aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/srat.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/i386/kernel/srat.c')
-rw-r--r--arch/i386/kernel/srat.c97
1 files changed, 2 insertions, 95 deletions
diff --git a/arch/i386/kernel/srat.c b/arch/i386/kernel/srat.c
index 83db411b3aa7..32413122c4c2 100644
--- a/arch/i386/kernel/srat.c
+++ b/arch/i386/kernel/srat.c
@@ -54,8 +54,6 @@ struct node_memory_chunk_s {
54static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; 54static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
55 55
56static int num_memory_chunks; /* total number of memory chunks */ 56static int num_memory_chunks; /* total number of memory chunks */
57static int zholes_size_init;
58static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
59 57
60extern void * boot_ioremap(unsigned long, unsigned long); 58extern void * boot_ioremap(unsigned long, unsigned long);
61 59
@@ -135,47 +133,6 @@ static void __init parse_memory_affinity_structure (char *sratp)
135 "enabled and removable" : "enabled" ) ); 133 "enabled and removable" : "enabled" ) );
136} 134}
137 135
138/* Take a chunk of pages from page frame cstart to cend and count the number
139 * of pages in each zone, returned via zones[].
140 */
141static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
142 unsigned long *zones)
143{
144 unsigned long max_dma;
145 extern unsigned long max_low_pfn;
146
147 int z;
148 unsigned long rend;
149
150 /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
151 * similarly scoped information and should be handled in a consistant
152 * manner.
153 */
154 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
155
156 /* Split the hole into the zones in which it falls. Repeatedly
157 * take the segment in which the remaining hole starts, round it
158 * to the end of that zone.
159 */
160 memset(zones, 0, MAX_NR_ZONES * sizeof(long));
161 while (cstart < cend) {
162 if (cstart < max_dma) {
163 z = ZONE_DMA;
164 rend = (cend < max_dma)? cend : max_dma;
165
166 } else if (cstart < max_low_pfn) {
167 z = ZONE_NORMAL;
168 rend = (cend < max_low_pfn)? cend : max_low_pfn;
169
170 } else {
171 z = ZONE_HIGHMEM;
172 rend = cend;
173 }
174 zones[z] += rend - cstart;
175 cstart = rend;
176 }
177}
178
179/* 136/*
180 * The SRAT table always lists ascending addresses, so can always 137 * The SRAT table always lists ascending addresses, so can always
181 * assume that the first "start" address that you see is the real 138 * assume that the first "start" address that you see is the real
@@ -220,7 +177,6 @@ static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
220 177
221 memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */ 178 memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
222 memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); 179 memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
223 memset(zholes_size, 0, sizeof(zholes_size));
224 180
225 num_memory_chunks = 0; 181 num_memory_chunks = 0;
226 while (p < end) { 182 while (p < end) {
@@ -284,6 +240,7 @@ static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
284 printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", 240 printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
285 j, chunk->nid, chunk->start_pfn, chunk->end_pfn); 241 j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
286 node_read_chunk(chunk->nid, chunk); 242 node_read_chunk(chunk->nid, chunk);
243 add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn);
287 } 244 }
288 245
289 for_each_online_node(nid) { 246 for_each_online_node(nid) {
@@ -392,57 +349,7 @@ int __init get_memcfg_from_srat(void)
392 return acpi20_parse_srat((struct acpi_table_srat *)header); 349 return acpi20_parse_srat((struct acpi_table_srat *)header);
393 } 350 }
394out_err: 351out_err:
352 remove_all_active_ranges();
395 printk("failed to get NUMA memory information from SRAT table\n"); 353 printk("failed to get NUMA memory information from SRAT table\n");
396 return 0; 354 return 0;
397} 355}
398
399/* For each node run the memory list to determine whether there are
400 * any memory holes. For each hole determine which ZONE they fall
401 * into.
402 *
403 * NOTE#1: this requires knowledge of the zone boundries and so
404 * _cannot_ be performed before those are calculated in setup_memory.
405 *
406 * NOTE#2: we rely on the fact that the memory chunks are ordered by
407 * start pfn number during setup.
408 */
409static void __init get_zholes_init(void)
410{
411 int nid;
412 int c;
413 int first;
414 unsigned long end = 0;
415
416 for_each_online_node(nid) {
417 first = 1;
418 for (c = 0; c < num_memory_chunks; c++){
419 if (node_memory_chunk[c].nid == nid) {
420 if (first) {
421 end = node_memory_chunk[c].end_pfn;
422 first = 0;
423
424 } else {
425 /* Record any gap between this chunk
426 * and the previous chunk on this node
427 * against the zones it spans.
428 */
429 chunk_to_zones(end,
430 node_memory_chunk[c].start_pfn,
431 &zholes_size[nid * MAX_NR_ZONES]);
432 }
433 }
434 }
435 }
436}
437
438unsigned long * __init get_zholes_size(int nid)
439{
440 if (!zholes_size_init) {
441 zholes_size_init++;
442 get_zholes_init();
443 }
444 if (nid >= MAX_NUMNODES || !node_online(nid))
445 printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",
446 __FUNCTION__, nid, num_online_nodes());
447 return &zholes_size[nid * MAX_NR_ZONES];
448}