aboutsummaryrefslogtreecommitdiffstats
path: root/arch/m32r/kernel/semaphore.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/m32r/kernel/semaphore.c')
-rw-r--r--arch/m32r/kernel/semaphore.c186
1 files changed, 186 insertions, 0 deletions
diff --git a/arch/m32r/kernel/semaphore.c b/arch/m32r/kernel/semaphore.c
new file mode 100644
index 000000000000..9a6e6d754ddc
--- /dev/null
+++ b/arch/m32r/kernel/semaphore.c
@@ -0,0 +1,186 @@
1/*
2 * linux/arch/m32r/semaphore.c
3 * orig : i386 2.6.4
4 *
5 * M32R semaphore implementation.
6 *
7 * Copyright (c) 2002 - 2004 Hitoshi Yamamoto
8 */
9
10/*
11 * i386 semaphore implementation.
12 *
13 * (C) Copyright 1999 Linus Torvalds
14 *
15 * Portions Copyright 1999 Red Hat, Inc.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 * rw semaphores implemented November 1999 by Benjamin LaHaise <bcrl@kvack.org>
23 */
24#include <linux/config.h>
25#include <linux/sched.h>
26#include <linux/err.h>
27#include <linux/init.h>
28#include <asm/semaphore.h>
29
30/*
31 * Semaphores are implemented using a two-way counter:
32 * The "count" variable is decremented for each process
33 * that tries to acquire the semaphore, while the "sleeping"
34 * variable is a count of such acquires.
35 *
36 * Notably, the inline "up()" and "down()" functions can
37 * efficiently test if they need to do any extra work (up
38 * needs to do something only if count was negative before
39 * the increment operation.
40 *
41 * "sleeping" and the contention routine ordering is protected
42 * by the spinlock in the semaphore's waitqueue head.
43 *
44 * Note that these functions are only called when there is
45 * contention on the lock, and as such all this is the
46 * "non-critical" part of the whole semaphore business. The
47 * critical part is the inline stuff in <asm/semaphore.h>
48 * where we want to avoid any extra jumps and calls.
49 */
50
51/*
52 * Logic:
53 * - only on a boundary condition do we need to care. When we go
54 * from a negative count to a non-negative, we wake people up.
55 * - when we go from a non-negative count to a negative do we
56 * (a) synchronize with the "sleeper" count and (b) make sure
57 * that we're on the wakeup list before we synchronize so that
58 * we cannot lose wakeup events.
59 */
60
61asmlinkage void __up(struct semaphore *sem)
62{
63 wake_up(&sem->wait);
64}
65
66asmlinkage void __sched __down(struct semaphore * sem)
67{
68 struct task_struct *tsk = current;
69 DECLARE_WAITQUEUE(wait, tsk);
70 unsigned long flags;
71
72 tsk->state = TASK_UNINTERRUPTIBLE;
73 spin_lock_irqsave(&sem->wait.lock, flags);
74 add_wait_queue_exclusive_locked(&sem->wait, &wait);
75
76 sem->sleepers++;
77 for (;;) {
78 int sleepers = sem->sleepers;
79
80 /*
81 * Add "everybody else" into it. They aren't
82 * playing, because we own the spinlock in
83 * the wait_queue_head.
84 */
85 if (!atomic_add_negative(sleepers - 1, &sem->count)) {
86 sem->sleepers = 0;
87 break;
88 }
89 sem->sleepers = 1; /* us - see -1 above */
90 spin_unlock_irqrestore(&sem->wait.lock, flags);
91
92 schedule();
93
94 spin_lock_irqsave(&sem->wait.lock, flags);
95 tsk->state = TASK_UNINTERRUPTIBLE;
96 }
97 remove_wait_queue_locked(&sem->wait, &wait);
98 wake_up_locked(&sem->wait);
99 spin_unlock_irqrestore(&sem->wait.lock, flags);
100 tsk->state = TASK_RUNNING;
101}
102
103asmlinkage int __sched __down_interruptible(struct semaphore * sem)
104{
105 int retval = 0;
106 struct task_struct *tsk = current;
107 DECLARE_WAITQUEUE(wait, tsk);
108 unsigned long flags;
109
110 tsk->state = TASK_INTERRUPTIBLE;
111 spin_lock_irqsave(&sem->wait.lock, flags);
112 add_wait_queue_exclusive_locked(&sem->wait, &wait);
113
114 sem->sleepers++;
115 for (;;) {
116 int sleepers = sem->sleepers;
117
118 /*
119 * With signals pending, this turns into
120 * the trylock failure case - we won't be
121 * sleeping, and we* can't get the lock as
122 * it has contention. Just correct the count
123 * and exit.
124 */
125 if (signal_pending(current)) {
126 retval = -EINTR;
127 sem->sleepers = 0;
128 atomic_add(sleepers, &sem->count);
129 break;
130 }
131
132 /*
133 * Add "everybody else" into it. They aren't
134 * playing, because we own the spinlock in
135 * wait_queue_head. The "-1" is because we're
136 * still hoping to get the semaphore.
137 */
138 if (!atomic_add_negative(sleepers - 1, &sem->count)) {
139 sem->sleepers = 0;
140 break;
141 }
142 sem->sleepers = 1; /* us - see -1 above */
143 spin_unlock_irqrestore(&sem->wait.lock, flags);
144
145 schedule();
146
147 spin_lock_irqsave(&sem->wait.lock, flags);
148 tsk->state = TASK_INTERRUPTIBLE;
149 }
150 remove_wait_queue_locked(&sem->wait, &wait);
151 wake_up_locked(&sem->wait);
152 spin_unlock_irqrestore(&sem->wait.lock, flags);
153
154 tsk->state = TASK_RUNNING;
155 return retval;
156}
157
158/*
159 * Trylock failed - make sure we correct for
160 * having decremented the count.
161 *
162 * We could have done the trylock with a
163 * single "cmpxchg" without failure cases,
164 * but then it wouldn't work on a 386.
165 */
166asmlinkage int __down_trylock(struct semaphore * sem)
167{
168 int sleepers;
169 unsigned long flags;
170
171 spin_lock_irqsave(&sem->wait.lock, flags);
172 sleepers = sem->sleepers + 1;
173 sem->sleepers = 0;
174
175 /*
176 * Add "everybody else" and us into it. They aren't
177 * playing, because we own the spinlock in the
178 * wait_queue_head.
179 */
180 if (!atomic_add_negative(sleepers, &sem->count)) {
181 wake_up_locked(&sem->wait);
182 }
183
184 spin_unlock_irqrestore(&sem->wait.lock, flags);
185 return 1;
186}