diff options
Diffstat (limited to 'arch/m68k/fpsp040/slogn.S')
-rw-r--r-- | arch/m68k/fpsp040/slogn.S | 592 |
1 files changed, 592 insertions, 0 deletions
diff --git a/arch/m68k/fpsp040/slogn.S b/arch/m68k/fpsp040/slogn.S new file mode 100644 index 000000000000..2aaa0725c035 --- /dev/null +++ b/arch/m68k/fpsp040/slogn.S | |||
@@ -0,0 +1,592 @@ | |||
1 | | | ||
2 | | slogn.sa 3.1 12/10/90 | ||
3 | | | ||
4 | | slogn computes the natural logarithm of an | ||
5 | | input value. slognd does the same except the input value is a | ||
6 | | denormalized number. slognp1 computes log(1+X), and slognp1d | ||
7 | | computes log(1+X) for denormalized X. | ||
8 | | | ||
9 | | Input: Double-extended value in memory location pointed to by address | ||
10 | | register a0. | ||
11 | | | ||
12 | | Output: log(X) or log(1+X) returned in floating-point register Fp0. | ||
13 | | | ||
14 | | Accuracy and Monotonicity: The returned result is within 2 ulps in | ||
15 | | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | ||
16 | | result is subsequently rounded to double precision. The | ||
17 | | result is provably monotonic in double precision. | ||
18 | | | ||
19 | | Speed: The program slogn takes approximately 190 cycles for input | ||
20 | | argument X such that |X-1| >= 1/16, which is the usual | ||
21 | | situation. For those arguments, slognp1 takes approximately | ||
22 | | 210 cycles. For the less common arguments, the program will | ||
23 | | run no worse than 10% slower. | ||
24 | | | ||
25 | | Algorithm: | ||
26 | | LOGN: | ||
27 | | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in | ||
28 | | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. | ||
29 | | | ||
30 | | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven | ||
31 | | significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base | ||
32 | | 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). | ||
33 | | | ||
34 | | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, | ||
35 | | log(1+u) = poly. | ||
36 | | | ||
37 | | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) | ||
38 | | by k*log(2) + (log(F) + poly). The values of log(F) are calculated | ||
39 | | beforehand and stored in the program. | ||
40 | | | ||
41 | | lognp1: | ||
42 | | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in | ||
43 | | u where u = 2X/(2+X). Otherwise, move on to Step 2. | ||
44 | | | ||
45 | | Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 | ||
46 | | of the algorithm for LOGN and compute log(1+X) as | ||
47 | | k*log(2) + log(F) + poly where poly approximates log(1+u), | ||
48 | | u = (Y-F)/F. | ||
49 | | | ||
50 | | Implementation Notes: | ||
51 | | Note 1. There are 64 different possible values for F, thus 64 log(F)'s | ||
52 | | need to be tabulated. Moreover, the values of 1/F are also | ||
53 | | tabulated so that the division in (Y-F)/F can be performed by a | ||
54 | | multiplication. | ||
55 | | | ||
56 | | Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value | ||
57 | | Y-F has to be calculated carefully when 1/2 <= X < 3/2. | ||
58 | | | ||
59 | | Note 3. To fully exploit the pipeline, polynomials are usually separated | ||
60 | | into two parts evaluated independently before being added up. | ||
61 | | | ||
62 | |||
63 | | Copyright (C) Motorola, Inc. 1990 | ||
64 | | All Rights Reserved | ||
65 | | | ||
66 | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | ||
67 | | The copyright notice above does not evidence any | ||
68 | | actual or intended publication of such source code. | ||
69 | |||
70 | |slogn idnt 2,1 | Motorola 040 Floating Point Software Package | ||
71 | |||
72 | |section 8 | ||
73 | |||
74 | #include "fpsp.h" | ||
75 | |||
76 | BOUNDS1: .long 0x3FFEF07D,0x3FFF8841 | ||
77 | BOUNDS2: .long 0x3FFE8000,0x3FFFC000 | ||
78 | |||
79 | LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | ||
80 | |||
81 | one: .long 0x3F800000 | ||
82 | zero: .long 0x00000000 | ||
83 | infty: .long 0x7F800000 | ||
84 | negone: .long 0xBF800000 | ||
85 | |||
86 | LOGA6: .long 0x3FC2499A,0xB5E4040B | ||
87 | LOGA5: .long 0xBFC555B5,0x848CB7DB | ||
88 | |||
89 | LOGA4: .long 0x3FC99999,0x987D8730 | ||
90 | LOGA3: .long 0xBFCFFFFF,0xFF6F7E97 | ||
91 | |||
92 | LOGA2: .long 0x3FD55555,0x555555a4 | ||
93 | LOGA1: .long 0xBFE00000,0x00000008 | ||
94 | |||
95 | LOGB5: .long 0x3F175496,0xADD7DAD6 | ||
96 | LOGB4: .long 0x3F3C71C2,0xFE80C7E0 | ||
97 | |||
98 | LOGB3: .long 0x3F624924,0x928BCCFF | ||
99 | LOGB2: .long 0x3F899999,0x999995EC | ||
100 | |||
101 | LOGB1: .long 0x3FB55555,0x55555555 | ||
102 | TWO: .long 0x40000000,0x00000000 | ||
103 | |||
104 | LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000 | ||
105 | |||
106 | LOGTBL: | ||
107 | .long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 | ||
108 | .long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 | ||
109 | .long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 | ||
110 | .long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 | ||
111 | .long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 | ||
112 | .long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 | ||
113 | .long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 | ||
114 | .long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 | ||
115 | .long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 | ||
116 | .long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 | ||
117 | .long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 | ||
118 | .long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 | ||
119 | .long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 | ||
120 | .long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 | ||
121 | .long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 | ||
122 | .long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 | ||
123 | .long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 | ||
124 | .long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 | ||
125 | .long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 | ||
126 | .long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 | ||
127 | .long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 | ||
128 | .long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 | ||
129 | .long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 | ||
130 | .long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 | ||
131 | .long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 | ||
132 | .long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 | ||
133 | .long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 | ||
134 | .long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 | ||
135 | .long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 | ||
136 | .long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 | ||
137 | .long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 | ||
138 | .long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 | ||
139 | .long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 | ||
140 | .long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 | ||
141 | .long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 | ||
142 | .long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 | ||
143 | .long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 | ||
144 | .long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 | ||
145 | .long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 | ||
146 | .long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 | ||
147 | .long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 | ||
148 | .long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 | ||
149 | .long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 | ||
150 | .long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 | ||
151 | .long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 | ||
152 | .long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 | ||
153 | .long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 | ||
154 | .long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 | ||
155 | .long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 | ||
156 | .long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 | ||
157 | .long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 | ||
158 | .long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 | ||
159 | .long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 | ||
160 | .long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 | ||
161 | .long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 | ||
162 | .long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 | ||
163 | .long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 | ||
164 | .long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 | ||
165 | .long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 | ||
166 | .long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 | ||
167 | .long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 | ||
168 | .long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 | ||
169 | .long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 | ||
170 | .long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 | ||
171 | .long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 | ||
172 | .long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 | ||
173 | .long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 | ||
174 | .long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 | ||
175 | .long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 | ||
176 | .long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 | ||
177 | .long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 | ||
178 | .long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 | ||
179 | .long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 | ||
180 | .long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 | ||
181 | .long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 | ||
182 | .long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 | ||
183 | .long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 | ||
184 | .long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 | ||
185 | .long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 | ||
186 | .long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 | ||
187 | .long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 | ||
188 | .long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 | ||
189 | .long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 | ||
190 | .long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 | ||
191 | .long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 | ||
192 | .long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 | ||
193 | .long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 | ||
194 | .long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 | ||
195 | .long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 | ||
196 | .long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 | ||
197 | .long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 | ||
198 | .long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 | ||
199 | .long 0x3FFE0000,0x94458094,0x45809446,0x00000000 | ||
200 | .long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 | ||
201 | .long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 | ||
202 | .long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 | ||
203 | .long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 | ||
204 | .long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 | ||
205 | .long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 | ||
206 | .long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 | ||
207 | .long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 | ||
208 | .long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 | ||
209 | .long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 | ||
210 | .long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 | ||
211 | .long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 | ||
212 | .long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 | ||
213 | .long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 | ||
214 | .long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 | ||
215 | .long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 | ||
216 | .long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 | ||
217 | .long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 | ||
218 | .long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 | ||
219 | .long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 | ||
220 | .long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 | ||
221 | .long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 | ||
222 | .long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 | ||
223 | .long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 | ||
224 | .long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 | ||
225 | .long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 | ||
226 | .long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 | ||
227 | .long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 | ||
228 | .long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 | ||
229 | .long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 | ||
230 | .long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 | ||
231 | .long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 | ||
232 | .long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 | ||
233 | .long 0x3FFE0000,0x80808080,0x80808081,0x00000000 | ||
234 | .long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 | ||
235 | |||
236 | .set ADJK,L_SCR1 | ||
237 | |||
238 | .set X,FP_SCR1 | ||
239 | .set XDCARE,X+2 | ||
240 | .set XFRAC,X+4 | ||
241 | |||
242 | .set F,FP_SCR2 | ||
243 | .set FFRAC,F+4 | ||
244 | |||
245 | .set KLOG2,FP_SCR3 | ||
246 | |||
247 | .set SAVEU,FP_SCR4 | ||
248 | |||
249 | | xref t_frcinx | ||
250 | |xref t_extdnrm | ||
251 | |xref t_operr | ||
252 | |xref t_dz | ||
253 | |||
254 | .global slognd | ||
255 | slognd: | ||
256 | |--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT | ||
257 | |||
258 | movel #-100,ADJK(%a6) | ...INPUT = 2^(ADJK) * FP0 | ||
259 | |||
260 | |----normalize the input value by left shifting k bits (k to be determined | ||
261 | |----below), adjusting exponent and storing -k to ADJK | ||
262 | |----the value TWOTO100 is no longer needed. | ||
263 | |----Note that this code assumes the denormalized input is NON-ZERO. | ||
264 | |||
265 | moveml %d2-%d7,-(%a7) | ...save some registers | ||
266 | movel #0x00000000,%d3 | ...D3 is exponent of smallest norm. # | ||
267 | movel 4(%a0),%d4 | ||
268 | movel 8(%a0),%d5 | ...(D4,D5) is (Hi_X,Lo_X) | ||
269 | clrl %d2 | ...D2 used for holding K | ||
270 | |||
271 | tstl %d4 | ||
272 | bnes HiX_not0 | ||
273 | |||
274 | HiX_0: | ||
275 | movel %d5,%d4 | ||
276 | clrl %d5 | ||
277 | movel #32,%d2 | ||
278 | clrl %d6 | ||
279 | bfffo %d4{#0:#32},%d6 | ||
280 | lsll %d6,%d4 | ||
281 | addl %d6,%d2 | ...(D3,D4,D5) is normalized | ||
282 | |||
283 | movel %d3,X(%a6) | ||
284 | movel %d4,XFRAC(%a6) | ||
285 | movel %d5,XFRAC+4(%a6) | ||
286 | negl %d2 | ||
287 | movel %d2,ADJK(%a6) | ||
288 | fmovex X(%a6),%fp0 | ||
289 | moveml (%a7)+,%d2-%d7 | ...restore registers | ||
290 | lea X(%a6),%a0 | ||
291 | bras LOGBGN | ...begin regular log(X) | ||
292 | |||
293 | |||
294 | HiX_not0: | ||
295 | clrl %d6 | ||
296 | bfffo %d4{#0:#32},%d6 | ...find first 1 | ||
297 | movel %d6,%d2 | ...get k | ||
298 | lsll %d6,%d4 | ||
299 | movel %d5,%d7 | ...a copy of D5 | ||
300 | lsll %d6,%d5 | ||
301 | negl %d6 | ||
302 | addil #32,%d6 | ||
303 | lsrl %d6,%d7 | ||
304 | orl %d7,%d4 | ...(D3,D4,D5) normalized | ||
305 | |||
306 | movel %d3,X(%a6) | ||
307 | movel %d4,XFRAC(%a6) | ||
308 | movel %d5,XFRAC+4(%a6) | ||
309 | negl %d2 | ||
310 | movel %d2,ADJK(%a6) | ||
311 | fmovex X(%a6),%fp0 | ||
312 | moveml (%a7)+,%d2-%d7 | ...restore registers | ||
313 | lea X(%a6),%a0 | ||
314 | bras LOGBGN | ...begin regular log(X) | ||
315 | |||
316 | |||
317 | .global slogn | ||
318 | slogn: | ||
319 | |--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S | ||
320 | |||
321 | fmovex (%a0),%fp0 | ...LOAD INPUT | ||
322 | movel #0x00000000,ADJK(%a6) | ||
323 | |||
324 | LOGBGN: | ||
325 | |--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS | ||
326 | |--A FINITE, NON-ZERO, NORMALIZED NUMBER. | ||
327 | |||
328 | movel (%a0),%d0 | ||
329 | movew 4(%a0),%d0 | ||
330 | |||
331 | movel (%a0),X(%a6) | ||
332 | movel 4(%a0),X+4(%a6) | ||
333 | movel 8(%a0),X+8(%a6) | ||
334 | |||
335 | cmpil #0,%d0 | ...CHECK IF X IS NEGATIVE | ||
336 | blt LOGNEG | ...LOG OF NEGATIVE ARGUMENT IS INVALID | ||
337 | cmp2l BOUNDS1,%d0 | ...X IS POSITIVE, CHECK IF X IS NEAR 1 | ||
338 | bcc LOGNEAR1 | ...BOUNDS IS ROUGHLY [15/16, 17/16] | ||
339 | |||
340 | LOGMAIN: | ||
341 | |--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 | ||
342 | |||
343 | |--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. | ||
344 | |--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. | ||
345 | |--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) | ||
346 | |-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). | ||
347 | |--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING | ||
348 | |--LOG(1+U) CAN BE VERY EFFICIENT. | ||
349 | |--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO | ||
350 | |--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. | ||
351 | |||
352 | |--GET K, Y, F, AND ADDRESS OF 1/F. | ||
353 | asrl #8,%d0 | ||
354 | asrl #8,%d0 | ...SHIFTED 16 BITS, BIASED EXPO. OF X | ||
355 | subil #0x3FFF,%d0 | ...THIS IS K | ||
356 | addl ADJK(%a6),%d0 | ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. | ||
357 | lea LOGTBL,%a0 | ...BASE ADDRESS OF 1/F AND LOG(F) | ||
358 | fmovel %d0,%fp1 | ...CONVERT K TO FLOATING-POINT FORMAT | ||
359 | |||
360 | |--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F | ||
361 | movel #0x3FFF0000,X(%a6) | ...X IS NOW Y, I.E. 2^(-K)*X | ||
362 | movel XFRAC(%a6),FFRAC(%a6) | ||
363 | andil #0xFE000000,FFRAC(%a6) | ...FIRST 7 BITS OF Y | ||
364 | oril #0x01000000,FFRAC(%a6) | ...GET F: ATTACH A 1 AT THE EIGHTH BIT | ||
365 | movel FFRAC(%a6),%d0 | ...READY TO GET ADDRESS OF 1/F | ||
366 | andil #0x7E000000,%d0 | ||
367 | asrl #8,%d0 | ||
368 | asrl #8,%d0 | ||
369 | asrl #4,%d0 | ...SHIFTED 20, D0 IS THE DISPLACEMENT | ||
370 | addal %d0,%a0 | ...A0 IS THE ADDRESS FOR 1/F | ||
371 | |||
372 | fmovex X(%a6),%fp0 | ||
373 | movel #0x3fff0000,F(%a6) | ||
374 | clrl F+8(%a6) | ||
375 | fsubx F(%a6),%fp0 | ...Y-F | ||
376 | fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 WHILE FP0 IS NOT READY | ||
377 | |--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K | ||
378 | |--REGISTERS SAVED: FPCR, FP1, FP2 | ||
379 | |||
380 | LP1CONT1: | ||
381 | |--AN RE-ENTRY POINT FOR LOGNP1 | ||
382 | fmulx (%a0),%fp0 | ...FP0 IS U = (Y-F)/F | ||
383 | fmulx LOGOF2,%fp1 | ...GET K*LOG2 WHILE FP0 IS NOT READY | ||
384 | fmovex %fp0,%fp2 | ||
385 | fmulx %fp2,%fp2 | ...FP2 IS V=U*U | ||
386 | fmovex %fp1,KLOG2(%a6) | ...PUT K*LOG2 IN MEMORY, FREE FP1 | ||
387 | |||
388 | |--LOG(1+U) IS APPROXIMATED BY | ||
389 | |--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS | ||
390 | |--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] | ||
391 | |||
392 | fmovex %fp2,%fp3 | ||
393 | fmovex %fp2,%fp1 | ||
394 | |||
395 | fmuld LOGA6,%fp1 | ...V*A6 | ||
396 | fmuld LOGA5,%fp2 | ...V*A5 | ||
397 | |||
398 | faddd LOGA4,%fp1 | ...A4+V*A6 | ||
399 | faddd LOGA3,%fp2 | ...A3+V*A5 | ||
400 | |||
401 | fmulx %fp3,%fp1 | ...V*(A4+V*A6) | ||
402 | fmulx %fp3,%fp2 | ...V*(A3+V*A5) | ||
403 | |||
404 | faddd LOGA2,%fp1 | ...A2+V*(A4+V*A6) | ||
405 | faddd LOGA1,%fp2 | ...A1+V*(A3+V*A5) | ||
406 | |||
407 | fmulx %fp3,%fp1 | ...V*(A2+V*(A4+V*A6)) | ||
408 | addal #16,%a0 | ...ADDRESS OF LOG(F) | ||
409 | fmulx %fp3,%fp2 | ...V*(A1+V*(A3+V*A5)), FP3 RELEASED | ||
410 | |||
411 | fmulx %fp0,%fp1 | ...U*V*(A2+V*(A4+V*A6)) | ||
412 | faddx %fp2,%fp0 | ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED | ||
413 | |||
414 | faddx (%a0),%fp1 | ...LOG(F)+U*V*(A2+V*(A4+V*A6)) | ||
415 | fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...RESTORE FP2 | ||
416 | faddx %fp1,%fp0 | ...FP0 IS LOG(F) + LOG(1+U) | ||
417 | |||
418 | fmovel %d1,%fpcr | ||
419 | faddx KLOG2(%a6),%fp0 | ...FINAL ADD | ||
420 | bra t_frcinx | ||
421 | |||
422 | |||
423 | LOGNEAR1: | ||
424 | |--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. | ||
425 | fmovex %fp0,%fp1 | ||
426 | fsubs one,%fp1 | ...FP1 IS X-1 | ||
427 | fadds one,%fp0 | ...FP0 IS X+1 | ||
428 | faddx %fp1,%fp1 | ...FP1 IS 2(X-1) | ||
429 | |--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL | ||
430 | |--IN U, U = 2(X-1)/(X+1) = FP1/FP0 | ||
431 | |||
432 | LP1CONT2: | ||
433 | |--THIS IS AN RE-ENTRY POINT FOR LOGNP1 | ||
434 | fdivx %fp0,%fp1 | ...FP1 IS U | ||
435 | fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 | ||
436 | |--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 | ||
437 | |--LET V=U*U, W=V*V, CALCULATE | ||
438 | |--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY | ||
439 | |--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) | ||
440 | fmovex %fp1,%fp0 | ||
441 | fmulx %fp0,%fp0 | ...FP0 IS V | ||
442 | fmovex %fp1,SAVEU(%a6) | ...STORE U IN MEMORY, FREE FP1 | ||
443 | fmovex %fp0,%fp1 | ||
444 | fmulx %fp1,%fp1 | ...FP1 IS W | ||
445 | |||
446 | fmoved LOGB5,%fp3 | ||
447 | fmoved LOGB4,%fp2 | ||
448 | |||
449 | fmulx %fp1,%fp3 | ...W*B5 | ||
450 | fmulx %fp1,%fp2 | ...W*B4 | ||
451 | |||
452 | faddd LOGB3,%fp3 | ...B3+W*B5 | ||
453 | faddd LOGB2,%fp2 | ...B2+W*B4 | ||
454 | |||
455 | fmulx %fp3,%fp1 | ...W*(B3+W*B5), FP3 RELEASED | ||
456 | |||
457 | fmulx %fp0,%fp2 | ...V*(B2+W*B4) | ||
458 | |||
459 | faddd LOGB1,%fp1 | ...B1+W*(B3+W*B5) | ||
460 | fmulx SAVEU(%a6),%fp0 | ...FP0 IS U*V | ||
461 | |||
462 | faddx %fp2,%fp1 | ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED | ||
463 | fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...FP2 RESTORED | ||
464 | |||
465 | fmulx %fp1,%fp0 | ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) | ||
466 | |||
467 | fmovel %d1,%fpcr | ||
468 | faddx SAVEU(%a6),%fp0 | ||
469 | bra t_frcinx | ||
470 | rts | ||
471 | |||
472 | LOGNEG: | ||
473 | |--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID | ||
474 | bra t_operr | ||
475 | |||
476 | .global slognp1d | ||
477 | slognp1d: | ||
478 | |--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT | ||
479 | | Simply return the denorm | ||
480 | |||
481 | bra t_extdnrm | ||
482 | |||
483 | .global slognp1 | ||
484 | slognp1: | ||
485 | |--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S | ||
486 | |||
487 | fmovex (%a0),%fp0 | ...LOAD INPUT | ||
488 | fabsx %fp0 |test magnitude | ||
489 | fcmpx LTHOLD,%fp0 |compare with min threshold | ||
490 | fbgt LP1REAL |if greater, continue | ||
491 | fmovel #0,%fpsr |clr N flag from compare | ||
492 | fmovel %d1,%fpcr | ||
493 | fmovex (%a0),%fp0 |return signed argument | ||
494 | bra t_frcinx | ||
495 | |||
496 | LP1REAL: | ||
497 | fmovex (%a0),%fp0 | ...LOAD INPUT | ||
498 | movel #0x00000000,ADJK(%a6) | ||
499 | fmovex %fp0,%fp1 | ...FP1 IS INPUT Z | ||
500 | fadds one,%fp0 | ...X := ROUND(1+Z) | ||
501 | fmovex %fp0,X(%a6) | ||
502 | movew XFRAC(%a6),XDCARE(%a6) | ||
503 | movel X(%a6),%d0 | ||
504 | cmpil #0,%d0 | ||
505 | ble LP1NEG0 | ...LOG OF ZERO OR -VE | ||
506 | cmp2l BOUNDS2,%d0 | ||
507 | bcs LOGMAIN | ...BOUNDS2 IS [1/2,3/2] | ||
508 | |--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, | ||
509 | |--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, | ||
510 | |--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). | ||
511 | |||
512 | LP1NEAR1: | ||
513 | |--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) | ||
514 | cmp2l BOUNDS1,%d0 | ||
515 | bcss LP1CARE | ||
516 | |||
517 | LP1ONE16: | ||
518 | |--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) | ||
519 | |--WHERE U = 2Z/(2+Z) = 2Z/(1+X). | ||
520 | faddx %fp1,%fp1 | ...FP1 IS 2Z | ||
521 | fadds one,%fp0 | ...FP0 IS 1+X | ||
522 | |--U = FP1/FP0 | ||
523 | bra LP1CONT2 | ||
524 | |||
525 | LP1CARE: | ||
526 | |--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE | ||
527 | |--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST | ||
528 | |--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], | ||
529 | |--THERE ARE ONLY TWO CASES. | ||
530 | |--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z | ||
531 | |--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z | ||
532 | |--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF | ||
533 | |--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. | ||
534 | |||
535 | movel XFRAC(%a6),FFRAC(%a6) | ||
536 | andil #0xFE000000,FFRAC(%a6) | ||
537 | oril #0x01000000,FFRAC(%a6) | ...F OBTAINED | ||
538 | cmpil #0x3FFF8000,%d0 | ...SEE IF 1+Z > 1 | ||
539 | bges KISZERO | ||
540 | |||
541 | KISNEG1: | ||
542 | fmoves TWO,%fp0 | ||
543 | movel #0x3fff0000,F(%a6) | ||
544 | clrl F+8(%a6) | ||
545 | fsubx F(%a6),%fp0 | ...2-F | ||
546 | movel FFRAC(%a6),%d0 | ||
547 | andil #0x7E000000,%d0 | ||
548 | asrl #8,%d0 | ||
549 | asrl #8,%d0 | ||
550 | asrl #4,%d0 | ...D0 CONTAINS DISPLACEMENT FOR 1/F | ||
551 | faddx %fp1,%fp1 | ...GET 2Z | ||
552 | fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 | ||
553 | faddx %fp1,%fp0 | ...FP0 IS Y-F = (2-F)+2Z | ||
554 | lea LOGTBL,%a0 | ...A0 IS ADDRESS OF 1/F | ||
555 | addal %d0,%a0 | ||
556 | fmoves negone,%fp1 | ...FP1 IS K = -1 | ||
557 | bra LP1CONT1 | ||
558 | |||
559 | KISZERO: | ||
560 | fmoves one,%fp0 | ||
561 | movel #0x3fff0000,F(%a6) | ||
562 | clrl F+8(%a6) | ||
563 | fsubx F(%a6),%fp0 | ...1-F | ||
564 | movel FFRAC(%a6),%d0 | ||
565 | andil #0x7E000000,%d0 | ||
566 | asrl #8,%d0 | ||
567 | asrl #8,%d0 | ||
568 | asrl #4,%d0 | ||
569 | faddx %fp1,%fp0 | ...FP0 IS Y-F | ||
570 | fmovemx %fp2-%fp2/%fp3,-(%sp) | ...FP2 SAVED | ||
571 | lea LOGTBL,%a0 | ||
572 | addal %d0,%a0 | ...A0 IS ADDRESS OF 1/F | ||
573 | fmoves zero,%fp1 | ...FP1 IS K = 0 | ||
574 | bra LP1CONT1 | ||
575 | |||
576 | LP1NEG0: | ||
577 | |--FPCR SAVED. D0 IS X IN COMPACT FORM. | ||
578 | cmpil #0,%d0 | ||
579 | blts LP1NEG | ||
580 | LP1ZERO: | ||
581 | fmoves negone,%fp0 | ||
582 | |||
583 | fmovel %d1,%fpcr | ||
584 | bra t_dz | ||
585 | |||
586 | LP1NEG: | ||
587 | fmoves zero,%fp0 | ||
588 | |||
589 | fmovel %d1,%fpcr | ||
590 | bra t_operr | ||
591 | |||
592 | |end | ||