diff options
Diffstat (limited to 'arch/ia64')
-rw-r--r-- | arch/ia64/sn/kernel/Makefile | 2 | ||||
-rw-r--r-- | arch/ia64/sn/kernel/xpc.h | 991 | ||||
-rw-r--r-- | arch/ia64/sn/kernel/xpc_channel.c | 2297 | ||||
-rw-r--r-- | arch/ia64/sn/kernel/xpc_main.c | 1064 | ||||
-rw-r--r-- | arch/ia64/sn/kernel/xpc_partition.c | 971 |
5 files changed, 5325 insertions, 0 deletions
diff --git a/arch/ia64/sn/kernel/Makefile b/arch/ia64/sn/kernel/Makefile index b1a4a23086b9..6959736eadea 100644 --- a/arch/ia64/sn/kernel/Makefile +++ b/arch/ia64/sn/kernel/Makefile | |||
@@ -13,3 +13,5 @@ obj-$(CONFIG_IA64_GENERIC) += machvec.o | |||
13 | obj-$(CONFIG_SGI_TIOCX) += tiocx.o | 13 | obj-$(CONFIG_SGI_TIOCX) += tiocx.o |
14 | obj-$(CONFIG_IA64_SGI_SN_XP) += xp.o | 14 | obj-$(CONFIG_IA64_SGI_SN_XP) += xp.o |
15 | xp-y := xp_main.o xp_nofault.o | 15 | xp-y := xp_main.o xp_nofault.o |
16 | obj-$(CONFIG_IA64_SGI_SN_XP) += xpc.o | ||
17 | xpc-y := xpc_main.o xpc_channel.o xpc_partition.o | ||
diff --git a/arch/ia64/sn/kernel/xpc.h b/arch/ia64/sn/kernel/xpc.h new file mode 100644 index 000000000000..1a0aed8490d1 --- /dev/null +++ b/arch/ia64/sn/kernel/xpc.h | |||
@@ -0,0 +1,991 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) structures and macros. | ||
12 | */ | ||
13 | |||
14 | #ifndef _IA64_SN_KERNEL_XPC_H | ||
15 | #define _IA64_SN_KERNEL_XPC_H | ||
16 | |||
17 | |||
18 | #include <linux/config.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/sysctl.h> | ||
21 | #include <linux/device.h> | ||
22 | #include <asm/pgtable.h> | ||
23 | #include <asm/processor.h> | ||
24 | #include <asm/sn/bte.h> | ||
25 | #include <asm/sn/clksupport.h> | ||
26 | #include <asm/sn/addrs.h> | ||
27 | #include <asm/sn/mspec.h> | ||
28 | #include <asm/sn/shub_mmr.h> | ||
29 | #include <asm/sn/xp.h> | ||
30 | |||
31 | |||
32 | /* | ||
33 | * XPC Version numbers consist of a major and minor number. XPC can always | ||
34 | * talk to versions with same major #, and never talk to versions with a | ||
35 | * different major #. | ||
36 | */ | ||
37 | #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) | ||
38 | #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) | ||
39 | #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) | ||
40 | |||
41 | |||
42 | /* | ||
43 | * The next macros define word or bit representations for given | ||
44 | * C-brick nasid in either the SAL provided bit array representing | ||
45 | * nasids in the partition/machine or the AMO_t array used for | ||
46 | * inter-partition initiation communications. | ||
47 | * | ||
48 | * For SN2 machines, C-Bricks are alway even numbered NASIDs. As | ||
49 | * such, some space will be saved by insisting that nasid information | ||
50 | * passed from SAL always be packed for C-Bricks and the | ||
51 | * cross-partition interrupts use the same packing scheme. | ||
52 | */ | ||
53 | #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) | ||
54 | #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) | ||
55 | #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ | ||
56 | (1UL << XPC_NASID_B_INDEX(_n))) | ||
57 | #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) | ||
58 | |||
59 | #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ | ||
60 | #define XPC_HB_CHECK_DEFAULT_TIMEOUT 20 /* check HB every x secs */ | ||
61 | |||
62 | /* define the process name of HB checker and the CPU it is pinned to */ | ||
63 | #define XPC_HB_CHECK_THREAD_NAME "xpc_hb" | ||
64 | #define XPC_HB_CHECK_CPU 0 | ||
65 | |||
66 | /* define the process name of the discovery thread */ | ||
67 | #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" | ||
68 | |||
69 | |||
70 | #define XPC_HB_ALLOWED(_p, _v) ((_v)->heartbeating_to_mask & (1UL << (_p))) | ||
71 | #define XPC_ALLOW_HB(_p, _v) (_v)->heartbeating_to_mask |= (1UL << (_p)) | ||
72 | #define XPC_DISALLOW_HB(_p, _v) (_v)->heartbeating_to_mask &= (~(1UL << (_p))) | ||
73 | |||
74 | |||
75 | /* | ||
76 | * Reserved Page provided by SAL. | ||
77 | * | ||
78 | * SAL provides one page per partition of reserved memory. When SAL | ||
79 | * initialization is complete, SAL_signature, SAL_version, partid, | ||
80 | * part_nasids, and mach_nasids are set. | ||
81 | * | ||
82 | * Note: Until vars_pa is set, the partition XPC code has not been initialized. | ||
83 | */ | ||
84 | struct xpc_rsvd_page { | ||
85 | u64 SAL_signature; /* SAL unique signature */ | ||
86 | u64 SAL_version; /* SAL specified version */ | ||
87 | u8 partid; /* partition ID from SAL */ | ||
88 | u8 version; | ||
89 | u8 pad[6]; /* pad to u64 align */ | ||
90 | u64 vars_pa; | ||
91 | u64 part_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned; | ||
92 | u64 mach_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned; | ||
93 | }; | ||
94 | #define XPC_RP_VERSION _XPC_VERSION(1,0) /* version 1.0 of the reserved page */ | ||
95 | |||
96 | #define XPC_RSVD_PAGE_ALIGNED_SIZE \ | ||
97 | (L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))) | ||
98 | |||
99 | |||
100 | /* | ||
101 | * Define the structures by which XPC variables can be exported to other | ||
102 | * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) | ||
103 | */ | ||
104 | |||
105 | /* | ||
106 | * The following structure describes the partition generic variables | ||
107 | * needed by other partitions in order to properly initialize. | ||
108 | * | ||
109 | * struct xpc_vars version number also applies to struct xpc_vars_part. | ||
110 | * Changes to either structure and/or related functionality should be | ||
111 | * reflected by incrementing either the major or minor version numbers | ||
112 | * of struct xpc_vars. | ||
113 | */ | ||
114 | struct xpc_vars { | ||
115 | u8 version; | ||
116 | u64 heartbeat; | ||
117 | u64 heartbeating_to_mask; | ||
118 | u64 kdb_status; /* 0 = machine running */ | ||
119 | int act_nasid; | ||
120 | int act_phys_cpuid; | ||
121 | u64 vars_part_pa; | ||
122 | u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ | ||
123 | AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ | ||
124 | AMO_t *act_amos; /* pointer to the first activation AMO */ | ||
125 | }; | ||
126 | #define XPC_V_VERSION _XPC_VERSION(3,0) /* version 3.0 of the cross vars */ | ||
127 | |||
128 | #define XPC_VARS_ALIGNED_SIZE (L1_CACHE_ALIGN(sizeof(struct xpc_vars))) | ||
129 | |||
130 | /* | ||
131 | * The following structure describes the per partition specific variables. | ||
132 | * | ||
133 | * An array of these structures, one per partition, will be defined. As a | ||
134 | * partition becomes active XPC will copy the array entry corresponding to | ||
135 | * itself from that partition. It is desirable that the size of this | ||
136 | * structure evenly divide into a cacheline, such that none of the entries | ||
137 | * in this array crosses a cacheline boundary. As it is now, each entry | ||
138 | * occupies half a cacheline. | ||
139 | */ | ||
140 | struct xpc_vars_part { | ||
141 | u64 magic; | ||
142 | |||
143 | u64 openclose_args_pa; /* physical address of open and close args */ | ||
144 | u64 GPs_pa; /* physical address of Get/Put values */ | ||
145 | |||
146 | u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ | ||
147 | int IPI_nasid; /* nasid of where to send IPIs */ | ||
148 | int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ | ||
149 | |||
150 | u8 nchannels; /* #of defined channels supported */ | ||
151 | |||
152 | u8 reserved[23]; /* pad to a full 64 bytes */ | ||
153 | }; | ||
154 | |||
155 | /* | ||
156 | * The vars_part MAGIC numbers play a part in the first contact protocol. | ||
157 | * | ||
158 | * MAGIC1 indicates that the per partition specific variables for a remote | ||
159 | * partition have been initialized by this partition. | ||
160 | * | ||
161 | * MAGIC2 indicates that this partition has pulled the remote partititions | ||
162 | * per partition variables that pertain to this partition. | ||
163 | */ | ||
164 | #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ | ||
165 | #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ | ||
166 | |||
167 | |||
168 | |||
169 | /* | ||
170 | * Functions registered by add_timer() or called by kernel_thread() only | ||
171 | * allow for a single 64-bit argument. The following macros can be used to | ||
172 | * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from | ||
173 | * the passed argument. | ||
174 | */ | ||
175 | #define XPC_PACK_ARGS(_arg1, _arg2) \ | ||
176 | ((((u64) _arg1) & 0xffffffff) | \ | ||
177 | ((((u64) _arg2) & 0xffffffff) << 32)) | ||
178 | |||
179 | #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) | ||
180 | #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) | ||
181 | |||
182 | |||
183 | |||
184 | /* | ||
185 | * Define a Get/Put value pair (pointers) used with a message queue. | ||
186 | */ | ||
187 | struct xpc_gp { | ||
188 | s64 get; /* Get value */ | ||
189 | s64 put; /* Put value */ | ||
190 | }; | ||
191 | |||
192 | #define XPC_GP_SIZE \ | ||
193 | L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) | ||
194 | |||
195 | |||
196 | |||
197 | /* | ||
198 | * Define a structure that contains arguments associated with opening and | ||
199 | * closing a channel. | ||
200 | */ | ||
201 | struct xpc_openclose_args { | ||
202 | u16 reason; /* reason why channel is closing */ | ||
203 | u16 msg_size; /* sizeof each message entry */ | ||
204 | u16 remote_nentries; /* #of message entries in remote msg queue */ | ||
205 | u16 local_nentries; /* #of message entries in local msg queue */ | ||
206 | u64 local_msgqueue_pa; /* physical address of local message queue */ | ||
207 | }; | ||
208 | |||
209 | #define XPC_OPENCLOSE_ARGS_SIZE \ | ||
210 | L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) | ||
211 | |||
212 | |||
213 | |||
214 | /* struct xpc_msg flags */ | ||
215 | |||
216 | #define XPC_M_DONE 0x01 /* msg has been received/consumed */ | ||
217 | #define XPC_M_READY 0x02 /* msg is ready to be sent */ | ||
218 | #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ | ||
219 | |||
220 | |||
221 | #define XPC_MSG_ADDRESS(_payload) \ | ||
222 | ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) | ||
223 | |||
224 | |||
225 | |||
226 | /* | ||
227 | * Defines notify entry. | ||
228 | * | ||
229 | * This is used to notify a message's sender that their message was received | ||
230 | * and consumed by the intended recipient. | ||
231 | */ | ||
232 | struct xpc_notify { | ||
233 | struct semaphore sema; /* notify semaphore */ | ||
234 | u8 type; /* type of notification */ | ||
235 | |||
236 | /* the following two fields are only used if type == XPC_N_CALL */ | ||
237 | xpc_notify_func func; /* user's notify function */ | ||
238 | void *key; /* pointer to user's key */ | ||
239 | }; | ||
240 | |||
241 | /* struct xpc_notify type of notification */ | ||
242 | |||
243 | #define XPC_N_CALL 0x01 /* notify function provided by user */ | ||
244 | |||
245 | |||
246 | |||
247 | /* | ||
248 | * Define the structure that manages all the stuff required by a channel. In | ||
249 | * particular, they are used to manage the messages sent across the channel. | ||
250 | * | ||
251 | * This structure is private to a partition, and is NOT shared across the | ||
252 | * partition boundary. | ||
253 | * | ||
254 | * There is an array of these structures for each remote partition. It is | ||
255 | * allocated at the time a partition becomes active. The array contains one | ||
256 | * of these structures for each potential channel connection to that partition. | ||
257 | * | ||
258 | * Each of these structures manages two message queues (circular buffers). | ||
259 | * They are allocated at the time a channel connection is made. One of | ||
260 | * these message queues (local_msgqueue) holds the locally created messages | ||
261 | * that are destined for the remote partition. The other of these message | ||
262 | * queues (remote_msgqueue) is a locally cached copy of the remote partition's | ||
263 | * own local_msgqueue. | ||
264 | * | ||
265 | * The following is a description of the Get/Put pointers used to manage these | ||
266 | * two message queues. Consider the local_msgqueue to be on one partition | ||
267 | * and the remote_msgqueue to be its cached copy on another partition. A | ||
268 | * description of what each of the lettered areas contains is included. | ||
269 | * | ||
270 | * | ||
271 | * local_msgqueue remote_msgqueue | ||
272 | * | ||
273 | * |/////////| |/////////| | ||
274 | * w_remote_GP.get --> +---------+ |/////////| | ||
275 | * | F | |/////////| | ||
276 | * remote_GP.get --> +---------+ +---------+ <-- local_GP->get | ||
277 | * | | | | | ||
278 | * | | | E | | ||
279 | * | | | | | ||
280 | * | | +---------+ <-- w_local_GP.get | ||
281 | * | B | |/////////| | ||
282 | * | | |////D////| | ||
283 | * | | |/////////| | ||
284 | * | | +---------+ <-- w_remote_GP.put | ||
285 | * | | |////C////| | ||
286 | * local_GP->put --> +---------+ +---------+ <-- remote_GP.put | ||
287 | * | | |/////////| | ||
288 | * | A | |/////////| | ||
289 | * | | |/////////| | ||
290 | * w_local_GP.put --> +---------+ |/////////| | ||
291 | * |/////////| |/////////| | ||
292 | * | ||
293 | * | ||
294 | * ( remote_GP.[get|put] are cached copies of the remote | ||
295 | * partition's local_GP->[get|put], and thus their values can | ||
296 | * lag behind their counterparts on the remote partition. ) | ||
297 | * | ||
298 | * | ||
299 | * A - Messages that have been allocated, but have not yet been sent to the | ||
300 | * remote partition. | ||
301 | * | ||
302 | * B - Messages that have been sent, but have not yet been acknowledged by the | ||
303 | * remote partition as having been received. | ||
304 | * | ||
305 | * C - Area that needs to be prepared for the copying of sent messages, by | ||
306 | * the clearing of the message flags of any previously received messages. | ||
307 | * | ||
308 | * D - Area into which sent messages are to be copied from the remote | ||
309 | * partition's local_msgqueue and then delivered to their intended | ||
310 | * recipients. [ To allow for a multi-message copy, another pointer | ||
311 | * (next_msg_to_pull) has been added to keep track of the next message | ||
312 | * number needing to be copied (pulled). It chases after w_remote_GP.put. | ||
313 | * Any messages lying between w_local_GP.get and next_msg_to_pull have | ||
314 | * been copied and are ready to be delivered. ] | ||
315 | * | ||
316 | * E - Messages that have been copied and delivered, but have not yet been | ||
317 | * acknowledged by the recipient as having been received. | ||
318 | * | ||
319 | * F - Messages that have been acknowledged, but XPC has not yet notified the | ||
320 | * sender that the message was received by its intended recipient. | ||
321 | * This is also an area that needs to be prepared for the allocating of | ||
322 | * new messages, by the clearing of the message flags of the acknowledged | ||
323 | * messages. | ||
324 | */ | ||
325 | struct xpc_channel { | ||
326 | partid_t partid; /* ID of remote partition connected */ | ||
327 | spinlock_t lock; /* lock for updating this structure */ | ||
328 | u32 flags; /* general flags */ | ||
329 | |||
330 | enum xpc_retval reason; /* reason why channel is disconnect'g */ | ||
331 | int reason_line; /* line# disconnect initiated from */ | ||
332 | |||
333 | u16 number; /* channel # */ | ||
334 | |||
335 | u16 msg_size; /* sizeof each msg entry */ | ||
336 | u16 local_nentries; /* #of msg entries in local msg queue */ | ||
337 | u16 remote_nentries; /* #of msg entries in remote msg queue*/ | ||
338 | |||
339 | void *local_msgqueue_base; /* base address of kmalloc'd space */ | ||
340 | struct xpc_msg *local_msgqueue; /* local message queue */ | ||
341 | void *remote_msgqueue_base; /* base address of kmalloc'd space */ | ||
342 | struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */ | ||
343 | /* local message queue */ | ||
344 | u64 remote_msgqueue_pa; /* phys addr of remote partition's */ | ||
345 | /* local message queue */ | ||
346 | |||
347 | atomic_t references; /* #of external references to queues */ | ||
348 | |||
349 | atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ | ||
350 | wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ | ||
351 | |||
352 | /* queue of msg senders who want to be notified when msg received */ | ||
353 | |||
354 | atomic_t n_to_notify; /* #of msg senders to notify */ | ||
355 | struct xpc_notify *notify_queue;/* notify queue for messages sent */ | ||
356 | |||
357 | xpc_channel_func func; /* user's channel function */ | ||
358 | void *key; /* pointer to user's key */ | ||
359 | |||
360 | struct semaphore msg_to_pull_sema; /* next msg to pull serialization */ | ||
361 | struct semaphore teardown_sema; /* wait for teardown completion */ | ||
362 | |||
363 | struct xpc_openclose_args *local_openclose_args; /* args passed on */ | ||
364 | /* opening or closing of channel */ | ||
365 | |||
366 | /* various flavors of local and remote Get/Put values */ | ||
367 | |||
368 | struct xpc_gp *local_GP; /* local Get/Put values */ | ||
369 | struct xpc_gp remote_GP; /* remote Get/Put values */ | ||
370 | struct xpc_gp w_local_GP; /* working local Get/Put values */ | ||
371 | struct xpc_gp w_remote_GP; /* working remote Get/Put values */ | ||
372 | s64 next_msg_to_pull; /* Put value of next msg to pull */ | ||
373 | |||
374 | /* kthread management related fields */ | ||
375 | |||
376 | // >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps | ||
377 | // >>> allow the assigned limit be unbounded and let the idle limit be dynamic | ||
378 | // >>> dependent on activity over the last interval of time | ||
379 | atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ | ||
380 | u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ | ||
381 | atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ | ||
382 | u32 kthreads_idle_limit; /* limit on #of kthreads idle */ | ||
383 | atomic_t kthreads_active; /* #of kthreads actively working */ | ||
384 | // >>> following field is temporary | ||
385 | u32 kthreads_created; /* total #of kthreads created */ | ||
386 | |||
387 | wait_queue_head_t idle_wq; /* idle kthread wait queue */ | ||
388 | |||
389 | } ____cacheline_aligned; | ||
390 | |||
391 | |||
392 | /* struct xpc_channel flags */ | ||
393 | |||
394 | #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ | ||
395 | |||
396 | #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ | ||
397 | #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ | ||
398 | #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ | ||
399 | #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ | ||
400 | |||
401 | #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ | ||
402 | #define XPC_C_CONNECTCALLOUT 0x00000040 /* channel connected callout made */ | ||
403 | #define XPC_C_CONNECTED 0x00000080 /* local channel is connected */ | ||
404 | #define XPC_C_CONNECTING 0x00000100 /* channel is being connected */ | ||
405 | |||
406 | #define XPC_C_RCLOSEREPLY 0x00000200 /* remote close channel reply */ | ||
407 | #define XPC_C_CLOSEREPLY 0x00000400 /* local close channel reply */ | ||
408 | #define XPC_C_RCLOSEREQUEST 0x00000800 /* remote close channel request */ | ||
409 | #define XPC_C_CLOSEREQUEST 0x00001000 /* local close channel request */ | ||
410 | |||
411 | #define XPC_C_DISCONNECTED 0x00002000 /* channel is disconnected */ | ||
412 | #define XPC_C_DISCONNECTING 0x00004000 /* channel is being disconnected */ | ||
413 | |||
414 | |||
415 | |||
416 | /* | ||
417 | * Manages channels on a partition basis. There is one of these structures | ||
418 | * for each partition (a partition will never utilize the structure that | ||
419 | * represents itself). | ||
420 | */ | ||
421 | struct xpc_partition { | ||
422 | |||
423 | /* XPC HB infrastructure */ | ||
424 | |||
425 | u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ | ||
426 | u64 remote_vars_pa; /* phys addr of partition's vars */ | ||
427 | u64 remote_vars_part_pa; /* phys addr of partition's vars part */ | ||
428 | u64 last_heartbeat; /* HB at last read */ | ||
429 | u64 remote_amos_page_pa; /* phys addr of partition's amos page */ | ||
430 | int remote_act_nasid; /* active part's act/deact nasid */ | ||
431 | int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ | ||
432 | u32 act_IRQ_rcvd; /* IRQs since activation */ | ||
433 | spinlock_t act_lock; /* protect updating of act_state */ | ||
434 | u8 act_state; /* from XPC HB viewpoint */ | ||
435 | enum xpc_retval reason; /* reason partition is deactivating */ | ||
436 | int reason_line; /* line# deactivation initiated from */ | ||
437 | int reactivate_nasid; /* nasid in partition to reactivate */ | ||
438 | |||
439 | |||
440 | /* XPC infrastructure referencing and teardown control */ | ||
441 | |||
442 | u8 setup_state; /* infrastructure setup state */ | ||
443 | wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ | ||
444 | atomic_t references; /* #of references to infrastructure */ | ||
445 | |||
446 | |||
447 | /* | ||
448 | * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN | ||
449 | * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION | ||
450 | * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE | ||
451 | * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) | ||
452 | */ | ||
453 | |||
454 | |||
455 | u8 nchannels; /* #of defined channels supported */ | ||
456 | atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ | ||
457 | struct xpc_channel *channels;/* array of channel structures */ | ||
458 | |||
459 | void *local_GPs_base; /* base address of kmalloc'd space */ | ||
460 | struct xpc_gp *local_GPs; /* local Get/Put values */ | ||
461 | void *remote_GPs_base; /* base address of kmalloc'd space */ | ||
462 | struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */ | ||
463 | /* values */ | ||
464 | u64 remote_GPs_pa; /* phys address of remote partition's local */ | ||
465 | /* Get/Put values */ | ||
466 | |||
467 | |||
468 | /* fields used to pass args when opening or closing a channel */ | ||
469 | |||
470 | void *local_openclose_args_base; /* base address of kmalloc'd space */ | ||
471 | struct xpc_openclose_args *local_openclose_args; /* local's args */ | ||
472 | void *remote_openclose_args_base; /* base address of kmalloc'd space */ | ||
473 | struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ | ||
474 | /* args */ | ||
475 | u64 remote_openclose_args_pa; /* phys addr of remote's args */ | ||
476 | |||
477 | |||
478 | /* IPI sending, receiving and handling related fields */ | ||
479 | |||
480 | int remote_IPI_nasid; /* nasid of where to send IPIs */ | ||
481 | int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ | ||
482 | AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ | ||
483 | |||
484 | AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ | ||
485 | u64 local_IPI_amo; /* IPI amo flags yet to be handled */ | ||
486 | char IPI_owner[8]; /* IPI owner's name */ | ||
487 | struct timer_list dropped_IPI_timer; /* dropped IPI timer */ | ||
488 | |||
489 | spinlock_t IPI_lock; /* IPI handler lock */ | ||
490 | |||
491 | |||
492 | /* channel manager related fields */ | ||
493 | |||
494 | atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ | ||
495 | wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ | ||
496 | |||
497 | } ____cacheline_aligned; | ||
498 | |||
499 | |||
500 | /* struct xpc_partition act_state values (for XPC HB) */ | ||
501 | |||
502 | #define XPC_P_INACTIVE 0x00 /* partition is not active */ | ||
503 | #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ | ||
504 | #define XPC_P_ACTIVATING 0x02 /* activation thread started */ | ||
505 | #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ | ||
506 | #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ | ||
507 | |||
508 | |||
509 | #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ | ||
510 | xpc_deactivate_partition(__LINE__, (_p), (_reason)) | ||
511 | |||
512 | |||
513 | /* struct xpc_partition setup_state values */ | ||
514 | |||
515 | #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ | ||
516 | #define XPC_P_SETUP 0x01 /* infrastructure is setup */ | ||
517 | #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ | ||
518 | #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ | ||
519 | |||
520 | |||
521 | /* | ||
522 | * struct xpc_partition IPI_timer #of seconds to wait before checking for | ||
523 | * dropped IPIs. These occur whenever an IPI amo write doesn't complete until | ||
524 | * after the IPI was received. | ||
525 | */ | ||
526 | #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) | ||
527 | |||
528 | |||
529 | #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) | ||
530 | |||
531 | |||
532 | |||
533 | /* found in xp_main.c */ | ||
534 | extern struct xpc_registration xpc_registrations[]; | ||
535 | |||
536 | |||
537 | /* >>> found in xpc_main.c only */ | ||
538 | extern struct device *xpc_part; | ||
539 | extern struct device *xpc_chan; | ||
540 | extern irqreturn_t xpc_notify_IRQ_handler(int, void *, struct pt_regs *); | ||
541 | extern void xpc_dropped_IPI_check(struct xpc_partition *); | ||
542 | extern void xpc_activate_kthreads(struct xpc_channel *, int); | ||
543 | extern void xpc_create_kthreads(struct xpc_channel *, int); | ||
544 | extern void xpc_disconnect_wait(int); | ||
545 | |||
546 | |||
547 | /* found in xpc_main.c and efi-xpc.c */ | ||
548 | extern void xpc_activate_partition(struct xpc_partition *); | ||
549 | |||
550 | |||
551 | /* found in xpc_partition.c */ | ||
552 | extern int xpc_exiting; | ||
553 | extern int xpc_hb_interval; | ||
554 | extern int xpc_hb_check_interval; | ||
555 | extern struct xpc_vars *xpc_vars; | ||
556 | extern struct xpc_rsvd_page *xpc_rsvd_page; | ||
557 | extern struct xpc_vars_part *xpc_vars_part; | ||
558 | extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
559 | extern char xpc_remote_copy_buffer[]; | ||
560 | extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); | ||
561 | extern void xpc_allow_IPI_ops(void); | ||
562 | extern void xpc_restrict_IPI_ops(void); | ||
563 | extern int xpc_identify_act_IRQ_sender(void); | ||
564 | extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); | ||
565 | extern void xpc_mark_partition_inactive(struct xpc_partition *); | ||
566 | extern void xpc_discovery(void); | ||
567 | extern void xpc_check_remote_hb(void); | ||
568 | extern void xpc_deactivate_partition(const int, struct xpc_partition *, | ||
569 | enum xpc_retval); | ||
570 | extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); | ||
571 | |||
572 | |||
573 | /* found in xpc_channel.c */ | ||
574 | extern void xpc_initiate_connect(int); | ||
575 | extern void xpc_initiate_disconnect(int); | ||
576 | extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); | ||
577 | extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); | ||
578 | extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, | ||
579 | xpc_notify_func, void *); | ||
580 | extern void xpc_initiate_received(partid_t, int, void *); | ||
581 | extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); | ||
582 | extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); | ||
583 | extern void xpc_process_channel_activity(struct xpc_partition *); | ||
584 | extern void xpc_connected_callout(struct xpc_channel *); | ||
585 | extern void xpc_deliver_msg(struct xpc_channel *); | ||
586 | extern void xpc_disconnect_channel(const int, struct xpc_channel *, | ||
587 | enum xpc_retval, unsigned long *); | ||
588 | extern void xpc_disconnected_callout(struct xpc_channel *); | ||
589 | extern void xpc_partition_down(struct xpc_partition *, enum xpc_retval); | ||
590 | extern void xpc_teardown_infrastructure(struct xpc_partition *); | ||
591 | |||
592 | |||
593 | |||
594 | static inline void | ||
595 | xpc_wakeup_channel_mgr(struct xpc_partition *part) | ||
596 | { | ||
597 | if (atomic_inc_return(&part->channel_mgr_requests) == 1) { | ||
598 | wake_up(&part->channel_mgr_wq); | ||
599 | } | ||
600 | } | ||
601 | |||
602 | |||
603 | |||
604 | /* | ||
605 | * These next two inlines are used to keep us from tearing down a channel's | ||
606 | * msg queues while a thread may be referencing them. | ||
607 | */ | ||
608 | static inline void | ||
609 | xpc_msgqueue_ref(struct xpc_channel *ch) | ||
610 | { | ||
611 | atomic_inc(&ch->references); | ||
612 | } | ||
613 | |||
614 | static inline void | ||
615 | xpc_msgqueue_deref(struct xpc_channel *ch) | ||
616 | { | ||
617 | s32 refs = atomic_dec_return(&ch->references); | ||
618 | |||
619 | DBUG_ON(refs < 0); | ||
620 | if (refs == 0) { | ||
621 | xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); | ||
622 | } | ||
623 | } | ||
624 | |||
625 | |||
626 | |||
627 | #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ | ||
628 | xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) | ||
629 | |||
630 | |||
631 | /* | ||
632 | * These two inlines are used to keep us from tearing down a partition's | ||
633 | * setup infrastructure while a thread may be referencing it. | ||
634 | */ | ||
635 | static inline void | ||
636 | xpc_part_deref(struct xpc_partition *part) | ||
637 | { | ||
638 | s32 refs = atomic_dec_return(&part->references); | ||
639 | |||
640 | |||
641 | DBUG_ON(refs < 0); | ||
642 | if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) { | ||
643 | wake_up(&part->teardown_wq); | ||
644 | } | ||
645 | } | ||
646 | |||
647 | static inline int | ||
648 | xpc_part_ref(struct xpc_partition *part) | ||
649 | { | ||
650 | int setup; | ||
651 | |||
652 | |||
653 | atomic_inc(&part->references); | ||
654 | setup = (part->setup_state == XPC_P_SETUP); | ||
655 | if (!setup) { | ||
656 | xpc_part_deref(part); | ||
657 | } | ||
658 | return setup; | ||
659 | } | ||
660 | |||
661 | |||
662 | |||
663 | /* | ||
664 | * The following macro is to be used for the setting of the reason and | ||
665 | * reason_line fields in both the struct xpc_channel and struct xpc_partition | ||
666 | * structures. | ||
667 | */ | ||
668 | #define XPC_SET_REASON(_p, _reason, _line) \ | ||
669 | { \ | ||
670 | (_p)->reason = _reason; \ | ||
671 | (_p)->reason_line = _line; \ | ||
672 | } | ||
673 | |||
674 | |||
675 | |||
676 | /* | ||
677 | * The following set of macros and inlines are used for the sending and | ||
678 | * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, | ||
679 | * one that is associated with partition activity (SGI_XPC_ACTIVATE) and | ||
680 | * the other that is associated with channel activity (SGI_XPC_NOTIFY). | ||
681 | */ | ||
682 | |||
683 | static inline u64 | ||
684 | xpc_IPI_receive(AMO_t *amo) | ||
685 | { | ||
686 | return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR); | ||
687 | } | ||
688 | |||
689 | |||
690 | static inline enum xpc_retval | ||
691 | xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) | ||
692 | { | ||
693 | int ret = 0; | ||
694 | unsigned long irq_flags; | ||
695 | |||
696 | |||
697 | local_irq_save(irq_flags); | ||
698 | |||
699 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag); | ||
700 | sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); | ||
701 | |||
702 | /* | ||
703 | * We must always use the nofault function regardless of whether we | ||
704 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
705 | * didn't, we'd never know that the other partition is down and would | ||
706 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
707 | */ | ||
708 | ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), | ||
709 | xp_nofault_PIOR_target)); | ||
710 | |||
711 | local_irq_restore(irq_flags); | ||
712 | |||
713 | return ((ret == 0) ? xpcSuccess : xpcPioReadError); | ||
714 | } | ||
715 | |||
716 | |||
717 | /* | ||
718 | * IPIs associated with SGI_XPC_ACTIVATE IRQ. | ||
719 | */ | ||
720 | |||
721 | /* | ||
722 | * Flag the appropriate AMO variable and send an IPI to the specified node. | ||
723 | */ | ||
724 | static inline void | ||
725 | xpc_activate_IRQ_send(u64 amos_page, int from_nasid, int to_nasid, | ||
726 | int to_phys_cpuid) | ||
727 | { | ||
728 | int w_index = XPC_NASID_W_INDEX(from_nasid); | ||
729 | int b_index = XPC_NASID_B_INDEX(from_nasid); | ||
730 | AMO_t *amos = (AMO_t *) __va(amos_page + | ||
731 | (XP_MAX_PARTITIONS * sizeof(AMO_t))); | ||
732 | |||
733 | |||
734 | (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, | ||
735 | to_phys_cpuid, SGI_XPC_ACTIVATE); | ||
736 | } | ||
737 | |||
738 | static inline void | ||
739 | xpc_IPI_send_activate(struct xpc_vars *vars) | ||
740 | { | ||
741 | xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), | ||
742 | vars->act_nasid, vars->act_phys_cpuid); | ||
743 | } | ||
744 | |||
745 | static inline void | ||
746 | xpc_IPI_send_activated(struct xpc_partition *part) | ||
747 | { | ||
748 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
749 | part->remote_act_nasid, part->remote_act_phys_cpuid); | ||
750 | } | ||
751 | |||
752 | static inline void | ||
753 | xpc_IPI_send_reactivate(struct xpc_partition *part) | ||
754 | { | ||
755 | xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, | ||
756 | xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); | ||
757 | } | ||
758 | |||
759 | |||
760 | /* | ||
761 | * IPIs associated with SGI_XPC_NOTIFY IRQ. | ||
762 | */ | ||
763 | |||
764 | /* | ||
765 | * Send an IPI to the remote partition that is associated with the | ||
766 | * specified channel. | ||
767 | */ | ||
768 | #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ | ||
769 | xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) | ||
770 | |||
771 | static inline void | ||
772 | xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, | ||
773 | unsigned long *irq_flags) | ||
774 | { | ||
775 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
776 | enum xpc_retval ret; | ||
777 | |||
778 | |||
779 | if (likely(part->act_state != XPC_P_DEACTIVATING)) { | ||
780 | ret = xpc_IPI_send(part->remote_IPI_amo_va, | ||
781 | (u64) ipi_flag << (ch->number * 8), | ||
782 | part->remote_IPI_nasid, | ||
783 | part->remote_IPI_phys_cpuid, | ||
784 | SGI_XPC_NOTIFY); | ||
785 | dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", | ||
786 | ipi_flag_string, ch->partid, ch->number, ret); | ||
787 | if (unlikely(ret != xpcSuccess)) { | ||
788 | if (irq_flags != NULL) { | ||
789 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
790 | } | ||
791 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
792 | if (irq_flags != NULL) { | ||
793 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
794 | } | ||
795 | } | ||
796 | } | ||
797 | } | ||
798 | |||
799 | |||
800 | /* | ||
801 | * Make it look like the remote partition, which is associated with the | ||
802 | * specified channel, sent us an IPI. This faked IPI will be handled | ||
803 | * by xpc_dropped_IPI_check(). | ||
804 | */ | ||
805 | #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ | ||
806 | xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) | ||
807 | |||
808 | static inline void | ||
809 | xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, | ||
810 | char *ipi_flag_string) | ||
811 | { | ||
812 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
813 | |||
814 | |||
815 | FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable), | ||
816 | FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8))); | ||
817 | dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", | ||
818 | ipi_flag_string, ch->partid, ch->number); | ||
819 | } | ||
820 | |||
821 | |||
822 | /* | ||
823 | * The sending and receiving of IPIs includes the setting of an AMO variable | ||
824 | * to indicate the reason the IPI was sent. The 64-bit variable is divided | ||
825 | * up into eight bytes, ordered from right to left. Byte zero pertains to | ||
826 | * channel 0, byte one to channel 1, and so on. Each byte is described by | ||
827 | * the following IPI flags. | ||
828 | */ | ||
829 | |||
830 | #define XPC_IPI_CLOSEREQUEST 0x01 | ||
831 | #define XPC_IPI_CLOSEREPLY 0x02 | ||
832 | #define XPC_IPI_OPENREQUEST 0x04 | ||
833 | #define XPC_IPI_OPENREPLY 0x08 | ||
834 | #define XPC_IPI_MSGREQUEST 0x10 | ||
835 | |||
836 | |||
837 | /* given an AMO variable and a channel#, get its associated IPI flags */ | ||
838 | #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) | ||
839 | |||
840 | #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0f) | ||
841 | #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010) | ||
842 | |||
843 | |||
844 | static inline void | ||
845 | xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
846 | { | ||
847 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
848 | |||
849 | |||
850 | args->reason = ch->reason; | ||
851 | |||
852 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); | ||
853 | } | ||
854 | |||
855 | static inline void | ||
856 | xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
857 | { | ||
858 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); | ||
859 | } | ||
860 | |||
861 | static inline void | ||
862 | xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
863 | { | ||
864 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
865 | |||
866 | |||
867 | args->msg_size = ch->msg_size; | ||
868 | args->local_nentries = ch->local_nentries; | ||
869 | |||
870 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); | ||
871 | } | ||
872 | |||
873 | static inline void | ||
874 | xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
875 | { | ||
876 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
877 | |||
878 | |||
879 | args->remote_nentries = ch->remote_nentries; | ||
880 | args->local_nentries = ch->local_nentries; | ||
881 | args->local_msgqueue_pa = __pa(ch->local_msgqueue); | ||
882 | |||
883 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); | ||
884 | } | ||
885 | |||
886 | static inline void | ||
887 | xpc_IPI_send_msgrequest(struct xpc_channel *ch) | ||
888 | { | ||
889 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); | ||
890 | } | ||
891 | |||
892 | static inline void | ||
893 | xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) | ||
894 | { | ||
895 | XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); | ||
896 | } | ||
897 | |||
898 | |||
899 | /* | ||
900 | * Memory for XPC's AMO variables is allocated by the MSPEC driver. These | ||
901 | * pages are located in the lowest granule. The lowest granule uses 4k pages | ||
902 | * for cached references and an alternate TLB handler to never provide a | ||
903 | * cacheable mapping for the entire region. This will prevent speculative | ||
904 | * reading of cached copies of our lines from being issued which will cause | ||
905 | * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 | ||
906 | * (XP_MAX_PARTITIONS) AMO variables for message notification (xpc_main.c) | ||
907 | * and an additional 16 AMO variables for partition activation (xpc_hb.c). | ||
908 | */ | ||
909 | static inline AMO_t * | ||
910 | xpc_IPI_init(partid_t partid) | ||
911 | { | ||
912 | AMO_t *part_amo = xpc_vars->amos_page + partid; | ||
913 | |||
914 | |||
915 | xpc_IPI_receive(part_amo); | ||
916 | return part_amo; | ||
917 | } | ||
918 | |||
919 | |||
920 | |||
921 | static inline enum xpc_retval | ||
922 | xpc_map_bte_errors(bte_result_t error) | ||
923 | { | ||
924 | switch (error) { | ||
925 | case BTE_SUCCESS: return xpcSuccess; | ||
926 | case BTEFAIL_DIR: return xpcBteDirectoryError; | ||
927 | case BTEFAIL_POISON: return xpcBtePoisonError; | ||
928 | case BTEFAIL_WERR: return xpcBteWriteError; | ||
929 | case BTEFAIL_ACCESS: return xpcBteAccessError; | ||
930 | case BTEFAIL_PWERR: return xpcBtePWriteError; | ||
931 | case BTEFAIL_PRERR: return xpcBtePReadError; | ||
932 | case BTEFAIL_TOUT: return xpcBteTimeOutError; | ||
933 | case BTEFAIL_XTERR: return xpcBteXtalkError; | ||
934 | case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable; | ||
935 | default: return xpcBteUnmappedError; | ||
936 | } | ||
937 | } | ||
938 | |||
939 | |||
940 | |||
941 | static inline void * | ||
942 | xpc_kmalloc_cacheline_aligned(size_t size, int flags, void **base) | ||
943 | { | ||
944 | /* see if kmalloc will give us cachline aligned memory by default */ | ||
945 | *base = kmalloc(size, flags); | ||
946 | if (*base == NULL) { | ||
947 | return NULL; | ||
948 | } | ||
949 | if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) { | ||
950 | return *base; | ||
951 | } | ||
952 | kfree(*base); | ||
953 | |||
954 | /* nope, we'll have to do it ourselves */ | ||
955 | *base = kmalloc(size + L1_CACHE_BYTES, flags); | ||
956 | if (*base == NULL) { | ||
957 | return NULL; | ||
958 | } | ||
959 | return (void *) L1_CACHE_ALIGN((u64) *base); | ||
960 | } | ||
961 | |||
962 | |||
963 | /* | ||
964 | * Check to see if there is any channel activity to/from the specified | ||
965 | * partition. | ||
966 | */ | ||
967 | static inline void | ||
968 | xpc_check_for_channel_activity(struct xpc_partition *part) | ||
969 | { | ||
970 | u64 IPI_amo; | ||
971 | unsigned long irq_flags; | ||
972 | |||
973 | |||
974 | IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); | ||
975 | if (IPI_amo == 0) { | ||
976 | return; | ||
977 | } | ||
978 | |||
979 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
980 | part->local_IPI_amo |= IPI_amo; | ||
981 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
982 | |||
983 | dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", | ||
984 | XPC_PARTID(part), IPI_amo); | ||
985 | |||
986 | xpc_wakeup_channel_mgr(part); | ||
987 | } | ||
988 | |||
989 | |||
990 | #endif /* _IA64_SN_KERNEL_XPC_H */ | ||
991 | |||
diff --git a/arch/ia64/sn/kernel/xpc_channel.c b/arch/ia64/sn/kernel/xpc_channel.c new file mode 100644 index 000000000000..0bf6fbcc46d2 --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_channel.c | |||
@@ -0,0 +1,2297 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) channel support. | ||
12 | * | ||
13 | * This is the part of XPC that manages the channels and | ||
14 | * sends/receives messages across them to/from other partitions. | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/cache.h> | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <asm/sn/bte.h> | ||
26 | #include <asm/sn/sn_sal.h> | ||
27 | #include "xpc.h" | ||
28 | |||
29 | |||
30 | /* | ||
31 | * Set up the initial values for the XPartition Communication channels. | ||
32 | */ | ||
33 | static void | ||
34 | xpc_initialize_channels(struct xpc_partition *part, partid_t partid) | ||
35 | { | ||
36 | int ch_number; | ||
37 | struct xpc_channel *ch; | ||
38 | |||
39 | |||
40 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
41 | ch = &part->channels[ch_number]; | ||
42 | |||
43 | ch->partid = partid; | ||
44 | ch->number = ch_number; | ||
45 | ch->flags = XPC_C_DISCONNECTED; | ||
46 | |||
47 | ch->local_GP = &part->local_GPs[ch_number]; | ||
48 | ch->local_openclose_args = | ||
49 | &part->local_openclose_args[ch_number]; | ||
50 | |||
51 | atomic_set(&ch->kthreads_assigned, 0); | ||
52 | atomic_set(&ch->kthreads_idle, 0); | ||
53 | atomic_set(&ch->kthreads_active, 0); | ||
54 | |||
55 | atomic_set(&ch->references, 0); | ||
56 | atomic_set(&ch->n_to_notify, 0); | ||
57 | |||
58 | spin_lock_init(&ch->lock); | ||
59 | sema_init(&ch->msg_to_pull_sema, 1); /* mutex */ | ||
60 | |||
61 | atomic_set(&ch->n_on_msg_allocate_wq, 0); | ||
62 | init_waitqueue_head(&ch->msg_allocate_wq); | ||
63 | init_waitqueue_head(&ch->idle_wq); | ||
64 | } | ||
65 | } | ||
66 | |||
67 | |||
68 | /* | ||
69 | * Setup the infrastructure necessary to support XPartition Communication | ||
70 | * between the specified remote partition and the local one. | ||
71 | */ | ||
72 | enum xpc_retval | ||
73 | xpc_setup_infrastructure(struct xpc_partition *part) | ||
74 | { | ||
75 | int ret; | ||
76 | struct timer_list *timer; | ||
77 | partid_t partid = XPC_PARTID(part); | ||
78 | |||
79 | |||
80 | /* | ||
81 | * Zero out MOST of the entry for this partition. Only the fields | ||
82 | * starting with `nchannels' will be zeroed. The preceding fields must | ||
83 | * remain `viable' across partition ups and downs, since they may be | ||
84 | * referenced during this memset() operation. | ||
85 | */ | ||
86 | memset(&part->nchannels, 0, sizeof(struct xpc_partition) - | ||
87 | offsetof(struct xpc_partition, nchannels)); | ||
88 | |||
89 | /* | ||
90 | * Allocate all of the channel structures as a contiguous chunk of | ||
91 | * memory. | ||
92 | */ | ||
93 | part->channels = kmalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS, | ||
94 | GFP_KERNEL); | ||
95 | if (part->channels == NULL) { | ||
96 | dev_err(xpc_chan, "can't get memory for channels\n"); | ||
97 | return xpcNoMemory; | ||
98 | } | ||
99 | memset(part->channels, 0, sizeof(struct xpc_channel) * XPC_NCHANNELS); | ||
100 | |||
101 | part->nchannels = XPC_NCHANNELS; | ||
102 | |||
103 | |||
104 | /* allocate all the required GET/PUT values */ | ||
105 | |||
106 | part->local_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE, | ||
107 | GFP_KERNEL, &part->local_GPs_base); | ||
108 | if (part->local_GPs == NULL) { | ||
109 | kfree(part->channels); | ||
110 | part->channels = NULL; | ||
111 | dev_err(xpc_chan, "can't get memory for local get/put " | ||
112 | "values\n"); | ||
113 | return xpcNoMemory; | ||
114 | } | ||
115 | memset(part->local_GPs, 0, XPC_GP_SIZE); | ||
116 | |||
117 | part->remote_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE, | ||
118 | GFP_KERNEL, &part->remote_GPs_base); | ||
119 | if (part->remote_GPs == NULL) { | ||
120 | kfree(part->channels); | ||
121 | part->channels = NULL; | ||
122 | kfree(part->local_GPs_base); | ||
123 | part->local_GPs = NULL; | ||
124 | dev_err(xpc_chan, "can't get memory for remote get/put " | ||
125 | "values\n"); | ||
126 | return xpcNoMemory; | ||
127 | } | ||
128 | memset(part->remote_GPs, 0, XPC_GP_SIZE); | ||
129 | |||
130 | |||
131 | /* allocate all the required open and close args */ | ||
132 | |||
133 | part->local_openclose_args = xpc_kmalloc_cacheline_aligned( | ||
134 | XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
135 | &part->local_openclose_args_base); | ||
136 | if (part->local_openclose_args == NULL) { | ||
137 | kfree(part->channels); | ||
138 | part->channels = NULL; | ||
139 | kfree(part->local_GPs_base); | ||
140 | part->local_GPs = NULL; | ||
141 | kfree(part->remote_GPs_base); | ||
142 | part->remote_GPs = NULL; | ||
143 | dev_err(xpc_chan, "can't get memory for local connect args\n"); | ||
144 | return xpcNoMemory; | ||
145 | } | ||
146 | memset(part->local_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE); | ||
147 | |||
148 | part->remote_openclose_args = xpc_kmalloc_cacheline_aligned( | ||
149 | XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
150 | &part->remote_openclose_args_base); | ||
151 | if (part->remote_openclose_args == NULL) { | ||
152 | kfree(part->channels); | ||
153 | part->channels = NULL; | ||
154 | kfree(part->local_GPs_base); | ||
155 | part->local_GPs = NULL; | ||
156 | kfree(part->remote_GPs_base); | ||
157 | part->remote_GPs = NULL; | ||
158 | kfree(part->local_openclose_args_base); | ||
159 | part->local_openclose_args = NULL; | ||
160 | dev_err(xpc_chan, "can't get memory for remote connect args\n"); | ||
161 | return xpcNoMemory; | ||
162 | } | ||
163 | memset(part->remote_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE); | ||
164 | |||
165 | |||
166 | xpc_initialize_channels(part, partid); | ||
167 | |||
168 | atomic_set(&part->nchannels_active, 0); | ||
169 | |||
170 | |||
171 | /* local_IPI_amo were set to 0 by an earlier memset() */ | ||
172 | |||
173 | /* Initialize this partitions AMO_t structure */ | ||
174 | part->local_IPI_amo_va = xpc_IPI_init(partid); | ||
175 | |||
176 | spin_lock_init(&part->IPI_lock); | ||
177 | |||
178 | atomic_set(&part->channel_mgr_requests, 1); | ||
179 | init_waitqueue_head(&part->channel_mgr_wq); | ||
180 | |||
181 | sprintf(part->IPI_owner, "xpc%02d", partid); | ||
182 | ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, SA_SHIRQ, | ||
183 | part->IPI_owner, (void *) (u64) partid); | ||
184 | if (ret != 0) { | ||
185 | kfree(part->channels); | ||
186 | part->channels = NULL; | ||
187 | kfree(part->local_GPs_base); | ||
188 | part->local_GPs = NULL; | ||
189 | kfree(part->remote_GPs_base); | ||
190 | part->remote_GPs = NULL; | ||
191 | kfree(part->local_openclose_args_base); | ||
192 | part->local_openclose_args = NULL; | ||
193 | kfree(part->remote_openclose_args_base); | ||
194 | part->remote_openclose_args = NULL; | ||
195 | dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " | ||
196 | "errno=%d\n", -ret); | ||
197 | return xpcLackOfResources; | ||
198 | } | ||
199 | |||
200 | /* Setup a timer to check for dropped IPIs */ | ||
201 | timer = &part->dropped_IPI_timer; | ||
202 | init_timer(timer); | ||
203 | timer->function = (void (*)(unsigned long)) xpc_dropped_IPI_check; | ||
204 | timer->data = (unsigned long) part; | ||
205 | timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT; | ||
206 | add_timer(timer); | ||
207 | |||
208 | /* | ||
209 | * With the setting of the partition setup_state to XPC_P_SETUP, we're | ||
210 | * declaring that this partition is ready to go. | ||
211 | */ | ||
212 | (volatile u8) part->setup_state = XPC_P_SETUP; | ||
213 | |||
214 | |||
215 | /* | ||
216 | * Setup the per partition specific variables required by the | ||
217 | * remote partition to establish channel connections with us. | ||
218 | * | ||
219 | * The setting of the magic # indicates that these per partition | ||
220 | * specific variables are ready to be used. | ||
221 | */ | ||
222 | xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs); | ||
223 | xpc_vars_part[partid].openclose_args_pa = | ||
224 | __pa(part->local_openclose_args); | ||
225 | xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va); | ||
226 | xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(smp_processor_id()); | ||
227 | xpc_vars_part[partid].IPI_phys_cpuid = | ||
228 | cpu_physical_id(smp_processor_id()); | ||
229 | xpc_vars_part[partid].nchannels = part->nchannels; | ||
230 | (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC1; | ||
231 | |||
232 | return xpcSuccess; | ||
233 | } | ||
234 | |||
235 | |||
236 | /* | ||
237 | * Create a wrapper that hides the underlying mechanism for pulling a cacheline | ||
238 | * (or multiple cachelines) from a remote partition. | ||
239 | * | ||
240 | * src must be a cacheline aligned physical address on the remote partition. | ||
241 | * dst must be a cacheline aligned virtual address on this partition. | ||
242 | * cnt must be an cacheline sized | ||
243 | */ | ||
244 | static enum xpc_retval | ||
245 | xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst, | ||
246 | const void *src, size_t cnt) | ||
247 | { | ||
248 | bte_result_t bte_ret; | ||
249 | |||
250 | |||
251 | DBUG_ON((u64) src != L1_CACHE_ALIGN((u64) src)); | ||
252 | DBUG_ON((u64) dst != L1_CACHE_ALIGN((u64) dst)); | ||
253 | DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); | ||
254 | |||
255 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
256 | return part->reason; | ||
257 | } | ||
258 | |||
259 | bte_ret = xp_bte_copy((u64) src, (u64) ia64_tpa((u64) dst), | ||
260 | (u64) cnt, (BTE_NORMAL | BTE_WACQUIRE), NULL); | ||
261 | if (bte_ret == BTE_SUCCESS) { | ||
262 | return xpcSuccess; | ||
263 | } | ||
264 | |||
265 | dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n", | ||
266 | XPC_PARTID(part), bte_ret); | ||
267 | |||
268 | return xpc_map_bte_errors(bte_ret); | ||
269 | } | ||
270 | |||
271 | |||
272 | /* | ||
273 | * Pull the remote per partititon specific variables from the specified | ||
274 | * partition. | ||
275 | */ | ||
276 | enum xpc_retval | ||
277 | xpc_pull_remote_vars_part(struct xpc_partition *part) | ||
278 | { | ||
279 | u8 buffer[L1_CACHE_BYTES * 2]; | ||
280 | struct xpc_vars_part *pulled_entry_cacheline = | ||
281 | (struct xpc_vars_part *) L1_CACHE_ALIGN((u64) buffer); | ||
282 | struct xpc_vars_part *pulled_entry; | ||
283 | u64 remote_entry_cacheline_pa, remote_entry_pa; | ||
284 | partid_t partid = XPC_PARTID(part); | ||
285 | enum xpc_retval ret; | ||
286 | |||
287 | |||
288 | /* pull the cacheline that contains the variables we're interested in */ | ||
289 | |||
290 | DBUG_ON(part->remote_vars_part_pa != | ||
291 | L1_CACHE_ALIGN(part->remote_vars_part_pa)); | ||
292 | DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2); | ||
293 | |||
294 | remote_entry_pa = part->remote_vars_part_pa + | ||
295 | sn_partition_id * sizeof(struct xpc_vars_part); | ||
296 | |||
297 | remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); | ||
298 | |||
299 | pulled_entry = (struct xpc_vars_part *) ((u64) pulled_entry_cacheline + | ||
300 | (remote_entry_pa & (L1_CACHE_BYTES - 1))); | ||
301 | |||
302 | ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline, | ||
303 | (void *) remote_entry_cacheline_pa, | ||
304 | L1_CACHE_BYTES); | ||
305 | if (ret != xpcSuccess) { | ||
306 | dev_dbg(xpc_chan, "failed to pull XPC vars_part from " | ||
307 | "partition %d, ret=%d\n", partid, ret); | ||
308 | return ret; | ||
309 | } | ||
310 | |||
311 | |||
312 | /* see if they've been set up yet */ | ||
313 | |||
314 | if (pulled_entry->magic != XPC_VP_MAGIC1 && | ||
315 | pulled_entry->magic != XPC_VP_MAGIC2) { | ||
316 | |||
317 | if (pulled_entry->magic != 0) { | ||
318 | dev_dbg(xpc_chan, "partition %d's XPC vars_part for " | ||
319 | "partition %d has bad magic value (=0x%lx)\n", | ||
320 | partid, sn_partition_id, pulled_entry->magic); | ||
321 | return xpcBadMagic; | ||
322 | } | ||
323 | |||
324 | /* they've not been initialized yet */ | ||
325 | return xpcRetry; | ||
326 | } | ||
327 | |||
328 | if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) { | ||
329 | |||
330 | /* validate the variables */ | ||
331 | |||
332 | if (pulled_entry->GPs_pa == 0 || | ||
333 | pulled_entry->openclose_args_pa == 0 || | ||
334 | pulled_entry->IPI_amo_pa == 0) { | ||
335 | |||
336 | dev_err(xpc_chan, "partition %d's XPC vars_part for " | ||
337 | "partition %d are not valid\n", partid, | ||
338 | sn_partition_id); | ||
339 | return xpcInvalidAddress; | ||
340 | } | ||
341 | |||
342 | /* the variables we imported look to be valid */ | ||
343 | |||
344 | part->remote_GPs_pa = pulled_entry->GPs_pa; | ||
345 | part->remote_openclose_args_pa = | ||
346 | pulled_entry->openclose_args_pa; | ||
347 | part->remote_IPI_amo_va = | ||
348 | (AMO_t *) __va(pulled_entry->IPI_amo_pa); | ||
349 | part->remote_IPI_nasid = pulled_entry->IPI_nasid; | ||
350 | part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid; | ||
351 | |||
352 | if (part->nchannels > pulled_entry->nchannels) { | ||
353 | part->nchannels = pulled_entry->nchannels; | ||
354 | } | ||
355 | |||
356 | /* let the other side know that we've pulled their variables */ | ||
357 | |||
358 | (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC2; | ||
359 | } | ||
360 | |||
361 | if (pulled_entry->magic == XPC_VP_MAGIC1) { | ||
362 | return xpcRetry; | ||
363 | } | ||
364 | |||
365 | return xpcSuccess; | ||
366 | } | ||
367 | |||
368 | |||
369 | /* | ||
370 | * Get the IPI flags and pull the openclose args and/or remote GPs as needed. | ||
371 | */ | ||
372 | static u64 | ||
373 | xpc_get_IPI_flags(struct xpc_partition *part) | ||
374 | { | ||
375 | unsigned long irq_flags; | ||
376 | u64 IPI_amo; | ||
377 | enum xpc_retval ret; | ||
378 | |||
379 | |||
380 | /* | ||
381 | * See if there are any IPI flags to be handled. | ||
382 | */ | ||
383 | |||
384 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
385 | if ((IPI_amo = part->local_IPI_amo) != 0) { | ||
386 | part->local_IPI_amo = 0; | ||
387 | } | ||
388 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
389 | |||
390 | |||
391 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) { | ||
392 | ret = xpc_pull_remote_cachelines(part, | ||
393 | part->remote_openclose_args, | ||
394 | (void *) part->remote_openclose_args_pa, | ||
395 | XPC_OPENCLOSE_ARGS_SIZE); | ||
396 | if (ret != xpcSuccess) { | ||
397 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
398 | |||
399 | dev_dbg(xpc_chan, "failed to pull openclose args from " | ||
400 | "partition %d, ret=%d\n", XPC_PARTID(part), | ||
401 | ret); | ||
402 | |||
403 | /* don't bother processing IPIs anymore */ | ||
404 | IPI_amo = 0; | ||
405 | } | ||
406 | } | ||
407 | |||
408 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) { | ||
409 | ret = xpc_pull_remote_cachelines(part, part->remote_GPs, | ||
410 | (void *) part->remote_GPs_pa, | ||
411 | XPC_GP_SIZE); | ||
412 | if (ret != xpcSuccess) { | ||
413 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
414 | |||
415 | dev_dbg(xpc_chan, "failed to pull GPs from partition " | ||
416 | "%d, ret=%d\n", XPC_PARTID(part), ret); | ||
417 | |||
418 | /* don't bother processing IPIs anymore */ | ||
419 | IPI_amo = 0; | ||
420 | } | ||
421 | } | ||
422 | |||
423 | return IPI_amo; | ||
424 | } | ||
425 | |||
426 | |||
427 | /* | ||
428 | * Allocate the local message queue and the notify queue. | ||
429 | */ | ||
430 | static enum xpc_retval | ||
431 | xpc_allocate_local_msgqueue(struct xpc_channel *ch) | ||
432 | { | ||
433 | unsigned long irq_flags; | ||
434 | int nentries; | ||
435 | size_t nbytes; | ||
436 | |||
437 | |||
438 | // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between | ||
439 | // >>> iterations of the for-loop, bail if set? | ||
440 | |||
441 | // >>> should we impose a minumum #of entries? like 4 or 8? | ||
442 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
443 | |||
444 | nbytes = nentries * ch->msg_size; | ||
445 | ch->local_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes, | ||
446 | (GFP_KERNEL | GFP_DMA), | ||
447 | &ch->local_msgqueue_base); | ||
448 | if (ch->local_msgqueue == NULL) { | ||
449 | continue; | ||
450 | } | ||
451 | memset(ch->local_msgqueue, 0, nbytes); | ||
452 | |||
453 | nbytes = nentries * sizeof(struct xpc_notify); | ||
454 | ch->notify_queue = kmalloc(nbytes, (GFP_KERNEL | GFP_DMA)); | ||
455 | if (ch->notify_queue == NULL) { | ||
456 | kfree(ch->local_msgqueue_base); | ||
457 | ch->local_msgqueue = NULL; | ||
458 | continue; | ||
459 | } | ||
460 | memset(ch->notify_queue, 0, nbytes); | ||
461 | |||
462 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
463 | if (nentries < ch->local_nentries) { | ||
464 | dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " | ||
465 | "partid=%d, channel=%d\n", nentries, | ||
466 | ch->local_nentries, ch->partid, ch->number); | ||
467 | |||
468 | ch->local_nentries = nentries; | ||
469 | } | ||
470 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
471 | return xpcSuccess; | ||
472 | } | ||
473 | |||
474 | dev_dbg(xpc_chan, "can't get memory for local message queue and notify " | ||
475 | "queue, partid=%d, channel=%d\n", ch->partid, ch->number); | ||
476 | return xpcNoMemory; | ||
477 | } | ||
478 | |||
479 | |||
480 | /* | ||
481 | * Allocate the cached remote message queue. | ||
482 | */ | ||
483 | static enum xpc_retval | ||
484 | xpc_allocate_remote_msgqueue(struct xpc_channel *ch) | ||
485 | { | ||
486 | unsigned long irq_flags; | ||
487 | int nentries; | ||
488 | size_t nbytes; | ||
489 | |||
490 | |||
491 | DBUG_ON(ch->remote_nentries <= 0); | ||
492 | |||
493 | // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between | ||
494 | // >>> iterations of the for-loop, bail if set? | ||
495 | |||
496 | // >>> should we impose a minumum #of entries? like 4 or 8? | ||
497 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
498 | |||
499 | nbytes = nentries * ch->msg_size; | ||
500 | ch->remote_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes, | ||
501 | (GFP_KERNEL | GFP_DMA), | ||
502 | &ch->remote_msgqueue_base); | ||
503 | if (ch->remote_msgqueue == NULL) { | ||
504 | continue; | ||
505 | } | ||
506 | memset(ch->remote_msgqueue, 0, nbytes); | ||
507 | |||
508 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
509 | if (nentries < ch->remote_nentries) { | ||
510 | dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " | ||
511 | "partid=%d, channel=%d\n", nentries, | ||
512 | ch->remote_nentries, ch->partid, ch->number); | ||
513 | |||
514 | ch->remote_nentries = nentries; | ||
515 | } | ||
516 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
517 | return xpcSuccess; | ||
518 | } | ||
519 | |||
520 | dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " | ||
521 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
522 | return xpcNoMemory; | ||
523 | } | ||
524 | |||
525 | |||
526 | /* | ||
527 | * Allocate message queues and other stuff associated with a channel. | ||
528 | * | ||
529 | * Note: Assumes all of the channel sizes are filled in. | ||
530 | */ | ||
531 | static enum xpc_retval | ||
532 | xpc_allocate_msgqueues(struct xpc_channel *ch) | ||
533 | { | ||
534 | unsigned long irq_flags; | ||
535 | int i; | ||
536 | enum xpc_retval ret; | ||
537 | |||
538 | |||
539 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
540 | |||
541 | if ((ret = xpc_allocate_local_msgqueue(ch)) != xpcSuccess) { | ||
542 | return ret; | ||
543 | } | ||
544 | |||
545 | if ((ret = xpc_allocate_remote_msgqueue(ch)) != xpcSuccess) { | ||
546 | kfree(ch->local_msgqueue_base); | ||
547 | ch->local_msgqueue = NULL; | ||
548 | kfree(ch->notify_queue); | ||
549 | ch->notify_queue = NULL; | ||
550 | return ret; | ||
551 | } | ||
552 | |||
553 | for (i = 0; i < ch->local_nentries; i++) { | ||
554 | /* use a semaphore as an event wait queue */ | ||
555 | sema_init(&ch->notify_queue[i].sema, 0); | ||
556 | } | ||
557 | |||
558 | sema_init(&ch->teardown_sema, 0); /* event wait */ | ||
559 | |||
560 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
561 | ch->flags |= XPC_C_SETUP; | ||
562 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
563 | |||
564 | return xpcSuccess; | ||
565 | } | ||
566 | |||
567 | |||
568 | /* | ||
569 | * Process a connect message from a remote partition. | ||
570 | * | ||
571 | * Note: xpc_process_connect() is expecting to be called with the | ||
572 | * spin_lock_irqsave held and will leave it locked upon return. | ||
573 | */ | ||
574 | static void | ||
575 | xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
576 | { | ||
577 | enum xpc_retval ret; | ||
578 | |||
579 | |||
580 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
581 | |||
582 | if (!(ch->flags & XPC_C_OPENREQUEST) || | ||
583 | !(ch->flags & XPC_C_ROPENREQUEST)) { | ||
584 | /* nothing more to do for now */ | ||
585 | return; | ||
586 | } | ||
587 | DBUG_ON(!(ch->flags & XPC_C_CONNECTING)); | ||
588 | |||
589 | if (!(ch->flags & XPC_C_SETUP)) { | ||
590 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
591 | ret = xpc_allocate_msgqueues(ch); | ||
592 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
593 | |||
594 | if (ret != xpcSuccess) { | ||
595 | XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); | ||
596 | } | ||
597 | if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) { | ||
598 | return; | ||
599 | } | ||
600 | |||
601 | DBUG_ON(!(ch->flags & XPC_C_SETUP)); | ||
602 | DBUG_ON(ch->local_msgqueue == NULL); | ||
603 | DBUG_ON(ch->remote_msgqueue == NULL); | ||
604 | } | ||
605 | |||
606 | if (!(ch->flags & XPC_C_OPENREPLY)) { | ||
607 | ch->flags |= XPC_C_OPENREPLY; | ||
608 | xpc_IPI_send_openreply(ch, irq_flags); | ||
609 | } | ||
610 | |||
611 | if (!(ch->flags & XPC_C_ROPENREPLY)) { | ||
612 | return; | ||
613 | } | ||
614 | |||
615 | DBUG_ON(ch->remote_msgqueue_pa == 0); | ||
616 | |||
617 | ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ | ||
618 | |||
619 | dev_info(xpc_chan, "channel %d to partition %d connected\n", | ||
620 | ch->number, ch->partid); | ||
621 | |||
622 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
623 | xpc_create_kthreads(ch, 1); | ||
624 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
625 | } | ||
626 | |||
627 | |||
628 | /* | ||
629 | * Free up message queues and other stuff that were allocated for the specified | ||
630 | * channel. | ||
631 | * | ||
632 | * Note: ch->reason and ch->reason_line are left set for debugging purposes, | ||
633 | * they're cleared when XPC_C_DISCONNECTED is cleared. | ||
634 | */ | ||
635 | static void | ||
636 | xpc_free_msgqueues(struct xpc_channel *ch) | ||
637 | { | ||
638 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
639 | DBUG_ON(atomic_read(&ch->n_to_notify) != 0); | ||
640 | |||
641 | ch->remote_msgqueue_pa = 0; | ||
642 | ch->func = NULL; | ||
643 | ch->key = NULL; | ||
644 | ch->msg_size = 0; | ||
645 | ch->local_nentries = 0; | ||
646 | ch->remote_nentries = 0; | ||
647 | ch->kthreads_assigned_limit = 0; | ||
648 | ch->kthreads_idle_limit = 0; | ||
649 | |||
650 | ch->local_GP->get = 0; | ||
651 | ch->local_GP->put = 0; | ||
652 | ch->remote_GP.get = 0; | ||
653 | ch->remote_GP.put = 0; | ||
654 | ch->w_local_GP.get = 0; | ||
655 | ch->w_local_GP.put = 0; | ||
656 | ch->w_remote_GP.get = 0; | ||
657 | ch->w_remote_GP.put = 0; | ||
658 | ch->next_msg_to_pull = 0; | ||
659 | |||
660 | if (ch->flags & XPC_C_SETUP) { | ||
661 | ch->flags &= ~XPC_C_SETUP; | ||
662 | |||
663 | dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", | ||
664 | ch->flags, ch->partid, ch->number); | ||
665 | |||
666 | kfree(ch->local_msgqueue_base); | ||
667 | ch->local_msgqueue = NULL; | ||
668 | kfree(ch->remote_msgqueue_base); | ||
669 | ch->remote_msgqueue = NULL; | ||
670 | kfree(ch->notify_queue); | ||
671 | ch->notify_queue = NULL; | ||
672 | |||
673 | /* in case someone is waiting for the teardown to complete */ | ||
674 | up(&ch->teardown_sema); | ||
675 | } | ||
676 | } | ||
677 | |||
678 | |||
679 | /* | ||
680 | * spin_lock_irqsave() is expected to be held on entry. | ||
681 | */ | ||
682 | static void | ||
683 | xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
684 | { | ||
685 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
686 | u32 ch_flags = ch->flags; | ||
687 | |||
688 | |||
689 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
690 | |||
691 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
692 | return; | ||
693 | } | ||
694 | |||
695 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
696 | |||
697 | /* make sure all activity has settled down first */ | ||
698 | |||
699 | if (atomic_read(&ch->references) > 0) { | ||
700 | return; | ||
701 | } | ||
702 | DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); | ||
703 | |||
704 | /* it's now safe to free the channel's message queues */ | ||
705 | |||
706 | xpc_free_msgqueues(ch); | ||
707 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
708 | |||
709 | if (part->act_state != XPC_P_DEACTIVATING) { | ||
710 | |||
711 | /* as long as the other side is up do the full protocol */ | ||
712 | |||
713 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { | ||
714 | return; | ||
715 | } | ||
716 | |||
717 | if (!(ch->flags & XPC_C_CLOSEREPLY)) { | ||
718 | ch->flags |= XPC_C_CLOSEREPLY; | ||
719 | xpc_IPI_send_closereply(ch, irq_flags); | ||
720 | } | ||
721 | |||
722 | if (!(ch->flags & XPC_C_RCLOSEREPLY)) { | ||
723 | return; | ||
724 | } | ||
725 | } | ||
726 | |||
727 | /* both sides are disconnected now */ | ||
728 | |||
729 | ch->flags = XPC_C_DISCONNECTED; /* clear all flags, but this one */ | ||
730 | |||
731 | atomic_dec(&part->nchannels_active); | ||
732 | |||
733 | if (ch_flags & XPC_C_WASCONNECTED) { | ||
734 | dev_info(xpc_chan, "channel %d to partition %d disconnected, " | ||
735 | "reason=%d\n", ch->number, ch->partid, ch->reason); | ||
736 | } | ||
737 | } | ||
738 | |||
739 | |||
740 | /* | ||
741 | * Process a change in the channel's remote connection state. | ||
742 | */ | ||
743 | static void | ||
744 | xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number, | ||
745 | u8 IPI_flags) | ||
746 | { | ||
747 | unsigned long irq_flags; | ||
748 | struct xpc_openclose_args *args = | ||
749 | &part->remote_openclose_args[ch_number]; | ||
750 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
751 | enum xpc_retval reason; | ||
752 | |||
753 | |||
754 | |||
755 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
756 | |||
757 | |||
758 | if (IPI_flags & XPC_IPI_CLOSEREQUEST) { | ||
759 | |||
760 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received " | ||
761 | "from partid=%d, channel=%d\n", args->reason, | ||
762 | ch->partid, ch->number); | ||
763 | |||
764 | /* | ||
765 | * If RCLOSEREQUEST is set, we're probably waiting for | ||
766 | * RCLOSEREPLY. We should find it and a ROPENREQUEST packed | ||
767 | * with this RCLOSEQREUQEST in the IPI_flags. | ||
768 | */ | ||
769 | |||
770 | if (ch->flags & XPC_C_RCLOSEREQUEST) { | ||
771 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING)); | ||
772 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
773 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); | ||
774 | DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); | ||
775 | |||
776 | DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY)); | ||
777 | IPI_flags &= ~XPC_IPI_CLOSEREPLY; | ||
778 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
779 | |||
780 | /* both sides have finished disconnecting */ | ||
781 | xpc_process_disconnect(ch, &irq_flags); | ||
782 | } | ||
783 | |||
784 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
785 | // >>> explain this section | ||
786 | |||
787 | if (!(IPI_flags & XPC_IPI_OPENREQUEST)) { | ||
788 | DBUG_ON(part->act_state != | ||
789 | XPC_P_DEACTIVATING); | ||
790 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
791 | return; | ||
792 | } | ||
793 | |||
794 | XPC_SET_REASON(ch, 0, 0); | ||
795 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
796 | |||
797 | atomic_inc(&part->nchannels_active); | ||
798 | ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); | ||
799 | } | ||
800 | |||
801 | IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY); | ||
802 | |||
803 | /* | ||
804 | * The meaningful CLOSEREQUEST connection state fields are: | ||
805 | * reason = reason connection is to be closed | ||
806 | */ | ||
807 | |||
808 | ch->flags |= XPC_C_RCLOSEREQUEST; | ||
809 | |||
810 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
811 | reason = args->reason; | ||
812 | if (reason <= xpcSuccess || reason > xpcUnknownReason) { | ||
813 | reason = xpcUnknownReason; | ||
814 | } else if (reason == xpcUnregistering) { | ||
815 | reason = xpcOtherUnregistering; | ||
816 | } | ||
817 | |||
818 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
819 | } else { | ||
820 | xpc_process_disconnect(ch, &irq_flags); | ||
821 | } | ||
822 | } | ||
823 | |||
824 | |||
825 | if (IPI_flags & XPC_IPI_CLOSEREPLY) { | ||
826 | |||
827 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d," | ||
828 | " channel=%d\n", ch->partid, ch->number); | ||
829 | |||
830 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
831 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING); | ||
832 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
833 | return; | ||
834 | } | ||
835 | |||
836 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
837 | DBUG_ON(!(ch->flags & XPC_C_RCLOSEREQUEST)); | ||
838 | |||
839 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
840 | |||
841 | if (ch->flags & XPC_C_CLOSEREPLY) { | ||
842 | /* both sides have finished disconnecting */ | ||
843 | xpc_process_disconnect(ch, &irq_flags); | ||
844 | } | ||
845 | } | ||
846 | |||
847 | |||
848 | if (IPI_flags & XPC_IPI_OPENREQUEST) { | ||
849 | |||
850 | dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, " | ||
851 | "local_nentries=%d) received from partid=%d, " | ||
852 | "channel=%d\n", args->msg_size, args->local_nentries, | ||
853 | ch->partid, ch->number); | ||
854 | |||
855 | if ((ch->flags & XPC_C_DISCONNECTING) || | ||
856 | part->act_state == XPC_P_DEACTIVATING) { | ||
857 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
858 | return; | ||
859 | } | ||
860 | DBUG_ON(!(ch->flags & (XPC_C_DISCONNECTED | | ||
861 | XPC_C_OPENREQUEST))); | ||
862 | DBUG_ON(ch->flags & (XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
863 | XPC_C_OPENREPLY | XPC_C_CONNECTED)); | ||
864 | |||
865 | /* | ||
866 | * The meaningful OPENREQUEST connection state fields are: | ||
867 | * msg_size = size of channel's messages in bytes | ||
868 | * local_nentries = remote partition's local_nentries | ||
869 | */ | ||
870 | DBUG_ON(args->msg_size == 0); | ||
871 | DBUG_ON(args->local_nentries == 0); | ||
872 | |||
873 | ch->flags |= (XPC_C_ROPENREQUEST | XPC_C_CONNECTING); | ||
874 | ch->remote_nentries = args->local_nentries; | ||
875 | |||
876 | |||
877 | if (ch->flags & XPC_C_OPENREQUEST) { | ||
878 | if (args->msg_size != ch->msg_size) { | ||
879 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
880 | &irq_flags); | ||
881 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
882 | return; | ||
883 | } | ||
884 | } else { | ||
885 | ch->msg_size = args->msg_size; | ||
886 | |||
887 | XPC_SET_REASON(ch, 0, 0); | ||
888 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
889 | |||
890 | atomic_inc(&part->nchannels_active); | ||
891 | } | ||
892 | |||
893 | xpc_process_connect(ch, &irq_flags); | ||
894 | } | ||
895 | |||
896 | |||
897 | if (IPI_flags & XPC_IPI_OPENREPLY) { | ||
898 | |||
899 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, " | ||
900 | "local_nentries=%d, remote_nentries=%d) received from " | ||
901 | "partid=%d, channel=%d\n", args->local_msgqueue_pa, | ||
902 | args->local_nentries, args->remote_nentries, | ||
903 | ch->partid, ch->number); | ||
904 | |||
905 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | ||
906 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
907 | return; | ||
908 | } | ||
909 | DBUG_ON(!(ch->flags & XPC_C_OPENREQUEST)); | ||
910 | DBUG_ON(!(ch->flags & XPC_C_ROPENREQUEST)); | ||
911 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
912 | |||
913 | /* | ||
914 | * The meaningful OPENREPLY connection state fields are: | ||
915 | * local_msgqueue_pa = physical address of remote | ||
916 | * partition's local_msgqueue | ||
917 | * local_nentries = remote partition's local_nentries | ||
918 | * remote_nentries = remote partition's remote_nentries | ||
919 | */ | ||
920 | DBUG_ON(args->local_msgqueue_pa == 0); | ||
921 | DBUG_ON(args->local_nentries == 0); | ||
922 | DBUG_ON(args->remote_nentries == 0); | ||
923 | |||
924 | ch->flags |= XPC_C_ROPENREPLY; | ||
925 | ch->remote_msgqueue_pa = args->local_msgqueue_pa; | ||
926 | |||
927 | if (args->local_nentries < ch->remote_nentries) { | ||
928 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
929 | "remote_nentries=%d, old remote_nentries=%d, " | ||
930 | "partid=%d, channel=%d\n", | ||
931 | args->local_nentries, ch->remote_nentries, | ||
932 | ch->partid, ch->number); | ||
933 | |||
934 | ch->remote_nentries = args->local_nentries; | ||
935 | } | ||
936 | if (args->remote_nentries < ch->local_nentries) { | ||
937 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
938 | "local_nentries=%d, old local_nentries=%d, " | ||
939 | "partid=%d, channel=%d\n", | ||
940 | args->remote_nentries, ch->local_nentries, | ||
941 | ch->partid, ch->number); | ||
942 | |||
943 | ch->local_nentries = args->remote_nentries; | ||
944 | } | ||
945 | |||
946 | xpc_process_connect(ch, &irq_flags); | ||
947 | } | ||
948 | |||
949 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
950 | } | ||
951 | |||
952 | |||
953 | /* | ||
954 | * Attempt to establish a channel connection to a remote partition. | ||
955 | */ | ||
956 | static enum xpc_retval | ||
957 | xpc_connect_channel(struct xpc_channel *ch) | ||
958 | { | ||
959 | unsigned long irq_flags; | ||
960 | struct xpc_registration *registration = &xpc_registrations[ch->number]; | ||
961 | |||
962 | |||
963 | if (down_interruptible(®istration->sema) != 0) { | ||
964 | return xpcInterrupted; | ||
965 | } | ||
966 | |||
967 | if (!XPC_CHANNEL_REGISTERED(ch->number)) { | ||
968 | up(®istration->sema); | ||
969 | return xpcUnregistered; | ||
970 | } | ||
971 | |||
972 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
973 | |||
974 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
975 | DBUG_ON(ch->flags & XPC_C_OPENREQUEST); | ||
976 | |||
977 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
978 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
979 | up(®istration->sema); | ||
980 | return ch->reason; | ||
981 | } | ||
982 | |||
983 | |||
984 | /* add info from the channel connect registration to the channel */ | ||
985 | |||
986 | ch->kthreads_assigned_limit = registration->assigned_limit; | ||
987 | ch->kthreads_idle_limit = registration->idle_limit; | ||
988 | DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); | ||
989 | DBUG_ON(atomic_read(&ch->kthreads_idle) != 0); | ||
990 | DBUG_ON(atomic_read(&ch->kthreads_active) != 0); | ||
991 | |||
992 | ch->func = registration->func; | ||
993 | DBUG_ON(registration->func == NULL); | ||
994 | ch->key = registration->key; | ||
995 | |||
996 | ch->local_nentries = registration->nentries; | ||
997 | |||
998 | if (ch->flags & XPC_C_ROPENREQUEST) { | ||
999 | if (registration->msg_size != ch->msg_size) { | ||
1000 | /* the local and remote sides aren't the same */ | ||
1001 | |||
1002 | /* | ||
1003 | * Because XPC_DISCONNECT_CHANNEL() can block we're | ||
1004 | * forced to up the registration sema before we unlock | ||
1005 | * the channel lock. But that's okay here because we're | ||
1006 | * done with the part that required the registration | ||
1007 | * sema. XPC_DISCONNECT_CHANNEL() requires that the | ||
1008 | * channel lock be locked and will unlock and relock | ||
1009 | * the channel lock as needed. | ||
1010 | */ | ||
1011 | up(®istration->sema); | ||
1012 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
1013 | &irq_flags); | ||
1014 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1015 | return xpcUnequalMsgSizes; | ||
1016 | } | ||
1017 | } else { | ||
1018 | ch->msg_size = registration->msg_size; | ||
1019 | |||
1020 | XPC_SET_REASON(ch, 0, 0); | ||
1021 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
1022 | |||
1023 | atomic_inc(&xpc_partitions[ch->partid].nchannels_active); | ||
1024 | } | ||
1025 | |||
1026 | up(®istration->sema); | ||
1027 | |||
1028 | |||
1029 | /* initiate the connection */ | ||
1030 | |||
1031 | ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); | ||
1032 | xpc_IPI_send_openrequest(ch, &irq_flags); | ||
1033 | |||
1034 | xpc_process_connect(ch, &irq_flags); | ||
1035 | |||
1036 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1037 | |||
1038 | return xpcSuccess; | ||
1039 | } | ||
1040 | |||
1041 | |||
1042 | /* | ||
1043 | * Notify those who wanted to be notified upon delivery of their message. | ||
1044 | */ | ||
1045 | static void | ||
1046 | xpc_notify_senders(struct xpc_channel *ch, enum xpc_retval reason, s64 put) | ||
1047 | { | ||
1048 | struct xpc_notify *notify; | ||
1049 | u8 notify_type; | ||
1050 | s64 get = ch->w_remote_GP.get - 1; | ||
1051 | |||
1052 | |||
1053 | while (++get < put && atomic_read(&ch->n_to_notify) > 0) { | ||
1054 | |||
1055 | notify = &ch->notify_queue[get % ch->local_nentries]; | ||
1056 | |||
1057 | /* | ||
1058 | * See if the notify entry indicates it was associated with | ||
1059 | * a message who's sender wants to be notified. It is possible | ||
1060 | * that it is, but someone else is doing or has done the | ||
1061 | * notification. | ||
1062 | */ | ||
1063 | notify_type = notify->type; | ||
1064 | if (notify_type == 0 || | ||
1065 | cmpxchg(¬ify->type, notify_type, 0) != | ||
1066 | notify_type) { | ||
1067 | continue; | ||
1068 | } | ||
1069 | |||
1070 | DBUG_ON(notify_type != XPC_N_CALL); | ||
1071 | |||
1072 | atomic_dec(&ch->n_to_notify); | ||
1073 | |||
1074 | if (notify->func != NULL) { | ||
1075 | dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " | ||
1076 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
1077 | (void *) notify, get, ch->partid, ch->number); | ||
1078 | |||
1079 | notify->func(reason, ch->partid, ch->number, | ||
1080 | notify->key); | ||
1081 | |||
1082 | dev_dbg(xpc_chan, "notify->func() returned, " | ||
1083 | "notify=0x%p, msg_number=%ld, partid=%d, " | ||
1084 | "channel=%d\n", (void *) notify, get, | ||
1085 | ch->partid, ch->number); | ||
1086 | } | ||
1087 | } | ||
1088 | } | ||
1089 | |||
1090 | |||
1091 | /* | ||
1092 | * Clear some of the msg flags in the local message queue. | ||
1093 | */ | ||
1094 | static inline void | ||
1095 | xpc_clear_local_msgqueue_flags(struct xpc_channel *ch) | ||
1096 | { | ||
1097 | struct xpc_msg *msg; | ||
1098 | s64 get; | ||
1099 | |||
1100 | |||
1101 | get = ch->w_remote_GP.get; | ||
1102 | do { | ||
1103 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1104 | (get % ch->local_nentries) * ch->msg_size); | ||
1105 | msg->flags = 0; | ||
1106 | } while (++get < (volatile s64) ch->remote_GP.get); | ||
1107 | } | ||
1108 | |||
1109 | |||
1110 | /* | ||
1111 | * Clear some of the msg flags in the remote message queue. | ||
1112 | */ | ||
1113 | static inline void | ||
1114 | xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch) | ||
1115 | { | ||
1116 | struct xpc_msg *msg; | ||
1117 | s64 put; | ||
1118 | |||
1119 | |||
1120 | put = ch->w_remote_GP.put; | ||
1121 | do { | ||
1122 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
1123 | (put % ch->remote_nentries) * ch->msg_size); | ||
1124 | msg->flags = 0; | ||
1125 | } while (++put < (volatile s64) ch->remote_GP.put); | ||
1126 | } | ||
1127 | |||
1128 | |||
1129 | static void | ||
1130 | xpc_process_msg_IPI(struct xpc_partition *part, int ch_number) | ||
1131 | { | ||
1132 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1133 | int nmsgs_sent; | ||
1134 | |||
1135 | |||
1136 | ch->remote_GP = part->remote_GPs[ch_number]; | ||
1137 | |||
1138 | |||
1139 | /* See what, if anything, has changed for each connected channel */ | ||
1140 | |||
1141 | xpc_msgqueue_ref(ch); | ||
1142 | |||
1143 | if (ch->w_remote_GP.get == ch->remote_GP.get && | ||
1144 | ch->w_remote_GP.put == ch->remote_GP.put) { | ||
1145 | /* nothing changed since GPs were last pulled */ | ||
1146 | xpc_msgqueue_deref(ch); | ||
1147 | return; | ||
1148 | } | ||
1149 | |||
1150 | if (!(ch->flags & XPC_C_CONNECTED)){ | ||
1151 | xpc_msgqueue_deref(ch); | ||
1152 | return; | ||
1153 | } | ||
1154 | |||
1155 | |||
1156 | /* | ||
1157 | * First check to see if messages recently sent by us have been | ||
1158 | * received by the other side. (The remote GET value will have | ||
1159 | * changed since we last looked at it.) | ||
1160 | */ | ||
1161 | |||
1162 | if (ch->w_remote_GP.get != ch->remote_GP.get) { | ||
1163 | |||
1164 | /* | ||
1165 | * We need to notify any senders that want to be notified | ||
1166 | * that their sent messages have been received by their | ||
1167 | * intended recipients. We need to do this before updating | ||
1168 | * w_remote_GP.get so that we don't allocate the same message | ||
1169 | * queue entries prematurely (see xpc_allocate_msg()). | ||
1170 | */ | ||
1171 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1172 | /* | ||
1173 | * Notify senders that messages sent have been | ||
1174 | * received and delivered by the other side. | ||
1175 | */ | ||
1176 | xpc_notify_senders(ch, xpcMsgDelivered, | ||
1177 | ch->remote_GP.get); | ||
1178 | } | ||
1179 | |||
1180 | /* | ||
1181 | * Clear msg->flags in previously sent messages, so that | ||
1182 | * they're ready for xpc_allocate_msg(). | ||
1183 | */ | ||
1184 | xpc_clear_local_msgqueue_flags(ch); | ||
1185 | |||
1186 | (volatile s64) ch->w_remote_GP.get = ch->remote_GP.get; | ||
1187 | |||
1188 | dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " | ||
1189 | "channel=%d\n", ch->w_remote_GP.get, ch->partid, | ||
1190 | ch->number); | ||
1191 | |||
1192 | /* | ||
1193 | * If anyone was waiting for message queue entries to become | ||
1194 | * available, wake them up. | ||
1195 | */ | ||
1196 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { | ||
1197 | wake_up(&ch->msg_allocate_wq); | ||
1198 | } | ||
1199 | } | ||
1200 | |||
1201 | |||
1202 | /* | ||
1203 | * Now check for newly sent messages by the other side. (The remote | ||
1204 | * PUT value will have changed since we last looked at it.) | ||
1205 | */ | ||
1206 | |||
1207 | if (ch->w_remote_GP.put != ch->remote_GP.put) { | ||
1208 | /* | ||
1209 | * Clear msg->flags in previously received messages, so that | ||
1210 | * they're ready for xpc_get_deliverable_msg(). | ||
1211 | */ | ||
1212 | xpc_clear_remote_msgqueue_flags(ch); | ||
1213 | |||
1214 | (volatile s64) ch->w_remote_GP.put = ch->remote_GP.put; | ||
1215 | |||
1216 | dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " | ||
1217 | "channel=%d\n", ch->w_remote_GP.put, ch->partid, | ||
1218 | ch->number); | ||
1219 | |||
1220 | nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get; | ||
1221 | if (nmsgs_sent > 0) { | ||
1222 | dev_dbg(xpc_chan, "msgs waiting to be copied and " | ||
1223 | "delivered=%d, partid=%d, channel=%d\n", | ||
1224 | nmsgs_sent, ch->partid, ch->number); | ||
1225 | |||
1226 | if (ch->flags & XPC_C_CONNECTCALLOUT) { | ||
1227 | xpc_activate_kthreads(ch, nmsgs_sent); | ||
1228 | } | ||
1229 | } | ||
1230 | } | ||
1231 | |||
1232 | xpc_msgqueue_deref(ch); | ||
1233 | } | ||
1234 | |||
1235 | |||
1236 | void | ||
1237 | xpc_process_channel_activity(struct xpc_partition *part) | ||
1238 | { | ||
1239 | unsigned long irq_flags; | ||
1240 | u64 IPI_amo, IPI_flags; | ||
1241 | struct xpc_channel *ch; | ||
1242 | int ch_number; | ||
1243 | |||
1244 | |||
1245 | IPI_amo = xpc_get_IPI_flags(part); | ||
1246 | |||
1247 | /* | ||
1248 | * Initiate channel connections for registered channels. | ||
1249 | * | ||
1250 | * For each connected channel that has pending messages activate idle | ||
1251 | * kthreads and/or create new kthreads as needed. | ||
1252 | */ | ||
1253 | |||
1254 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1255 | ch = &part->channels[ch_number]; | ||
1256 | |||
1257 | |||
1258 | /* | ||
1259 | * Process any open or close related IPI flags, and then deal | ||
1260 | * with connecting or disconnecting the channel as required. | ||
1261 | */ | ||
1262 | |||
1263 | IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number); | ||
1264 | |||
1265 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) { | ||
1266 | xpc_process_openclose_IPI(part, ch_number, IPI_flags); | ||
1267 | } | ||
1268 | |||
1269 | |||
1270 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1271 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1272 | xpc_process_disconnect(ch, &irq_flags); | ||
1273 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1274 | continue; | ||
1275 | } | ||
1276 | |||
1277 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
1278 | continue; | ||
1279 | } | ||
1280 | |||
1281 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1282 | if (!(ch->flags & XPC_C_OPENREQUEST)) { | ||
1283 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
1284 | (void) xpc_connect_channel(ch); | ||
1285 | } else { | ||
1286 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1287 | xpc_process_connect(ch, &irq_flags); | ||
1288 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1289 | } | ||
1290 | continue; | ||
1291 | } | ||
1292 | |||
1293 | |||
1294 | /* | ||
1295 | * Process any message related IPI flags, this may involve the | ||
1296 | * activation of kthreads to deliver any pending messages sent | ||
1297 | * from the other partition. | ||
1298 | */ | ||
1299 | |||
1300 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) { | ||
1301 | xpc_process_msg_IPI(part, ch_number); | ||
1302 | } | ||
1303 | } | ||
1304 | } | ||
1305 | |||
1306 | |||
1307 | /* | ||
1308 | * XPC's heartbeat code calls this function to inform XPC that a partition has | ||
1309 | * gone down. XPC responds by tearing down the XPartition Communication | ||
1310 | * infrastructure used for the just downed partition. | ||
1311 | * | ||
1312 | * XPC's heartbeat code will never call this function and xpc_partition_up() | ||
1313 | * at the same time. Nor will it ever make multiple calls to either function | ||
1314 | * at the same time. | ||
1315 | */ | ||
1316 | void | ||
1317 | xpc_partition_down(struct xpc_partition *part, enum xpc_retval reason) | ||
1318 | { | ||
1319 | unsigned long irq_flags; | ||
1320 | int ch_number; | ||
1321 | struct xpc_channel *ch; | ||
1322 | |||
1323 | |||
1324 | dev_dbg(xpc_chan, "deactivating partition %d, reason=%d\n", | ||
1325 | XPC_PARTID(part), reason); | ||
1326 | |||
1327 | if (!xpc_part_ref(part)) { | ||
1328 | /* infrastructure for this partition isn't currently set up */ | ||
1329 | return; | ||
1330 | } | ||
1331 | |||
1332 | |||
1333 | /* disconnect all channels associated with the downed partition */ | ||
1334 | |||
1335 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1336 | ch = &part->channels[ch_number]; | ||
1337 | |||
1338 | |||
1339 | xpc_msgqueue_ref(ch); | ||
1340 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1341 | |||
1342 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
1343 | |||
1344 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1345 | xpc_msgqueue_deref(ch); | ||
1346 | } | ||
1347 | |||
1348 | xpc_wakeup_channel_mgr(part); | ||
1349 | |||
1350 | xpc_part_deref(part); | ||
1351 | } | ||
1352 | |||
1353 | |||
1354 | /* | ||
1355 | * Teardown the infrastructure necessary to support XPartition Communication | ||
1356 | * between the specified remote partition and the local one. | ||
1357 | */ | ||
1358 | void | ||
1359 | xpc_teardown_infrastructure(struct xpc_partition *part) | ||
1360 | { | ||
1361 | partid_t partid = XPC_PARTID(part); | ||
1362 | |||
1363 | |||
1364 | /* | ||
1365 | * We start off by making this partition inaccessible to local | ||
1366 | * processes by marking it as no longer setup. Then we make it | ||
1367 | * inaccessible to remote processes by clearing the XPC per partition | ||
1368 | * specific variable's magic # (which indicates that these variables | ||
1369 | * are no longer valid) and by ignoring all XPC notify IPIs sent to | ||
1370 | * this partition. | ||
1371 | */ | ||
1372 | |||
1373 | DBUG_ON(atomic_read(&part->nchannels_active) != 0); | ||
1374 | DBUG_ON(part->setup_state != XPC_P_SETUP); | ||
1375 | part->setup_state = XPC_P_WTEARDOWN; | ||
1376 | |||
1377 | xpc_vars_part[partid].magic = 0; | ||
1378 | |||
1379 | |||
1380 | free_irq(SGI_XPC_NOTIFY, (void *) (u64) partid); | ||
1381 | |||
1382 | |||
1383 | /* | ||
1384 | * Before proceding with the teardown we have to wait until all | ||
1385 | * existing references cease. | ||
1386 | */ | ||
1387 | wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); | ||
1388 | |||
1389 | |||
1390 | /* now we can begin tearing down the infrastructure */ | ||
1391 | |||
1392 | part->setup_state = XPC_P_TORNDOWN; | ||
1393 | |||
1394 | /* in case we've still got outstanding timers registered... */ | ||
1395 | del_timer_sync(&part->dropped_IPI_timer); | ||
1396 | |||
1397 | kfree(part->remote_openclose_args_base); | ||
1398 | part->remote_openclose_args = NULL; | ||
1399 | kfree(part->local_openclose_args_base); | ||
1400 | part->local_openclose_args = NULL; | ||
1401 | kfree(part->remote_GPs_base); | ||
1402 | part->remote_GPs = NULL; | ||
1403 | kfree(part->local_GPs_base); | ||
1404 | part->local_GPs = NULL; | ||
1405 | kfree(part->channels); | ||
1406 | part->channels = NULL; | ||
1407 | part->local_IPI_amo_va = NULL; | ||
1408 | } | ||
1409 | |||
1410 | |||
1411 | /* | ||
1412 | * Called by XP at the time of channel connection registration to cause | ||
1413 | * XPC to establish connections to all currently active partitions. | ||
1414 | */ | ||
1415 | void | ||
1416 | xpc_initiate_connect(int ch_number) | ||
1417 | { | ||
1418 | partid_t partid; | ||
1419 | struct xpc_partition *part; | ||
1420 | struct xpc_channel *ch; | ||
1421 | |||
1422 | |||
1423 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1424 | |||
1425 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1426 | part = &xpc_partitions[partid]; | ||
1427 | |||
1428 | if (xpc_part_ref(part)) { | ||
1429 | ch = &part->channels[ch_number]; | ||
1430 | |||
1431 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
1432 | DBUG_ON(ch->flags & XPC_C_OPENREQUEST); | ||
1433 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
1434 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
1435 | |||
1436 | /* | ||
1437 | * Initiate the establishment of a connection | ||
1438 | * on the newly registered channel to the | ||
1439 | * remote partition. | ||
1440 | */ | ||
1441 | xpc_wakeup_channel_mgr(part); | ||
1442 | } | ||
1443 | |||
1444 | xpc_part_deref(part); | ||
1445 | } | ||
1446 | } | ||
1447 | } | ||
1448 | |||
1449 | |||
1450 | void | ||
1451 | xpc_connected_callout(struct xpc_channel *ch) | ||
1452 | { | ||
1453 | unsigned long irq_flags; | ||
1454 | |||
1455 | |||
1456 | /* let the registerer know that a connection has been established */ | ||
1457 | |||
1458 | if (ch->func != NULL) { | ||
1459 | dev_dbg(xpc_chan, "ch->func() called, reason=xpcConnected, " | ||
1460 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1461 | |||
1462 | ch->func(xpcConnected, ch->partid, ch->number, | ||
1463 | (void *) (u64) ch->local_nentries, ch->key); | ||
1464 | |||
1465 | dev_dbg(xpc_chan, "ch->func() returned, reason=xpcConnected, " | ||
1466 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1467 | } | ||
1468 | |||
1469 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1470 | ch->flags |= XPC_C_CONNECTCALLOUT; | ||
1471 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1472 | } | ||
1473 | |||
1474 | |||
1475 | /* | ||
1476 | * Called by XP at the time of channel connection unregistration to cause | ||
1477 | * XPC to teardown all current connections for the specified channel. | ||
1478 | * | ||
1479 | * Before returning xpc_initiate_disconnect() will wait until all connections | ||
1480 | * on the specified channel have been closed/torndown. So the caller can be | ||
1481 | * assured that they will not be receiving any more callouts from XPC to the | ||
1482 | * function they registered via xpc_connect(). | ||
1483 | * | ||
1484 | * Arguments: | ||
1485 | * | ||
1486 | * ch_number - channel # to unregister. | ||
1487 | */ | ||
1488 | void | ||
1489 | xpc_initiate_disconnect(int ch_number) | ||
1490 | { | ||
1491 | unsigned long irq_flags; | ||
1492 | partid_t partid; | ||
1493 | struct xpc_partition *part; | ||
1494 | struct xpc_channel *ch; | ||
1495 | |||
1496 | |||
1497 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1498 | |||
1499 | /* initiate the channel disconnect for every active partition */ | ||
1500 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1501 | part = &xpc_partitions[partid]; | ||
1502 | |||
1503 | if (xpc_part_ref(part)) { | ||
1504 | ch = &part->channels[ch_number]; | ||
1505 | xpc_msgqueue_ref(ch); | ||
1506 | |||
1507 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1508 | |||
1509 | XPC_DISCONNECT_CHANNEL(ch, xpcUnregistering, | ||
1510 | &irq_flags); | ||
1511 | |||
1512 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1513 | |||
1514 | xpc_msgqueue_deref(ch); | ||
1515 | xpc_part_deref(part); | ||
1516 | } | ||
1517 | } | ||
1518 | |||
1519 | xpc_disconnect_wait(ch_number); | ||
1520 | } | ||
1521 | |||
1522 | |||
1523 | /* | ||
1524 | * To disconnect a channel, and reflect it back to all who may be waiting. | ||
1525 | * | ||
1526 | * >>> An OPEN is not allowed until XPC_C_DISCONNECTING is cleared by | ||
1527 | * >>> xpc_free_msgqueues(). | ||
1528 | * | ||
1529 | * THE CHANNEL IS TO BE LOCKED BY THE CALLER AND WILL REMAIN LOCKED UPON RETURN. | ||
1530 | */ | ||
1531 | void | ||
1532 | xpc_disconnect_channel(const int line, struct xpc_channel *ch, | ||
1533 | enum xpc_retval reason, unsigned long *irq_flags) | ||
1534 | { | ||
1535 | u32 flags; | ||
1536 | |||
1537 | |||
1538 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
1539 | |||
1540 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | ||
1541 | return; | ||
1542 | } | ||
1543 | DBUG_ON(!(ch->flags & (XPC_C_CONNECTING | XPC_C_CONNECTED))); | ||
1544 | |||
1545 | dev_dbg(xpc_chan, "reason=%d, line=%d, partid=%d, channel=%d\n", | ||
1546 | reason, line, ch->partid, ch->number); | ||
1547 | |||
1548 | XPC_SET_REASON(ch, reason, line); | ||
1549 | |||
1550 | flags = ch->flags; | ||
1551 | /* some of these may not have been set */ | ||
1552 | ch->flags &= ~(XPC_C_OPENREQUEST | XPC_C_OPENREPLY | | ||
1553 | XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
1554 | XPC_C_CONNECTING | XPC_C_CONNECTED); | ||
1555 | |||
1556 | ch->flags |= (XPC_C_CLOSEREQUEST | XPC_C_DISCONNECTING); | ||
1557 | xpc_IPI_send_closerequest(ch, irq_flags); | ||
1558 | |||
1559 | if (flags & XPC_C_CONNECTED) { | ||
1560 | ch->flags |= XPC_C_WASCONNECTED; | ||
1561 | } | ||
1562 | |||
1563 | if (atomic_read(&ch->kthreads_idle) > 0) { | ||
1564 | /* wake all idle kthreads so they can exit */ | ||
1565 | wake_up_all(&ch->idle_wq); | ||
1566 | } | ||
1567 | |||
1568 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1569 | |||
1570 | |||
1571 | /* wake those waiting to allocate an entry from the local msg queue */ | ||
1572 | |||
1573 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { | ||
1574 | wake_up(&ch->msg_allocate_wq); | ||
1575 | } | ||
1576 | |||
1577 | /* wake those waiting for notify completion */ | ||
1578 | |||
1579 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1580 | xpc_notify_senders(ch, reason, ch->w_local_GP.put); | ||
1581 | } | ||
1582 | |||
1583 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1584 | } | ||
1585 | |||
1586 | |||
1587 | void | ||
1588 | xpc_disconnected_callout(struct xpc_channel *ch) | ||
1589 | { | ||
1590 | /* | ||
1591 | * Let the channel's registerer know that the channel is now | ||
1592 | * disconnected. We don't want to do this if the registerer was never | ||
1593 | * informed of a connection being made, unless the disconnect was for | ||
1594 | * abnormal reasons. | ||
1595 | */ | ||
1596 | |||
1597 | if (ch->func != NULL) { | ||
1598 | dev_dbg(xpc_chan, "ch->func() called, reason=%d, partid=%d, " | ||
1599 | "channel=%d\n", ch->reason, ch->partid, ch->number); | ||
1600 | |||
1601 | ch->func(ch->reason, ch->partid, ch->number, NULL, ch->key); | ||
1602 | |||
1603 | dev_dbg(xpc_chan, "ch->func() returned, reason=%d, partid=%d, " | ||
1604 | "channel=%d\n", ch->reason, ch->partid, ch->number); | ||
1605 | } | ||
1606 | } | ||
1607 | |||
1608 | |||
1609 | /* | ||
1610 | * Wait for a message entry to become available for the specified channel, | ||
1611 | * but don't wait any longer than 1 jiffy. | ||
1612 | */ | ||
1613 | static enum xpc_retval | ||
1614 | xpc_allocate_msg_wait(struct xpc_channel *ch) | ||
1615 | { | ||
1616 | enum xpc_retval ret; | ||
1617 | |||
1618 | |||
1619 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1620 | DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? | ||
1621 | return ch->reason; | ||
1622 | } | ||
1623 | |||
1624 | atomic_inc(&ch->n_on_msg_allocate_wq); | ||
1625 | ret = interruptible_sleep_on_timeout(&ch->msg_allocate_wq, 1); | ||
1626 | atomic_dec(&ch->n_on_msg_allocate_wq); | ||
1627 | |||
1628 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1629 | ret = ch->reason; | ||
1630 | DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? | ||
1631 | } else if (ret == 0) { | ||
1632 | ret = xpcTimeout; | ||
1633 | } else { | ||
1634 | ret = xpcInterrupted; | ||
1635 | } | ||
1636 | |||
1637 | return ret; | ||
1638 | } | ||
1639 | |||
1640 | |||
1641 | /* | ||
1642 | * Allocate an entry for a message from the message queue associated with the | ||
1643 | * specified channel. | ||
1644 | */ | ||
1645 | static enum xpc_retval | ||
1646 | xpc_allocate_msg(struct xpc_channel *ch, u32 flags, | ||
1647 | struct xpc_msg **address_of_msg) | ||
1648 | { | ||
1649 | struct xpc_msg *msg; | ||
1650 | enum xpc_retval ret; | ||
1651 | s64 put; | ||
1652 | |||
1653 | |||
1654 | /* this reference will be dropped in xpc_send_msg() */ | ||
1655 | xpc_msgqueue_ref(ch); | ||
1656 | |||
1657 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1658 | xpc_msgqueue_deref(ch); | ||
1659 | return ch->reason; | ||
1660 | } | ||
1661 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1662 | xpc_msgqueue_deref(ch); | ||
1663 | return xpcNotConnected; | ||
1664 | } | ||
1665 | |||
1666 | |||
1667 | /* | ||
1668 | * Get the next available message entry from the local message queue. | ||
1669 | * If none are available, we'll make sure that we grab the latest | ||
1670 | * GP values. | ||
1671 | */ | ||
1672 | ret = xpcTimeout; | ||
1673 | |||
1674 | while (1) { | ||
1675 | |||
1676 | put = (volatile s64) ch->w_local_GP.put; | ||
1677 | if (put - (volatile s64) ch->w_remote_GP.get < | ||
1678 | ch->local_nentries) { | ||
1679 | |||
1680 | /* There are available message entries. We need to try | ||
1681 | * to secure one for ourselves. We'll do this by trying | ||
1682 | * to increment w_local_GP.put as long as someone else | ||
1683 | * doesn't beat us to it. If they do, we'll have to | ||
1684 | * try again. | ||
1685 | */ | ||
1686 | if (cmpxchg(&ch->w_local_GP.put, put, put + 1) == | ||
1687 | put) { | ||
1688 | /* we got the entry referenced by put */ | ||
1689 | break; | ||
1690 | } | ||
1691 | continue; /* try again */ | ||
1692 | } | ||
1693 | |||
1694 | |||
1695 | /* | ||
1696 | * There aren't any available msg entries at this time. | ||
1697 | * | ||
1698 | * In waiting for a message entry to become available, | ||
1699 | * we set a timeout in case the other side is not | ||
1700 | * sending completion IPIs. This lets us fake an IPI | ||
1701 | * that will cause the IPI handler to fetch the latest | ||
1702 | * GP values as if an IPI was sent by the other side. | ||
1703 | */ | ||
1704 | if (ret == xpcTimeout) { | ||
1705 | xpc_IPI_send_local_msgrequest(ch); | ||
1706 | } | ||
1707 | |||
1708 | if (flags & XPC_NOWAIT) { | ||
1709 | xpc_msgqueue_deref(ch); | ||
1710 | return xpcNoWait; | ||
1711 | } | ||
1712 | |||
1713 | ret = xpc_allocate_msg_wait(ch); | ||
1714 | if (ret != xpcInterrupted && ret != xpcTimeout) { | ||
1715 | xpc_msgqueue_deref(ch); | ||
1716 | return ret; | ||
1717 | } | ||
1718 | } | ||
1719 | |||
1720 | |||
1721 | /* get the message's address and initialize it */ | ||
1722 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1723 | (put % ch->local_nentries) * ch->msg_size); | ||
1724 | |||
1725 | |||
1726 | DBUG_ON(msg->flags != 0); | ||
1727 | msg->number = put; | ||
1728 | |||
1729 | dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " | ||
1730 | "msg_number=%ld, partid=%d, channel=%d\n", put + 1, | ||
1731 | (void *) msg, msg->number, ch->partid, ch->number); | ||
1732 | |||
1733 | *address_of_msg = msg; | ||
1734 | |||
1735 | return xpcSuccess; | ||
1736 | } | ||
1737 | |||
1738 | |||
1739 | /* | ||
1740 | * Allocate an entry for a message from the message queue associated with the | ||
1741 | * specified channel. NOTE that this routine can sleep waiting for a message | ||
1742 | * entry to become available. To not sleep, pass in the XPC_NOWAIT flag. | ||
1743 | * | ||
1744 | * Arguments: | ||
1745 | * | ||
1746 | * partid - ID of partition to which the channel is connected. | ||
1747 | * ch_number - channel #. | ||
1748 | * flags - see xpc.h for valid flags. | ||
1749 | * payload - address of the allocated payload area pointer (filled in on | ||
1750 | * return) in which the user-defined message is constructed. | ||
1751 | */ | ||
1752 | enum xpc_retval | ||
1753 | xpc_initiate_allocate(partid_t partid, int ch_number, u32 flags, void **payload) | ||
1754 | { | ||
1755 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1756 | enum xpc_retval ret = xpcUnknownReason; | ||
1757 | struct xpc_msg *msg; | ||
1758 | |||
1759 | |||
1760 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1761 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1762 | |||
1763 | *payload = NULL; | ||
1764 | |||
1765 | if (xpc_part_ref(part)) { | ||
1766 | ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg); | ||
1767 | xpc_part_deref(part); | ||
1768 | |||
1769 | if (msg != NULL) { | ||
1770 | *payload = &msg->payload; | ||
1771 | } | ||
1772 | } | ||
1773 | |||
1774 | return ret; | ||
1775 | } | ||
1776 | |||
1777 | |||
1778 | /* | ||
1779 | * Now we actually send the messages that are ready to be sent by advancing | ||
1780 | * the local message queue's Put value and then send an IPI to the recipient | ||
1781 | * partition. | ||
1782 | */ | ||
1783 | static void | ||
1784 | xpc_send_msgs(struct xpc_channel *ch, s64 initial_put) | ||
1785 | { | ||
1786 | struct xpc_msg *msg; | ||
1787 | s64 put = initial_put + 1; | ||
1788 | int send_IPI = 0; | ||
1789 | |||
1790 | |||
1791 | while (1) { | ||
1792 | |||
1793 | while (1) { | ||
1794 | if (put == (volatile s64) ch->w_local_GP.put) { | ||
1795 | break; | ||
1796 | } | ||
1797 | |||
1798 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1799 | (put % ch->local_nentries) * ch->msg_size); | ||
1800 | |||
1801 | if (!(msg->flags & XPC_M_READY)) { | ||
1802 | break; | ||
1803 | } | ||
1804 | |||
1805 | put++; | ||
1806 | } | ||
1807 | |||
1808 | if (put == initial_put) { | ||
1809 | /* nothing's changed */ | ||
1810 | break; | ||
1811 | } | ||
1812 | |||
1813 | if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) != | ||
1814 | initial_put) { | ||
1815 | /* someone else beat us to it */ | ||
1816 | DBUG_ON((volatile s64) ch->local_GP->put < initial_put); | ||
1817 | break; | ||
1818 | } | ||
1819 | |||
1820 | /* we just set the new value of local_GP->put */ | ||
1821 | |||
1822 | dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " | ||
1823 | "channel=%d\n", put, ch->partid, ch->number); | ||
1824 | |||
1825 | send_IPI = 1; | ||
1826 | |||
1827 | /* | ||
1828 | * We need to ensure that the message referenced by | ||
1829 | * local_GP->put is not XPC_M_READY or that local_GP->put | ||
1830 | * equals w_local_GP.put, so we'll go have a look. | ||
1831 | */ | ||
1832 | initial_put = put; | ||
1833 | } | ||
1834 | |||
1835 | if (send_IPI) { | ||
1836 | xpc_IPI_send_msgrequest(ch); | ||
1837 | } | ||
1838 | } | ||
1839 | |||
1840 | |||
1841 | /* | ||
1842 | * Common code that does the actual sending of the message by advancing the | ||
1843 | * local message queue's Put value and sends an IPI to the partition the | ||
1844 | * message is being sent to. | ||
1845 | */ | ||
1846 | static enum xpc_retval | ||
1847 | xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type, | ||
1848 | xpc_notify_func func, void *key) | ||
1849 | { | ||
1850 | enum xpc_retval ret = xpcSuccess; | ||
1851 | struct xpc_notify *notify = NULL; // >>> to keep the compiler happy!! | ||
1852 | s64 put, msg_number = msg->number; | ||
1853 | |||
1854 | |||
1855 | DBUG_ON(notify_type == XPC_N_CALL && func == NULL); | ||
1856 | DBUG_ON((((u64) msg - (u64) ch->local_msgqueue) / ch->msg_size) != | ||
1857 | msg_number % ch->local_nentries); | ||
1858 | DBUG_ON(msg->flags & XPC_M_READY); | ||
1859 | |||
1860 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1861 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1862 | xpc_msgqueue_deref(ch); | ||
1863 | return ch->reason; | ||
1864 | } | ||
1865 | |||
1866 | if (notify_type != 0) { | ||
1867 | /* | ||
1868 | * Tell the remote side to send an ACK interrupt when the | ||
1869 | * message has been delivered. | ||
1870 | */ | ||
1871 | msg->flags |= XPC_M_INTERRUPT; | ||
1872 | |||
1873 | atomic_inc(&ch->n_to_notify); | ||
1874 | |||
1875 | notify = &ch->notify_queue[msg_number % ch->local_nentries]; | ||
1876 | notify->func = func; | ||
1877 | notify->key = key; | ||
1878 | (volatile u8) notify->type = notify_type; | ||
1879 | |||
1880 | // >>> is a mb() needed here? | ||
1881 | |||
1882 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1883 | /* | ||
1884 | * An error occurred between our last error check and | ||
1885 | * this one. We will try to clear the type field from | ||
1886 | * the notify entry. If we succeed then | ||
1887 | * xpc_disconnect_channel() didn't already process | ||
1888 | * the notify entry. | ||
1889 | */ | ||
1890 | if (cmpxchg(¬ify->type, notify_type, 0) == | ||
1891 | notify_type) { | ||
1892 | atomic_dec(&ch->n_to_notify); | ||
1893 | ret = ch->reason; | ||
1894 | } | ||
1895 | |||
1896 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1897 | xpc_msgqueue_deref(ch); | ||
1898 | return ret; | ||
1899 | } | ||
1900 | } | ||
1901 | |||
1902 | msg->flags |= XPC_M_READY; | ||
1903 | |||
1904 | /* | ||
1905 | * The preceding store of msg->flags must occur before the following | ||
1906 | * load of ch->local_GP->put. | ||
1907 | */ | ||
1908 | mb(); | ||
1909 | |||
1910 | /* see if the message is next in line to be sent, if so send it */ | ||
1911 | |||
1912 | put = ch->local_GP->put; | ||
1913 | if (put == msg_number) { | ||
1914 | xpc_send_msgs(ch, put); | ||
1915 | } | ||
1916 | |||
1917 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1918 | xpc_msgqueue_deref(ch); | ||
1919 | return ret; | ||
1920 | } | ||
1921 | |||
1922 | |||
1923 | /* | ||
1924 | * Send a message previously allocated using xpc_initiate_allocate() on the | ||
1925 | * specified channel connected to the specified partition. | ||
1926 | * | ||
1927 | * This routine will not wait for the message to be received, nor will | ||
1928 | * notification be given when it does happen. Once this routine has returned | ||
1929 | * the message entry allocated via xpc_initiate_allocate() is no longer | ||
1930 | * accessable to the caller. | ||
1931 | * | ||
1932 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1933 | * ensure that the partition infrastructure is in place. It relies on the | ||
1934 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1935 | * | ||
1936 | * Arguments: | ||
1937 | * | ||
1938 | * partid - ID of partition to which the channel is connected. | ||
1939 | * ch_number - channel # to send message on. | ||
1940 | * payload - pointer to the payload area allocated via | ||
1941 | * xpc_initiate_allocate(). | ||
1942 | */ | ||
1943 | enum xpc_retval | ||
1944 | xpc_initiate_send(partid_t partid, int ch_number, void *payload) | ||
1945 | { | ||
1946 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1947 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
1948 | enum xpc_retval ret; | ||
1949 | |||
1950 | |||
1951 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, | ||
1952 | partid, ch_number); | ||
1953 | |||
1954 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1955 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1956 | DBUG_ON(msg == NULL); | ||
1957 | |||
1958 | ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL); | ||
1959 | |||
1960 | return ret; | ||
1961 | } | ||
1962 | |||
1963 | |||
1964 | /* | ||
1965 | * Send a message previously allocated using xpc_initiate_allocate on the | ||
1966 | * specified channel connected to the specified partition. | ||
1967 | * | ||
1968 | * This routine will not wait for the message to be sent. Once this routine | ||
1969 | * has returned the message entry allocated via xpc_initiate_allocate() is no | ||
1970 | * longer accessable to the caller. | ||
1971 | * | ||
1972 | * Once the remote end of the channel has received the message, the function | ||
1973 | * passed as an argument to xpc_initiate_send_notify() will be called. This | ||
1974 | * allows the sender to free up or re-use any buffers referenced by the | ||
1975 | * message, but does NOT mean the message has been processed at the remote | ||
1976 | * end by a receiver. | ||
1977 | * | ||
1978 | * If this routine returns an error, the caller's function will NOT be called. | ||
1979 | * | ||
1980 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1981 | * ensure that the partition infrastructure is in place. It relies on the | ||
1982 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1983 | * | ||
1984 | * Arguments: | ||
1985 | * | ||
1986 | * partid - ID of partition to which the channel is connected. | ||
1987 | * ch_number - channel # to send message on. | ||
1988 | * payload - pointer to the payload area allocated via | ||
1989 | * xpc_initiate_allocate(). | ||
1990 | * func - function to call with asynchronous notification of message | ||
1991 | * receipt. THIS FUNCTION MUST BE NON-BLOCKING. | ||
1992 | * key - user-defined key to be passed to the function when it's called. | ||
1993 | */ | ||
1994 | enum xpc_retval | ||
1995 | xpc_initiate_send_notify(partid_t partid, int ch_number, void *payload, | ||
1996 | xpc_notify_func func, void *key) | ||
1997 | { | ||
1998 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1999 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2000 | enum xpc_retval ret; | ||
2001 | |||
2002 | |||
2003 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, | ||
2004 | partid, ch_number); | ||
2005 | |||
2006 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2007 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2008 | DBUG_ON(msg == NULL); | ||
2009 | DBUG_ON(func == NULL); | ||
2010 | |||
2011 | ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL, | ||
2012 | func, key); | ||
2013 | return ret; | ||
2014 | } | ||
2015 | |||
2016 | |||
2017 | static struct xpc_msg * | ||
2018 | xpc_pull_remote_msg(struct xpc_channel *ch, s64 get) | ||
2019 | { | ||
2020 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
2021 | struct xpc_msg *remote_msg, *msg; | ||
2022 | u32 msg_index, nmsgs; | ||
2023 | u64 msg_offset; | ||
2024 | enum xpc_retval ret; | ||
2025 | |||
2026 | |||
2027 | if (down_interruptible(&ch->msg_to_pull_sema) != 0) { | ||
2028 | /* we were interrupted by a signal */ | ||
2029 | return NULL; | ||
2030 | } | ||
2031 | |||
2032 | while (get >= ch->next_msg_to_pull) { | ||
2033 | |||
2034 | /* pull as many messages as are ready and able to be pulled */ | ||
2035 | |||
2036 | msg_index = ch->next_msg_to_pull % ch->remote_nentries; | ||
2037 | |||
2038 | DBUG_ON(ch->next_msg_to_pull >= | ||
2039 | (volatile s64) ch->w_remote_GP.put); | ||
2040 | nmsgs = (volatile s64) ch->w_remote_GP.put - | ||
2041 | ch->next_msg_to_pull; | ||
2042 | if (msg_index + nmsgs > ch->remote_nentries) { | ||
2043 | /* ignore the ones that wrap the msg queue for now */ | ||
2044 | nmsgs = ch->remote_nentries - msg_index; | ||
2045 | } | ||
2046 | |||
2047 | msg_offset = msg_index * ch->msg_size; | ||
2048 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
2049 | msg_offset); | ||
2050 | remote_msg = (struct xpc_msg *) (ch->remote_msgqueue_pa + | ||
2051 | msg_offset); | ||
2052 | |||
2053 | if ((ret = xpc_pull_remote_cachelines(part, msg, remote_msg, | ||
2054 | nmsgs * ch->msg_size)) != xpcSuccess) { | ||
2055 | |||
2056 | dev_dbg(xpc_chan, "failed to pull %d msgs starting with" | ||
2057 | " msg %ld from partition %d, channel=%d, " | ||
2058 | "ret=%d\n", nmsgs, ch->next_msg_to_pull, | ||
2059 | ch->partid, ch->number, ret); | ||
2060 | |||
2061 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
2062 | |||
2063 | up(&ch->msg_to_pull_sema); | ||
2064 | return NULL; | ||
2065 | } | ||
2066 | |||
2067 | mb(); /* >>> this may not be needed, we're not sure */ | ||
2068 | |||
2069 | ch->next_msg_to_pull += nmsgs; | ||
2070 | } | ||
2071 | |||
2072 | up(&ch->msg_to_pull_sema); | ||
2073 | |||
2074 | /* return the message we were looking for */ | ||
2075 | msg_offset = (get % ch->remote_nentries) * ch->msg_size; | ||
2076 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + msg_offset); | ||
2077 | |||
2078 | return msg; | ||
2079 | } | ||
2080 | |||
2081 | |||
2082 | /* | ||
2083 | * Get a message to be delivered. | ||
2084 | */ | ||
2085 | static struct xpc_msg * | ||
2086 | xpc_get_deliverable_msg(struct xpc_channel *ch) | ||
2087 | { | ||
2088 | struct xpc_msg *msg = NULL; | ||
2089 | s64 get; | ||
2090 | |||
2091 | |||
2092 | do { | ||
2093 | if ((volatile u32) ch->flags & XPC_C_DISCONNECTING) { | ||
2094 | break; | ||
2095 | } | ||
2096 | |||
2097 | get = (volatile s64) ch->w_local_GP.get; | ||
2098 | if (get == (volatile s64) ch->w_remote_GP.put) { | ||
2099 | break; | ||
2100 | } | ||
2101 | |||
2102 | /* There are messages waiting to be pulled and delivered. | ||
2103 | * We need to try to secure one for ourselves. We'll do this | ||
2104 | * by trying to increment w_local_GP.get and hope that no one | ||
2105 | * else beats us to it. If they do, we'll we'll simply have | ||
2106 | * to try again for the next one. | ||
2107 | */ | ||
2108 | |||
2109 | if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) { | ||
2110 | /* we got the entry referenced by get */ | ||
2111 | |||
2112 | dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " | ||
2113 | "partid=%d, channel=%d\n", get + 1, | ||
2114 | ch->partid, ch->number); | ||
2115 | |||
2116 | /* pull the message from the remote partition */ | ||
2117 | |||
2118 | msg = xpc_pull_remote_msg(ch, get); | ||
2119 | |||
2120 | DBUG_ON(msg != NULL && msg->number != get); | ||
2121 | DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); | ||
2122 | DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); | ||
2123 | |||
2124 | break; | ||
2125 | } | ||
2126 | |||
2127 | } while (1); | ||
2128 | |||
2129 | return msg; | ||
2130 | } | ||
2131 | |||
2132 | |||
2133 | /* | ||
2134 | * Deliver a message to its intended recipient. | ||
2135 | */ | ||
2136 | void | ||
2137 | xpc_deliver_msg(struct xpc_channel *ch) | ||
2138 | { | ||
2139 | struct xpc_msg *msg; | ||
2140 | |||
2141 | |||
2142 | if ((msg = xpc_get_deliverable_msg(ch)) != NULL) { | ||
2143 | |||
2144 | /* | ||
2145 | * This ref is taken to protect the payload itself from being | ||
2146 | * freed before the user is finished with it, which the user | ||
2147 | * indicates by calling xpc_initiate_received(). | ||
2148 | */ | ||
2149 | xpc_msgqueue_ref(ch); | ||
2150 | |||
2151 | atomic_inc(&ch->kthreads_active); | ||
2152 | |||
2153 | if (ch->func != NULL) { | ||
2154 | dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, " | ||
2155 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2156 | (void *) msg, msg->number, ch->partid, | ||
2157 | ch->number); | ||
2158 | |||
2159 | /* deliver the message to its intended recipient */ | ||
2160 | ch->func(xpcMsgReceived, ch->partid, ch->number, | ||
2161 | &msg->payload, ch->key); | ||
2162 | |||
2163 | dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, " | ||
2164 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2165 | (void *) msg, msg->number, ch->partid, | ||
2166 | ch->number); | ||
2167 | } | ||
2168 | |||
2169 | atomic_dec(&ch->kthreads_active); | ||
2170 | } | ||
2171 | } | ||
2172 | |||
2173 | |||
2174 | /* | ||
2175 | * Now we actually acknowledge the messages that have been delivered and ack'd | ||
2176 | * by advancing the cached remote message queue's Get value and if requested | ||
2177 | * send an IPI to the message sender's partition. | ||
2178 | */ | ||
2179 | static void | ||
2180 | xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) | ||
2181 | { | ||
2182 | struct xpc_msg *msg; | ||
2183 | s64 get = initial_get + 1; | ||
2184 | int send_IPI = 0; | ||
2185 | |||
2186 | |||
2187 | while (1) { | ||
2188 | |||
2189 | while (1) { | ||
2190 | if (get == (volatile s64) ch->w_local_GP.get) { | ||
2191 | break; | ||
2192 | } | ||
2193 | |||
2194 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
2195 | (get % ch->remote_nentries) * ch->msg_size); | ||
2196 | |||
2197 | if (!(msg->flags & XPC_M_DONE)) { | ||
2198 | break; | ||
2199 | } | ||
2200 | |||
2201 | msg_flags |= msg->flags; | ||
2202 | get++; | ||
2203 | } | ||
2204 | |||
2205 | if (get == initial_get) { | ||
2206 | /* nothing's changed */ | ||
2207 | break; | ||
2208 | } | ||
2209 | |||
2210 | if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) != | ||
2211 | initial_get) { | ||
2212 | /* someone else beat us to it */ | ||
2213 | DBUG_ON((volatile s64) ch->local_GP->get <= | ||
2214 | initial_get); | ||
2215 | break; | ||
2216 | } | ||
2217 | |||
2218 | /* we just set the new value of local_GP->get */ | ||
2219 | |||
2220 | dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " | ||
2221 | "channel=%d\n", get, ch->partid, ch->number); | ||
2222 | |||
2223 | send_IPI = (msg_flags & XPC_M_INTERRUPT); | ||
2224 | |||
2225 | /* | ||
2226 | * We need to ensure that the message referenced by | ||
2227 | * local_GP->get is not XPC_M_DONE or that local_GP->get | ||
2228 | * equals w_local_GP.get, so we'll go have a look. | ||
2229 | */ | ||
2230 | initial_get = get; | ||
2231 | } | ||
2232 | |||
2233 | if (send_IPI) { | ||
2234 | xpc_IPI_send_msgrequest(ch); | ||
2235 | } | ||
2236 | } | ||
2237 | |||
2238 | |||
2239 | /* | ||
2240 | * Acknowledge receipt of a delivered message. | ||
2241 | * | ||
2242 | * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition | ||
2243 | * that sent the message. | ||
2244 | * | ||
2245 | * This function, although called by users, does not call xpc_part_ref() to | ||
2246 | * ensure that the partition infrastructure is in place. It relies on the | ||
2247 | * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg(). | ||
2248 | * | ||
2249 | * Arguments: | ||
2250 | * | ||
2251 | * partid - ID of partition to which the channel is connected. | ||
2252 | * ch_number - channel # message received on. | ||
2253 | * payload - pointer to the payload area allocated via | ||
2254 | * xpc_initiate_allocate(). | ||
2255 | */ | ||
2256 | void | ||
2257 | xpc_initiate_received(partid_t partid, int ch_number, void *payload) | ||
2258 | { | ||
2259 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
2260 | struct xpc_channel *ch; | ||
2261 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2262 | s64 get, msg_number = msg->number; | ||
2263 | |||
2264 | |||
2265 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2266 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2267 | |||
2268 | ch = &part->channels[ch_number]; | ||
2269 | |||
2270 | dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", | ||
2271 | (void *) msg, msg_number, ch->partid, ch->number); | ||
2272 | |||
2273 | DBUG_ON((((u64) msg - (u64) ch->remote_msgqueue) / ch->msg_size) != | ||
2274 | msg_number % ch->remote_nentries); | ||
2275 | DBUG_ON(msg->flags & XPC_M_DONE); | ||
2276 | |||
2277 | msg->flags |= XPC_M_DONE; | ||
2278 | |||
2279 | /* | ||
2280 | * The preceding store of msg->flags must occur before the following | ||
2281 | * load of ch->local_GP->get. | ||
2282 | */ | ||
2283 | mb(); | ||
2284 | |||
2285 | /* | ||
2286 | * See if this message is next in line to be acknowledged as having | ||
2287 | * been delivered. | ||
2288 | */ | ||
2289 | get = ch->local_GP->get; | ||
2290 | if (get == msg_number) { | ||
2291 | xpc_acknowledge_msgs(ch, get, msg->flags); | ||
2292 | } | ||
2293 | |||
2294 | /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */ | ||
2295 | xpc_msgqueue_deref(ch); | ||
2296 | } | ||
2297 | |||
diff --git a/arch/ia64/sn/kernel/xpc_main.c b/arch/ia64/sn/kernel/xpc_main.c new file mode 100644 index 000000000000..177ddb748ebe --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_main.c | |||
@@ -0,0 +1,1064 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) support - standard version. | ||
12 | * | ||
13 | * XPC provides a message passing capability that crosses partition | ||
14 | * boundaries. This module is made up of two parts: | ||
15 | * | ||
16 | * partition This part detects the presence/absence of other | ||
17 | * partitions. It provides a heartbeat and monitors | ||
18 | * the heartbeats of other partitions. | ||
19 | * | ||
20 | * channel This part manages the channels and sends/receives | ||
21 | * messages across them to/from other partitions. | ||
22 | * | ||
23 | * There are a couple of additional functions residing in XP, which | ||
24 | * provide an interface to XPC for its users. | ||
25 | * | ||
26 | * | ||
27 | * Caveats: | ||
28 | * | ||
29 | * . We currently have no way to determine which nasid an IPI came | ||
30 | * from. Thus, xpc_IPI_send() does a remote AMO write followed by | ||
31 | * an IPI. The AMO indicates where data is to be pulled from, so | ||
32 | * after the IPI arrives, the remote partition checks the AMO word. | ||
33 | * The IPI can actually arrive before the AMO however, so other code | ||
34 | * must periodically check for this case. Also, remote AMO operations | ||
35 | * do not reliably time out. Thus we do a remote PIO read solely to | ||
36 | * know whether the remote partition is down and whether we should | ||
37 | * stop sending IPIs to it. This remote PIO read operation is set up | ||
38 | * in a special nofault region so SAL knows to ignore (and cleanup) | ||
39 | * any errors due to the remote AMO write, PIO read, and/or PIO | ||
40 | * write operations. | ||
41 | * | ||
42 | * If/when new hardware solves this IPI problem, we should abandon | ||
43 | * the current approach. | ||
44 | * | ||
45 | */ | ||
46 | |||
47 | |||
48 | #include <linux/kernel.h> | ||
49 | #include <linux/module.h> | ||
50 | #include <linux/init.h> | ||
51 | #include <linux/sched.h> | ||
52 | #include <linux/syscalls.h> | ||
53 | #include <linux/cache.h> | ||
54 | #include <linux/interrupt.h> | ||
55 | #include <linux/slab.h> | ||
56 | #include <asm/sn/intr.h> | ||
57 | #include <asm/sn/sn_sal.h> | ||
58 | #include <asm/uaccess.h> | ||
59 | #include "xpc.h" | ||
60 | |||
61 | |||
62 | /* define two XPC debug device structures to be used with dev_dbg() et al */ | ||
63 | |||
64 | struct device_driver xpc_dbg_name = { | ||
65 | .name = "xpc" | ||
66 | }; | ||
67 | |||
68 | struct device xpc_part_dbg_subname = { | ||
69 | .bus_id = {0}, /* set to "part" at xpc_init() time */ | ||
70 | .driver = &xpc_dbg_name | ||
71 | }; | ||
72 | |||
73 | struct device xpc_chan_dbg_subname = { | ||
74 | .bus_id = {0}, /* set to "chan" at xpc_init() time */ | ||
75 | .driver = &xpc_dbg_name | ||
76 | }; | ||
77 | |||
78 | struct device *xpc_part = &xpc_part_dbg_subname; | ||
79 | struct device *xpc_chan = &xpc_chan_dbg_subname; | ||
80 | |||
81 | |||
82 | /* systune related variables for /proc/sys directories */ | ||
83 | |||
84 | static int xpc_hb_min = 1; | ||
85 | static int xpc_hb_max = 10; | ||
86 | |||
87 | static int xpc_hb_check_min = 10; | ||
88 | static int xpc_hb_check_max = 120; | ||
89 | |||
90 | static ctl_table xpc_sys_xpc_hb_dir[] = { | ||
91 | { | ||
92 | 1, | ||
93 | "hb_interval", | ||
94 | &xpc_hb_interval, | ||
95 | sizeof(int), | ||
96 | 0644, | ||
97 | NULL, | ||
98 | &proc_dointvec_minmax, | ||
99 | &sysctl_intvec, | ||
100 | NULL, | ||
101 | &xpc_hb_min, &xpc_hb_max | ||
102 | }, | ||
103 | { | ||
104 | 2, | ||
105 | "hb_check_interval", | ||
106 | &xpc_hb_check_interval, | ||
107 | sizeof(int), | ||
108 | 0644, | ||
109 | NULL, | ||
110 | &proc_dointvec_minmax, | ||
111 | &sysctl_intvec, | ||
112 | NULL, | ||
113 | &xpc_hb_check_min, &xpc_hb_check_max | ||
114 | }, | ||
115 | {0} | ||
116 | }; | ||
117 | static ctl_table xpc_sys_xpc_dir[] = { | ||
118 | { | ||
119 | 1, | ||
120 | "hb", | ||
121 | NULL, | ||
122 | 0, | ||
123 | 0555, | ||
124 | xpc_sys_xpc_hb_dir | ||
125 | }, | ||
126 | {0} | ||
127 | }; | ||
128 | static ctl_table xpc_sys_dir[] = { | ||
129 | { | ||
130 | 1, | ||
131 | "xpc", | ||
132 | NULL, | ||
133 | 0, | ||
134 | 0555, | ||
135 | xpc_sys_xpc_dir | ||
136 | }, | ||
137 | {0} | ||
138 | }; | ||
139 | static struct ctl_table_header *xpc_sysctl; | ||
140 | |||
141 | |||
142 | /* #of IRQs received */ | ||
143 | static atomic_t xpc_act_IRQ_rcvd; | ||
144 | |||
145 | /* IRQ handler notifies this wait queue on receipt of an IRQ */ | ||
146 | static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); | ||
147 | |||
148 | static unsigned long xpc_hb_check_timeout; | ||
149 | |||
150 | /* xpc_hb_checker thread exited notification */ | ||
151 | static DECLARE_MUTEX_LOCKED(xpc_hb_checker_exited); | ||
152 | |||
153 | /* xpc_discovery thread exited notification */ | ||
154 | static DECLARE_MUTEX_LOCKED(xpc_discovery_exited); | ||
155 | |||
156 | |||
157 | static struct timer_list xpc_hb_timer; | ||
158 | |||
159 | |||
160 | static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); | ||
161 | |||
162 | |||
163 | /* | ||
164 | * Notify the heartbeat check thread that an IRQ has been received. | ||
165 | */ | ||
166 | static irqreturn_t | ||
167 | xpc_act_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs) | ||
168 | { | ||
169 | atomic_inc(&xpc_act_IRQ_rcvd); | ||
170 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
171 | return IRQ_HANDLED; | ||
172 | } | ||
173 | |||
174 | |||
175 | /* | ||
176 | * Timer to produce the heartbeat. The timer structures function is | ||
177 | * already set when this is initially called. A tunable is used to | ||
178 | * specify when the next timeout should occur. | ||
179 | */ | ||
180 | static void | ||
181 | xpc_hb_beater(unsigned long dummy) | ||
182 | { | ||
183 | xpc_vars->heartbeat++; | ||
184 | |||
185 | if (jiffies >= xpc_hb_check_timeout) { | ||
186 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
187 | } | ||
188 | |||
189 | xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); | ||
190 | add_timer(&xpc_hb_timer); | ||
191 | } | ||
192 | |||
193 | |||
194 | /* | ||
195 | * This thread is responsible for nearly all of the partition | ||
196 | * activation/deactivation. | ||
197 | */ | ||
198 | static int | ||
199 | xpc_hb_checker(void *ignore) | ||
200 | { | ||
201 | int last_IRQ_count = 0; | ||
202 | int new_IRQ_count; | ||
203 | int force_IRQ=0; | ||
204 | |||
205 | |||
206 | /* this thread was marked active by xpc_hb_init() */ | ||
207 | |||
208 | daemonize(XPC_HB_CHECK_THREAD_NAME); | ||
209 | |||
210 | set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU)); | ||
211 | |||
212 | xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); | ||
213 | |||
214 | while (!(volatile int) xpc_exiting) { | ||
215 | |||
216 | /* wait for IRQ or timeout */ | ||
217 | (void) wait_event_interruptible(xpc_act_IRQ_wq, | ||
218 | (last_IRQ_count < atomic_read(&xpc_act_IRQ_rcvd) || | ||
219 | jiffies >= xpc_hb_check_timeout || | ||
220 | (volatile int) xpc_exiting)); | ||
221 | |||
222 | dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " | ||
223 | "been received\n", | ||
224 | (int) (xpc_hb_check_timeout - jiffies), | ||
225 | atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); | ||
226 | |||
227 | |||
228 | /* checking of remote heartbeats is skewed by IRQ handling */ | ||
229 | if (jiffies >= xpc_hb_check_timeout) { | ||
230 | dev_dbg(xpc_part, "checking remote heartbeats\n"); | ||
231 | xpc_check_remote_hb(); | ||
232 | |||
233 | /* | ||
234 | * We need to periodically recheck to ensure no | ||
235 | * IPI/AMO pairs have been missed. That check | ||
236 | * must always reset xpc_hb_check_timeout. | ||
237 | */ | ||
238 | force_IRQ = 1; | ||
239 | } | ||
240 | |||
241 | |||
242 | new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); | ||
243 | if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { | ||
244 | force_IRQ = 0; | ||
245 | |||
246 | dev_dbg(xpc_part, "found an IRQ to process; will be " | ||
247 | "resetting xpc_hb_check_timeout\n"); | ||
248 | |||
249 | last_IRQ_count += xpc_identify_act_IRQ_sender(); | ||
250 | if (last_IRQ_count < new_IRQ_count) { | ||
251 | /* retry once to help avoid missing AMO */ | ||
252 | (void) xpc_identify_act_IRQ_sender(); | ||
253 | } | ||
254 | last_IRQ_count = new_IRQ_count; | ||
255 | |||
256 | xpc_hb_check_timeout = jiffies + | ||
257 | (xpc_hb_check_interval * HZ); | ||
258 | } | ||
259 | } | ||
260 | |||
261 | dev_dbg(xpc_part, "heartbeat checker is exiting\n"); | ||
262 | |||
263 | |||
264 | /* mark this thread as inactive */ | ||
265 | up(&xpc_hb_checker_exited); | ||
266 | return 0; | ||
267 | } | ||
268 | |||
269 | |||
270 | /* | ||
271 | * This thread will attempt to discover other partitions to activate | ||
272 | * based on info provided by SAL. This new thread is short lived and | ||
273 | * will exit once discovery is complete. | ||
274 | */ | ||
275 | static int | ||
276 | xpc_initiate_discovery(void *ignore) | ||
277 | { | ||
278 | daemonize(XPC_DISCOVERY_THREAD_NAME); | ||
279 | |||
280 | xpc_discovery(); | ||
281 | |||
282 | dev_dbg(xpc_part, "discovery thread is exiting\n"); | ||
283 | |||
284 | /* mark this thread as inactive */ | ||
285 | up(&xpc_discovery_exited); | ||
286 | return 0; | ||
287 | } | ||
288 | |||
289 | |||
290 | /* | ||
291 | * Establish first contact with the remote partititon. This involves pulling | ||
292 | * the XPC per partition variables from the remote partition and waiting for | ||
293 | * the remote partition to pull ours. | ||
294 | */ | ||
295 | static enum xpc_retval | ||
296 | xpc_make_first_contact(struct xpc_partition *part) | ||
297 | { | ||
298 | enum xpc_retval ret; | ||
299 | |||
300 | |||
301 | while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) { | ||
302 | if (ret != xpcRetry) { | ||
303 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
304 | return ret; | ||
305 | } | ||
306 | |||
307 | dev_dbg(xpc_chan, "waiting to make first contact with " | ||
308 | "partition %d\n", XPC_PARTID(part)); | ||
309 | |||
310 | /* wait a 1/4 of a second or so */ | ||
311 | set_current_state(TASK_INTERRUPTIBLE); | ||
312 | (void) schedule_timeout(0.25 * HZ); | ||
313 | |||
314 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
315 | return part->reason; | ||
316 | } | ||
317 | } | ||
318 | |||
319 | return xpc_mark_partition_active(part); | ||
320 | } | ||
321 | |||
322 | |||
323 | /* | ||
324 | * The first kthread assigned to a newly activated partition is the one | ||
325 | * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to | ||
326 | * that kthread until the partition is brought down, at which time that kthread | ||
327 | * returns back to XPC HB. (The return of that kthread will signify to XPC HB | ||
328 | * that XPC has dismantled all communication infrastructure for the associated | ||
329 | * partition.) This kthread becomes the channel manager for that partition. | ||
330 | * | ||
331 | * Each active partition has a channel manager, who, besides connecting and | ||
332 | * disconnecting channels, will ensure that each of the partition's connected | ||
333 | * channels has the required number of assigned kthreads to get the work done. | ||
334 | */ | ||
335 | static void | ||
336 | xpc_channel_mgr(struct xpc_partition *part) | ||
337 | { | ||
338 | while (part->act_state != XPC_P_DEACTIVATING || | ||
339 | atomic_read(&part->nchannels_active) > 0) { | ||
340 | |||
341 | xpc_process_channel_activity(part); | ||
342 | |||
343 | |||
344 | /* | ||
345 | * Wait until we've been requested to activate kthreads or | ||
346 | * all of the channel's message queues have been torn down or | ||
347 | * a signal is pending. | ||
348 | * | ||
349 | * The channel_mgr_requests is set to 1 after being awakened, | ||
350 | * This is done to prevent the channel mgr from making one pass | ||
351 | * through the loop for each request, since he will | ||
352 | * be servicing all the requests in one pass. The reason it's | ||
353 | * set to 1 instead of 0 is so that other kthreads will know | ||
354 | * that the channel mgr is running and won't bother trying to | ||
355 | * wake him up. | ||
356 | */ | ||
357 | atomic_dec(&part->channel_mgr_requests); | ||
358 | (void) wait_event_interruptible(part->channel_mgr_wq, | ||
359 | (atomic_read(&part->channel_mgr_requests) > 0 || | ||
360 | (volatile u64) part->local_IPI_amo != 0 || | ||
361 | ((volatile u8) part->act_state == | ||
362 | XPC_P_DEACTIVATING && | ||
363 | atomic_read(&part->nchannels_active) == 0))); | ||
364 | atomic_set(&part->channel_mgr_requests, 1); | ||
365 | |||
366 | // >>> Does it need to wakeup periodically as well? In case we | ||
367 | // >>> miscalculated the #of kthreads to wakeup or create? | ||
368 | } | ||
369 | } | ||
370 | |||
371 | |||
372 | /* | ||
373 | * When XPC HB determines that a partition has come up, it will create a new | ||
374 | * kthread and that kthread will call this function to attempt to set up the | ||
375 | * basic infrastructure used for Cross Partition Communication with the newly | ||
376 | * upped partition. | ||
377 | * | ||
378 | * The kthread that was created by XPC HB and which setup the XPC | ||
379 | * infrastructure will remain assigned to the partition until the partition | ||
380 | * goes down. At which time the kthread will teardown the XPC infrastructure | ||
381 | * and then exit. | ||
382 | * | ||
383 | * XPC HB will put the remote partition's XPC per partition specific variables | ||
384 | * physical address into xpc_partitions[partid].remote_vars_part_pa prior to | ||
385 | * calling xpc_partition_up(). | ||
386 | */ | ||
387 | static void | ||
388 | xpc_partition_up(struct xpc_partition *part) | ||
389 | { | ||
390 | DBUG_ON(part->channels != NULL); | ||
391 | |||
392 | dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); | ||
393 | |||
394 | if (xpc_setup_infrastructure(part) != xpcSuccess) { | ||
395 | return; | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * The kthread that XPC HB called us with will become the | ||
400 | * channel manager for this partition. It will not return | ||
401 | * back to XPC HB until the partition's XPC infrastructure | ||
402 | * has been dismantled. | ||
403 | */ | ||
404 | |||
405 | (void) xpc_part_ref(part); /* this will always succeed */ | ||
406 | |||
407 | if (xpc_make_first_contact(part) == xpcSuccess) { | ||
408 | xpc_channel_mgr(part); | ||
409 | } | ||
410 | |||
411 | xpc_part_deref(part); | ||
412 | |||
413 | xpc_teardown_infrastructure(part); | ||
414 | } | ||
415 | |||
416 | |||
417 | static int | ||
418 | xpc_activating(void *__partid) | ||
419 | { | ||
420 | partid_t partid = (u64) __partid; | ||
421 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
422 | unsigned long irq_flags; | ||
423 | struct sched_param param = { sched_priority: MAX_USER_RT_PRIO - 1 }; | ||
424 | int ret; | ||
425 | |||
426 | |||
427 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
428 | |||
429 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
430 | |||
431 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
432 | part->act_state = XPC_P_INACTIVE; | ||
433 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
434 | part->remote_rp_pa = 0; | ||
435 | return 0; | ||
436 | } | ||
437 | |||
438 | /* indicate the thread is activating */ | ||
439 | DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); | ||
440 | part->act_state = XPC_P_ACTIVATING; | ||
441 | |||
442 | XPC_SET_REASON(part, 0, 0); | ||
443 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
444 | |||
445 | dev_dbg(xpc_part, "bringing partition %d up\n", partid); | ||
446 | |||
447 | daemonize("xpc%02d", partid); | ||
448 | |||
449 | /* | ||
450 | * This thread needs to run at a realtime priority to prevent a | ||
451 | * significant performance degradation. | ||
452 | */ | ||
453 | ret = sched_setscheduler(current, SCHED_FIFO, ¶m); | ||
454 | if (ret != 0) { | ||
455 | dev_warn(xpc_part, "unable to set pid %d to a realtime " | ||
456 | "priority, ret=%d\n", current->pid, ret); | ||
457 | } | ||
458 | |||
459 | /* allow this thread and its children to run on any CPU */ | ||
460 | set_cpus_allowed(current, CPU_MASK_ALL); | ||
461 | |||
462 | /* | ||
463 | * Register the remote partition's AMOs with SAL so it can handle | ||
464 | * and cleanup errors within that address range should the remote | ||
465 | * partition go down. We don't unregister this range because it is | ||
466 | * difficult to tell when outstanding writes to the remote partition | ||
467 | * are finished and thus when it is safe to unregister. This should | ||
468 | * not result in wasted space in the SAL xp_addr_region table because | ||
469 | * we should get the same page for remote_amos_page_pa after module | ||
470 | * reloads and system reboots. | ||
471 | */ | ||
472 | if (sn_register_xp_addr_region(part->remote_amos_page_pa, | ||
473 | PAGE_SIZE, 1) < 0) { | ||
474 | dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " | ||
475 | "xp_addr region\n", partid); | ||
476 | |||
477 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
478 | part->act_state = XPC_P_INACTIVE; | ||
479 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__); | ||
480 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
481 | part->remote_rp_pa = 0; | ||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | XPC_ALLOW_HB(partid, xpc_vars); | ||
486 | xpc_IPI_send_activated(part); | ||
487 | |||
488 | |||
489 | /* | ||
490 | * xpc_partition_up() holds this thread and marks this partition as | ||
491 | * XPC_P_ACTIVE by calling xpc_hb_mark_active(). | ||
492 | */ | ||
493 | (void) xpc_partition_up(part); | ||
494 | |||
495 | xpc_mark_partition_inactive(part); | ||
496 | |||
497 | if (part->reason == xpcReactivating) { | ||
498 | /* interrupting ourselves results in activating partition */ | ||
499 | xpc_IPI_send_reactivate(part); | ||
500 | } | ||
501 | |||
502 | return 0; | ||
503 | } | ||
504 | |||
505 | |||
506 | void | ||
507 | xpc_activate_partition(struct xpc_partition *part) | ||
508 | { | ||
509 | partid_t partid = XPC_PARTID(part); | ||
510 | unsigned long irq_flags; | ||
511 | pid_t pid; | ||
512 | |||
513 | |||
514 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
515 | |||
516 | pid = kernel_thread(xpc_activating, (void *) ((u64) partid), 0); | ||
517 | |||
518 | DBUG_ON(part->act_state != XPC_P_INACTIVE); | ||
519 | |||
520 | if (pid > 0) { | ||
521 | part->act_state = XPC_P_ACTIVATION_REQ; | ||
522 | XPC_SET_REASON(part, xpcCloneKThread, __LINE__); | ||
523 | } else { | ||
524 | XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__); | ||
525 | } | ||
526 | |||
527 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
528 | } | ||
529 | |||
530 | |||
531 | /* | ||
532 | * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified | ||
533 | * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more | ||
534 | * than one partition, we use an AMO_t structure per partition to indicate | ||
535 | * whether a partition has sent an IPI or not. >>> If it has, then wake up the | ||
536 | * associated kthread to handle it. | ||
537 | * | ||
538 | * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC | ||
539 | * running on other partitions. | ||
540 | * | ||
541 | * Noteworthy Arguments: | ||
542 | * | ||
543 | * irq - Interrupt ReQuest number. NOT USED. | ||
544 | * | ||
545 | * dev_id - partid of IPI's potential sender. | ||
546 | * | ||
547 | * regs - processor's context before the processor entered | ||
548 | * interrupt code. NOT USED. | ||
549 | */ | ||
550 | irqreturn_t | ||
551 | xpc_notify_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs) | ||
552 | { | ||
553 | partid_t partid = (partid_t) (u64) dev_id; | ||
554 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
555 | |||
556 | |||
557 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
558 | |||
559 | if (xpc_part_ref(part)) { | ||
560 | xpc_check_for_channel_activity(part); | ||
561 | |||
562 | xpc_part_deref(part); | ||
563 | } | ||
564 | return IRQ_HANDLED; | ||
565 | } | ||
566 | |||
567 | |||
568 | /* | ||
569 | * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor | ||
570 | * because the write to their associated IPI amo completed after the IRQ/IPI | ||
571 | * was received. | ||
572 | */ | ||
573 | void | ||
574 | xpc_dropped_IPI_check(struct xpc_partition *part) | ||
575 | { | ||
576 | if (xpc_part_ref(part)) { | ||
577 | xpc_check_for_channel_activity(part); | ||
578 | |||
579 | part->dropped_IPI_timer.expires = jiffies + | ||
580 | XPC_P_DROPPED_IPI_WAIT; | ||
581 | add_timer(&part->dropped_IPI_timer); | ||
582 | xpc_part_deref(part); | ||
583 | } | ||
584 | } | ||
585 | |||
586 | |||
587 | void | ||
588 | xpc_activate_kthreads(struct xpc_channel *ch, int needed) | ||
589 | { | ||
590 | int idle = atomic_read(&ch->kthreads_idle); | ||
591 | int assigned = atomic_read(&ch->kthreads_assigned); | ||
592 | int wakeup; | ||
593 | |||
594 | |||
595 | DBUG_ON(needed <= 0); | ||
596 | |||
597 | if (idle > 0) { | ||
598 | wakeup = (needed > idle) ? idle : needed; | ||
599 | needed -= wakeup; | ||
600 | |||
601 | dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " | ||
602 | "channel=%d\n", wakeup, ch->partid, ch->number); | ||
603 | |||
604 | /* only wakeup the requested number of kthreads */ | ||
605 | wake_up_nr(&ch->idle_wq, wakeup); | ||
606 | } | ||
607 | |||
608 | if (needed <= 0) { | ||
609 | return; | ||
610 | } | ||
611 | |||
612 | if (needed + assigned > ch->kthreads_assigned_limit) { | ||
613 | needed = ch->kthreads_assigned_limit - assigned; | ||
614 | // >>>should never be less than 0 | ||
615 | if (needed <= 0) { | ||
616 | return; | ||
617 | } | ||
618 | } | ||
619 | |||
620 | dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", | ||
621 | needed, ch->partid, ch->number); | ||
622 | |||
623 | xpc_create_kthreads(ch, needed); | ||
624 | } | ||
625 | |||
626 | |||
627 | /* | ||
628 | * This function is where XPC's kthreads wait for messages to deliver. | ||
629 | */ | ||
630 | static void | ||
631 | xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) | ||
632 | { | ||
633 | do { | ||
634 | /* deliver messages to their intended recipients */ | ||
635 | |||
636 | while ((volatile s64) ch->w_local_GP.get < | ||
637 | (volatile s64) ch->w_remote_GP.put && | ||
638 | !((volatile u32) ch->flags & | ||
639 | XPC_C_DISCONNECTING)) { | ||
640 | xpc_deliver_msg(ch); | ||
641 | } | ||
642 | |||
643 | if (atomic_inc_return(&ch->kthreads_idle) > | ||
644 | ch->kthreads_idle_limit) { | ||
645 | /* too many idle kthreads on this channel */ | ||
646 | atomic_dec(&ch->kthreads_idle); | ||
647 | break; | ||
648 | } | ||
649 | |||
650 | dev_dbg(xpc_chan, "idle kthread calling " | ||
651 | "wait_event_interruptible_exclusive()\n"); | ||
652 | |||
653 | (void) wait_event_interruptible_exclusive(ch->idle_wq, | ||
654 | ((volatile s64) ch->w_local_GP.get < | ||
655 | (volatile s64) ch->w_remote_GP.put || | ||
656 | ((volatile u32) ch->flags & | ||
657 | XPC_C_DISCONNECTING))); | ||
658 | |||
659 | atomic_dec(&ch->kthreads_idle); | ||
660 | |||
661 | } while (!((volatile u32) ch->flags & XPC_C_DISCONNECTING)); | ||
662 | } | ||
663 | |||
664 | |||
665 | static int | ||
666 | xpc_daemonize_kthread(void *args) | ||
667 | { | ||
668 | partid_t partid = XPC_UNPACK_ARG1(args); | ||
669 | u16 ch_number = XPC_UNPACK_ARG2(args); | ||
670 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
671 | struct xpc_channel *ch; | ||
672 | int n_needed; | ||
673 | |||
674 | |||
675 | daemonize("xpc%02dc%d", partid, ch_number); | ||
676 | |||
677 | dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", | ||
678 | partid, ch_number); | ||
679 | |||
680 | ch = &part->channels[ch_number]; | ||
681 | |||
682 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
683 | DBUG_ON(!(ch->flags & XPC_C_CONNECTED)); | ||
684 | |||
685 | /* let registerer know that connection has been established */ | ||
686 | |||
687 | if (atomic_read(&ch->kthreads_assigned) == 1) { | ||
688 | xpc_connected_callout(ch); | ||
689 | |||
690 | /* | ||
691 | * It is possible that while the callout was being | ||
692 | * made that the remote partition sent some messages. | ||
693 | * If that is the case, we may need to activate | ||
694 | * additional kthreads to help deliver them. We only | ||
695 | * need one less than total #of messages to deliver. | ||
696 | */ | ||
697 | n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; | ||
698 | if (n_needed > 0 && | ||
699 | !(ch->flags & XPC_C_DISCONNECTING)) { | ||
700 | xpc_activate_kthreads(ch, n_needed); | ||
701 | } | ||
702 | } | ||
703 | |||
704 | xpc_kthread_waitmsgs(part, ch); | ||
705 | } | ||
706 | |||
707 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && | ||
708 | ((ch->flags & XPC_C_CONNECTCALLOUT) || | ||
709 | (ch->reason != xpcUnregistering && | ||
710 | ch->reason != xpcOtherUnregistering))) { | ||
711 | xpc_disconnected_callout(ch); | ||
712 | } | ||
713 | |||
714 | |||
715 | xpc_msgqueue_deref(ch); | ||
716 | |||
717 | dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", | ||
718 | partid, ch_number); | ||
719 | |||
720 | xpc_part_deref(part); | ||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | |||
725 | /* | ||
726 | * For each partition that XPC has established communications with, there is | ||
727 | * a minimum of one kernel thread assigned to perform any operation that | ||
728 | * may potentially sleep or block (basically the callouts to the asynchronous | ||
729 | * functions registered via xpc_connect()). | ||
730 | * | ||
731 | * Additional kthreads are created and destroyed by XPC as the workload | ||
732 | * demands. | ||
733 | * | ||
734 | * A kthread is assigned to one of the active channels that exists for a given | ||
735 | * partition. | ||
736 | */ | ||
737 | void | ||
738 | xpc_create_kthreads(struct xpc_channel *ch, int needed) | ||
739 | { | ||
740 | unsigned long irq_flags; | ||
741 | pid_t pid; | ||
742 | u64 args = XPC_PACK_ARGS(ch->partid, ch->number); | ||
743 | |||
744 | |||
745 | while (needed-- > 0) { | ||
746 | pid = kernel_thread(xpc_daemonize_kthread, (void *) args, 0); | ||
747 | if (pid < 0) { | ||
748 | /* the fork failed */ | ||
749 | |||
750 | if (atomic_read(&ch->kthreads_assigned) < | ||
751 | ch->kthreads_idle_limit) { | ||
752 | /* | ||
753 | * Flag this as an error only if we have an | ||
754 | * insufficient #of kthreads for the channel | ||
755 | * to function. | ||
756 | * | ||
757 | * No xpc_msgqueue_ref() is needed here since | ||
758 | * the channel mgr is doing this. | ||
759 | */ | ||
760 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
761 | XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources, | ||
762 | &irq_flags); | ||
763 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
764 | } | ||
765 | break; | ||
766 | } | ||
767 | |||
768 | /* | ||
769 | * The following is done on behalf of the newly created | ||
770 | * kthread. That kthread is responsible for doing the | ||
771 | * counterpart to the following before it exits. | ||
772 | */ | ||
773 | (void) xpc_part_ref(&xpc_partitions[ch->partid]); | ||
774 | xpc_msgqueue_ref(ch); | ||
775 | atomic_inc(&ch->kthreads_assigned); | ||
776 | ch->kthreads_created++; // >>> temporary debug only!!! | ||
777 | } | ||
778 | } | ||
779 | |||
780 | |||
781 | void | ||
782 | xpc_disconnect_wait(int ch_number) | ||
783 | { | ||
784 | partid_t partid; | ||
785 | struct xpc_partition *part; | ||
786 | struct xpc_channel *ch; | ||
787 | |||
788 | |||
789 | /* now wait for all callouts to the caller's function to cease */ | ||
790 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
791 | part = &xpc_partitions[partid]; | ||
792 | |||
793 | if (xpc_part_ref(part)) { | ||
794 | ch = &part->channels[ch_number]; | ||
795 | |||
796 | // >>> how do we keep from falling into the window between our check and going | ||
797 | // >>> down and coming back up where sema is re-inited? | ||
798 | if (ch->flags & XPC_C_SETUP) { | ||
799 | (void) down(&ch->teardown_sema); | ||
800 | } | ||
801 | |||
802 | xpc_part_deref(part); | ||
803 | } | ||
804 | } | ||
805 | } | ||
806 | |||
807 | |||
808 | static void | ||
809 | xpc_do_exit(void) | ||
810 | { | ||
811 | partid_t partid; | ||
812 | int active_part_count; | ||
813 | struct xpc_partition *part; | ||
814 | |||
815 | |||
816 | /* now it's time to eliminate our heartbeat */ | ||
817 | del_timer_sync(&xpc_hb_timer); | ||
818 | xpc_vars->heartbeating_to_mask = 0; | ||
819 | |||
820 | /* indicate to others that our reserved page is uninitialized */ | ||
821 | xpc_rsvd_page->vars_pa = 0; | ||
822 | |||
823 | /* | ||
824 | * Ignore all incoming interrupts. Without interupts the heartbeat | ||
825 | * checker won't activate any new partitions that may come up. | ||
826 | */ | ||
827 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
828 | |||
829 | /* | ||
830 | * Cause the heartbeat checker and the discovery threads to exit. | ||
831 | * We don't want them attempting to activate new partitions as we | ||
832 | * try to deactivate the existing ones. | ||
833 | */ | ||
834 | xpc_exiting = 1; | ||
835 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
836 | |||
837 | /* wait for the heartbeat checker thread to mark itself inactive */ | ||
838 | down(&xpc_hb_checker_exited); | ||
839 | |||
840 | /* wait for the discovery thread to mark itself inactive */ | ||
841 | down(&xpc_discovery_exited); | ||
842 | |||
843 | |||
844 | set_current_state(TASK_INTERRUPTIBLE); | ||
845 | schedule_timeout(0.3 * HZ); | ||
846 | set_current_state(TASK_RUNNING); | ||
847 | |||
848 | |||
849 | /* wait for all partitions to become inactive */ | ||
850 | |||
851 | do { | ||
852 | active_part_count = 0; | ||
853 | |||
854 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
855 | part = &xpc_partitions[partid]; | ||
856 | if (part->act_state != XPC_P_INACTIVE) { | ||
857 | active_part_count++; | ||
858 | |||
859 | XPC_DEACTIVATE_PARTITION(part, xpcUnloading); | ||
860 | } | ||
861 | } | ||
862 | |||
863 | if (active_part_count) { | ||
864 | set_current_state(TASK_INTERRUPTIBLE); | ||
865 | schedule_timeout(0.3 * HZ); | ||
866 | set_current_state(TASK_RUNNING); | ||
867 | } | ||
868 | |||
869 | } while (active_part_count > 0); | ||
870 | |||
871 | |||
872 | /* close down protections for IPI operations */ | ||
873 | xpc_restrict_IPI_ops(); | ||
874 | |||
875 | |||
876 | /* clear the interface to XPC's functions */ | ||
877 | xpc_clear_interface(); | ||
878 | |||
879 | if (xpc_sysctl) { | ||
880 | unregister_sysctl_table(xpc_sysctl); | ||
881 | } | ||
882 | } | ||
883 | |||
884 | |||
885 | int __init | ||
886 | xpc_init(void) | ||
887 | { | ||
888 | int ret; | ||
889 | partid_t partid; | ||
890 | struct xpc_partition *part; | ||
891 | pid_t pid; | ||
892 | |||
893 | |||
894 | /* | ||
895 | * xpc_remote_copy_buffer is used as a temporary buffer for bte_copy'ng | ||
896 | * both a partition's reserved page and its XPC variables. Its size was | ||
897 | * based on the size of a reserved page. So we need to ensure that the | ||
898 | * XPC variables will fit as well. | ||
899 | */ | ||
900 | if (XPC_VARS_ALIGNED_SIZE > XPC_RSVD_PAGE_ALIGNED_SIZE) { | ||
901 | dev_err(xpc_part, "xpc_remote_copy_buffer is not big enough\n"); | ||
902 | return -EPERM; | ||
903 | } | ||
904 | DBUG_ON((u64) xpc_remote_copy_buffer != | ||
905 | L1_CACHE_ALIGN((u64) xpc_remote_copy_buffer)); | ||
906 | |||
907 | snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); | ||
908 | snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); | ||
909 | |||
910 | xpc_sysctl = register_sysctl_table(xpc_sys_dir, 1); | ||
911 | |||
912 | /* | ||
913 | * The first few fields of each entry of xpc_partitions[] need to | ||
914 | * be initialized now so that calls to xpc_connect() and | ||
915 | * xpc_disconnect() can be made prior to the activation of any remote | ||
916 | * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE | ||
917 | * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING | ||
918 | * PARTITION HAS BEEN ACTIVATED. | ||
919 | */ | ||
920 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
921 | part = &xpc_partitions[partid]; | ||
922 | |||
923 | DBUG_ON((u64) part != L1_CACHE_ALIGN((u64) part)); | ||
924 | |||
925 | part->act_IRQ_rcvd = 0; | ||
926 | spin_lock_init(&part->act_lock); | ||
927 | part->act_state = XPC_P_INACTIVE; | ||
928 | XPC_SET_REASON(part, 0, 0); | ||
929 | part->setup_state = XPC_P_UNSET; | ||
930 | init_waitqueue_head(&part->teardown_wq); | ||
931 | atomic_set(&part->references, 0); | ||
932 | } | ||
933 | |||
934 | /* | ||
935 | * Open up protections for IPI operations (and AMO operations on | ||
936 | * Shub 1.1 systems). | ||
937 | */ | ||
938 | xpc_allow_IPI_ops(); | ||
939 | |||
940 | /* | ||
941 | * Interrupts being processed will increment this atomic variable and | ||
942 | * awaken the heartbeat thread which will process the interrupts. | ||
943 | */ | ||
944 | atomic_set(&xpc_act_IRQ_rcvd, 0); | ||
945 | |||
946 | /* | ||
947 | * This is safe to do before the xpc_hb_checker thread has started | ||
948 | * because the handler releases a wait queue. If an interrupt is | ||
949 | * received before the thread is waiting, it will not go to sleep, | ||
950 | * but rather immediately process the interrupt. | ||
951 | */ | ||
952 | ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, | ||
953 | "xpc hb", NULL); | ||
954 | if (ret != 0) { | ||
955 | dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " | ||
956 | "errno=%d\n", -ret); | ||
957 | |||
958 | xpc_restrict_IPI_ops(); | ||
959 | |||
960 | if (xpc_sysctl) { | ||
961 | unregister_sysctl_table(xpc_sysctl); | ||
962 | } | ||
963 | return -EBUSY; | ||
964 | } | ||
965 | |||
966 | /* | ||
967 | * Fill the partition reserved page with the information needed by | ||
968 | * other partitions to discover we are alive and establish initial | ||
969 | * communications. | ||
970 | */ | ||
971 | xpc_rsvd_page = xpc_rsvd_page_init(); | ||
972 | if (xpc_rsvd_page == NULL) { | ||
973 | dev_err(xpc_part, "could not setup our reserved page\n"); | ||
974 | |||
975 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
976 | xpc_restrict_IPI_ops(); | ||
977 | |||
978 | if (xpc_sysctl) { | ||
979 | unregister_sysctl_table(xpc_sysctl); | ||
980 | } | ||
981 | return -EBUSY; | ||
982 | } | ||
983 | |||
984 | |||
985 | /* | ||
986 | * Set the beating to other partitions into motion. This is | ||
987 | * the last requirement for other partitions' discovery to | ||
988 | * initiate communications with us. | ||
989 | */ | ||
990 | init_timer(&xpc_hb_timer); | ||
991 | xpc_hb_timer.function = xpc_hb_beater; | ||
992 | xpc_hb_beater(0); | ||
993 | |||
994 | |||
995 | /* | ||
996 | * The real work-horse behind xpc. This processes incoming | ||
997 | * interrupts and monitors remote heartbeats. | ||
998 | */ | ||
999 | pid = kernel_thread(xpc_hb_checker, NULL, 0); | ||
1000 | if (pid < 0) { | ||
1001 | dev_err(xpc_part, "failed while forking hb check thread\n"); | ||
1002 | |||
1003 | /* indicate to others that our reserved page is uninitialized */ | ||
1004 | xpc_rsvd_page->vars_pa = 0; | ||
1005 | |||
1006 | del_timer_sync(&xpc_hb_timer); | ||
1007 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1008 | xpc_restrict_IPI_ops(); | ||
1009 | |||
1010 | if (xpc_sysctl) { | ||
1011 | unregister_sysctl_table(xpc_sysctl); | ||
1012 | } | ||
1013 | return -EBUSY; | ||
1014 | } | ||
1015 | |||
1016 | |||
1017 | /* | ||
1018 | * Startup a thread that will attempt to discover other partitions to | ||
1019 | * activate based on info provided by SAL. This new thread is short | ||
1020 | * lived and will exit once discovery is complete. | ||
1021 | */ | ||
1022 | pid = kernel_thread(xpc_initiate_discovery, NULL, 0); | ||
1023 | if (pid < 0) { | ||
1024 | dev_err(xpc_part, "failed while forking discovery thread\n"); | ||
1025 | |||
1026 | /* mark this new thread as a non-starter */ | ||
1027 | up(&xpc_discovery_exited); | ||
1028 | |||
1029 | xpc_do_exit(); | ||
1030 | return -EBUSY; | ||
1031 | } | ||
1032 | |||
1033 | |||
1034 | /* set the interface to point at XPC's functions */ | ||
1035 | xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, | ||
1036 | xpc_initiate_allocate, xpc_initiate_send, | ||
1037 | xpc_initiate_send_notify, xpc_initiate_received, | ||
1038 | xpc_initiate_partid_to_nasids); | ||
1039 | |||
1040 | return 0; | ||
1041 | } | ||
1042 | module_init(xpc_init); | ||
1043 | |||
1044 | |||
1045 | void __exit | ||
1046 | xpc_exit(void) | ||
1047 | { | ||
1048 | xpc_do_exit(); | ||
1049 | } | ||
1050 | module_exit(xpc_exit); | ||
1051 | |||
1052 | |||
1053 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
1054 | MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); | ||
1055 | MODULE_LICENSE("GPL"); | ||
1056 | |||
1057 | module_param(xpc_hb_interval, int, 0); | ||
1058 | MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " | ||
1059 | "heartbeat increments."); | ||
1060 | |||
1061 | module_param(xpc_hb_check_interval, int, 0); | ||
1062 | MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " | ||
1063 | "heartbeat checks."); | ||
1064 | |||
diff --git a/arch/ia64/sn/kernel/xpc_partition.c b/arch/ia64/sn/kernel/xpc_partition.c new file mode 100644 index 000000000000..b31d9988a37a --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_partition.c | |||
@@ -0,0 +1,971 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) partition support. | ||
12 | * | ||
13 | * This is the part of XPC that detects the presence/absence of | ||
14 | * other partitions. It provides a heartbeat and monitors the | ||
15 | * heartbeats of other partitions. | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | |||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/sysctl.h> | ||
22 | #include <linux/cache.h> | ||
23 | #include <linux/mmzone.h> | ||
24 | #include <linux/nodemask.h> | ||
25 | #include <asm/sn/bte.h> | ||
26 | #include <asm/sn/intr.h> | ||
27 | #include <asm/sn/sn_sal.h> | ||
28 | #include <asm/sn/nodepda.h> | ||
29 | #include <asm/sn/addrs.h> | ||
30 | #include "xpc.h" | ||
31 | |||
32 | |||
33 | /* XPC is exiting flag */ | ||
34 | int xpc_exiting; | ||
35 | |||
36 | |||
37 | /* SH_IPI_ACCESS shub register value on startup */ | ||
38 | static u64 xpc_sh1_IPI_access; | ||
39 | static u64 xpc_sh2_IPI_access0; | ||
40 | static u64 xpc_sh2_IPI_access1; | ||
41 | static u64 xpc_sh2_IPI_access2; | ||
42 | static u64 xpc_sh2_IPI_access3; | ||
43 | |||
44 | |||
45 | /* original protection values for each node */ | ||
46 | u64 xpc_prot_vec[MAX_COMPACT_NODES]; | ||
47 | |||
48 | |||
49 | /* this partition's reserved page */ | ||
50 | struct xpc_rsvd_page *xpc_rsvd_page; | ||
51 | |||
52 | /* this partition's XPC variables (within the reserved page) */ | ||
53 | struct xpc_vars *xpc_vars; | ||
54 | struct xpc_vars_part *xpc_vars_part; | ||
55 | |||
56 | |||
57 | /* | ||
58 | * For performance reasons, each entry of xpc_partitions[] is cacheline | ||
59 | * aligned. And xpc_partitions[] is padded with an additional entry at the | ||
60 | * end so that the last legitimate entry doesn't share its cacheline with | ||
61 | * another variable. | ||
62 | */ | ||
63 | struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
64 | |||
65 | |||
66 | /* | ||
67 | * Generic buffer used to store a local copy of the remote partitions | ||
68 | * reserved page or XPC variables. | ||
69 | * | ||
70 | * xpc_discovery runs only once and is a seperate thread that is | ||
71 | * very likely going to be processing in parallel with receiving | ||
72 | * interrupts. | ||
73 | */ | ||
74 | char ____cacheline_aligned | ||
75 | xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE]; | ||
76 | |||
77 | |||
78 | /* systune related variables */ | ||
79 | int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; | ||
80 | int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT; | ||
81 | |||
82 | |||
83 | /* | ||
84 | * Given a nasid, get the physical address of the partition's reserved page | ||
85 | * for that nasid. This function returns 0 on any error. | ||
86 | */ | ||
87 | static u64 | ||
88 | xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size) | ||
89 | { | ||
90 | bte_result_t bte_res; | ||
91 | s64 status; | ||
92 | u64 cookie = 0; | ||
93 | u64 rp_pa = nasid; /* seed with nasid */ | ||
94 | u64 len = 0; | ||
95 | |||
96 | |||
97 | while (1) { | ||
98 | |||
99 | status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, | ||
100 | &len); | ||
101 | |||
102 | dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" | ||
103 | "0x%016lx, address=0x%016lx, len=0x%016lx\n", | ||
104 | status, cookie, rp_pa, len); | ||
105 | |||
106 | if (status != SALRET_MORE_PASSES) { | ||
107 | break; | ||
108 | } | ||
109 | |||
110 | if (len > buf_size) { | ||
111 | dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len); | ||
112 | status = SALRET_ERROR; | ||
113 | break; | ||
114 | } | ||
115 | |||
116 | bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size, | ||
117 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
118 | if (bte_res != BTE_SUCCESS) { | ||
119 | dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); | ||
120 | status = SALRET_ERROR; | ||
121 | break; | ||
122 | } | ||
123 | } | ||
124 | |||
125 | if (status != SALRET_OK) { | ||
126 | rp_pa = 0; | ||
127 | } | ||
128 | dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); | ||
129 | return rp_pa; | ||
130 | } | ||
131 | |||
132 | |||
133 | /* | ||
134 | * Fill the partition reserved page with the information needed by | ||
135 | * other partitions to discover we are alive and establish initial | ||
136 | * communications. | ||
137 | */ | ||
138 | struct xpc_rsvd_page * | ||
139 | xpc_rsvd_page_init(void) | ||
140 | { | ||
141 | struct xpc_rsvd_page *rp; | ||
142 | AMO_t *amos_page; | ||
143 | u64 rp_pa, next_cl, nasid_array = 0; | ||
144 | int i, ret; | ||
145 | |||
146 | |||
147 | /* get the local reserved page's address */ | ||
148 | |||
149 | rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0), | ||
150 | (u64) xpc_remote_copy_buffer, | ||
151 | XPC_RSVD_PAGE_ALIGNED_SIZE); | ||
152 | if (rp_pa == 0) { | ||
153 | dev_err(xpc_part, "SAL failed to locate the reserved page\n"); | ||
154 | return NULL; | ||
155 | } | ||
156 | rp = (struct xpc_rsvd_page *) __va(rp_pa); | ||
157 | |||
158 | if (rp->partid != sn_partition_id) { | ||
159 | dev_err(xpc_part, "the reserved page's partid of %d should be " | ||
160 | "%d\n", rp->partid, sn_partition_id); | ||
161 | return NULL; | ||
162 | } | ||
163 | |||
164 | rp->version = XPC_RP_VERSION; | ||
165 | |||
166 | /* | ||
167 | * Place the XPC variables on the cache line following the | ||
168 | * reserved page structure. | ||
169 | */ | ||
170 | next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE; | ||
171 | xpc_vars = (struct xpc_vars *) next_cl; | ||
172 | |||
173 | /* | ||
174 | * Before clearing xpc_vars, see if a page of AMOs had been previously | ||
175 | * allocated. If not we'll need to allocate one and set permissions | ||
176 | * so that cross-partition AMOs are allowed. | ||
177 | * | ||
178 | * The allocated AMO page needs MCA reporting to remain disabled after | ||
179 | * XPC has unloaded. To make this work, we keep a copy of the pointer | ||
180 | * to this page (i.e., amos_page) in the struct xpc_vars structure, | ||
181 | * which is pointed to by the reserved page, and re-use that saved copy | ||
182 | * on subsequent loads of XPC. This AMO page is never freed, and its | ||
183 | * memory protections are never restricted. | ||
184 | */ | ||
185 | if ((amos_page = xpc_vars->amos_page) == NULL) { | ||
186 | amos_page = (AMO_t *) mspec_kalloc_page(0); | ||
187 | if (amos_page == NULL) { | ||
188 | dev_err(xpc_part, "can't allocate page of AMOs\n"); | ||
189 | return NULL; | ||
190 | } | ||
191 | |||
192 | /* | ||
193 | * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems | ||
194 | * when xpc_allow_IPI_ops() is called via xpc_hb_init(). | ||
195 | */ | ||
196 | if (!enable_shub_wars_1_1()) { | ||
197 | ret = sn_change_memprotect(ia64_tpa((u64) amos_page), | ||
198 | PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, | ||
199 | &nasid_array); | ||
200 | if (ret != 0) { | ||
201 | dev_err(xpc_part, "can't change memory " | ||
202 | "protections\n"); | ||
203 | mspec_kfree_page((unsigned long) amos_page); | ||
204 | return NULL; | ||
205 | } | ||
206 | } | ||
207 | } | ||
208 | |||
209 | memset(xpc_vars, 0, sizeof(struct xpc_vars)); | ||
210 | |||
211 | /* | ||
212 | * Place the XPC per partition specific variables on the cache line | ||
213 | * following the XPC variables structure. | ||
214 | */ | ||
215 | next_cl += XPC_VARS_ALIGNED_SIZE; | ||
216 | memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) * | ||
217 | XP_MAX_PARTITIONS); | ||
218 | xpc_vars_part = (struct xpc_vars_part *) next_cl; | ||
219 | xpc_vars->vars_part_pa = __pa(next_cl); | ||
220 | |||
221 | xpc_vars->version = XPC_V_VERSION; | ||
222 | xpc_vars->act_nasid = cpuid_to_nasid(0); | ||
223 | xpc_vars->act_phys_cpuid = cpu_physical_id(0); | ||
224 | xpc_vars->amos_page = amos_page; /* save for next load of XPC */ | ||
225 | |||
226 | |||
227 | /* | ||
228 | * Initialize the activation related AMO variables. | ||
229 | */ | ||
230 | xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS); | ||
231 | for (i = 1; i < XP_NASID_MASK_WORDS; i++) { | ||
232 | xpc_IPI_init(i + XP_MAX_PARTITIONS); | ||
233 | } | ||
234 | /* export AMO page's physical address to other partitions */ | ||
235 | xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page); | ||
236 | |||
237 | /* | ||
238 | * This signifies to the remote partition that our reserved | ||
239 | * page is initialized. | ||
240 | */ | ||
241 | (volatile u64) rp->vars_pa = __pa(xpc_vars); | ||
242 | |||
243 | return rp; | ||
244 | } | ||
245 | |||
246 | |||
247 | /* | ||
248 | * Change protections to allow IPI operations (and AMO operations on | ||
249 | * Shub 1.1 systems). | ||
250 | */ | ||
251 | void | ||
252 | xpc_allow_IPI_ops(void) | ||
253 | { | ||
254 | int node; | ||
255 | int nasid; | ||
256 | |||
257 | |||
258 | // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. | ||
259 | |||
260 | if (is_shub2()) { | ||
261 | xpc_sh2_IPI_access0 = | ||
262 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); | ||
263 | xpc_sh2_IPI_access1 = | ||
264 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); | ||
265 | xpc_sh2_IPI_access2 = | ||
266 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); | ||
267 | xpc_sh2_IPI_access3 = | ||
268 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); | ||
269 | |||
270 | for_each_online_node(node) { | ||
271 | nasid = cnodeid_to_nasid(node); | ||
272 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
273 | -1UL); | ||
274 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
275 | -1UL); | ||
276 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
277 | -1UL); | ||
278 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
279 | -1UL); | ||
280 | } | ||
281 | |||
282 | } else { | ||
283 | xpc_sh1_IPI_access = | ||
284 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); | ||
285 | |||
286 | for_each_online_node(node) { | ||
287 | nasid = cnodeid_to_nasid(node); | ||
288 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
289 | -1UL); | ||
290 | |||
291 | /* | ||
292 | * Since the BIST collides with memory operations on | ||
293 | * SHUB 1.1 sn_change_memprotect() cannot be used. | ||
294 | */ | ||
295 | if (enable_shub_wars_1_1()) { | ||
296 | /* open up everything */ | ||
297 | xpc_prot_vec[node] = (u64) HUB_L((u64 *) | ||
298 | GLOBAL_MMR_ADDR(nasid, | ||
299 | SH1_MD_DQLP_MMR_DIR_PRIVEC0)); | ||
300 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
301 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
302 | -1UL); | ||
303 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
304 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
305 | -1UL); | ||
306 | } | ||
307 | } | ||
308 | } | ||
309 | } | ||
310 | |||
311 | |||
312 | /* | ||
313 | * Restrict protections to disallow IPI operations (and AMO operations on | ||
314 | * Shub 1.1 systems). | ||
315 | */ | ||
316 | void | ||
317 | xpc_restrict_IPI_ops(void) | ||
318 | { | ||
319 | int node; | ||
320 | int nasid; | ||
321 | |||
322 | |||
323 | // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. | ||
324 | |||
325 | if (is_shub2()) { | ||
326 | |||
327 | for_each_online_node(node) { | ||
328 | nasid = cnodeid_to_nasid(node); | ||
329 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
330 | xpc_sh2_IPI_access0); | ||
331 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
332 | xpc_sh2_IPI_access1); | ||
333 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
334 | xpc_sh2_IPI_access2); | ||
335 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
336 | xpc_sh2_IPI_access3); | ||
337 | } | ||
338 | |||
339 | } else { | ||
340 | |||
341 | for_each_online_node(node) { | ||
342 | nasid = cnodeid_to_nasid(node); | ||
343 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
344 | xpc_sh1_IPI_access); | ||
345 | |||
346 | if (enable_shub_wars_1_1()) { | ||
347 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
348 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
349 | xpc_prot_vec[node]); | ||
350 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
351 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
352 | xpc_prot_vec[node]); | ||
353 | } | ||
354 | } | ||
355 | } | ||
356 | } | ||
357 | |||
358 | |||
359 | /* | ||
360 | * At periodic intervals, scan through all active partitions and ensure | ||
361 | * their heartbeat is still active. If not, the partition is deactivated. | ||
362 | */ | ||
363 | void | ||
364 | xpc_check_remote_hb(void) | ||
365 | { | ||
366 | struct xpc_vars *remote_vars; | ||
367 | struct xpc_partition *part; | ||
368 | partid_t partid; | ||
369 | bte_result_t bres; | ||
370 | |||
371 | |||
372 | remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; | ||
373 | |||
374 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
375 | if (partid == sn_partition_id) { | ||
376 | continue; | ||
377 | } | ||
378 | |||
379 | part = &xpc_partitions[partid]; | ||
380 | |||
381 | if (part->act_state == XPC_P_INACTIVE || | ||
382 | part->act_state == XPC_P_DEACTIVATING) { | ||
383 | continue; | ||
384 | } | ||
385 | |||
386 | /* pull the remote_hb cache line */ | ||
387 | bres = xp_bte_copy(part->remote_vars_pa, | ||
388 | ia64_tpa((u64) remote_vars), | ||
389 | XPC_VARS_ALIGNED_SIZE, | ||
390 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
391 | if (bres != BTE_SUCCESS) { | ||
392 | XPC_DEACTIVATE_PARTITION(part, | ||
393 | xpc_map_bte_errors(bres)); | ||
394 | continue; | ||
395 | } | ||
396 | |||
397 | dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" | ||
398 | " = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid, | ||
399 | remote_vars->heartbeat, part->last_heartbeat, | ||
400 | remote_vars->kdb_status, | ||
401 | remote_vars->heartbeating_to_mask); | ||
402 | |||
403 | if (((remote_vars->heartbeat == part->last_heartbeat) && | ||
404 | (remote_vars->kdb_status == 0)) || | ||
405 | !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { | ||
406 | |||
407 | XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); | ||
408 | continue; | ||
409 | } | ||
410 | |||
411 | part->last_heartbeat = remote_vars->heartbeat; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | |||
416 | /* | ||
417 | * Get a copy of the remote partition's rsvd page. | ||
418 | * | ||
419 | * remote_rp points to a buffer that is cacheline aligned for BTE copies and | ||
420 | * assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE. | ||
421 | */ | ||
422 | static enum xpc_retval | ||
423 | xpc_get_remote_rp(int nasid, u64 *discovered_nasids, | ||
424 | struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa) | ||
425 | { | ||
426 | int bres, i; | ||
427 | |||
428 | |||
429 | /* get the reserved page's physical address */ | ||
430 | |||
431 | *remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp, | ||
432 | XPC_RSVD_PAGE_ALIGNED_SIZE); | ||
433 | if (*remote_rsvd_page_pa == 0) { | ||
434 | return xpcNoRsvdPageAddr; | ||
435 | } | ||
436 | |||
437 | |||
438 | /* pull over the reserved page structure */ | ||
439 | |||
440 | bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp), | ||
441 | XPC_RSVD_PAGE_ALIGNED_SIZE, | ||
442 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
443 | if (bres != BTE_SUCCESS) { | ||
444 | return xpc_map_bte_errors(bres); | ||
445 | } | ||
446 | |||
447 | |||
448 | if (discovered_nasids != NULL) { | ||
449 | for (i = 0; i < XP_NASID_MASK_WORDS; i++) { | ||
450 | discovered_nasids[i] |= remote_rp->part_nasids[i]; | ||
451 | } | ||
452 | } | ||
453 | |||
454 | |||
455 | /* check that the partid is for another partition */ | ||
456 | |||
457 | if (remote_rp->partid < 1 || | ||
458 | remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { | ||
459 | return xpcInvalidPartid; | ||
460 | } | ||
461 | |||
462 | if (remote_rp->partid == sn_partition_id) { | ||
463 | return xpcLocalPartid; | ||
464 | } | ||
465 | |||
466 | |||
467 | if (XPC_VERSION_MAJOR(remote_rp->version) != | ||
468 | XPC_VERSION_MAJOR(XPC_RP_VERSION)) { | ||
469 | return xpcBadVersion; | ||
470 | } | ||
471 | |||
472 | return xpcSuccess; | ||
473 | } | ||
474 | |||
475 | |||
476 | /* | ||
477 | * Get a copy of the remote partition's XPC variables. | ||
478 | * | ||
479 | * remote_vars points to a buffer that is cacheline aligned for BTE copies and | ||
480 | * assumed to be of size XPC_VARS_ALIGNED_SIZE. | ||
481 | */ | ||
482 | static enum xpc_retval | ||
483 | xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
484 | { | ||
485 | int bres; | ||
486 | |||
487 | |||
488 | if (remote_vars_pa == 0) { | ||
489 | return xpcVarsNotSet; | ||
490 | } | ||
491 | |||
492 | |||
493 | /* pull over the cross partition variables */ | ||
494 | |||
495 | bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars), | ||
496 | XPC_VARS_ALIGNED_SIZE, | ||
497 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
498 | if (bres != BTE_SUCCESS) { | ||
499 | return xpc_map_bte_errors(bres); | ||
500 | } | ||
501 | |||
502 | if (XPC_VERSION_MAJOR(remote_vars->version) != | ||
503 | XPC_VERSION_MAJOR(XPC_V_VERSION)) { | ||
504 | return xpcBadVersion; | ||
505 | } | ||
506 | |||
507 | return xpcSuccess; | ||
508 | } | ||
509 | |||
510 | |||
511 | /* | ||
512 | * Prior code has determine the nasid which generated an IPI. Inspect | ||
513 | * that nasid to determine if its partition needs to be activated or | ||
514 | * deactivated. | ||
515 | * | ||
516 | * A partition is consider "awaiting activation" if our partition | ||
517 | * flags indicate it is not active and it has a heartbeat. A | ||
518 | * partition is considered "awaiting deactivation" if our partition | ||
519 | * flags indicate it is active but it has no heartbeat or it is not | ||
520 | * sending its heartbeat to us. | ||
521 | * | ||
522 | * To determine the heartbeat, the remote nasid must have a properly | ||
523 | * initialized reserved page. | ||
524 | */ | ||
525 | static void | ||
526 | xpc_identify_act_IRQ_req(int nasid) | ||
527 | { | ||
528 | struct xpc_rsvd_page *remote_rp; | ||
529 | struct xpc_vars *remote_vars; | ||
530 | u64 remote_rsvd_page_pa; | ||
531 | u64 remote_vars_pa; | ||
532 | partid_t partid; | ||
533 | struct xpc_partition *part; | ||
534 | enum xpc_retval ret; | ||
535 | |||
536 | |||
537 | /* pull over the reserved page structure */ | ||
538 | |||
539 | remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer; | ||
540 | |||
541 | ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa); | ||
542 | if (ret != xpcSuccess) { | ||
543 | dev_warn(xpc_part, "unable to get reserved page from nasid %d, " | ||
544 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
545 | return; | ||
546 | } | ||
547 | |||
548 | remote_vars_pa = remote_rp->vars_pa; | ||
549 | partid = remote_rp->partid; | ||
550 | part = &xpc_partitions[partid]; | ||
551 | |||
552 | |||
553 | /* pull over the cross partition variables */ | ||
554 | |||
555 | remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; | ||
556 | |||
557 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
558 | if (ret != xpcSuccess) { | ||
559 | |||
560 | dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " | ||
561 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
562 | |||
563 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
564 | return; | ||
565 | } | ||
566 | |||
567 | |||
568 | part->act_IRQ_rcvd++; | ||
569 | |||
570 | dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " | ||
571 | "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd, | ||
572 | remote_vars->heartbeat, remote_vars->heartbeating_to_mask); | ||
573 | |||
574 | |||
575 | if (part->act_state == XPC_P_INACTIVE) { | ||
576 | |||
577 | part->remote_rp_pa = remote_rsvd_page_pa; | ||
578 | dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", | ||
579 | part->remote_rp_pa); | ||
580 | |||
581 | part->remote_vars_pa = remote_vars_pa; | ||
582 | dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", | ||
583 | part->remote_vars_pa); | ||
584 | |||
585 | part->last_heartbeat = remote_vars->heartbeat; | ||
586 | dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", | ||
587 | part->last_heartbeat); | ||
588 | |||
589 | part->remote_vars_part_pa = remote_vars->vars_part_pa; | ||
590 | dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", | ||
591 | part->remote_vars_part_pa); | ||
592 | |||
593 | part->remote_act_nasid = remote_vars->act_nasid; | ||
594 | dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", | ||
595 | part->remote_act_nasid); | ||
596 | |||
597 | part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; | ||
598 | dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", | ||
599 | part->remote_act_phys_cpuid); | ||
600 | |||
601 | part->remote_amos_page_pa = remote_vars->amos_page_pa; | ||
602 | dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", | ||
603 | part->remote_amos_page_pa); | ||
604 | |||
605 | xpc_activate_partition(part); | ||
606 | |||
607 | } else if (part->remote_amos_page_pa != remote_vars->amos_page_pa || | ||
608 | !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { | ||
609 | |||
610 | part->reactivate_nasid = nasid; | ||
611 | XPC_DEACTIVATE_PARTITION(part, xpcReactivating); | ||
612 | } | ||
613 | } | ||
614 | |||
615 | |||
616 | /* | ||
617 | * Loop through the activation AMO variables and process any bits | ||
618 | * which are set. Each bit indicates a nasid sending a partition | ||
619 | * activation or deactivation request. | ||
620 | * | ||
621 | * Return #of IRQs detected. | ||
622 | */ | ||
623 | int | ||
624 | xpc_identify_act_IRQ_sender(void) | ||
625 | { | ||
626 | int word, bit; | ||
627 | u64 nasid_mask; | ||
628 | u64 nasid; /* remote nasid */ | ||
629 | int n_IRQs_detected = 0; | ||
630 | AMO_t *act_amos; | ||
631 | struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page; | ||
632 | |||
633 | |||
634 | act_amos = xpc_vars->act_amos; | ||
635 | |||
636 | |||
637 | /* scan through act AMO variable looking for non-zero entries */ | ||
638 | for (word = 0; word < XP_NASID_MASK_WORDS; word++) { | ||
639 | |||
640 | nasid_mask = xpc_IPI_receive(&act_amos[word]); | ||
641 | if (nasid_mask == 0) { | ||
642 | /* no IRQs from nasids in this variable */ | ||
643 | continue; | ||
644 | } | ||
645 | |||
646 | dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, | ||
647 | nasid_mask); | ||
648 | |||
649 | |||
650 | /* | ||
651 | * If this nasid has been added to the machine since | ||
652 | * our partition was reset, this will retain the | ||
653 | * remote nasid in our reserved pages machine mask. | ||
654 | * This is used in the event of module reload. | ||
655 | */ | ||
656 | rp->mach_nasids[word] |= nasid_mask; | ||
657 | |||
658 | |||
659 | /* locate the nasid(s) which sent interrupts */ | ||
660 | |||
661 | for (bit = 0; bit < (8 * sizeof(u64)); bit++) { | ||
662 | if (nasid_mask & (1UL << bit)) { | ||
663 | n_IRQs_detected++; | ||
664 | nasid = XPC_NASID_FROM_W_B(word, bit); | ||
665 | dev_dbg(xpc_part, "interrupt from nasid %ld\n", | ||
666 | nasid); | ||
667 | xpc_identify_act_IRQ_req(nasid); | ||
668 | } | ||
669 | } | ||
670 | } | ||
671 | return n_IRQs_detected; | ||
672 | } | ||
673 | |||
674 | |||
675 | /* | ||
676 | * Mark specified partition as active. | ||
677 | */ | ||
678 | enum xpc_retval | ||
679 | xpc_mark_partition_active(struct xpc_partition *part) | ||
680 | { | ||
681 | unsigned long irq_flags; | ||
682 | enum xpc_retval ret; | ||
683 | |||
684 | |||
685 | dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); | ||
686 | |||
687 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
688 | if (part->act_state == XPC_P_ACTIVATING) { | ||
689 | part->act_state = XPC_P_ACTIVE; | ||
690 | ret = xpcSuccess; | ||
691 | } else { | ||
692 | DBUG_ON(part->reason == xpcSuccess); | ||
693 | ret = part->reason; | ||
694 | } | ||
695 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
696 | |||
697 | return ret; | ||
698 | } | ||
699 | |||
700 | |||
701 | /* | ||
702 | * Notify XPC that the partition is down. | ||
703 | */ | ||
704 | void | ||
705 | xpc_deactivate_partition(const int line, struct xpc_partition *part, | ||
706 | enum xpc_retval reason) | ||
707 | { | ||
708 | unsigned long irq_flags; | ||
709 | partid_t partid = XPC_PARTID(part); | ||
710 | |||
711 | |||
712 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
713 | |||
714 | if (part->act_state == XPC_P_INACTIVE) { | ||
715 | XPC_SET_REASON(part, reason, line); | ||
716 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
717 | if (reason == xpcReactivating) { | ||
718 | /* we interrupt ourselves to reactivate partition */ | ||
719 | xpc_IPI_send_reactivate(part); | ||
720 | } | ||
721 | return; | ||
722 | } | ||
723 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
724 | if ((part->reason == xpcUnloading && reason != xpcUnloading) || | ||
725 | reason == xpcReactivating) { | ||
726 | XPC_SET_REASON(part, reason, line); | ||
727 | } | ||
728 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
729 | return; | ||
730 | } | ||
731 | |||
732 | part->act_state = XPC_P_DEACTIVATING; | ||
733 | XPC_SET_REASON(part, reason, line); | ||
734 | |||
735 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
736 | |||
737 | XPC_DISALLOW_HB(partid, xpc_vars); | ||
738 | |||
739 | dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid, | ||
740 | reason); | ||
741 | |||
742 | xpc_partition_down(part, reason); | ||
743 | } | ||
744 | |||
745 | |||
746 | /* | ||
747 | * Mark specified partition as active. | ||
748 | */ | ||
749 | void | ||
750 | xpc_mark_partition_inactive(struct xpc_partition *part) | ||
751 | { | ||
752 | unsigned long irq_flags; | ||
753 | |||
754 | |||
755 | dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", | ||
756 | XPC_PARTID(part)); | ||
757 | |||
758 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
759 | part->act_state = XPC_P_INACTIVE; | ||
760 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
761 | part->remote_rp_pa = 0; | ||
762 | } | ||
763 | |||
764 | |||
765 | /* | ||
766 | * SAL has provided a partition and machine mask. The partition mask | ||
767 | * contains a bit for each even nasid in our partition. The machine | ||
768 | * mask contains a bit for each even nasid in the entire machine. | ||
769 | * | ||
770 | * Using those two bit arrays, we can determine which nasids are | ||
771 | * known in the machine. Each should also have a reserved page | ||
772 | * initialized if they are available for partitioning. | ||
773 | */ | ||
774 | void | ||
775 | xpc_discovery(void) | ||
776 | { | ||
777 | void *remote_rp_base; | ||
778 | struct xpc_rsvd_page *remote_rp; | ||
779 | struct xpc_vars *remote_vars; | ||
780 | u64 remote_rsvd_page_pa; | ||
781 | u64 remote_vars_pa; | ||
782 | int region; | ||
783 | int max_regions; | ||
784 | int nasid; | ||
785 | struct xpc_rsvd_page *rp; | ||
786 | partid_t partid; | ||
787 | struct xpc_partition *part; | ||
788 | u64 *discovered_nasids; | ||
789 | enum xpc_retval ret; | ||
790 | |||
791 | |||
792 | remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE, | ||
793 | GFP_KERNEL, &remote_rp_base); | ||
794 | if (remote_rp == NULL) { | ||
795 | return; | ||
796 | } | ||
797 | remote_vars = (struct xpc_vars *) remote_rp; | ||
798 | |||
799 | |||
800 | discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS, | ||
801 | GFP_KERNEL); | ||
802 | if (discovered_nasids == NULL) { | ||
803 | kfree(remote_rp_base); | ||
804 | return; | ||
805 | } | ||
806 | memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS); | ||
807 | |||
808 | rp = (struct xpc_rsvd_page *) xpc_rsvd_page; | ||
809 | |||
810 | /* | ||
811 | * The term 'region' in this context refers to the minimum number of | ||
812 | * nodes that can comprise an access protection grouping. The access | ||
813 | * protection is in regards to memory, IOI and IPI. | ||
814 | */ | ||
815 | //>>> move the next two #defines into either include/asm-ia64/sn/arch.h or | ||
816 | //>>> include/asm-ia64/sn/addrs.h | ||
817 | #define SH1_MAX_REGIONS 64 | ||
818 | #define SH2_MAX_REGIONS 256 | ||
819 | max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS; | ||
820 | |||
821 | for (region = 0; region < max_regions; region++) { | ||
822 | |||
823 | if ((volatile int) xpc_exiting) { | ||
824 | break; | ||
825 | } | ||
826 | |||
827 | dev_dbg(xpc_part, "searching region %d\n", region); | ||
828 | |||
829 | for (nasid = (region * sn_region_size * 2); | ||
830 | nasid < ((region + 1) * sn_region_size * 2); | ||
831 | nasid += 2) { | ||
832 | |||
833 | if ((volatile int) xpc_exiting) { | ||
834 | break; | ||
835 | } | ||
836 | |||
837 | dev_dbg(xpc_part, "checking nasid %d\n", nasid); | ||
838 | |||
839 | |||
840 | if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) { | ||
841 | dev_dbg(xpc_part, "PROM indicates Nasid %d is " | ||
842 | "part of the local partition; skipping " | ||
843 | "region\n", nasid); | ||
844 | break; | ||
845 | } | ||
846 | |||
847 | if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) { | ||
848 | dev_dbg(xpc_part, "PROM indicates Nasid %d was " | ||
849 | "not on Numa-Link network at reset\n", | ||
850 | nasid); | ||
851 | continue; | ||
852 | } | ||
853 | |||
854 | if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { | ||
855 | dev_dbg(xpc_part, "Nasid %d is part of a " | ||
856 | "partition which was previously " | ||
857 | "discovered\n", nasid); | ||
858 | continue; | ||
859 | } | ||
860 | |||
861 | |||
862 | /* pull over the reserved page structure */ | ||
863 | |||
864 | ret = xpc_get_remote_rp(nasid, discovered_nasids, | ||
865 | remote_rp, &remote_rsvd_page_pa); | ||
866 | if (ret != xpcSuccess) { | ||
867 | dev_dbg(xpc_part, "unable to get reserved page " | ||
868 | "from nasid %d, reason=%d\n", nasid, | ||
869 | ret); | ||
870 | |||
871 | if (ret == xpcLocalPartid) { | ||
872 | break; | ||
873 | } | ||
874 | continue; | ||
875 | } | ||
876 | |||
877 | remote_vars_pa = remote_rp->vars_pa; | ||
878 | |||
879 | partid = remote_rp->partid; | ||
880 | part = &xpc_partitions[partid]; | ||
881 | |||
882 | |||
883 | /* pull over the cross partition variables */ | ||
884 | |||
885 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
886 | if (ret != xpcSuccess) { | ||
887 | dev_dbg(xpc_part, "unable to get XPC variables " | ||
888 | "from nasid %d, reason=%d\n", nasid, | ||
889 | ret); | ||
890 | |||
891 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
892 | continue; | ||
893 | } | ||
894 | |||
895 | if (part->act_state != XPC_P_INACTIVE) { | ||
896 | dev_dbg(xpc_part, "partition %d on nasid %d is " | ||
897 | "already activating\n", partid, nasid); | ||
898 | break; | ||
899 | } | ||
900 | |||
901 | /* | ||
902 | * Register the remote partition's AMOs with SAL so it | ||
903 | * can handle and cleanup errors within that address | ||
904 | * range should the remote partition go down. We don't | ||
905 | * unregister this range because it is difficult to | ||
906 | * tell when outstanding writes to the remote partition | ||
907 | * are finished and thus when it is thus safe to | ||
908 | * unregister. This should not result in wasted space | ||
909 | * in the SAL xp_addr_region table because we should | ||
910 | * get the same page for remote_act_amos_pa after | ||
911 | * module reloads and system reboots. | ||
912 | */ | ||
913 | if (sn_register_xp_addr_region( | ||
914 | remote_vars->amos_page_pa, | ||
915 | PAGE_SIZE, 1) < 0) { | ||
916 | dev_dbg(xpc_part, "partition %d failed to " | ||
917 | "register xp_addr region 0x%016lx\n", | ||
918 | partid, remote_vars->amos_page_pa); | ||
919 | |||
920 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, | ||
921 | __LINE__); | ||
922 | break; | ||
923 | } | ||
924 | |||
925 | /* | ||
926 | * The remote nasid is valid and available. | ||
927 | * Send an interrupt to that nasid to notify | ||
928 | * it that we are ready to begin activation. | ||
929 | */ | ||
930 | dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " | ||
931 | "nasid %d, phys_cpuid 0x%x\n", | ||
932 | remote_vars->amos_page_pa, | ||
933 | remote_vars->act_nasid, | ||
934 | remote_vars->act_phys_cpuid); | ||
935 | |||
936 | xpc_IPI_send_activate(remote_vars); | ||
937 | } | ||
938 | } | ||
939 | |||
940 | kfree(discovered_nasids); | ||
941 | kfree(remote_rp_base); | ||
942 | } | ||
943 | |||
944 | |||
945 | /* | ||
946 | * Given a partid, get the nasids owned by that partition from the | ||
947 | * remote partitions reserved page. | ||
948 | */ | ||
949 | enum xpc_retval | ||
950 | xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) | ||
951 | { | ||
952 | struct xpc_partition *part; | ||
953 | u64 part_nasid_pa; | ||
954 | int bte_res; | ||
955 | |||
956 | |||
957 | part = &xpc_partitions[partid]; | ||
958 | if (part->remote_rp_pa == 0) { | ||
959 | return xpcPartitionDown; | ||
960 | } | ||
961 | |||
962 | part_nasid_pa = part->remote_rp_pa + | ||
963 | (u64) &((struct xpc_rsvd_page *) 0)->part_nasids; | ||
964 | |||
965 | bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask), | ||
966 | L1_CACHE_ALIGN(XP_NASID_MASK_BYTES), | ||
967 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
968 | |||
969 | return xpc_map_bte_errors(bte_res); | ||
970 | } | ||
971 | |||