aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ia64
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64')
-rw-r--r--arch/ia64/kernel/Makefile2
-rw-r--r--arch/ia64/kernel/domain.c444
2 files changed, 1 insertions, 445 deletions
diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile
index b242594be55b..307514f7a282 100644
--- a/arch/ia64/kernel/Makefile
+++ b/arch/ia64/kernel/Makefile
@@ -16,7 +16,7 @@ obj-$(CONFIG_IA64_HP_ZX1_SWIOTLB) += acpi-ext.o
16obj-$(CONFIG_IA64_PALINFO) += palinfo.o 16obj-$(CONFIG_IA64_PALINFO) += palinfo.o
17obj-$(CONFIG_IOSAPIC) += iosapic.o 17obj-$(CONFIG_IOSAPIC) += iosapic.o
18obj-$(CONFIG_MODULES) += module.o 18obj-$(CONFIG_MODULES) += module.o
19obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o 19obj-$(CONFIG_SMP) += smp.o smpboot.o
20obj-$(CONFIG_NUMA) += numa.o 20obj-$(CONFIG_NUMA) += numa.o
21obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o 21obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
22obj-$(CONFIG_IA64_CYCLONE) += cyclone.o 22obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
diff --git a/arch/ia64/kernel/domain.c b/arch/ia64/kernel/domain.c
deleted file mode 100644
index e907109983f1..000000000000
--- a/arch/ia64/kernel/domain.c
+++ /dev/null
@@ -1,444 +0,0 @@
1/*
2 * arch/ia64/kernel/domain.c
3 * Architecture specific sched-domains builder.
4 *
5 * Copyright (C) 2004 Jesse Barnes
6 * Copyright (C) 2004 Silicon Graphics, Inc.
7 */
8
9#include <linux/sched.h>
10#include <linux/percpu.h>
11#include <linux/slab.h>
12#include <linux/cpumask.h>
13#include <linux/init.h>
14#include <linux/topology.h>
15#include <linux/nodemask.h>
16
17#define SD_NODES_PER_DOMAIN 16
18
19#ifdef CONFIG_NUMA
20/**
21 * find_next_best_node - find the next node to include in a sched_domain
22 * @node: node whose sched_domain we're building
23 * @used_nodes: nodes already in the sched_domain
24 *
25 * Find the next node to include in a given scheduling domain. Simply
26 * finds the closest node not already in the @used_nodes map.
27 *
28 * Should use nodemask_t.
29 */
30static int find_next_best_node(int node, unsigned long *used_nodes)
31{
32 int i, n, val, min_val, best_node = 0;
33
34 min_val = INT_MAX;
35
36 for (i = 0; i < MAX_NUMNODES; i++) {
37 /* Start at @node */
38 n = (node + i) % MAX_NUMNODES;
39
40 if (!nr_cpus_node(n))
41 continue;
42
43 /* Skip already used nodes */
44 if (test_bit(n, used_nodes))
45 continue;
46
47 /* Simple min distance search */
48 val = node_distance(node, n);
49
50 if (val < min_val) {
51 min_val = val;
52 best_node = n;
53 }
54 }
55
56 set_bit(best_node, used_nodes);
57 return best_node;
58}
59
60/**
61 * sched_domain_node_span - get a cpumask for a node's sched_domain
62 * @node: node whose cpumask we're constructing
63 * @size: number of nodes to include in this span
64 *
65 * Given a node, construct a good cpumask for its sched_domain to span. It
66 * should be one that prevents unnecessary balancing, but also spreads tasks
67 * out optimally.
68 */
69static cpumask_t sched_domain_node_span(int node)
70{
71 int i;
72 cpumask_t span, nodemask;
73 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
74
75 cpus_clear(span);
76 bitmap_zero(used_nodes, MAX_NUMNODES);
77
78 nodemask = node_to_cpumask(node);
79 cpus_or(span, span, nodemask);
80 set_bit(node, used_nodes);
81
82 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
83 int next_node = find_next_best_node(node, used_nodes);
84 nodemask = node_to_cpumask(next_node);
85 cpus_or(span, span, nodemask);
86 }
87
88 return span;
89}
90#endif
91
92/*
93 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
94 * can switch it on easily if needed.
95 */
96#ifdef CONFIG_SCHED_SMT
97static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
98static struct sched_group sched_group_cpus[NR_CPUS];
99static int cpu_to_cpu_group(int cpu)
100{
101 return cpu;
102}
103#endif
104
105static DEFINE_PER_CPU(struct sched_domain, phys_domains);
106static struct sched_group sched_group_phys[NR_CPUS];
107static int cpu_to_phys_group(int cpu)
108{
109#ifdef CONFIG_SCHED_SMT
110 return first_cpu(cpu_sibling_map[cpu]);
111#else
112 return cpu;
113#endif
114}
115
116#ifdef CONFIG_NUMA
117/*
118 * The init_sched_build_groups can't handle what we want to do with node
119 * groups, so roll our own. Now each node has its own list of groups which
120 * gets dynamically allocated.
121 */
122static DEFINE_PER_CPU(struct sched_domain, node_domains);
123static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
124
125static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
126static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
127
128static int cpu_to_allnodes_group(int cpu)
129{
130 return cpu_to_node(cpu);
131}
132#endif
133
134/*
135 * Build sched domains for a given set of cpus and attach the sched domains
136 * to the individual cpus
137 */
138void build_sched_domains(const cpumask_t *cpu_map)
139{
140 int i;
141#ifdef CONFIG_NUMA
142 struct sched_group **sched_group_nodes = NULL;
143 struct sched_group *sched_group_allnodes = NULL;
144
145 /*
146 * Allocate the per-node list of sched groups
147 */
148 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
149 GFP_ATOMIC);
150 if (!sched_group_nodes) {
151 printk(KERN_WARNING "Can not alloc sched group node list\n");
152 return;
153 }
154 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
155#endif
156
157 /*
158 * Set up domains for cpus specified by the cpu_map.
159 */
160 for_each_cpu_mask(i, *cpu_map) {
161 int group;
162 struct sched_domain *sd = NULL, *p;
163 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
164
165 cpus_and(nodemask, nodemask, *cpu_map);
166
167#ifdef CONFIG_NUMA
168 if (cpus_weight(*cpu_map)
169 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
170 if (!sched_group_allnodes) {
171 sched_group_allnodes
172 = kmalloc(sizeof(struct sched_group)
173 * MAX_NUMNODES,
174 GFP_KERNEL);
175 if (!sched_group_allnodes) {
176 printk(KERN_WARNING
177 "Can not alloc allnodes sched group\n");
178 break;
179 }
180 sched_group_allnodes_bycpu[i]
181 = sched_group_allnodes;
182 }
183 sd = &per_cpu(allnodes_domains, i);
184 *sd = SD_ALLNODES_INIT;
185 sd->span = *cpu_map;
186 group = cpu_to_allnodes_group(i);
187 sd->groups = &sched_group_allnodes[group];
188 p = sd;
189 } else
190 p = NULL;
191
192 sd = &per_cpu(node_domains, i);
193 *sd = SD_NODE_INIT;
194 sd->span = sched_domain_node_span(cpu_to_node(i));
195 sd->parent = p;
196 cpus_and(sd->span, sd->span, *cpu_map);
197#endif
198
199 p = sd;
200 sd = &per_cpu(phys_domains, i);
201 group = cpu_to_phys_group(i);
202 *sd = SD_CPU_INIT;
203 sd->span = nodemask;
204 sd->parent = p;
205 sd->groups = &sched_group_phys[group];
206
207#ifdef CONFIG_SCHED_SMT
208 p = sd;
209 sd = &per_cpu(cpu_domains, i);
210 group = cpu_to_cpu_group(i);
211 *sd = SD_SIBLING_INIT;
212 sd->span = cpu_sibling_map[i];
213 cpus_and(sd->span, sd->span, *cpu_map);
214 sd->parent = p;
215 sd->groups = &sched_group_cpus[group];
216#endif
217 }
218
219#ifdef CONFIG_SCHED_SMT
220 /* Set up CPU (sibling) groups */
221 for_each_cpu_mask(i, *cpu_map) {
222 cpumask_t this_sibling_map = cpu_sibling_map[i];
223 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
224 if (i != first_cpu(this_sibling_map))
225 continue;
226
227 init_sched_build_groups(sched_group_cpus, this_sibling_map,
228 &cpu_to_cpu_group);
229 }
230#endif
231
232 /* Set up physical groups */
233 for (i = 0; i < MAX_NUMNODES; i++) {
234 cpumask_t nodemask = node_to_cpumask(i);
235
236 cpus_and(nodemask, nodemask, *cpu_map);
237 if (cpus_empty(nodemask))
238 continue;
239
240 init_sched_build_groups(sched_group_phys, nodemask,
241 &cpu_to_phys_group);
242 }
243
244#ifdef CONFIG_NUMA
245 if (sched_group_allnodes)
246 init_sched_build_groups(sched_group_allnodes, *cpu_map,
247 &cpu_to_allnodes_group);
248
249 for (i = 0; i < MAX_NUMNODES; i++) {
250 /* Set up node groups */
251 struct sched_group *sg, *prev;
252 cpumask_t nodemask = node_to_cpumask(i);
253 cpumask_t domainspan;
254 cpumask_t covered = CPU_MASK_NONE;
255 int j;
256
257 cpus_and(nodemask, nodemask, *cpu_map);
258 if (cpus_empty(nodemask)) {
259 sched_group_nodes[i] = NULL;
260 continue;
261 }
262
263 domainspan = sched_domain_node_span(i);
264 cpus_and(domainspan, domainspan, *cpu_map);
265
266 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
267 sched_group_nodes[i] = sg;
268 for_each_cpu_mask(j, nodemask) {
269 struct sched_domain *sd;
270 sd = &per_cpu(node_domains, j);
271 sd->groups = sg;
272 if (sd->groups == NULL) {
273 /* Turn off balancing if we have no groups */
274 sd->flags = 0;
275 }
276 }
277 if (!sg) {
278 printk(KERN_WARNING
279 "Can not alloc domain group for node %d\n", i);
280 continue;
281 }
282 sg->cpu_power = 0;
283 sg->cpumask = nodemask;
284 cpus_or(covered, covered, nodemask);
285 prev = sg;
286
287 for (j = 0; j < MAX_NUMNODES; j++) {
288 cpumask_t tmp, notcovered;
289 int n = (i + j) % MAX_NUMNODES;
290
291 cpus_complement(notcovered, covered);
292 cpus_and(tmp, notcovered, *cpu_map);
293 cpus_and(tmp, tmp, domainspan);
294 if (cpus_empty(tmp))
295 break;
296
297 nodemask = node_to_cpumask(n);
298 cpus_and(tmp, tmp, nodemask);
299 if (cpus_empty(tmp))
300 continue;
301
302 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
303 if (!sg) {
304 printk(KERN_WARNING
305 "Can not alloc domain group for node %d\n", j);
306 break;
307 }
308 sg->cpu_power = 0;
309 sg->cpumask = tmp;
310 cpus_or(covered, covered, tmp);
311 prev->next = sg;
312 prev = sg;
313 }
314 prev->next = sched_group_nodes[i];
315 }
316#endif
317
318 /* Calculate CPU power for physical packages and nodes */
319 for_each_cpu_mask(i, *cpu_map) {
320 int power;
321 struct sched_domain *sd;
322#ifdef CONFIG_SCHED_SMT
323 sd = &per_cpu(cpu_domains, i);
324 power = SCHED_LOAD_SCALE;
325 sd->groups->cpu_power = power;
326#endif
327
328 sd = &per_cpu(phys_domains, i);
329 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
330 (cpus_weight(sd->groups->cpumask)-1) / 10;
331 sd->groups->cpu_power = power;
332
333#ifdef CONFIG_NUMA
334 sd = &per_cpu(allnodes_domains, i);
335 if (sd->groups) {
336 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
337 (cpus_weight(sd->groups->cpumask)-1) / 10;
338 sd->groups->cpu_power = power;
339 }
340#endif
341 }
342
343#ifdef CONFIG_NUMA
344 for (i = 0; i < MAX_NUMNODES; i++) {
345 struct sched_group *sg = sched_group_nodes[i];
346 int j;
347
348 if (sg == NULL)
349 continue;
350next_sg:
351 for_each_cpu_mask(j, sg->cpumask) {
352 struct sched_domain *sd;
353 int power;
354
355 sd = &per_cpu(phys_domains, j);
356 if (j != first_cpu(sd->groups->cpumask)) {
357 /*
358 * Only add "power" once for each
359 * physical package.
360 */
361 continue;
362 }
363 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
364 (cpus_weight(sd->groups->cpumask)-1) / 10;
365
366 sg->cpu_power += power;
367 }
368 sg = sg->next;
369 if (sg != sched_group_nodes[i])
370 goto next_sg;
371 }
372#endif
373
374 /* Attach the domains */
375 for_each_cpu_mask(i, *cpu_map) {
376 struct sched_domain *sd;
377#ifdef CONFIG_SCHED_SMT
378 sd = &per_cpu(cpu_domains, i);
379#else
380 sd = &per_cpu(phys_domains, i);
381#endif
382 cpu_attach_domain(sd, i);
383 }
384}
385/*
386 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
387 */
388void arch_init_sched_domains(const cpumask_t *cpu_map)
389{
390 cpumask_t cpu_default_map;
391
392 /*
393 * Setup mask for cpus without special case scheduling requirements.
394 * For now this just excludes isolated cpus, but could be used to
395 * exclude other special cases in the future.
396 */
397 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
398
399 build_sched_domains(&cpu_default_map);
400}
401
402void arch_destroy_sched_domains(const cpumask_t *cpu_map)
403{
404#ifdef CONFIG_NUMA
405 int i;
406 int cpu;
407
408 for_each_cpu_mask(cpu, *cpu_map) {
409 struct sched_group *sched_group_allnodes
410 = sched_group_allnodes_bycpu[cpu];
411 struct sched_group **sched_group_nodes
412 = sched_group_nodes_bycpu[cpu];
413
414 if (sched_group_allnodes) {
415 kfree(sched_group_allnodes);
416 sched_group_allnodes_bycpu[cpu] = NULL;
417 }
418
419 if (!sched_group_nodes)
420 continue;
421
422 for (i = 0; i < MAX_NUMNODES; i++) {
423 cpumask_t nodemask = node_to_cpumask(i);
424 struct sched_group *oldsg, *sg = sched_group_nodes[i];
425
426 cpus_and(nodemask, nodemask, *cpu_map);
427 if (cpus_empty(nodemask))
428 continue;
429
430 if (sg == NULL)
431 continue;
432 sg = sg->next;
433next_sg:
434 oldsg = sg;
435 sg = sg->next;
436 kfree(oldsg);
437 if (oldsg != sched_group_nodes[i])
438 goto next_sg;
439 }
440 kfree(sched_group_nodes);
441 sched_group_nodes_bycpu[cpu] = NULL;
442 }
443#endif
444}