # if neg, set bit 0 | ||
23855 | x_pos: | ||
23856 | lea.l RBDTBL(%pc),%a2 # load rbdtbl base | ||
23857 | mov.b (%a2,%d1),%d3 # load d3 with new rmode | ||
23858 | lsl.l &4,%d3 # put bits in proper position | ||
23859 | fmov.l %d3,%fpcr # load bits into fpu | ||
23860 | lsr.l &4,%d3 # put bits in proper position | ||
23861 | tst.b %d3 # decode new rmode for pten table | ||
23862 | bne.b not_rn # if zero, it is RN | ||
23863 | lea.l PTENRN(%pc),%a1 # load a1 with RN table base | ||
23864 | bra.b rmode # exit decode | ||
23865 | not_rn: | ||
23866 | lsr.b &1,%d3 # get lsb in carry | ||
23867 | bcc.b not_rp2 # if carry clear, it is RM | ||
23868 | lea.l PTENRP(%pc),%a1 # load a1 with RP table base | ||
23869 | bra.b rmode # exit decode | ||
23870 | not_rp2: | ||
23871 | lea.l PTENRM(%pc),%a1 # load a1 with RM table base | ||
23872 | rmode: | ||
23873 | clr.l %d3 # clr table index | ||
23874 | e_loop2: | ||
23875 | lsr.l &1,%d0 # shift next bit into carry | ||
23876 | bcc.b e_next2 # if zero, skip the mul | ||
23877 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) | ||
23878 | e_next2: | ||
23879 | add.l &12,%d3 # inc d3 to next pwrten table entry | ||
23880 | tst.l %d0 # test if ISCALE is zero | ||
23881 | bne.b e_loop2 # if not, loop | ||
23882 | |||
23883 | # A8. Clr INEX; Force RZ. | ||
23884 | # The operation in A3 above may have set INEX2. | ||
23885 | # RZ mode is forced for the scaling operation to insure | ||
23886 | # only one rounding error. The grs bits are collected in | ||
23887 | # the INEX flag for use in A10. | ||
23888 | # | ||
23889 | # Register usage: | ||
23890 | # Input/Output | ||
23891 | |||
23892 | fmov.l &0,%fpsr # clr INEX | ||
23893 | fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode | ||
23894 | |||
23895 | # A9. Scale X -> Y. | ||
23896 | # The mantissa is scaled to the desired number of significant | ||
23897 | # digits. The excess digits are collected in INEX2. If mul, | ||
23898 | # Check d2 for excess 10 exponential value. If not zero, | ||
23899 | # the iscale value would have caused the pwrten calculation | ||
23900 | # to overflow. Only a negative iscale can cause this, so | ||
23901 | # multiply by 10^(d2), which is now only allowed to be 24, | ||
23902 | # with a multiply by 10^8 and 10^16, which is exact since | ||
23903 | # 10^24 is exact. If the input was denormalized, we must | ||
23904 | # create a busy stack frame with the mul command and the | ||
23905 | # two operands, and allow the fpu to complete the multiply. | ||
23906 | # | ||
23907 | # Register usage: | ||
23908 | # Input/Output | ||
23909 | # d0: FPCR with RZ mode/Unchanged | ||
23910 | # d2: 0 or 24/unchanged | ||
23911 | # d3: x/x | ||
23912 | # d4: LEN/Unchanged | ||
23913 | # d5: ICTR:LAMBDA | ||
23914 | # d6: ILOG/Unchanged | ||
23915 | # d7: k-factor/Unchanged | ||
23916 | # a0: ptr for original operand/final result | ||
23917 | # a1: ptr to PTENRM array/Unchanged | ||
23918 | # a2: x/x | ||
23919 | # fp0: float(ILOG)/X adjusted for SCALE (Y) | ||
23920 | # fp1: 10^ISCALE/Unchanged | ||
23921 | # fp2: x/x | ||
23922 | # F_SCR1:x/x | ||
23923 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged | ||
23924 | # L_SCR1:x/x | ||
23925 | # L_SCR2:first word of X packed/Unchanged | ||
23926 | |||
23927 | A9_str: | ||
23928 | fmov.x (%a0),%fp0 # load X from memory | ||
23929 | fabs.x %fp0 # use abs(X) | ||
23930 | tst.w %d5 # LAMBDA is in lower word of d5 | ||
23931 | bne.b sc_mul # if neg (LAMBDA = 1), scale by mul | ||
23932 | fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 | ||
23933 | bra.w A10_st # branch to A10 | ||
23934 | |||
23935 | sc_mul: | ||
23936 | tst.b BINDEC_FLG(%a6) # check for denorm | ||
23937 | beq.w A9_norm # if norm, continue with mul | ||
23938 | |||
23939 | # for DENORM, we must calculate: | ||
23940 | # fp0 = input_op * 10^ISCALE * 10^24 | ||
23941 | # since the input operand is a DENORM, we can't multiply it directly. | ||
23942 | # so, we do the multiplication of the exponents and mantissas separately. | ||
23943 | # in this way, we avoid underflow on intermediate stages of the | ||
23944 | # multiplication and guarantee a result without exception. | ||
23945 | fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack | ||
23946 | |||
23947 | mov.w (%sp),%d3 # grab exponent | ||
23948 | andi.w &0x7fff,%d3 # clear sign | ||
23949 | ori.w &0x8000,(%a0) # make DENORM exp negative | ||
23950 | add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp | ||
23951 | subi.w &0x3fff,%d3 # subtract BIAS | ||
23952 | add.w 36(%a1),%d3 | ||
23953 | subi.w &0x3fff,%d3 # subtract BIAS | ||
23954 | add.w 48(%a1),%d3 | ||
23955 | subi.w &0x3fff,%d3 # subtract BIAS | ||
23956 | |||
23957 | bmi.w sc_mul_err # is result is DENORM, punt!!! | ||
23958 | |||
23959 | andi.w &0x8000,(%sp) # keep sign | ||
23960 | or.w %d3,(%sp) # insert new exponent | ||
23961 | andi.w &0x7fff,(%a0) # clear sign bit on DENORM again | ||
23962 | mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk | ||
23963 | mov.l 0x4(%a0),-(%sp) | ||
23964 | mov.l &0x3fff0000,-(%sp) # force exp to zero | ||
23965 | fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 | ||
23966 | fmul.x (%sp)+,%fp0 | ||
23967 | |||
23968 | # fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 | ||
23969 | # fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 | ||
23970 | mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa | ||
23971 | mov.l 36+4(%a1),-(%sp) | ||
23972 | mov.l &0x3fff0000,-(%sp) # force exp to zero | ||
23973 | mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa | ||
23974 | mov.l 48+4(%a1),-(%sp) | ||
23975 | mov.l &0x3fff0000,-(%sp)# force exp to zero | ||
23976 | fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 | ||
23977 | fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 | ||
23978 | bra.b A10_st | ||
23979 | |||
23980 | sc_mul_err: | ||
23981 | bra.b sc_mul_err | ||
23982 | |||
23983 | A9_norm: | ||
23984 | tst.w %d2 # test for small exp case | ||
23985 | beq.b A9_con # if zero, continue as normal | ||
23986 | fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 | ||
23987 | fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 | ||
23988 | A9_con: | ||
23989 | fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 | ||
23990 | |||
23991 | # A10. Or in INEX. | ||
23992 | # If INEX is set, round error occurred. This is compensated | ||
23993 | # for by 'or-ing' in the INEX2 flag to the lsb of Y. | ||
23994 | # | ||
23995 | # Register usage: | ||
23996 | # Input/Output | ||
23997 | # d0: FPCR with RZ mode/FPSR with INEX2 isolated | ||
23998 | # d2: x/x | ||
23999 | # d3: x/x | ||
24000 | # d4: LEN/Unchanged | ||
24001 | # d5: ICTR:LAMBDA | ||
24002 | # d6: ILOG/Unchanged | ||
24003 | # d7: k-factor/Unchanged | ||
24004 | # a0: ptr for original operand/final result | ||
24005 | # a1: ptr to PTENxx array/Unchanged | ||
24006 | # a2: x/ptr to FP_SCR1(a6) | ||
24007 | # fp0: Y/Y with lsb adjusted | ||
24008 | # fp1: 10^ISCALE/Unchanged | ||
24009 | # fp2: x/x | ||
24010 | |||
24011 | A10_st: | ||
24012 | fmov.l %fpsr,%d0 # get FPSR | ||
24013 | fmov.x %fp0,FP_SCR1(%a6) # move Y to memory | ||
24014 | lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 | ||
24015 | btst &9,%d0 # check if INEX2 set | ||
24016 | beq.b A11_st # if clear, skip rest | ||
24017 | or.l &1,8(%a2) # or in 1 to lsb of mantissa | ||
24018 | fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu | ||
24019 | |||
24020 | |||
24021 | # A11. Restore original FPCR; set size ext. | ||
24022 | # Perform FINT operation in the user's rounding mode. Keep | ||
24023 | # the size to extended. The sintdo entry point in the sint | ||
24024 | # routine expects the FPCR value to be in USER_FPCR for | ||
24025 | # mode and precision. The original FPCR is saved in L_SCR1. | ||
24026 | |||
24027 | A11_st: | ||
24028 | mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later | ||
24029 | and.l &0x00000030,USER_FPCR(%a6) # set size to ext, | ||
24030 | # ;block exceptions | ||
24031 | |||
24032 | |||
24033 | # A12. Calculate YINT = FINT(Y) according to user's rounding mode. | ||
24034 | # The FPSP routine sintd0 is used. The output is in fp0. | ||
24035 | # | ||
24036 | # Register usage: | ||
24037 | # Input/Output | ||
24038 | # d0: FPSR with AINEX cleared/FPCR with size set to ext | ||
24039 | # d2: x/x/scratch | ||
24040 | # d3: x/x | ||
24041 | # d4: LEN/Unchanged | ||
24042 | # d5: ICTR:LAMBDA/Unchanged | ||
24043 | # d6: ILOG/Unchanged | ||
24044 | # d7: k-factor/Unchanged | ||
24045 | # a0: ptr for original operand/src ptr for sintdo | ||
24046 | # a1: ptr to PTENxx array/Unchanged | ||
24047 | # a2: ptr to FP_SCR1(a6)/Unchanged | ||
24048 | # a6: temp pointer to FP_SCR1(a6) - orig value saved and restored | ||
24049 | # fp0: Y/YINT | ||
24050 | # fp1: 10^ISCALE/Unchanged | ||
24051 | # fp2: x/x | ||
24052 | # F_SCR1:x/x | ||
24053 | # F_SCR2:Y adjusted for inex/Y with original exponent | ||
24054 | # L_SCR1:x/original USER_FPCR | ||
24055 | # L_SCR2:first word of X packed/Unchanged | ||
24056 | |||
24057 | A12_st: | ||
24058 | movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} | ||
24059 | mov.l L_SCR1(%a6),-(%sp) | ||
24060 | mov.l L_SCR2(%a6),-(%sp) | ||
24061 | |||
24062 | lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) | ||
24063 | fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) | ||
24064 | tst.l L_SCR2(%a6) # test sign of original operand | ||
24065 | bge.b do_fint12 # if pos, use Y | ||
24066 | or.l &0x80000000,(%a0) # if neg, use -Y | ||
24067 | do_fint12: | ||
24068 | mov.l USER_FPSR(%a6),-(%sp) | ||
24069 | # bsr sintdo # sint routine returns int in fp0 | ||
24070 | |||
24071 | fmov.l USER_FPCR(%a6),%fpcr | ||
24072 | fmov.l &0x0,%fpsr # clear the AEXC bits!!! | ||
24073 | ## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode | ||
24074 | ## andi.l &0x00000030,%d0 | ||
24075 | ## fmov.l %d0,%fpcr | ||
24076 | fint.x FP_SCR1(%a6),%fp0 # do fint() | ||
24077 | fmov.l %fpsr,%d0 | ||
24078 | or.w %d0,FPSR_EXCEPT(%a6) | ||
24079 | ## fmov.l &0x0,%fpcr | ||
24080 | ## fmov.l %fpsr,%d0 # don't keep ccodes | ||
24081 | ## or.w %d0,FPSR_EXCEPT(%a6) | ||
24082 | |||
24083 | mov.b (%sp),USER_FPSR(%a6) | ||
24084 | add.l &4,%sp | ||
24085 | |||
24086 | mov.l (%sp)+,L_SCR2(%a6) | ||
24087 | mov.l (%sp)+,L_SCR1(%a6) | ||
24088 | movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} | ||
24089 | |||
24090 | mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent | ||
24091 | mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR | ||
24092 | |||
24093 | # A13. Check for LEN digits. | ||
24094 | # If the int operation results in more than LEN digits, | ||
24095 | # or less than LEN -1 digits, adjust ILOG and repeat from | ||
24096 | # A6. This test occurs only on the first pass. If the | ||
24097 | # result is exactly 10^LEN, decrement ILOG and divide | ||
24098 | # the mantissa by 10. The calculation of 10^LEN cannot | ||
24099 | # be inexact, since all powers of ten upto 10^27 are exact | ||
24100 | # in extended precision, so the use of a previous power-of-ten | ||
24101 | # table will introduce no error. | ||
24102 | # | ||
24103 | # | ||
24104 | # Register usage: | ||
24105 | # Input/Output | ||
24106 | # d0: FPCR with size set to ext/scratch final = 0 | ||
24107 | # d2: x/x | ||
24108 | # d3: x/scratch final = x | ||
24109 | # d4: LEN/LEN adjusted | ||
24110 | # d5: ICTR:LAMBDA/LAMBDA:ICTR | ||
24111 | # d6: ILOG/ILOG adjusted | ||
24112 | # d7: k-factor/Unchanged | ||
24113 | # a0: pointer into memory for packed bcd string formation | ||
24114 | # a1: ptr to PTENxx array/Unchanged | ||
24115 | # a2: ptr to FP_SCR1(a6)/Unchanged | ||
24116 | # fp0: int portion of Y/abs(YINT) adjusted | ||
24117 | # fp1: 10^ISCALE/Unchanged | ||
24118 | # fp2: x/10^LEN | ||
24119 | # F_SCR1:x/x | ||
24120 | # F_SCR2:Y with original exponent/Unchanged | ||
24121 | # L_SCR1:original USER_FPCR/Unchanged | ||
24122 | # L_SCR2:first word of X packed/Unchanged | ||
24123 | |||
24124 | A13_st: | ||
24125 | swap %d5 # put ICTR in lower word of d5 | ||
24126 | tst.w %d5 # check if ICTR = 0 | ||
24127 | bne not_zr # if non-zero, go to second test | ||
24128 | # | ||
24129 | # Compute 10^(LEN-1) | ||
24130 | # | ||
24131 | fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 | ||
24132 | mov.l %d4,%d0 # put LEN in d0 | ||
24133 | subq.l &1,%d0 # d0 = LEN -1 | ||
24134 | clr.l %d3 # clr table index | ||
24135 | l_loop: | ||
24136 | lsr.l &1,%d0 # shift next bit into carry | ||
24137 | bcc.b l_next # if zero, skip the mul | ||
24138 | fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) | ||
24139 | l_next: | ||
24140 | add.l &12,%d3 # inc d3 to next pwrten table entry | ||
24141 | tst.l %d0 # test if LEN is zero | ||
24142 | bne.b l_loop # if not, loop | ||
24143 | # | ||
24144 | # 10^LEN-1 is computed for this test and A14. If the input was | ||
24145 | # denormalized, check only the case in which YINT > 10^LEN. | ||
24146 | # | ||
24147 | tst.b BINDEC_FLG(%a6) # check if input was norm | ||
24148 | beq.b A13_con # if norm, continue with checking | ||
24149 | fabs.x %fp0 # take abs of YINT | ||
24150 | bra test_2 | ||
24151 | # | ||
24152 | # Compare abs(YINT) to 10^(LEN-1) and 10^LEN | ||
24153 | # | ||
24154 | A13_con: | ||
24155 | fabs.x %fp0 # take abs of YINT | ||
24156 | fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) | ||
24157 | fbge.w test_2 # if greater, do next test | ||
24158 | subq.l &1,%d6 # subtract 1 from ILOG | ||
24159 | mov.w &1,%d5 # set ICTR | ||
24160 | fmov.l &rm_mode*0x10,%fpcr # set rmode to RM | ||
24161 | fmul.s FTEN(%pc),%fp2 # compute 10^LEN | ||
24162 | bra.w A6_str # return to A6 and recompute YINT | ||
24163 | test_2: | ||
24164 | fmul.s FTEN(%pc),%fp2 # compute 10^LEN | ||
24165 | fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN | ||
24166 | fblt.w A14_st # if less, all is ok, go to A14 | ||
24167 | fbgt.w fix_ex # if greater, fix and redo | ||
24168 | fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 | ||
24169 | addq.l &1,%d6 # and inc ILOG | ||
24170 | bra.b A14_st # and continue elsewhere | ||
24171 | fix_ex: | ||
24172 | addq.l &1,%d6 # increment ILOG by 1 | ||
24173 | mov.w &1,%d5 # set ICTR | ||
24174 | fmov.l &rm_mode*0x10,%fpcr # set rmode to RM | ||
24175 | bra.w A6_str # return to A6 and recompute YINT | ||
24176 | # | ||
24177 | # Since ICTR <> 0, we have already been through one adjustment, | ||
24178 | # and shouldn't have another; this is to check if abs(YINT) = 10^LEN | ||
24179 | # 10^LEN is again computed using whatever table is in a1 since the | ||
24180 | # value calculated cannot be inexact. | ||
24181 | # | ||
24182 | not_zr: | ||
24183 | fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 | ||
24184 | mov.l %d4,%d0 # put LEN in d0 | ||
24185 | clr.l %d3 # clr table index | ||
24186 | z_loop: | ||
24187 | lsr.l &1,%d0 # shift next bit into carry | ||
24188 | bcc.b z_next # if zero, skip the mul | ||
24189 | fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) | ||
24190 | z_next: | ||
24191 | add.l &12,%d3 # inc d3 to next pwrten table entry | ||
24192 | tst.l %d0 # test if LEN is zero | ||
24193 | bne.b z_loop # if not, loop | ||
24194 | fabs.x %fp0 # get abs(YINT) | ||
24195 | fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN | ||
24196 | fbneq.w A14_st # if not, skip this | ||
24197 | fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 | ||
24198 | addq.l &1,%d6 # and inc ILOG by 1 | ||
24199 | addq.l &1,%d4 # and inc LEN | ||
24200 | fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN | ||
24201 | |||
24202 | # A14. Convert the mantissa to bcd. | ||
24203 | # The binstr routine is used to convert the LEN digit | ||
24204 | # mantissa to bcd in memory. The input to binstr is | ||
24205 | # to be a fraction; i.e. (mantissa)/10^LEN and adjusted | ||
24206 | # such that the decimal point is to the left of bit 63. | ||
24207 | # The bcd digits are stored in the correct position in | ||
24208 | # the final string area in memory. | ||
24209 | # | ||
24210 | # | ||
24211 | # Register usage: | ||
24212 | # Input/Output | ||
24213 | # d0: x/LEN call to binstr - final is 0 | ||
24214 | # d1: x/0 | ||
24215 | # d2: x/ms 32-bits of mant of abs(YINT) | ||
24216 | # d3: x/ls 32-bits of mant of abs(YINT) | ||
24217 | # d4: LEN/Unchanged | ||
24218 | # d5: ICTR:LAMBDA/LAMBDA:ICTR | ||
24219 | # d6: ILOG | ||
24220 | # d7: k-factor/Unchanged | ||
24221 | # a0: pointer into memory for packed bcd string formation | ||
24222 | # /ptr to first mantissa byte in result string | ||
24223 | # a1: ptr to PTENxx array/Unchanged | ||
24224 | # a2: ptr to FP_SCR1(a6)/Unchanged | ||
24225 | # fp0: int portion of Y/abs(YINT) adjusted | ||
24226 | # fp1: 10^ISCALE/Unchanged | ||
24227 | # fp2: 10^LEN/Unchanged | ||
24228 | # F_SCR1:x/Work area for final result | ||
24229 | # F_SCR2:Y with original exponent/Unchanged | ||
24230 | # L_SCR1:original USER_FPCR/Unchanged | ||
24231 | # L_SCR2:first word of X packed/Unchanged | ||
24232 | |||
24233 | A14_st: | ||
24234 | fmov.l &rz_mode*0x10,%fpcr # force rz for conversion | ||
24235 | fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN | ||
24236 | lea.l FP_SCR0(%a6),%a0 | ||
24237 | fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory | ||
24238 | mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 | ||
24239 | mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 | ||
24240 | clr.l 4(%a0) # zero word 2 of FP_RES | ||
24241 | clr.l 8(%a0) # zero word 3 of FP_RES | ||
24242 | mov.l (%a0),%d0 # move exponent to d0 | ||
24243 | swap %d0 # put exponent in lower word | ||
24244 | beq.b no_sft # if zero, don't shift | ||
24245 | sub.l &0x3ffd,%d0 # sub bias less 2 to make fract | ||
24246 | tst.l %d0 # check if > 1 | ||
24247 | bgt.b no_sft # if so, don't shift | ||
24248 | neg.l %d0 # make exp positive | ||
24249 | m_loop: | ||
24250 | lsr.l &1,%d2 # shift d2:d3 right, add 0s | ||
24251 | roxr.l &1,%d3 # the number of places | ||
24252 | dbf.w %d0,m_loop # given in d0 | ||
24253 | no_sft: | ||
24254 | tst.l %d2 # check for mantissa of zero | ||
24255 | bne.b no_zr # if not, go on | ||
24256 | tst.l %d3 # continue zero check | ||
24257 | beq.b zer_m # if zero, go directly to binstr | ||
24258 | no_zr: | ||
24259 | clr.l %d1 # put zero in d1 for addx | ||
24260 | add.l &0x00000080,%d3 # inc at bit 7 | ||
24261 | addx.l %d1,%d2 # continue inc | ||
24262 | and.l &0xffffff80,%d3 # strip off lsb not used by 882 | ||
24263 | zer_m: | ||
24264 | mov.l %d4,%d0 # put LEN in d0 for binstr call | ||
24265 | addq.l &3,%a0 # a0 points to M16 byte in result | ||
24266 | bsr binstr # call binstr to convert mant | ||
24267 | |||
24268 | |||
24269 | # A15. Convert the exponent to bcd. | ||
24270 | # As in A14 above, the exp is converted to bcd and the | ||
24271 | # digits are stored in the final string. | ||
24272 | # | ||
24273 | # Digits are stored in L_SCR1(a6) on return from BINDEC as: | ||
24274 | # | ||
24275 | # 32 16 15 0 | ||
24276 | # ----------------------------------------- | ||
24277 | # | 0 | e3 | e2 | e1 | e4 | X | X | X | | ||
24278 | # ----------------------------------------- | ||
24279 | # | ||
24280 | # And are moved into their proper places in FP_SCR0. If digit e4 | ||
24281 | # is non-zero, OPERR is signaled. In all cases, all 4 digits are | ||
24282 | # written as specified in the 881/882 manual for packed decimal. | ||
24283 | # | ||
24284 | # Register usage: | ||
24285 | # Input/Output | ||
24286 | # d0: x/LEN call to binstr - final is 0 | ||
24287 | # d1: x/scratch (0);shift count for final exponent packing | ||
24288 | # d2: x/ms 32-bits of exp fraction/scratch | ||
24289 | # d3: x/ls 32-bits of exp fraction | ||
24290 | # d4: LEN/Unchanged | ||
24291 | # d5: ICTR:LAMBDA/LAMBDA:ICTR | ||
24292 | # d6: ILOG | ||
24293 | # d7: k-factor/Unchanged | ||
24294 | # a0: ptr to result string/ptr to L_SCR1(a6) | ||
24295 | # a1: ptr to PTENxx array/Unchanged | ||
24296 | # a2: ptr to FP_SCR1(a6)/Unchanged | ||
24297 | # fp0: abs(YINT) adjusted/float(ILOG) | ||
24298 | # fp1: 10^ISCALE/Unchanged | ||
24299 | # fp2: 10^LEN/Unchanged | ||
24300 | # F_SCR1:Work area for final result/BCD result | ||
24301 | # F_SCR2:Y with original exponent/ILOG/10^4 | ||
24302 | # L_SCR1:original USER_FPCR/Exponent digits on return from binstr | ||
24303 | # L_SCR2:first word of X packed/Unchanged | ||
24304 | |||
24305 | A15_st: | ||
24306 | tst.b BINDEC_FLG(%a6) # check for denorm | ||
24307 | beq.b not_denorm | ||
24308 | ftest.x %fp0 # test for zero | ||
24309 | fbeq.w den_zero # if zero, use k-factor or 4933 | ||
24310 | fmov.l %d6,%fp0 # float ILOG | ||
24311 | fabs.x %fp0 # get abs of ILOG | ||
24312 | bra.b convrt | ||
24313 | den_zero: | ||
24314 | tst.l %d7 # check sign of the k-factor | ||
24315 | blt.b use_ilog # if negative, use ILOG | ||
24316 | fmov.s F4933(%pc),%fp0 # force exponent to 4933 | ||
24317 | bra.b convrt # do it | ||
24318 | use_ilog: | ||
24319 | fmov.l %d6,%fp0 # float ILOG | ||
24320 | fabs.x %fp0 # get abs of ILOG | ||
24321 | bra.b convrt | ||
24322 | not_denorm: | ||
24323 | ftest.x %fp0 # test for zero | ||
24324 | fbneq.w not_zero # if zero, force exponent | ||
24325 | fmov.s FONE(%pc),%fp0 # force exponent to 1 | ||
24326 | bra.b convrt # do it | ||
24327 | not_zero: | ||
24328 | fmov.l %d6,%fp0 # float ILOG | ||
24329 | fabs.x %fp0 # get abs of ILOG | ||
24330 | convrt: | ||
24331 | fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 | ||
24332 | fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory | ||
24333 | mov.l 4(%a2),%d2 # move word 2 to d2 | ||
24334 | mov.l 8(%a2),%d3 # move word 3 to d3 | ||
24335 | mov.w (%a2),%d0 # move exp to d0 | ||
24336 | beq.b x_loop_fin # if zero, skip the shift | ||
24337 | sub.w &0x3ffd,%d0 # subtract off bias | ||
24338 | neg.w %d0 # make exp positive | ||
24339 | x_loop: | ||
24340 | lsr.l &1,%d2 # shift d2:d3 right | ||
24341 | roxr.l &1,%d3 # the number of places | ||
24342 | dbf.w %d0,x_loop # given in d0 | ||
24343 | x_loop_fin: | ||
24344 | clr.l %d1 # put zero in d1 for addx | ||
24345 | add.l &0x00000080,%d3 # inc at bit 6 | ||
24346 | addx.l %d1,%d2 # continue inc | ||
24347 | and.l &0xffffff80,%d3 # strip off lsb not used by 882 | ||
24348 | mov.l &4,%d0 # put 4 in d0 for binstr call | ||
24349 | lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits | ||
24350 | bsr binstr # call binstr to convert exp | ||
24351 | mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 | ||
24352 | mov.l &12,%d1 # use d1 for shift count | ||
24353 | lsr.l %d1,%d0 # shift d0 right by 12 | ||
24354 | bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 | ||
24355 | lsr.l %d1,%d0 # shift d0 right by 12 | ||
24356 | bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 | ||
24357 | tst.b %d0 # check if e4 is zero | ||
24358 | beq.b A16_st # if zero, skip rest | ||
24359 | or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR | ||
24360 | |||
24361 | |||
24362 | # A16. Write sign bits to final string. | ||
24363 | # Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). | ||
24364 | # | ||
24365 | # Register usage: | ||
24366 | # Input/Output | ||
24367 | # d0: x/scratch - final is x | ||
24368 | # d2: x/x | ||
24369 | # d3: x/x | ||
24370 | # d4: LEN/Unchanged | ||
24371 | # d5: ICTR:LAMBDA/LAMBDA:ICTR | ||
24372 | # d6: ILOG/ILOG adjusted | ||
24373 | # d7: k-factor/Unchanged | ||
24374 | # a0: ptr to L_SCR1(a6)/Unchanged | ||
24375 | # a1: ptr to PTENxx array/Unchanged | ||
24376 | # a2: ptr to FP_SCR1(a6)/Unchanged | ||
24377 | # fp0: float(ILOG)/Unchanged | ||
24378 | # fp1: 10^ISCALE/Unchanged | ||
24379 | # fp2: 10^LEN/Unchanged | ||
24380 | # F_SCR1:BCD result with correct signs | ||
24381 | # F_SCR2:ILOG/10^4 | ||
24382 | # L_SCR1:Exponent digits on return from binstr | ||
24383 | # L_SCR2:first word of X packed/Unchanged | ||
24384 | |||
24385 | A16_st: | ||
24386 | clr.l %d0 # clr d0 for collection of signs | ||
24387 | and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 | ||
24388 | tst.l L_SCR2(%a6) # check sign of original mantissa | ||
24389 | bge.b mant_p # if pos, don't set SM | ||
24390 | mov.l &2,%d0 # move 2 in to d0 for SM | ||
24391 | mant_p: | ||
24392 | tst.l %d6 # check sign of ILOG | ||
24393 | bge.b wr_sgn # if pos, don't set SE | ||
24394 | addq.l &1,%d0 # set bit 0 in d0 for SE | ||
24395 | wr_sgn: | ||
24396 | bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 | ||
24397 | |||
24398 | # Clean up and restore all registers used. | ||
24399 | |||
24400 | fmov.l &0,%fpsr # clear possible inex2/ainex bits | ||
24401 | fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} | ||
24402 | movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} | ||
24403 | rts | ||
24404 | |||
24405 | global PTENRN | ||
24406 | PTENRN: | ||
24407 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
24408 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
24409 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
24410 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
24411 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
24412 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 | ||
24413 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 | ||
24414 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 | ||
24415 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 | ||
24416 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 | ||
24417 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 | ||
24418 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 | ||
24419 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 | ||
24420 | |||
24421 | global PTENRP | ||
24422 | PTENRP: | ||
24423 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
24424 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
24425 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
24426 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
24427 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
24428 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 | ||
24429 | long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 | ||
24430 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 | ||
24431 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 | ||
24432 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 | ||
24433 | long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 | ||
24434 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 | ||
24435 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 | ||
24436 | |||
24437 | global PTENRM | ||
24438 | PTENRM: | ||
24439 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 | ||
24440 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 | ||
24441 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 | ||
24442 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 | ||
24443 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 | ||
24444 | long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 | ||
24445 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 | ||
24446 | long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 | ||
24447 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 | ||
24448 | long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 | ||
24449 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 | ||
24450 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 | ||
24451 | long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 | ||
24452 | |||
24453 | ######################################################################### | ||
24454 | # binstr(): Converts a 64-bit binary integer to bcd. # | ||
24455 | # # | ||
24456 | # INPUT *************************************************************** # | ||
24457 | # d2:d3 = 64-bit binary integer # | ||
24458 | # d0 = desired length (LEN) # | ||
24459 | # a0 = pointer to start in memory for bcd characters # | ||
24460 | # (This pointer must point to byte 4 of the first # | ||
24461 | # lword of the packed decimal memory string.) # | ||
24462 | # # | ||
24463 | # OUTPUT ************************************************************** # | ||
24464 | # a0 = pointer to LEN bcd digits representing the 64-bit integer. # | ||
24465 | # # | ||
24466 | # ALGORITHM *********************************************************** # | ||
24467 | # The 64-bit binary is assumed to have a decimal point before # | ||
24468 | # bit 63. The fraction is multiplied by 10 using a mul by 2 # | ||
24469 | # shift and a mul by 8 shift. The bits shifted out of the # | ||
24470 | # msb form a decimal digit. This process is iterated until # | ||
24471 | # LEN digits are formed. # | ||
24472 | # # | ||
24473 | # A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # | ||
24474 | # digit formed will be assumed the least significant. This is # | ||
24475 | # to force the first byte formed to have a 0 in the upper 4 bits. # | ||
24476 | # # | ||
24477 | # A2. Beginning of the loop: # | ||
24478 | # Copy the fraction in d2:d3 to d4:d5. # | ||
24479 | # # | ||
24480 | # A3. Multiply the fraction in d2:d3 by 8 using bit-field # | ||
24481 | # extracts and shifts. The three msbs from d2 will go into d1. # | ||
24482 | # # | ||
24483 | # A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # | ||
24484 | # will be collected by the carry. # | ||
24485 | # # | ||
24486 | # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # | ||
24487 | # into d2:d3. D1 will contain the bcd digit formed. # | ||
24488 | # # | ||
24489 | # A6. Test d7. If zero, the digit formed is the ms digit. If non- # | ||
24490 | # zero, it is the ls digit. Put the digit in its place in the # | ||
24491 | # upper word of d0. If it is the ls digit, write the word # | ||
24492 | # from d0 to memory. # | ||
24493 | # # | ||
24494 | # A7. Decrement d6 (LEN counter) and repeat the loop until zero. # | ||
24495 | # # | ||
24496 | ######################################################################### | ||
24497 | |||
24498 | # Implementation Notes: | ||
24499 | # | ||
24500 | # The registers are used as follows: | ||
24501 | # | ||
24502 | # d0: LEN counter | ||
24503 | # d1: temp used to form the digit | ||
24504 | # d2: upper 32-bits of fraction for mul by 8 | ||
24505 | # d3: lower 32-bits of fraction for mul by 8 | ||
24506 | # d4: upper 32-bits of fraction for mul by 2 | ||
24507 | # d5: lower 32-bits of fraction for mul by 2 | ||
24508 | # d6: temp for bit-field extracts | ||
24509 | # d7: byte digit formation word;digit count {0,1} | ||
24510 | # a0: pointer into memory for packed bcd string formation | ||
24511 | # | ||
24512 | |||
24513 | global binstr | ||
24514 | binstr: | ||
24515 | movm.l &0xff00,-(%sp) # {%d0-%d7} | ||
24516 | |||
24517 | # | ||
24518 | # A1: Init d7 | ||
24519 | # | ||
24520 | mov.l &1,%d7 # init d7 for second digit | ||
24521 | subq.l &1,%d0 # for dbf d0 would have LEN+1 passes | ||
24522 | # | ||
24523 | # A2. Copy d2:d3 to d4:d5. Start loop. | ||
24524 | # | ||
24525 | loop: | ||
24526 | mov.l %d2,%d4 # copy the fraction before muls | ||
24527 | mov.l %d3,%d5 # to d4:d5 | ||
24528 | # | ||
24529 | # A3. Multiply d2:d3 by 8; extract msbs into d1. | ||
24530 | # | ||
24531 | bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 | ||
24532 | asl.l &3,%d2 # shift d2 left by 3 places | ||
24533 | bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 | ||
24534 | asl.l &3,%d3 # shift d3 left by 3 places | ||
24535 | or.l %d6,%d2 # or in msbs from d3 into d2 | ||
24536 | # | ||
24537 | # A4. Multiply d4:d5 by 2; add carry out to d1. | ||
24538 | # | ||
24539 | asl.l &1,%d5 # mul d5 by 2 | ||
24540 | roxl.l &1,%d4 # mul d4 by 2 | ||
24541 | swap %d6 # put 0 in d6 lower word | ||
24542 | addx.w %d6,%d1 # add in extend from mul by 2 | ||
24543 | # | ||
24544 | # A5. Add mul by 8 to mul by 2. D1 contains the digit formed. | ||
24545 | # | ||
24546 | add.l %d5,%d3 # add lower 32 bits | ||
24547 | nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) | ||
24548 | addx.l %d4,%d2 # add with extend upper 32 bits | ||
24549 | nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) | ||
24550 | addx.w %d6,%d1 # add in extend from add to d1 | ||
24551 | swap %d6 # with d6 = 0; put 0 in upper word | ||
24552 | # | ||
24553 | # A6. Test d7 and branch. | ||
24554 | # | ||
24555 | tst.w %d7 # if zero, store digit & to loop | ||
24556 | beq.b first_d # if non-zero, form byte & write | ||
24557 | sec_d: | ||
24558 | swap %d7 # bring first digit to word d7b | ||
24559 | asl.w &4,%d7 # first digit in upper 4 bits d7b | ||
24560 | add.w %d1,%d7 # add in ls digit to d7b | ||
24561 | mov.b %d7,(%a0)+ # store d7b byte in memory | ||
24562 | swap %d7 # put LEN counter in word d7a | ||
24563 | clr.w %d7 # set d7a to signal no digits done | ||
24564 | dbf.w %d0,loop # do loop some more! | ||
24565 | bra.b end_bstr # finished, so exit | ||
24566 | first_d: | ||
24567 | swap %d7 # put digit word in d7b | ||
24568 | mov.w %d1,%d7 # put new digit in d7b | ||
24569 | swap %d7 # put LEN counter in word d7a | ||
24570 | addq.w &1,%d7 # set d7a to signal first digit done | ||
24571 | dbf.w %d0,loop # do loop some more! | ||
24572 | swap %d7 # put last digit in string | ||
24573 | lsl.w &4,%d7 # move it to upper 4 bits | ||
24574 | mov.b %d7,(%a0)+ # store it in memory string | ||
24575 | # | ||
24576 | # Clean up and return with result in fp0. | ||
24577 | # | ||
24578 | end_bstr: | ||
24579 | movm.l (%sp)+,&0xff # {%d0-%d7} | ||
24580 | rts | ||
24581 | |||
24582 | ######################################################################### | ||
24583 | # XDEF **************************************************************** # | ||
24584 | # facc_in_b(): dmem_read_byte failed # | ||
24585 | # facc_in_w(): dmem_read_word failed # | ||
24586 | # facc_in_l(): dmem_read_long failed # | ||
24587 | # facc_in_d(): dmem_read of dbl prec failed # | ||
24588 | # facc_in_x(): dmem_read of ext prec failed # | ||
24589 | # # | ||
24590 | # facc_out_b(): dmem_write_byte failed # | ||
24591 | # facc_out_w(): dmem_write_word failed # | ||
24592 | # facc_out_l(): dmem_write_long failed # | ||
24593 | # facc_out_d(): dmem_write of dbl prec failed # | ||
24594 | # facc_out_x(): dmem_write of ext prec failed # | ||
24595 | # # | ||
24596 | # XREF **************************************************************** # | ||
24597 | # _real_access() - exit through access error handler # | ||
24598 | # # | ||
24599 | # INPUT *************************************************************** # | ||
24600 | # None # | ||
24601 | # # | ||
24602 | # OUTPUT ************************************************************** # | ||
24603 | # None # | ||
24604 | # # | ||
24605 | # ALGORITHM *********************************************************** # | ||
24606 | # Flow jumps here when an FP data fetch call gets an error # | ||
24607 | # result. This means the operating system wants an access error frame # | ||
24608 | # made out of the current exception stack frame. # | ||
24609 | # So, we first call restore() which makes sure that any updated # | ||
24610 | # -(an)+ register gets returned to its pre-exception value and then # | ||
24611 | # we change the stack to an access error stack frame. # | ||
24612 | # # | ||
24613 | ######################################################################### | ||
24614 | |||
24615 | facc_in_b: | ||
24616 | movq.l &0x1,%d0 # one byte | ||
24617 | bsr.w restore # fix An | ||
24618 | |||
24619 | mov.w &0x0121,EXC_VOFF(%a6) # set FSLW | ||
24620 | bra.w facc_finish | ||
24621 | |||
24622 | facc_in_w: | ||
24623 | movq.l &0x2,%d0 # two bytes | ||
24624 | bsr.w restore # fix An | ||
24625 | |||
24626 | mov.w &0x0141,EXC_VOFF(%a6) # set FSLW | ||
24627 | bra.b facc_finish | ||
24628 | |||
24629 | facc_in_l: | ||
24630 | movq.l &0x4,%d0 # four bytes | ||
24631 | bsr.w restore # fix An | ||
24632 | |||
24633 | mov.w &0x0101,EXC_VOFF(%a6) # set FSLW | ||
24634 | bra.b facc_finish | ||
24635 | |||
24636 | facc_in_d: | ||
24637 | movq.l &0x8,%d0 # eight bytes | ||
24638 | bsr.w restore # fix An | ||
24639 | |||
24640 | mov.w &0x0161,EXC_VOFF(%a6) # set FSLW | ||
24641 | bra.b facc_finish | ||
24642 | |||
24643 | facc_in_x: | ||
24644 | movq.l &0xc,%d0 # twelve bytes | ||
24645 | bsr.w restore # fix An | ||
24646 | |||
24647 | mov.w &0x0161,EXC_VOFF(%a6) # set FSLW | ||
24648 | bra.b facc_finish | ||
24649 | |||
24650 | ################################################################ | ||
24651 | |||
24652 | facc_out_b: | ||
24653 | movq.l &0x1,%d0 # one byte | ||
24654 | bsr.w restore # restore An | ||
24655 | |||
24656 | mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW | ||
24657 | bra.b facc_finish | ||
24658 | |||
24659 | facc_out_w: | ||
24660 | movq.l &0x2,%d0 # two bytes | ||
24661 | bsr.w restore # restore An | ||
24662 | |||
24663 | mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW | ||
24664 | bra.b facc_finish | ||
24665 | |||
24666 | facc_out_l: | ||
24667 | movq.l &0x4,%d0 # four bytes | ||
24668 | bsr.w restore # restore An | ||
24669 | |||
24670 | mov.w &0x0081,EXC_VOFF(%a6) # set FSLW | ||
24671 | bra.b facc_finish | ||
24672 | |||
24673 | facc_out_d: | ||
24674 | movq.l &0x8,%d0 # eight bytes | ||
24675 | bsr.w restore # restore An | ||
24676 | |||
24677 | mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW | ||
24678 | bra.b facc_finish | ||
24679 | |||
24680 | facc_out_x: | ||
24681 | mov.l &0xc,%d0 # twelve bytes | ||
24682 | bsr.w restore # restore An | ||
24683 | |||
24684 | mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW | ||
24685 | |||
24686 | # here's where we actually create the access error frame from the | ||
24687 | # current exception stack frame. | ||
24688 | facc_finish: | ||
24689 | mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | ||
24690 | |||
24691 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 | ||
24692 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | ||
24693 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 | ||
24694 | |||
24695 | unlk %a6 | ||
24696 | |||
24697 | mov.l (%sp),-(%sp) # store SR, hi(PC) | ||
24698 | mov.l 0x8(%sp),0x4(%sp) # store lo(PC) | ||
24699 | mov.l 0xc(%sp),0x8(%sp) # store EA | ||
24700 | mov.l &0x00000001,0xc(%sp) # store FSLW | ||
24701 | mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) | ||
24702 | mov.w &0x4008,0x6(%sp) # store voff | ||
24703 | |||
24704 | btst &0x5,(%sp) # supervisor or user mode? | ||
24705 | beq.b facc_out2 # user | ||
24706 | bset &0x2,0xd(%sp) # set supervisor TM bit | ||
24707 | |||
24708 | facc_out2: | ||
24709 | bra.l _real_access | ||
24710 | |||
24711 | ################################################################## | ||
24712 | |||
24713 | # if the effective addressing mode was predecrement or postincrement, | ||
24714 | # the emulation has already changed its value to the correct post- | ||
24715 | # instruction value. but since we're exiting to the access error | ||
24716 | # handler, then AN must be returned to its pre-instruction value. | ||
24717 | # we do that here. | ||
24718 | restore: | ||
24719 | mov.b EXC_OPWORD+0x1(%a6),%d1 | ||
24720 | andi.b &0x38,%d1 # extract opmode | ||
24721 | cmpi.b %d1,&0x18 # postinc? | ||
24722 | beq.w rest_inc | ||
24723 | cmpi.b %d1,&0x20 # predec? | ||
24724 | beq.w rest_dec | ||
24725 | rts | ||
24726 | |||
24727 | rest_inc: | ||
24728 | mov.b EXC_OPWORD+0x1(%a6),%d1 | ||
24729 | andi.w &0x0007,%d1 # fetch An | ||
24730 | |||
24731 | mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 | ||
24732 | jmp (tbl_rest_inc.b,%pc,%d1.w*1) | ||
24733 | |||
24734 | tbl_rest_inc: | ||
24735 | short ri_a0 - tbl_rest_inc | ||
24736 | short ri_a1 - tbl_rest_inc | ||
24737 | short ri_a2 - tbl_rest_inc | ||
24738 | short ri_a3 - tbl_rest_inc | ||
24739 | short ri_a4 - tbl_rest_inc | ||
24740 | short ri_a5 - tbl_rest_inc | ||
24741 | short ri_a6 - tbl_rest_inc | ||
24742 | short ri_a7 - tbl_rest_inc | ||
24743 | |||
24744 | ri_a0: | ||
24745 | sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 | ||
24746 | rts | ||
24747 | ri_a1: | ||
24748 | sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 | ||
24749 | rts | ||
24750 | ri_a2: | ||
24751 | sub.l %d0,%a2 # fix a2 | ||
24752 | rts | ||
24753 | ri_a3: | ||
24754 | sub.l %d0,%a3 # fix a3 | ||
24755 | rts | ||
24756 | ri_a4: | ||
24757 | sub.l %d0,%a4 # fix a4 | ||
24758 | rts | ||
24759 | ri_a5: | ||
24760 | sub.l %d0,%a5 # fix a5 | ||
24761 | rts | ||
24762 | ri_a6: | ||
24763 | sub.l %d0,(%a6) # fix stacked a6 | ||
24764 | rts | ||
24765 | # if it's a fmove out instruction, we don't have to fix a7 | ||
24766 | # because we hadn't changed it yet. if it's an opclass two | ||
24767 | # instruction (data moved in) and the exception was in supervisor | ||
24768 | # mode, then also also wasn't updated. if it was user mode, then | ||
24769 | # restore the correct a7 which is in the USP currently. | ||
24770 | ri_a7: | ||
24771 | cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? | ||
24772 | bne.b ri_a7_done # out | ||
24773 | |||
24774 | btst &0x5,EXC_SR(%a6) # user or supervisor? | ||
24775 | bne.b ri_a7_done # supervisor | ||
24776 | movc %usp,%a0 # restore USP | ||
24777 | sub.l %d0,%a0 | ||
24778 | movc %a0,%usp | ||
24779 | ri_a7_done: | ||
24780 | rts | ||
24781 | |||
24782 | # need to invert adjustment value if the <ea> was predec | ||
24783 | rest_dec: | ||
24784 | neg.l %d0 | ||
24785 | bra.b rest_inc | ||