diff options
Diffstat (limited to 'arch/m68k/fpsp040/stan.S')
-rw-r--r-- | arch/m68k/fpsp040/stan.S | 455 |
1 files changed, 455 insertions, 0 deletions
diff --git a/arch/m68k/fpsp040/stan.S b/arch/m68k/fpsp040/stan.S new file mode 100644 index 000000000000..b5c2a196e617 --- /dev/null +++ b/arch/m68k/fpsp040/stan.S | |||
@@ -0,0 +1,455 @@ | |||
1 | | | ||
2 | | stan.sa 3.3 7/29/91 | ||
3 | | | ||
4 | | The entry point stan computes the tangent of | ||
5 | | an input argument; | ||
6 | | stand does the same except for denormalized input. | ||
7 | | | ||
8 | | Input: Double-extended number X in location pointed to | ||
9 | | by address register a0. | ||
10 | | | ||
11 | | Output: The value tan(X) returned in floating-point register Fp0. | ||
12 | | | ||
13 | | Accuracy and Monotonicity: The returned result is within 3 ulp in | ||
14 | | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | ||
15 | | result is subsequently rounded to double precision. The | ||
16 | | result is provably monotonic in double precision. | ||
17 | | | ||
18 | | Speed: The program sTAN takes approximately 170 cycles for | ||
19 | | input argument X such that |X| < 15Pi, which is the usual | ||
20 | | situation. | ||
21 | | | ||
22 | | Algorithm: | ||
23 | | | ||
24 | | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. | ||
25 | | | ||
26 | | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let | ||
27 | | k = N mod 2, so in particular, k = 0 or 1. | ||
28 | | | ||
29 | | 3. If k is odd, go to 5. | ||
30 | | | ||
31 | | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a | ||
32 | | rational function U/V where | ||
33 | | U = r + r*s*(P1 + s*(P2 + s*P3)), and | ||
34 | | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. | ||
35 | | Exit. | ||
36 | | | ||
37 | | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a | ||
38 | | rational function U/V where | ||
39 | | U = r + r*s*(P1 + s*(P2 + s*P3)), and | ||
40 | | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, | ||
41 | | -Cot(r) = -V/U. Exit. | ||
42 | | | ||
43 | | 6. If |X| > 1, go to 8. | ||
44 | | | ||
45 | | 7. (|X|<2**(-40)) Tan(X) = X. Exit. | ||
46 | | | ||
47 | | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. | ||
48 | | | ||
49 | |||
50 | | Copyright (C) Motorola, Inc. 1990 | ||
51 | | All Rights Reserved | ||
52 | | | ||
53 | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | ||
54 | | The copyright notice above does not evidence any | ||
55 | | actual or intended publication of such source code. | ||
56 | |||
57 | |STAN idnt 2,1 | Motorola 040 Floating Point Software Package | ||
58 | |||
59 | |section 8 | ||
60 | |||
61 | #include "fpsp.h" | ||
62 | |||
63 | BOUNDS1: .long 0x3FD78000,0x4004BC7E | ||
64 | TWOBYPI: .long 0x3FE45F30,0x6DC9C883 | ||
65 | |||
66 | TANQ4: .long 0x3EA0B759,0xF50F8688 | ||
67 | TANP3: .long 0xBEF2BAA5,0xA8924F04 | ||
68 | |||
69 | TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 | ||
70 | |||
71 | TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 | ||
72 | |||
73 | TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 | ||
74 | |||
75 | TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 | ||
76 | |||
77 | TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 | ||
78 | |||
79 | INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 | ||
80 | |||
81 | TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 | ||
82 | TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 | ||
83 | |||
84 | |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING | ||
85 | |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT | ||
86 | |--MOST 69 BITS LONG. | ||
87 | .global PITBL | ||
88 | PITBL: | ||
89 | .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 | ||
90 | .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 | ||
91 | .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 | ||
92 | .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 | ||
93 | .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 | ||
94 | .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 | ||
95 | .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 | ||
96 | .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 | ||
97 | .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 | ||
98 | .long 0xC0040000,0x90836524,0x88034B96,0x20B00000 | ||
99 | .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 | ||
100 | .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 | ||
101 | .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 | ||
102 | .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 | ||
103 | .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 | ||
104 | .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 | ||
105 | .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 | ||
106 | .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 | ||
107 | .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 | ||
108 | .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 | ||
109 | .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 | ||
110 | .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 | ||
111 | .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 | ||
112 | .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 | ||
113 | .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 | ||
114 | .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 | ||
115 | .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 | ||
116 | .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 | ||
117 | .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 | ||
118 | .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 | ||
119 | .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 | ||
120 | .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 | ||
121 | .long 0x00000000,0x00000000,0x00000000,0x00000000 | ||
122 | .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 | ||
123 | .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 | ||
124 | .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 | ||
125 | .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 | ||
126 | .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 | ||
127 | .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 | ||
128 | .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 | ||
129 | .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 | ||
130 | .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 | ||
131 | .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 | ||
132 | .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 | ||
133 | .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 | ||
134 | .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 | ||
135 | .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 | ||
136 | .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 | ||
137 | .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 | ||
138 | .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 | ||
139 | .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 | ||
140 | .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 | ||
141 | .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 | ||
142 | .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 | ||
143 | .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 | ||
144 | .long 0x40040000,0x90836524,0x88034B96,0xA0B00000 | ||
145 | .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 | ||
146 | .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 | ||
147 | .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 | ||
148 | .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 | ||
149 | .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 | ||
150 | .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 | ||
151 | .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 | ||
152 | .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 | ||
153 | .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 | ||
154 | |||
155 | .set INARG,FP_SCR4 | ||
156 | |||
157 | .set TWOTO63,L_SCR1 | ||
158 | .set ENDFLAG,L_SCR2 | ||
159 | .set N,L_SCR3 | ||
160 | |||
161 | | xref t_frcinx | ||
162 | |xref t_extdnrm | ||
163 | |||
164 | .global stand | ||
165 | stand: | ||
166 | |--TAN(X) = X FOR DENORMALIZED X | ||
167 | |||
168 | bra t_extdnrm | ||
169 | |||
170 | .global stan | ||
171 | stan: | ||
172 | fmovex (%a0),%fp0 | ...LOAD INPUT | ||
173 | |||
174 | movel (%a0),%d0 | ||
175 | movew 4(%a0),%d0 | ||
176 | andil #0x7FFFFFFF,%d0 | ||
177 | |||
178 | cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? | ||
179 | bges TANOK1 | ||
180 | bra TANSM | ||
181 | TANOK1: | ||
182 | cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? | ||
183 | blts TANMAIN | ||
184 | bra REDUCEX | ||
185 | |||
186 | |||
187 | TANMAIN: | ||
188 | |--THIS IS THE USUAL CASE, |X| <= 15 PI. | ||
189 | |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | ||
190 | fmovex %fp0,%fp1 | ||
191 | fmuld TWOBYPI,%fp1 | ...X*2/PI | ||
192 | |||
193 | |--HIDE THE NEXT TWO INSTRUCTIONS | ||
194 | leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 | ||
195 | |||
196 | |--FP1 IS NOW READY | ||
197 | fmovel %fp1,%d0 | ...CONVERT TO INTEGER | ||
198 | |||
199 | asll #4,%d0 | ||
200 | addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2 | ||
201 | |||
202 | fsubx (%a1)+,%fp0 | ...X-Y1 | ||
203 | |--HIDE THE NEXT ONE | ||
204 | |||
205 | fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 | ||
206 | |||
207 | rorl #5,%d0 | ||
208 | andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0 | ||
209 | |||
210 | TANCONT: | ||
211 | |||
212 | cmpil #0,%d0 | ||
213 | blt NODD | ||
214 | |||
215 | fmovex %fp0,%fp1 | ||
216 | fmulx %fp1,%fp1 | ...S = R*R | ||
217 | |||
218 | fmoved TANQ4,%fp3 | ||
219 | fmoved TANP3,%fp2 | ||
220 | |||
221 | fmulx %fp1,%fp3 | ...SQ4 | ||
222 | fmulx %fp1,%fp2 | ...SP3 | ||
223 | |||
224 | faddd TANQ3,%fp3 | ...Q3+SQ4 | ||
225 | faddx TANP2,%fp2 | ...P2+SP3 | ||
226 | |||
227 | fmulx %fp1,%fp3 | ...S(Q3+SQ4) | ||
228 | fmulx %fp1,%fp2 | ...S(P2+SP3) | ||
229 | |||
230 | faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) | ||
231 | faddx TANP1,%fp2 | ...P1+S(P2+SP3) | ||
232 | |||
233 | fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4)) | ||
234 | fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3)) | ||
235 | |||
236 | faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) | ||
237 | fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3)) | ||
238 | |||
239 | fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4))) | ||
240 | |||
241 | |||
242 | faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3)) | ||
243 | |||
244 | |||
245 | fadds #0x3F800000,%fp1 | ...1+S(Q1+...) | ||
246 | |||
247 | fmovel %d1,%fpcr |restore users exceptions | ||
248 | fdivx %fp1,%fp0 |last inst - possible exception set | ||
249 | |||
250 | bra t_frcinx | ||
251 | |||
252 | NODD: | ||
253 | fmovex %fp0,%fp1 | ||
254 | fmulx %fp0,%fp0 | ...S = R*R | ||
255 | |||
256 | fmoved TANQ4,%fp3 | ||
257 | fmoved TANP3,%fp2 | ||
258 | |||
259 | fmulx %fp0,%fp3 | ...SQ4 | ||
260 | fmulx %fp0,%fp2 | ...SP3 | ||
261 | |||
262 | faddd TANQ3,%fp3 | ...Q3+SQ4 | ||
263 | faddx TANP2,%fp2 | ...P2+SP3 | ||
264 | |||
265 | fmulx %fp0,%fp3 | ...S(Q3+SQ4) | ||
266 | fmulx %fp0,%fp2 | ...S(P2+SP3) | ||
267 | |||
268 | faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) | ||
269 | faddx TANP1,%fp2 | ...P1+S(P2+SP3) | ||
270 | |||
271 | fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4)) | ||
272 | fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3)) | ||
273 | |||
274 | faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) | ||
275 | fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3)) | ||
276 | |||
277 | fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4))) | ||
278 | |||
279 | |||
280 | faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3)) | ||
281 | fadds #0x3F800000,%fp0 | ...1+S(Q1+...) | ||
282 | |||
283 | |||
284 | fmovex %fp1,-(%sp) | ||
285 | eoril #0x80000000,(%sp) | ||
286 | |||
287 | fmovel %d1,%fpcr |restore users exceptions | ||
288 | fdivx (%sp)+,%fp0 |last inst - possible exception set | ||
289 | |||
290 | bra t_frcinx | ||
291 | |||
292 | TANBORS: | ||
293 | |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | ||
294 | |--IF |X| < 2**(-40), RETURN X OR 1. | ||
295 | cmpil #0x3FFF8000,%d0 | ||
296 | bgts REDUCEX | ||
297 | |||
298 | TANSM: | ||
299 | |||
300 | fmovex %fp0,-(%sp) | ||
301 | fmovel %d1,%fpcr |restore users exceptions | ||
302 | fmovex (%sp)+,%fp0 |last inst - possible exception set | ||
303 | |||
304 | bra t_frcinx | ||
305 | |||
306 | |||
307 | REDUCEX: | ||
308 | |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | ||
309 | |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | ||
310 | |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | ||
311 | |||
312 | fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5 | ||
313 | movel %d2,-(%a7) | ||
314 | fmoves #0x00000000,%fp1 | ||
315 | |||
316 | |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | ||
317 | |--there is a danger of unwanted overflow in first LOOP iteration. In this | ||
318 | |--case, reduce argument by one remainder step to make subsequent reduction | ||
319 | |--safe. | ||
320 | cmpil #0x7ffeffff,%d0 |is argument dangerously large? | ||
321 | bnes LOOP | ||
322 | movel #0x7ffe0000,FP_SCR2(%a6) |yes | ||
323 | | ;create 2**16383*PI/2 | ||
324 | movel #0xc90fdaa2,FP_SCR2+4(%a6) | ||
325 | clrl FP_SCR2+8(%a6) | ||
326 | ftstx %fp0 |test sign of argument | ||
327 | movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383* | ||
328 | | ;PI/2 at FP_SCR3 | ||
329 | movel #0x85a308d3,FP_SCR3+4(%a6) | ||
330 | clrl FP_SCR3+8(%a6) | ||
331 | fblt red_neg | ||
332 | orw #0x8000,FP_SCR2(%a6) |positive arg | ||
333 | orw #0x8000,FP_SCR3(%a6) | ||
334 | red_neg: | ||
335 | faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact | ||
336 | fmovex %fp0,%fp1 |save high result in fp1 | ||
337 | faddx FP_SCR3(%a6),%fp0 |low part of reduction | ||
338 | fsubx %fp0,%fp1 |determine low component of result | ||
339 | faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument. | ||
340 | |||
341 | |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | ||
342 | |--integer quotient will be stored in N | ||
343 | |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) | ||
344 | |||
345 | LOOP: | ||
346 | fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2 | ||
347 | movew INARG(%a6),%d0 | ||
348 | movel %d0,%a1 | ...save a copy of D0 | ||
349 | andil #0x00007FFF,%d0 | ||
350 | subil #0x00003FFF,%d0 | ...D0 IS K | ||
351 | cmpil #28,%d0 | ||
352 | bles LASTLOOP | ||
353 | CONTLOOP: | ||
354 | subil #27,%d0 | ...D0 IS L := K-27 | ||
355 | movel #0,ENDFLAG(%a6) | ||
356 | bras WORK | ||
357 | LASTLOOP: | ||
358 | clrl %d0 | ...D0 IS L := 0 | ||
359 | movel #1,ENDFLAG(%a6) | ||
360 | |||
361 | WORK: | ||
362 | |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN | ||
363 | |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. | ||
364 | |||
365 | |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | ||
366 | |--2**L * (PIby2_1), 2**L * (PIby2_2) | ||
367 | |||
368 | movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI | ||
369 | subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI) | ||
370 | |||
371 | movel #0xA2F9836E,FP_SCR1+4(%a6) | ||
372 | movel #0x4E44152A,FP_SCR1+8(%a6) | ||
373 | movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI) | ||
374 | |||
375 | fmovex %fp0,%fp2 | ||
376 | fmulx FP_SCR1(%a6),%fp2 | ||
377 | |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | ||
378 | |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N | ||
379 | |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | ||
380 | |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE | ||
381 | |--US THE DESIRED VALUE IN FLOATING POINT. | ||
382 | |||
383 | |--HIDE SIX CYCLES OF INSTRUCTION | ||
384 | movel %a1,%d2 | ||
385 | swap %d2 | ||
386 | andil #0x80000000,%d2 | ||
387 | oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL | ||
388 | movel %d2,TWOTO63(%a6) | ||
389 | |||
390 | movel %d0,%d2 | ||
391 | addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2) | ||
392 | |||
393 | |--FP2 IS READY | ||
394 | fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED | ||
395 | |||
396 | |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | ||
397 | movew %d2,FP_SCR2(%a6) | ||
398 | clrw FP_SCR2+2(%a6) | ||
399 | movel #0xC90FDAA2,FP_SCR2+4(%a6) | ||
400 | clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1 | ||
401 | |||
402 | |--FP2 IS READY | ||
403 | fsubs TWOTO63(%a6),%fp2 | ...FP2 is N | ||
404 | |||
405 | addil #0x00003FDD,%d0 | ||
406 | movew %d0,FP_SCR3(%a6) | ||
407 | clrw FP_SCR3+2(%a6) | ||
408 | movel #0x85A308D3,FP_SCR3+4(%a6) | ||
409 | clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2 | ||
410 | |||
411 | movel ENDFLAG(%a6),%d0 | ||
412 | |||
413 | |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | ||
414 | |--P2 = 2**(L) * Piby2_2 | ||
415 | fmovex %fp2,%fp4 | ||
416 | fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1 | ||
417 | fmovex %fp2,%fp5 | ||
418 | fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2 | ||
419 | fmovex %fp4,%fp3 | ||
420 | |--we want P+p = W+w but |p| <= half ulp of P | ||
421 | |--Then, we need to compute A := R-P and a := r-p | ||
422 | faddx %fp5,%fp3 | ...FP3 is P | ||
423 | fsubx %fp3,%fp4 | ...W-P | ||
424 | |||
425 | fsubx %fp3,%fp0 | ...FP0 is A := R - P | ||
426 | faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w | ||
427 | |||
428 | fmovex %fp0,%fp3 | ...FP3 A | ||
429 | fsubx %fp4,%fp1 | ...FP1 is a := r - p | ||
430 | |||
431 | |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but | ||
432 | |--|r| <= half ulp of R. | ||
433 | faddx %fp1,%fp0 | ...FP0 is R := A+a | ||
434 | |--No need to calculate r if this is the last loop | ||
435 | cmpil #0,%d0 | ||
436 | bgt RESTORE | ||
437 | |||
438 | |--Need to calculate r | ||
439 | fsubx %fp0,%fp3 | ...A-R | ||
440 | faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a | ||
441 | bra LOOP | ||
442 | |||
443 | RESTORE: | ||
444 | fmovel %fp2,N(%a6) | ||
445 | movel (%a7)+,%d2 | ||
446 | fmovemx (%a7)+,%fp2-%fp5 | ||
447 | |||
448 | |||
449 | movel N(%a6),%d0 | ||
450 | rorl #1,%d0 | ||
451 | |||
452 | |||
453 | bra TANCONT | ||
454 | |||
455 | |end | ||