diff options
Diffstat (limited to 'arch/ia64/mm/discontig.c')
-rw-r--r-- | arch/ia64/mm/discontig.c | 737 |
1 files changed, 737 insertions, 0 deletions
diff --git a/arch/ia64/mm/discontig.c b/arch/ia64/mm/discontig.c new file mode 100644 index 000000000000..3456a9b6971e --- /dev/null +++ b/arch/ia64/mm/discontig.c | |||
@@ -0,0 +1,737 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. | ||
3 | * Copyright (c) 2001 Intel Corp. | ||
4 | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> | ||
5 | * Copyright (c) 2002 NEC Corp. | ||
6 | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> | ||
7 | * Copyright (c) 2004 Silicon Graphics, Inc | ||
8 | * Russ Anderson <rja@sgi.com> | ||
9 | * Jesse Barnes <jbarnes@sgi.com> | ||
10 | * Jack Steiner <steiner@sgi.com> | ||
11 | */ | ||
12 | |||
13 | /* | ||
14 | * Platform initialization for Discontig Memory | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/swap.h> | ||
20 | #include <linux/bootmem.h> | ||
21 | #include <linux/acpi.h> | ||
22 | #include <linux/efi.h> | ||
23 | #include <linux/nodemask.h> | ||
24 | #include <asm/pgalloc.h> | ||
25 | #include <asm/tlb.h> | ||
26 | #include <asm/meminit.h> | ||
27 | #include <asm/numa.h> | ||
28 | #include <asm/sections.h> | ||
29 | |||
30 | /* | ||
31 | * Track per-node information needed to setup the boot memory allocator, the | ||
32 | * per-node areas, and the real VM. | ||
33 | */ | ||
34 | struct early_node_data { | ||
35 | struct ia64_node_data *node_data; | ||
36 | pg_data_t *pgdat; | ||
37 | unsigned long pernode_addr; | ||
38 | unsigned long pernode_size; | ||
39 | struct bootmem_data bootmem_data; | ||
40 | unsigned long num_physpages; | ||
41 | unsigned long num_dma_physpages; | ||
42 | unsigned long min_pfn; | ||
43 | unsigned long max_pfn; | ||
44 | }; | ||
45 | |||
46 | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; | ||
47 | |||
48 | /** | ||
49 | * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node | ||
50 | * | ||
51 | * This function will move nodes with only CPUs (no memory) | ||
52 | * to a node with memory which is at the minimum numa_slit distance. | ||
53 | * Any reassigments will result in the compression of the nodes | ||
54 | * and renumbering the nid values where appropriate. | ||
55 | * The static declarations below are to avoid large stack size which | ||
56 | * makes the code not re-entrant. | ||
57 | */ | ||
58 | static void __init reassign_cpu_only_nodes(void) | ||
59 | { | ||
60 | struct node_memblk_s *p; | ||
61 | int i, j, k, nnode, nid, cpu, cpunid, pxm; | ||
62 | u8 cslit, slit; | ||
63 | static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; | ||
64 | static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; | ||
65 | static int node_flip[MAX_NUMNODES] __initdata; | ||
66 | static int old_nid_map[NR_CPUS] __initdata; | ||
67 | |||
68 | for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | ||
69 | if (!test_bit(p->nid, (void *) nodes_with_mem)) { | ||
70 | set_bit(p->nid, (void *) nodes_with_mem); | ||
71 | nnode++; | ||
72 | } | ||
73 | |||
74 | /* | ||
75 | * All nids with memory. | ||
76 | */ | ||
77 | if (nnode == num_online_nodes()) | ||
78 | return; | ||
79 | |||
80 | /* | ||
81 | * Change nids and attempt to migrate CPU-only nodes | ||
82 | * to the best numa_slit (closest neighbor) possible. | ||
83 | * For reassigned CPU nodes a nid can't be arrived at | ||
84 | * until after this loop because the target nid's new | ||
85 | * identity might not have been established yet. So | ||
86 | * new nid values are fabricated above num_online_nodes() and | ||
87 | * mapped back later to their true value. | ||
88 | */ | ||
89 | /* MCD - This code is a bit complicated, but may be unnecessary now. | ||
90 | * We can now handle much more interesting node-numbering. | ||
91 | * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES | ||
92 | * and that there be no holes in the numbering 0..numnodes | ||
93 | * has become simply 0 <= nid <= MAX_NUMNODES. | ||
94 | */ | ||
95 | nid = 0; | ||
96 | for_each_online_node(i) { | ||
97 | if (test_bit(i, (void *) nodes_with_mem)) { | ||
98 | /* | ||
99 | * Save original nid value for numa_slit | ||
100 | * fixup and node_cpuid reassignments. | ||
101 | */ | ||
102 | node_flip[nid] = i; | ||
103 | |||
104 | if (i == nid) { | ||
105 | nid++; | ||
106 | continue; | ||
107 | } | ||
108 | |||
109 | for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | ||
110 | if (p->nid == i) | ||
111 | p->nid = nid; | ||
112 | |||
113 | cpunid = nid; | ||
114 | nid++; | ||
115 | } else | ||
116 | cpunid = MAX_NUMNODES; | ||
117 | |||
118 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
119 | if (node_cpuid[cpu].nid == i) { | ||
120 | /* | ||
121 | * For nodes not being reassigned just | ||
122 | * fix the cpu's nid and reverse pxm map | ||
123 | */ | ||
124 | if (cpunid < MAX_NUMNODES) { | ||
125 | pxm = nid_to_pxm_map[i]; | ||
126 | pxm_to_nid_map[pxm] = | ||
127 | node_cpuid[cpu].nid = cpunid; | ||
128 | continue; | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * For nodes being reassigned, find best node by | ||
133 | * numa_slit information and then make a temporary | ||
134 | * nid value based on current nid and num_online_nodes(). | ||
135 | */ | ||
136 | slit = 0xff; | ||
137 | k = 2*num_online_nodes(); | ||
138 | for_each_online_node(j) { | ||
139 | if (i == j) | ||
140 | continue; | ||
141 | else if (test_bit(j, (void *) nodes_with_mem)) { | ||
142 | cslit = numa_slit[i * num_online_nodes() + j]; | ||
143 | if (cslit < slit) { | ||
144 | k = num_online_nodes() + j; | ||
145 | slit = cslit; | ||
146 | } | ||
147 | } | ||
148 | } | ||
149 | |||
150 | /* save old nid map so we can update the pxm */ | ||
151 | old_nid_map[cpu] = node_cpuid[cpu].nid; | ||
152 | node_cpuid[cpu].nid = k; | ||
153 | } | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Fixup temporary nid values for CPU-only nodes. | ||
158 | */ | ||
159 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
160 | if (node_cpuid[cpu].nid == (2*num_online_nodes())) { | ||
161 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | ||
162 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; | ||
163 | } else { | ||
164 | for (i = 0; i < nnode; i++) { | ||
165 | if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) | ||
166 | continue; | ||
167 | |||
168 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | ||
169 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; | ||
170 | break; | ||
171 | } | ||
172 | } | ||
173 | |||
174 | /* | ||
175 | * Fix numa_slit by compressing from larger | ||
176 | * nid array to reduced nid array. | ||
177 | */ | ||
178 | for (i = 0; i < nnode; i++) | ||
179 | for (j = 0; j < nnode; j++) | ||
180 | numa_slit_fix[i * nnode + j] = | ||
181 | numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; | ||
182 | |||
183 | memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); | ||
184 | |||
185 | nodes_clear(node_online_map); | ||
186 | for (i = 0; i < nnode; i++) | ||
187 | node_set_online(i); | ||
188 | |||
189 | return; | ||
190 | } | ||
191 | |||
192 | /* | ||
193 | * To prevent cache aliasing effects, align per-node structures so that they | ||
194 | * start at addresses that are strided by node number. | ||
195 | */ | ||
196 | #define NODEDATA_ALIGN(addr, node) \ | ||
197 | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) | ||
198 | |||
199 | /** | ||
200 | * build_node_maps - callback to setup bootmem structs for each node | ||
201 | * @start: physical start of range | ||
202 | * @len: length of range | ||
203 | * @node: node where this range resides | ||
204 | * | ||
205 | * We allocate a struct bootmem_data for each piece of memory that we wish to | ||
206 | * treat as a virtually contiguous block (i.e. each node). Each such block | ||
207 | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down | ||
208 | * if necessary. Any non-existent pages will simply be part of the virtual | ||
209 | * memmap. We also update min_low_pfn and max_low_pfn here as we receive | ||
210 | * memory ranges from the caller. | ||
211 | */ | ||
212 | static int __init build_node_maps(unsigned long start, unsigned long len, | ||
213 | int node) | ||
214 | { | ||
215 | unsigned long cstart, epfn, end = start + len; | ||
216 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | ||
217 | |||
218 | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; | ||
219 | cstart = GRANULEROUNDDOWN(start); | ||
220 | |||
221 | if (!bdp->node_low_pfn) { | ||
222 | bdp->node_boot_start = cstart; | ||
223 | bdp->node_low_pfn = epfn; | ||
224 | } else { | ||
225 | bdp->node_boot_start = min(cstart, bdp->node_boot_start); | ||
226 | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); | ||
227 | } | ||
228 | |||
229 | min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); | ||
230 | max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); | ||
231 | |||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * early_nr_phys_cpus_node - return number of physical cpus on a given node | ||
237 | * @node: node to check | ||
238 | * | ||
239 | * Count the number of physical cpus on @node. These are cpus that actually | ||
240 | * exist. We can't use nr_cpus_node() yet because | ||
241 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | ||
242 | * called yet. | ||
243 | */ | ||
244 | static int early_nr_phys_cpus_node(int node) | ||
245 | { | ||
246 | int cpu, n = 0; | ||
247 | |||
248 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
249 | if (node == node_cpuid[cpu].nid) | ||
250 | if ((cpu == 0) || node_cpuid[cpu].phys_id) | ||
251 | n++; | ||
252 | |||
253 | return n; | ||
254 | } | ||
255 | |||
256 | |||
257 | /** | ||
258 | * early_nr_cpus_node - return number of cpus on a given node | ||
259 | * @node: node to check | ||
260 | * | ||
261 | * Count the number of cpus on @node. We can't use nr_cpus_node() yet because | ||
262 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | ||
263 | * called yet. Note that node 0 will also count all non-existent cpus. | ||
264 | */ | ||
265 | static int early_nr_cpus_node(int node) | ||
266 | { | ||
267 | int cpu, n = 0; | ||
268 | |||
269 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
270 | if (node == node_cpuid[cpu].nid) | ||
271 | n++; | ||
272 | |||
273 | return n; | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * find_pernode_space - allocate memory for memory map and per-node structures | ||
278 | * @start: physical start of range | ||
279 | * @len: length of range | ||
280 | * @node: node where this range resides | ||
281 | * | ||
282 | * This routine reserves space for the per-cpu data struct, the list of | ||
283 | * pg_data_ts and the per-node data struct. Each node will have something like | ||
284 | * the following in the first chunk of addr. space large enough to hold it. | ||
285 | * | ||
286 | * ________________________ | ||
287 | * | | | ||
288 | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first | ||
289 | * | PERCPU_PAGE_SIZE * | start and length big enough | ||
290 | * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. | ||
291 | * |------------------------| | ||
292 | * | local pg_data_t * | | ||
293 | * |------------------------| | ||
294 | * | local ia64_node_data | | ||
295 | * |------------------------| | ||
296 | * | ??? | | ||
297 | * |________________________| | ||
298 | * | ||
299 | * Once this space has been set aside, the bootmem maps are initialized. We | ||
300 | * could probably move the allocation of the per-cpu and ia64_node_data space | ||
301 | * outside of this function and use alloc_bootmem_node(), but doing it here | ||
302 | * is straightforward and we get the alignments we want so... | ||
303 | */ | ||
304 | static int __init find_pernode_space(unsigned long start, unsigned long len, | ||
305 | int node) | ||
306 | { | ||
307 | unsigned long epfn, cpu, cpus, phys_cpus; | ||
308 | unsigned long pernodesize = 0, pernode, pages, mapsize; | ||
309 | void *cpu_data; | ||
310 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | ||
311 | |||
312 | epfn = (start + len) >> PAGE_SHIFT; | ||
313 | |||
314 | pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); | ||
315 | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | ||
316 | |||
317 | /* | ||
318 | * Make sure this memory falls within this node's usable memory | ||
319 | * since we may have thrown some away in build_maps(). | ||
320 | */ | ||
321 | if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) | ||
322 | return 0; | ||
323 | |||
324 | /* Don't setup this node's local space twice... */ | ||
325 | if (mem_data[node].pernode_addr) | ||
326 | return 0; | ||
327 | |||
328 | /* | ||
329 | * Calculate total size needed, incl. what's necessary | ||
330 | * for good alignment and alias prevention. | ||
331 | */ | ||
332 | cpus = early_nr_cpus_node(node); | ||
333 | phys_cpus = early_nr_phys_cpus_node(node); | ||
334 | pernodesize += PERCPU_PAGE_SIZE * cpus; | ||
335 | pernodesize += node * L1_CACHE_BYTES; | ||
336 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
337 | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | ||
338 | pernodesize = PAGE_ALIGN(pernodesize); | ||
339 | pernode = NODEDATA_ALIGN(start, node); | ||
340 | |||
341 | /* Is this range big enough for what we want to store here? */ | ||
342 | if (start + len > (pernode + pernodesize + mapsize)) { | ||
343 | mem_data[node].pernode_addr = pernode; | ||
344 | mem_data[node].pernode_size = pernodesize; | ||
345 | memset(__va(pernode), 0, pernodesize); | ||
346 | |||
347 | cpu_data = (void *)pernode; | ||
348 | pernode += PERCPU_PAGE_SIZE * cpus; | ||
349 | pernode += node * L1_CACHE_BYTES; | ||
350 | |||
351 | mem_data[node].pgdat = __va(pernode); | ||
352 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
353 | |||
354 | mem_data[node].node_data = __va(pernode); | ||
355 | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | ||
356 | |||
357 | mem_data[node].pgdat->bdata = bdp; | ||
358 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
359 | |||
360 | /* | ||
361 | * Copy the static per-cpu data into the region we | ||
362 | * just set aside and then setup __per_cpu_offset | ||
363 | * for each CPU on this node. | ||
364 | */ | ||
365 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
366 | if (node == node_cpuid[cpu].nid) { | ||
367 | memcpy(__va(cpu_data), __phys_per_cpu_start, | ||
368 | __per_cpu_end - __per_cpu_start); | ||
369 | __per_cpu_offset[cpu] = (char*)__va(cpu_data) - | ||
370 | __per_cpu_start; | ||
371 | cpu_data += PERCPU_PAGE_SIZE; | ||
372 | } | ||
373 | } | ||
374 | } | ||
375 | |||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | /** | ||
380 | * free_node_bootmem - free bootmem allocator memory for use | ||
381 | * @start: physical start of range | ||
382 | * @len: length of range | ||
383 | * @node: node where this range resides | ||
384 | * | ||
385 | * Simply calls the bootmem allocator to free the specified ranged from | ||
386 | * the given pg_data_t's bdata struct. After this function has been called | ||
387 | * for all the entries in the EFI memory map, the bootmem allocator will | ||
388 | * be ready to service allocation requests. | ||
389 | */ | ||
390 | static int __init free_node_bootmem(unsigned long start, unsigned long len, | ||
391 | int node) | ||
392 | { | ||
393 | free_bootmem_node(mem_data[node].pgdat, start, len); | ||
394 | |||
395 | return 0; | ||
396 | } | ||
397 | |||
398 | /** | ||
399 | * reserve_pernode_space - reserve memory for per-node space | ||
400 | * | ||
401 | * Reserve the space used by the bootmem maps & per-node space in the boot | ||
402 | * allocator so that when we actually create the real mem maps we don't | ||
403 | * use their memory. | ||
404 | */ | ||
405 | static void __init reserve_pernode_space(void) | ||
406 | { | ||
407 | unsigned long base, size, pages; | ||
408 | struct bootmem_data *bdp; | ||
409 | int node; | ||
410 | |||
411 | for_each_online_node(node) { | ||
412 | pg_data_t *pdp = mem_data[node].pgdat; | ||
413 | |||
414 | bdp = pdp->bdata; | ||
415 | |||
416 | /* First the bootmem_map itself */ | ||
417 | pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); | ||
418 | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | ||
419 | base = __pa(bdp->node_bootmem_map); | ||
420 | reserve_bootmem_node(pdp, base, size); | ||
421 | |||
422 | /* Now the per-node space */ | ||
423 | size = mem_data[node].pernode_size; | ||
424 | base = __pa(mem_data[node].pernode_addr); | ||
425 | reserve_bootmem_node(pdp, base, size); | ||
426 | } | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * initialize_pernode_data - fixup per-cpu & per-node pointers | ||
431 | * | ||
432 | * Each node's per-node area has a copy of the global pg_data_t list, so | ||
433 | * we copy that to each node here, as well as setting the per-cpu pointer | ||
434 | * to the local node data structure. The active_cpus field of the per-node | ||
435 | * structure gets setup by the platform_cpu_init() function later. | ||
436 | */ | ||
437 | static void __init initialize_pernode_data(void) | ||
438 | { | ||
439 | int cpu, node; | ||
440 | pg_data_t *pgdat_list[MAX_NUMNODES]; | ||
441 | |||
442 | for_each_online_node(node) | ||
443 | pgdat_list[node] = mem_data[node].pgdat; | ||
444 | |||
445 | /* Copy the pg_data_t list to each node and init the node field */ | ||
446 | for_each_online_node(node) { | ||
447 | memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, | ||
448 | sizeof(pgdat_list)); | ||
449 | } | ||
450 | |||
451 | /* Set the node_data pointer for each per-cpu struct */ | ||
452 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
453 | node = node_cpuid[cpu].nid; | ||
454 | per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; | ||
455 | } | ||
456 | } | ||
457 | |||
458 | /** | ||
459 | * find_memory - walk the EFI memory map and setup the bootmem allocator | ||
460 | * | ||
461 | * Called early in boot to setup the bootmem allocator, and to | ||
462 | * allocate the per-cpu and per-node structures. | ||
463 | */ | ||
464 | void __init find_memory(void) | ||
465 | { | ||
466 | int node; | ||
467 | |||
468 | reserve_memory(); | ||
469 | |||
470 | if (num_online_nodes() == 0) { | ||
471 | printk(KERN_ERR "node info missing!\n"); | ||
472 | node_set_online(0); | ||
473 | } | ||
474 | |||
475 | min_low_pfn = -1; | ||
476 | max_low_pfn = 0; | ||
477 | |||
478 | if (num_online_nodes() > 1) | ||
479 | reassign_cpu_only_nodes(); | ||
480 | |||
481 | /* These actually end up getting called by call_pernode_memory() */ | ||
482 | efi_memmap_walk(filter_rsvd_memory, build_node_maps); | ||
483 | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); | ||
484 | |||
485 | /* | ||
486 | * Initialize the boot memory maps in reverse order since that's | ||
487 | * what the bootmem allocator expects | ||
488 | */ | ||
489 | for (node = MAX_NUMNODES - 1; node >= 0; node--) { | ||
490 | unsigned long pernode, pernodesize, map; | ||
491 | struct bootmem_data *bdp; | ||
492 | |||
493 | if (!node_online(node)) | ||
494 | continue; | ||
495 | |||
496 | bdp = &mem_data[node].bootmem_data; | ||
497 | pernode = mem_data[node].pernode_addr; | ||
498 | pernodesize = mem_data[node].pernode_size; | ||
499 | map = pernode + pernodesize; | ||
500 | |||
501 | /* Sanity check... */ | ||
502 | if (!pernode) | ||
503 | panic("pernode space for node %d " | ||
504 | "could not be allocated!", node); | ||
505 | |||
506 | init_bootmem_node(mem_data[node].pgdat, | ||
507 | map>>PAGE_SHIFT, | ||
508 | bdp->node_boot_start>>PAGE_SHIFT, | ||
509 | bdp->node_low_pfn); | ||
510 | } | ||
511 | |||
512 | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); | ||
513 | |||
514 | reserve_pernode_space(); | ||
515 | initialize_pernode_data(); | ||
516 | |||
517 | max_pfn = max_low_pfn; | ||
518 | |||
519 | find_initrd(); | ||
520 | } | ||
521 | |||
522 | /** | ||
523 | * per_cpu_init - setup per-cpu variables | ||
524 | * | ||
525 | * find_pernode_space() does most of this already, we just need to set | ||
526 | * local_per_cpu_offset | ||
527 | */ | ||
528 | void *per_cpu_init(void) | ||
529 | { | ||
530 | int cpu; | ||
531 | |||
532 | if (smp_processor_id() == 0) { | ||
533 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
534 | per_cpu(local_per_cpu_offset, cpu) = | ||
535 | __per_cpu_offset[cpu]; | ||
536 | } | ||
537 | } | ||
538 | |||
539 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | ||
540 | } | ||
541 | |||
542 | /** | ||
543 | * show_mem - give short summary of memory stats | ||
544 | * | ||
545 | * Shows a simple page count of reserved and used pages in the system. | ||
546 | * For discontig machines, it does this on a per-pgdat basis. | ||
547 | */ | ||
548 | void show_mem(void) | ||
549 | { | ||
550 | int i, total_reserved = 0; | ||
551 | int total_shared = 0, total_cached = 0; | ||
552 | unsigned long total_present = 0; | ||
553 | pg_data_t *pgdat; | ||
554 | |||
555 | printk("Mem-info:\n"); | ||
556 | show_free_areas(); | ||
557 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
558 | for_each_pgdat(pgdat) { | ||
559 | unsigned long present = pgdat->node_present_pages; | ||
560 | int shared = 0, cached = 0, reserved = 0; | ||
561 | printk("Node ID: %d\n", pgdat->node_id); | ||
562 | for(i = 0; i < pgdat->node_spanned_pages; i++) { | ||
563 | if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) | ||
564 | continue; | ||
565 | if (PageReserved(pgdat->node_mem_map+i)) | ||
566 | reserved++; | ||
567 | else if (PageSwapCache(pgdat->node_mem_map+i)) | ||
568 | cached++; | ||
569 | else if (page_count(pgdat->node_mem_map+i)) | ||
570 | shared += page_count(pgdat->node_mem_map+i)-1; | ||
571 | } | ||
572 | total_present += present; | ||
573 | total_reserved += reserved; | ||
574 | total_cached += cached; | ||
575 | total_shared += shared; | ||
576 | printk("\t%ld pages of RAM\n", present); | ||
577 | printk("\t%d reserved pages\n", reserved); | ||
578 | printk("\t%d pages shared\n", shared); | ||
579 | printk("\t%d pages swap cached\n", cached); | ||
580 | } | ||
581 | printk("%ld pages of RAM\n", total_present); | ||
582 | printk("%d reserved pages\n", total_reserved); | ||
583 | printk("%d pages shared\n", total_shared); | ||
584 | printk("%d pages swap cached\n", total_cached); | ||
585 | printk("Total of %ld pages in page table cache\n", pgtable_cache_size); | ||
586 | printk("%d free buffer pages\n", nr_free_buffer_pages()); | ||
587 | } | ||
588 | |||
589 | /** | ||
590 | * call_pernode_memory - use SRAT to call callback functions with node info | ||
591 | * @start: physical start of range | ||
592 | * @len: length of range | ||
593 | * @arg: function to call for each range | ||
594 | * | ||
595 | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find | ||
596 | * out to which node a block of memory belongs. Ignore memory that we cannot | ||
597 | * identify, and split blocks that run across multiple nodes. | ||
598 | * | ||
599 | * Take this opportunity to round the start address up and the end address | ||
600 | * down to page boundaries. | ||
601 | */ | ||
602 | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) | ||
603 | { | ||
604 | unsigned long rs, re, end = start + len; | ||
605 | void (*func)(unsigned long, unsigned long, int); | ||
606 | int i; | ||
607 | |||
608 | start = PAGE_ALIGN(start); | ||
609 | end &= PAGE_MASK; | ||
610 | if (start >= end) | ||
611 | return; | ||
612 | |||
613 | func = arg; | ||
614 | |||
615 | if (!num_node_memblks) { | ||
616 | /* No SRAT table, so assume one node (node 0) */ | ||
617 | if (start < end) | ||
618 | (*func)(start, end - start, 0); | ||
619 | return; | ||
620 | } | ||
621 | |||
622 | for (i = 0; i < num_node_memblks; i++) { | ||
623 | rs = max(start, node_memblk[i].start_paddr); | ||
624 | re = min(end, node_memblk[i].start_paddr + | ||
625 | node_memblk[i].size); | ||
626 | |||
627 | if (rs < re) | ||
628 | (*func)(rs, re - rs, node_memblk[i].nid); | ||
629 | |||
630 | if (re == end) | ||
631 | break; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | /** | ||
636 | * count_node_pages - callback to build per-node memory info structures | ||
637 | * @start: physical start of range | ||
638 | * @len: length of range | ||
639 | * @node: node where this range resides | ||
640 | * | ||
641 | * Each node has it's own number of physical pages, DMAable pages, start, and | ||
642 | * end page frame number. This routine will be called by call_pernode_memory() | ||
643 | * for each piece of usable memory and will setup these values for each node. | ||
644 | * Very similar to build_maps(). | ||
645 | */ | ||
646 | static __init int count_node_pages(unsigned long start, unsigned long len, int node) | ||
647 | { | ||
648 | unsigned long end = start + len; | ||
649 | |||
650 | mem_data[node].num_physpages += len >> PAGE_SHIFT; | ||
651 | if (start <= __pa(MAX_DMA_ADDRESS)) | ||
652 | mem_data[node].num_dma_physpages += | ||
653 | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; | ||
654 | start = GRANULEROUNDDOWN(start); | ||
655 | start = ORDERROUNDDOWN(start); | ||
656 | end = GRANULEROUNDUP(end); | ||
657 | mem_data[node].max_pfn = max(mem_data[node].max_pfn, | ||
658 | end >> PAGE_SHIFT); | ||
659 | mem_data[node].min_pfn = min(mem_data[node].min_pfn, | ||
660 | start >> PAGE_SHIFT); | ||
661 | |||
662 | return 0; | ||
663 | } | ||
664 | |||
665 | /** | ||
666 | * paging_init - setup page tables | ||
667 | * | ||
668 | * paging_init() sets up the page tables for each node of the system and frees | ||
669 | * the bootmem allocator memory for general use. | ||
670 | */ | ||
671 | void __init paging_init(void) | ||
672 | { | ||
673 | unsigned long max_dma; | ||
674 | unsigned long zones_size[MAX_NR_ZONES]; | ||
675 | unsigned long zholes_size[MAX_NR_ZONES]; | ||
676 | unsigned long pfn_offset = 0; | ||
677 | int node; | ||
678 | |||
679 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
680 | |||
681 | /* so min() will work in count_node_pages */ | ||
682 | for_each_online_node(node) | ||
683 | mem_data[node].min_pfn = ~0UL; | ||
684 | |||
685 | efi_memmap_walk(filter_rsvd_memory, count_node_pages); | ||
686 | |||
687 | for_each_online_node(node) { | ||
688 | memset(zones_size, 0, sizeof(zones_size)); | ||
689 | memset(zholes_size, 0, sizeof(zholes_size)); | ||
690 | |||
691 | num_physpages += mem_data[node].num_physpages; | ||
692 | |||
693 | if (mem_data[node].min_pfn >= max_dma) { | ||
694 | /* All of this node's memory is above ZONE_DMA */ | ||
695 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
696 | mem_data[node].min_pfn; | ||
697 | zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
698 | mem_data[node].min_pfn - | ||
699 | mem_data[node].num_physpages; | ||
700 | } else if (mem_data[node].max_pfn < max_dma) { | ||
701 | /* All of this node's memory is in ZONE_DMA */ | ||
702 | zones_size[ZONE_DMA] = mem_data[node].max_pfn - | ||
703 | mem_data[node].min_pfn; | ||
704 | zholes_size[ZONE_DMA] = mem_data[node].max_pfn - | ||
705 | mem_data[node].min_pfn - | ||
706 | mem_data[node].num_dma_physpages; | ||
707 | } else { | ||
708 | /* This node has memory in both zones */ | ||
709 | zones_size[ZONE_DMA] = max_dma - | ||
710 | mem_data[node].min_pfn; | ||
711 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | ||
712 | mem_data[node].num_dma_physpages; | ||
713 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
714 | max_dma; | ||
715 | zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - | ||
716 | (mem_data[node].num_physpages - | ||
717 | mem_data[node].num_dma_physpages); | ||
718 | } | ||
719 | |||
720 | if (node == 0) { | ||
721 | vmalloc_end -= | ||
722 | PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | ||
723 | vmem_map = (struct page *) vmalloc_end; | ||
724 | |||
725 | efi_memmap_walk(create_mem_map_page_table, NULL); | ||
726 | printk("Virtual mem_map starts at 0x%p\n", vmem_map); | ||
727 | } | ||
728 | |||
729 | pfn_offset = mem_data[node].min_pfn; | ||
730 | |||
731 | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; | ||
732 | free_area_init_node(node, NODE_DATA(node), zones_size, | ||
733 | pfn_offset, zholes_size); | ||
734 | } | ||
735 | |||
736 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | ||
737 | } | ||