diff options
Diffstat (limited to 'arch/i386/mm/fault.c')
-rw-r--r-- | arch/i386/mm/fault.c | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/arch/i386/mm/fault.c b/arch/i386/mm/fault.c new file mode 100644 index 000000000000..a509237c4815 --- /dev/null +++ b/arch/i386/mm/fault.c | |||
@@ -0,0 +1,552 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | #include <linux/signal.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/errno.h> | ||
11 | #include <linux/string.h> | ||
12 | #include <linux/types.h> | ||
13 | #include <linux/ptrace.h> | ||
14 | #include <linux/mman.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/smp_lock.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/tty.h> | ||
21 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
22 | #include <linux/highmem.h> | ||
23 | #include <linux/module.h> | ||
24 | |||
25 | #include <asm/system.h> | ||
26 | #include <asm/uaccess.h> | ||
27 | #include <asm/desc.h> | ||
28 | #include <asm/kdebug.h> | ||
29 | |||
30 | extern void die(const char *,struct pt_regs *,long); | ||
31 | |||
32 | /* | ||
33 | * Unlock any spinlocks which will prevent us from getting the | ||
34 | * message out | ||
35 | */ | ||
36 | void bust_spinlocks(int yes) | ||
37 | { | ||
38 | int loglevel_save = console_loglevel; | ||
39 | |||
40 | if (yes) { | ||
41 | oops_in_progress = 1; | ||
42 | return; | ||
43 | } | ||
44 | #ifdef CONFIG_VT | ||
45 | unblank_screen(); | ||
46 | #endif | ||
47 | oops_in_progress = 0; | ||
48 | /* | ||
49 | * OK, the message is on the console. Now we call printk() | ||
50 | * without oops_in_progress set so that printk will give klogd | ||
51 | * a poke. Hold onto your hats... | ||
52 | */ | ||
53 | console_loglevel = 15; /* NMI oopser may have shut the console up */ | ||
54 | printk(" "); | ||
55 | console_loglevel = loglevel_save; | ||
56 | } | ||
57 | |||
58 | /* | ||
59 | * Return EIP plus the CS segment base. The segment limit is also | ||
60 | * adjusted, clamped to the kernel/user address space (whichever is | ||
61 | * appropriate), and returned in *eip_limit. | ||
62 | * | ||
63 | * The segment is checked, because it might have been changed by another | ||
64 | * task between the original faulting instruction and here. | ||
65 | * | ||
66 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
67 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
68 | * then the returned value will be greater than *eip_limit. | ||
69 | * | ||
70 | * This is slow, but is very rarely executed. | ||
71 | */ | ||
72 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
73 | unsigned long *eip_limit) | ||
74 | { | ||
75 | unsigned long eip = regs->eip; | ||
76 | unsigned seg = regs->xcs & 0xffff; | ||
77 | u32 seg_ar, seg_limit, base, *desc; | ||
78 | |||
79 | /* The standard kernel/user address space limit. */ | ||
80 | *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg; | ||
81 | |||
82 | /* Unlikely, but must come before segment checks. */ | ||
83 | if (unlikely((regs->eflags & VM_MASK) != 0)) | ||
84 | return eip + (seg << 4); | ||
85 | |||
86 | /* By far the most common cases. */ | ||
87 | if (likely(seg == __USER_CS || seg == __KERNEL_CS)) | ||
88 | return eip; | ||
89 | |||
90 | /* Check the segment exists, is within the current LDT/GDT size, | ||
91 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
92 | that it's a code segment, and get the limit. */ | ||
93 | __asm__ ("larl %3,%0; lsll %3,%1" | ||
94 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
95 | if ((~seg_ar & 0x9800) || eip > seg_limit) { | ||
96 | *eip_limit = 0; | ||
97 | return 1; /* So that returned eip > *eip_limit. */ | ||
98 | } | ||
99 | |||
100 | /* Get the GDT/LDT descriptor base. | ||
101 | When you look for races in this code remember that | ||
102 | LDT and other horrors are only used in user space. */ | ||
103 | if (seg & (1<<2)) { | ||
104 | /* Must lock the LDT while reading it. */ | ||
105 | down(¤t->mm->context.sem); | ||
106 | desc = current->mm->context.ldt; | ||
107 | desc = (void *)desc + (seg & ~7); | ||
108 | } else { | ||
109 | /* Must disable preemption while reading the GDT. */ | ||
110 | desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu()); | ||
111 | desc = (void *)desc + (seg & ~7); | ||
112 | } | ||
113 | |||
114 | /* Decode the code segment base from the descriptor */ | ||
115 | base = get_desc_base((unsigned long *)desc); | ||
116 | |||
117 | if (seg & (1<<2)) { | ||
118 | up(¤t->mm->context.sem); | ||
119 | } else | ||
120 | put_cpu(); | ||
121 | |||
122 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
123 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
124 | seg_limit += base; | ||
125 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
126 | *eip_limit = seg_limit; | ||
127 | return eip + base; | ||
128 | } | ||
129 | |||
130 | /* | ||
131 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
132 | * Check that here and ignore it. | ||
133 | */ | ||
134 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | ||
135 | { | ||
136 | unsigned long limit; | ||
137 | unsigned long instr = get_segment_eip (regs, &limit); | ||
138 | int scan_more = 1; | ||
139 | int prefetch = 0; | ||
140 | int i; | ||
141 | |||
142 | for (i = 0; scan_more && i < 15; i++) { | ||
143 | unsigned char opcode; | ||
144 | unsigned char instr_hi; | ||
145 | unsigned char instr_lo; | ||
146 | |||
147 | if (instr > limit) | ||
148 | break; | ||
149 | if (__get_user(opcode, (unsigned char *) instr)) | ||
150 | break; | ||
151 | |||
152 | instr_hi = opcode & 0xf0; | ||
153 | instr_lo = opcode & 0x0f; | ||
154 | instr++; | ||
155 | |||
156 | switch (instr_hi) { | ||
157 | case 0x20: | ||
158 | case 0x30: | ||
159 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | ||
160 | scan_more = ((instr_lo & 7) == 0x6); | ||
161 | break; | ||
162 | |||
163 | case 0x60: | ||
164 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
165 | scan_more = (instr_lo & 0xC) == 0x4; | ||
166 | break; | ||
167 | case 0xF0: | ||
168 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | ||
169 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
170 | break; | ||
171 | case 0x00: | ||
172 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
173 | scan_more = 0; | ||
174 | if (instr > limit) | ||
175 | break; | ||
176 | if (__get_user(opcode, (unsigned char *) instr)) | ||
177 | break; | ||
178 | prefetch = (instr_lo == 0xF) && | ||
179 | (opcode == 0x0D || opcode == 0x18); | ||
180 | break; | ||
181 | default: | ||
182 | scan_more = 0; | ||
183 | break; | ||
184 | } | ||
185 | } | ||
186 | return prefetch; | ||
187 | } | ||
188 | |||
189 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
190 | unsigned long error_code) | ||
191 | { | ||
192 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | ||
193 | boot_cpu_data.x86 >= 6)) { | ||
194 | /* Catch an obscure case of prefetch inside an NX page. */ | ||
195 | if (nx_enabled && (error_code & 16)) | ||
196 | return 0; | ||
197 | return __is_prefetch(regs, addr); | ||
198 | } | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | ||
203 | |||
204 | /* | ||
205 | * This routine handles page faults. It determines the address, | ||
206 | * and the problem, and then passes it off to one of the appropriate | ||
207 | * routines. | ||
208 | * | ||
209 | * error_code: | ||
210 | * bit 0 == 0 means no page found, 1 means protection fault | ||
211 | * bit 1 == 0 means read, 1 means write | ||
212 | * bit 2 == 0 means kernel, 1 means user-mode | ||
213 | */ | ||
214 | fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
215 | { | ||
216 | struct task_struct *tsk; | ||
217 | struct mm_struct *mm; | ||
218 | struct vm_area_struct * vma; | ||
219 | unsigned long address; | ||
220 | unsigned long page; | ||
221 | int write; | ||
222 | siginfo_t info; | ||
223 | |||
224 | /* get the address */ | ||
225 | __asm__("movl %%cr2,%0":"=r" (address)); | ||
226 | |||
227 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, | ||
228 | SIGSEGV) == NOTIFY_STOP) | ||
229 | return; | ||
230 | /* It's safe to allow irq's after cr2 has been saved */ | ||
231 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | ||
232 | local_irq_enable(); | ||
233 | |||
234 | tsk = current; | ||
235 | |||
236 | info.si_code = SEGV_MAPERR; | ||
237 | |||
238 | /* | ||
239 | * We fault-in kernel-space virtual memory on-demand. The | ||
240 | * 'reference' page table is init_mm.pgd. | ||
241 | * | ||
242 | * NOTE! We MUST NOT take any locks for this case. We may | ||
243 | * be in an interrupt or a critical region, and should | ||
244 | * only copy the information from the master page table, | ||
245 | * nothing more. | ||
246 | * | ||
247 | * This verifies that the fault happens in kernel space | ||
248 | * (error_code & 4) == 0, and that the fault was not a | ||
249 | * protection error (error_code & 1) == 0. | ||
250 | */ | ||
251 | if (unlikely(address >= TASK_SIZE)) { | ||
252 | if (!(error_code & 5)) | ||
253 | goto vmalloc_fault; | ||
254 | /* | ||
255 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
256 | * fault we could otherwise deadlock. | ||
257 | */ | ||
258 | goto bad_area_nosemaphore; | ||
259 | } | ||
260 | |||
261 | mm = tsk->mm; | ||
262 | |||
263 | /* | ||
264 | * If we're in an interrupt, have no user context or are running in an | ||
265 | * atomic region then we must not take the fault.. | ||
266 | */ | ||
267 | if (in_atomic() || !mm) | ||
268 | goto bad_area_nosemaphore; | ||
269 | |||
270 | /* When running in the kernel we expect faults to occur only to | ||
271 | * addresses in user space. All other faults represent errors in the | ||
272 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
273 | * erroneous fault occuring in a code path which already holds mmap_sem | ||
274 | * we will deadlock attempting to validate the fault against the | ||
275 | * address space. Luckily the kernel only validly references user | ||
276 | * space from well defined areas of code, which are listed in the | ||
277 | * exceptions table. | ||
278 | * | ||
279 | * As the vast majority of faults will be valid we will only perform | ||
280 | * the source reference check when there is a possibilty of a deadlock. | ||
281 | * Attempt to lock the address space, if we cannot we then validate the | ||
282 | * source. If this is invalid we can skip the address space check, | ||
283 | * thus avoiding the deadlock. | ||
284 | */ | ||
285 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
286 | if ((error_code & 4) == 0 && | ||
287 | !search_exception_tables(regs->eip)) | ||
288 | goto bad_area_nosemaphore; | ||
289 | down_read(&mm->mmap_sem); | ||
290 | } | ||
291 | |||
292 | vma = find_vma(mm, address); | ||
293 | if (!vma) | ||
294 | goto bad_area; | ||
295 | if (vma->vm_start <= address) | ||
296 | goto good_area; | ||
297 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
298 | goto bad_area; | ||
299 | if (error_code & 4) { | ||
300 | /* | ||
301 | * accessing the stack below %esp is always a bug. | ||
302 | * The "+ 32" is there due to some instructions (like | ||
303 | * pusha) doing post-decrement on the stack and that | ||
304 | * doesn't show up until later.. | ||
305 | */ | ||
306 | if (address + 32 < regs->esp) | ||
307 | goto bad_area; | ||
308 | } | ||
309 | if (expand_stack(vma, address)) | ||
310 | goto bad_area; | ||
311 | /* | ||
312 | * Ok, we have a good vm_area for this memory access, so | ||
313 | * we can handle it.. | ||
314 | */ | ||
315 | good_area: | ||
316 | info.si_code = SEGV_ACCERR; | ||
317 | write = 0; | ||
318 | switch (error_code & 3) { | ||
319 | default: /* 3: write, present */ | ||
320 | #ifdef TEST_VERIFY_AREA | ||
321 | if (regs->cs == KERNEL_CS) | ||
322 | printk("WP fault at %08lx\n", regs->eip); | ||
323 | #endif | ||
324 | /* fall through */ | ||
325 | case 2: /* write, not present */ | ||
326 | if (!(vma->vm_flags & VM_WRITE)) | ||
327 | goto bad_area; | ||
328 | write++; | ||
329 | break; | ||
330 | case 1: /* read, present */ | ||
331 | goto bad_area; | ||
332 | case 0: /* read, not present */ | ||
333 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | ||
334 | goto bad_area; | ||
335 | } | ||
336 | |||
337 | survive: | ||
338 | /* | ||
339 | * If for any reason at all we couldn't handle the fault, | ||
340 | * make sure we exit gracefully rather than endlessly redo | ||
341 | * the fault. | ||
342 | */ | ||
343 | switch (handle_mm_fault(mm, vma, address, write)) { | ||
344 | case VM_FAULT_MINOR: | ||
345 | tsk->min_flt++; | ||
346 | break; | ||
347 | case VM_FAULT_MAJOR: | ||
348 | tsk->maj_flt++; | ||
349 | break; | ||
350 | case VM_FAULT_SIGBUS: | ||
351 | goto do_sigbus; | ||
352 | case VM_FAULT_OOM: | ||
353 | goto out_of_memory; | ||
354 | default: | ||
355 | BUG(); | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
360 | */ | ||
361 | if (regs->eflags & VM_MASK) { | ||
362 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
363 | if (bit < 32) | ||
364 | tsk->thread.screen_bitmap |= 1 << bit; | ||
365 | } | ||
366 | up_read(&mm->mmap_sem); | ||
367 | return; | ||
368 | |||
369 | /* | ||
370 | * Something tried to access memory that isn't in our memory map.. | ||
371 | * Fix it, but check if it's kernel or user first.. | ||
372 | */ | ||
373 | bad_area: | ||
374 | up_read(&mm->mmap_sem); | ||
375 | |||
376 | bad_area_nosemaphore: | ||
377 | /* User mode accesses just cause a SIGSEGV */ | ||
378 | if (error_code & 4) { | ||
379 | /* | ||
380 | * Valid to do another page fault here because this one came | ||
381 | * from user space. | ||
382 | */ | ||
383 | if (is_prefetch(regs, address, error_code)) | ||
384 | return; | ||
385 | |||
386 | tsk->thread.cr2 = address; | ||
387 | /* Kernel addresses are always protection faults */ | ||
388 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
389 | tsk->thread.trap_no = 14; | ||
390 | info.si_signo = SIGSEGV; | ||
391 | info.si_errno = 0; | ||
392 | /* info.si_code has been set above */ | ||
393 | info.si_addr = (void __user *)address; | ||
394 | force_sig_info(SIGSEGV, &info, tsk); | ||
395 | return; | ||
396 | } | ||
397 | |||
398 | #ifdef CONFIG_X86_F00F_BUG | ||
399 | /* | ||
400 | * Pentium F0 0F C7 C8 bug workaround. | ||
401 | */ | ||
402 | if (boot_cpu_data.f00f_bug) { | ||
403 | unsigned long nr; | ||
404 | |||
405 | nr = (address - idt_descr.address) >> 3; | ||
406 | |||
407 | if (nr == 6) { | ||
408 | do_invalid_op(regs, 0); | ||
409 | return; | ||
410 | } | ||
411 | } | ||
412 | #endif | ||
413 | |||
414 | no_context: | ||
415 | /* Are we prepared to handle this kernel fault? */ | ||
416 | if (fixup_exception(regs)) | ||
417 | return; | ||
418 | |||
419 | /* | ||
420 | * Valid to do another page fault here, because if this fault | ||
421 | * had been triggered by is_prefetch fixup_exception would have | ||
422 | * handled it. | ||
423 | */ | ||
424 | if (is_prefetch(regs, address, error_code)) | ||
425 | return; | ||
426 | |||
427 | /* | ||
428 | * Oops. The kernel tried to access some bad page. We'll have to | ||
429 | * terminate things with extreme prejudice. | ||
430 | */ | ||
431 | |||
432 | bust_spinlocks(1); | ||
433 | |||
434 | #ifdef CONFIG_X86_PAE | ||
435 | if (error_code & 16) { | ||
436 | pte_t *pte = lookup_address(address); | ||
437 | |||
438 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | ||
439 | printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid); | ||
440 | } | ||
441 | #endif | ||
442 | if (address < PAGE_SIZE) | ||
443 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | ||
444 | else | ||
445 | printk(KERN_ALERT "Unable to handle kernel paging request"); | ||
446 | printk(" at virtual address %08lx\n",address); | ||
447 | printk(KERN_ALERT " printing eip:\n"); | ||
448 | printk("%08lx\n", regs->eip); | ||
449 | asm("movl %%cr3,%0":"=r" (page)); | ||
450 | page = ((unsigned long *) __va(page))[address >> 22]; | ||
451 | printk(KERN_ALERT "*pde = %08lx\n", page); | ||
452 | /* | ||
453 | * We must not directly access the pte in the highpte | ||
454 | * case, the page table might be allocated in highmem. | ||
455 | * And lets rather not kmap-atomic the pte, just in case | ||
456 | * it's allocated already. | ||
457 | */ | ||
458 | #ifndef CONFIG_HIGHPTE | ||
459 | if (page & 1) { | ||
460 | page &= PAGE_MASK; | ||
461 | address &= 0x003ff000; | ||
462 | page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; | ||
463 | printk(KERN_ALERT "*pte = %08lx\n", page); | ||
464 | } | ||
465 | #endif | ||
466 | die("Oops", regs, error_code); | ||
467 | bust_spinlocks(0); | ||
468 | do_exit(SIGKILL); | ||
469 | |||
470 | /* | ||
471 | * We ran out of memory, or some other thing happened to us that made | ||
472 | * us unable to handle the page fault gracefully. | ||
473 | */ | ||
474 | out_of_memory: | ||
475 | up_read(&mm->mmap_sem); | ||
476 | if (tsk->pid == 1) { | ||
477 | yield(); | ||
478 | down_read(&mm->mmap_sem); | ||
479 | goto survive; | ||
480 | } | ||
481 | printk("VM: killing process %s\n", tsk->comm); | ||
482 | if (error_code & 4) | ||
483 | do_exit(SIGKILL); | ||
484 | goto no_context; | ||
485 | |||
486 | do_sigbus: | ||
487 | up_read(&mm->mmap_sem); | ||
488 | |||
489 | /* Kernel mode? Handle exceptions or die */ | ||
490 | if (!(error_code & 4)) | ||
491 | goto no_context; | ||
492 | |||
493 | /* User space => ok to do another page fault */ | ||
494 | if (is_prefetch(regs, address, error_code)) | ||
495 | return; | ||
496 | |||
497 | tsk->thread.cr2 = address; | ||
498 | tsk->thread.error_code = error_code; | ||
499 | tsk->thread.trap_no = 14; | ||
500 | info.si_signo = SIGBUS; | ||
501 | info.si_errno = 0; | ||
502 | info.si_code = BUS_ADRERR; | ||
503 | info.si_addr = (void __user *)address; | ||
504 | force_sig_info(SIGBUS, &info, tsk); | ||
505 | return; | ||
506 | |||
507 | vmalloc_fault: | ||
508 | { | ||
509 | /* | ||
510 | * Synchronize this task's top level page-table | ||
511 | * with the 'reference' page table. | ||
512 | * | ||
513 | * Do _not_ use "tsk" here. We might be inside | ||
514 | * an interrupt in the middle of a task switch.. | ||
515 | */ | ||
516 | int index = pgd_index(address); | ||
517 | unsigned long pgd_paddr; | ||
518 | pgd_t *pgd, *pgd_k; | ||
519 | pud_t *pud, *pud_k; | ||
520 | pmd_t *pmd, *pmd_k; | ||
521 | pte_t *pte_k; | ||
522 | |||
523 | asm("movl %%cr3,%0":"=r" (pgd_paddr)); | ||
524 | pgd = index + (pgd_t *)__va(pgd_paddr); | ||
525 | pgd_k = init_mm.pgd + index; | ||
526 | |||
527 | if (!pgd_present(*pgd_k)) | ||
528 | goto no_context; | ||
529 | |||
530 | /* | ||
531 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
532 | * and redundant with the set_pmd() on non-PAE. As would | ||
533 | * set_pud. | ||
534 | */ | ||
535 | |||
536 | pud = pud_offset(pgd, address); | ||
537 | pud_k = pud_offset(pgd_k, address); | ||
538 | if (!pud_present(*pud_k)) | ||
539 | goto no_context; | ||
540 | |||
541 | pmd = pmd_offset(pud, address); | ||
542 | pmd_k = pmd_offset(pud_k, address); | ||
543 | if (!pmd_present(*pmd_k)) | ||
544 | goto no_context; | ||
545 | set_pmd(pmd, *pmd_k); | ||
546 | |||
547 | pte_k = pte_offset_kernel(pmd_k, address); | ||
548 | if (!pte_present(*pte_k)) | ||
549 | goto no_context; | ||
550 | return; | ||
551 | } | ||
552 | } | ||