aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/setup.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/i386/kernel/setup.c')
-rw-r--r--arch/i386/kernel/setup.c1535
1 files changed, 1535 insertions, 0 deletions
diff --git a/arch/i386/kernel/setup.c b/arch/i386/kernel/setup.c
new file mode 100644
index 000000000000..945ec73163c8
--- /dev/null
+++ b/arch/i386/kernel/setup.c
@@ -0,0 +1,1535 @@
1/*
2 * linux/arch/i386/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 *
8 * Memory region support
9 * David Parsons <orc@pell.chi.il.us>, July-August 1999
10 *
11 * Added E820 sanitization routine (removes overlapping memory regions);
12 * Brian Moyle <bmoyle@mvista.com>, February 2001
13 *
14 * Moved CPU detection code to cpu/${cpu}.c
15 * Patrick Mochel <mochel@osdl.org>, March 2002
16 *
17 * Provisions for empty E820 memory regions (reported by certain BIOSes).
18 * Alex Achenbach <xela@slit.de>, December 2002.
19 *
20 */
21
22/*
23 * This file handles the architecture-dependent parts of initialization
24 */
25
26#include <linux/sched.h>
27#include <linux/mm.h>
28#include <linux/tty.h>
29#include <linux/ioport.h>
30#include <linux/acpi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/seq_file.h>
35#include <linux/console.h>
36#include <linux/mca.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/module.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/nodemask.h>
44#include <video/edid.h>
45#include <asm/e820.h>
46#include <asm/mpspec.h>
47#include <asm/setup.h>
48#include <asm/arch_hooks.h>
49#include <asm/sections.h>
50#include <asm/io_apic.h>
51#include <asm/ist.h>
52#include <asm/io.h>
53#include "setup_arch_pre.h"
54#include <bios_ebda.h>
55
56/* This value is set up by the early boot code to point to the value
57 immediately after the boot time page tables. It contains a *physical*
58 address, and must not be in the .bss segment! */
59unsigned long init_pg_tables_end __initdata = ~0UL;
60
61int disable_pse __initdata = 0;
62
63/*
64 * Machine setup..
65 */
66
67#ifdef CONFIG_EFI
68int efi_enabled = 0;
69EXPORT_SYMBOL(efi_enabled);
70#endif
71
72/* cpu data as detected by the assembly code in head.S */
73struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
74/* common cpu data for all cpus */
75struct cpuinfo_x86 boot_cpu_data = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
76
77unsigned long mmu_cr4_features;
78
79#ifdef CONFIG_ACPI_INTERPRETER
80 int acpi_disabled = 0;
81#else
82 int acpi_disabled = 1;
83#endif
84EXPORT_SYMBOL(acpi_disabled);
85
86#ifdef CONFIG_ACPI_BOOT
87int __initdata acpi_force = 0;
88extern acpi_interrupt_flags acpi_sci_flags;
89#endif
90
91/* for MCA, but anyone else can use it if they want */
92unsigned int machine_id;
93unsigned int machine_submodel_id;
94unsigned int BIOS_revision;
95unsigned int mca_pentium_flag;
96
97/* For PCI or other memory-mapped resources */
98unsigned long pci_mem_start = 0x10000000;
99
100/* Boot loader ID as an integer, for the benefit of proc_dointvec */
101int bootloader_type;
102
103/* user-defined highmem size */
104static unsigned int highmem_pages = -1;
105
106/*
107 * Setup options
108 */
109struct drive_info_struct { char dummy[32]; } drive_info;
110struct screen_info screen_info;
111struct apm_info apm_info;
112struct sys_desc_table_struct {
113 unsigned short length;
114 unsigned char table[0];
115};
116struct edid_info edid_info;
117struct ist_info ist_info;
118struct e820map e820;
119
120extern void early_cpu_init(void);
121extern void dmi_scan_machine(void);
122extern void generic_apic_probe(char *);
123extern int root_mountflags;
124
125unsigned long saved_videomode;
126
127#define RAMDISK_IMAGE_START_MASK 0x07FF
128#define RAMDISK_PROMPT_FLAG 0x8000
129#define RAMDISK_LOAD_FLAG 0x4000
130
131static char command_line[COMMAND_LINE_SIZE];
132
133unsigned char __initdata boot_params[PARAM_SIZE];
134
135static struct resource data_resource = {
136 .name = "Kernel data",
137 .start = 0,
138 .end = 0,
139 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
140};
141
142static struct resource code_resource = {
143 .name = "Kernel code",
144 .start = 0,
145 .end = 0,
146 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
147};
148
149static struct resource system_rom_resource = {
150 .name = "System ROM",
151 .start = 0xf0000,
152 .end = 0xfffff,
153 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
154};
155
156static struct resource extension_rom_resource = {
157 .name = "Extension ROM",
158 .start = 0xe0000,
159 .end = 0xeffff,
160 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
161};
162
163static struct resource adapter_rom_resources[] = { {
164 .name = "Adapter ROM",
165 .start = 0xc8000,
166 .end = 0,
167 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
168}, {
169 .name = "Adapter ROM",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
173}, {
174 .name = "Adapter ROM",
175 .start = 0,
176 .end = 0,
177 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
178}, {
179 .name = "Adapter ROM",
180 .start = 0,
181 .end = 0,
182 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
183}, {
184 .name = "Adapter ROM",
185 .start = 0,
186 .end = 0,
187 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
188}, {
189 .name = "Adapter ROM",
190 .start = 0,
191 .end = 0,
192 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
193} };
194
195#define ADAPTER_ROM_RESOURCES \
196 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
197
198static struct resource video_rom_resource = {
199 .name = "Video ROM",
200 .start = 0xc0000,
201 .end = 0xc7fff,
202 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
203};
204
205static struct resource video_ram_resource = {
206 .name = "Video RAM area",
207 .start = 0xa0000,
208 .end = 0xbffff,
209 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
210};
211
212static struct resource standard_io_resources[] = { {
213 .name = "dma1",
214 .start = 0x0000,
215 .end = 0x001f,
216 .flags = IORESOURCE_BUSY | IORESOURCE_IO
217}, {
218 .name = "pic1",
219 .start = 0x0020,
220 .end = 0x0021,
221 .flags = IORESOURCE_BUSY | IORESOURCE_IO
222}, {
223 .name = "timer0",
224 .start = 0x0040,
225 .end = 0x0043,
226 .flags = IORESOURCE_BUSY | IORESOURCE_IO
227}, {
228 .name = "timer1",
229 .start = 0x0050,
230 .end = 0x0053,
231 .flags = IORESOURCE_BUSY | IORESOURCE_IO
232}, {
233 .name = "keyboard",
234 .start = 0x0060,
235 .end = 0x006f,
236 .flags = IORESOURCE_BUSY | IORESOURCE_IO
237}, {
238 .name = "dma page reg",
239 .start = 0x0080,
240 .end = 0x008f,
241 .flags = IORESOURCE_BUSY | IORESOURCE_IO
242}, {
243 .name = "pic2",
244 .start = 0x00a0,
245 .end = 0x00a1,
246 .flags = IORESOURCE_BUSY | IORESOURCE_IO
247}, {
248 .name = "dma2",
249 .start = 0x00c0,
250 .end = 0x00df,
251 .flags = IORESOURCE_BUSY | IORESOURCE_IO
252}, {
253 .name = "fpu",
254 .start = 0x00f0,
255 .end = 0x00ff,
256 .flags = IORESOURCE_BUSY | IORESOURCE_IO
257} };
258
259#define STANDARD_IO_RESOURCES \
260 (sizeof standard_io_resources / sizeof standard_io_resources[0])
261
262#define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
263
264static int __init romchecksum(unsigned char *rom, unsigned long length)
265{
266 unsigned char *p, sum = 0;
267
268 for (p = rom; p < rom + length; p++)
269 sum += *p;
270 return sum == 0;
271}
272
273static void __init probe_roms(void)
274{
275 unsigned long start, length, upper;
276 unsigned char *rom;
277 int i;
278
279 /* video rom */
280 upper = adapter_rom_resources[0].start;
281 for (start = video_rom_resource.start; start < upper; start += 2048) {
282 rom = isa_bus_to_virt(start);
283 if (!romsignature(rom))
284 continue;
285
286 video_rom_resource.start = start;
287
288 /* 0 < length <= 0x7f * 512, historically */
289 length = rom[2] * 512;
290
291 /* if checksum okay, trust length byte */
292 if (length && romchecksum(rom, length))
293 video_rom_resource.end = start + length - 1;
294
295 request_resource(&iomem_resource, &video_rom_resource);
296 break;
297 }
298
299 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
300 if (start < upper)
301 start = upper;
302
303 /* system rom */
304 request_resource(&iomem_resource, &system_rom_resource);
305 upper = system_rom_resource.start;
306
307 /* check for extension rom (ignore length byte!) */
308 rom = isa_bus_to_virt(extension_rom_resource.start);
309 if (romsignature(rom)) {
310 length = extension_rom_resource.end - extension_rom_resource.start + 1;
311 if (romchecksum(rom, length)) {
312 request_resource(&iomem_resource, &extension_rom_resource);
313 upper = extension_rom_resource.start;
314 }
315 }
316
317 /* check for adapter roms on 2k boundaries */
318 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
319 rom = isa_bus_to_virt(start);
320 if (!romsignature(rom))
321 continue;
322
323 /* 0 < length <= 0x7f * 512, historically */
324 length = rom[2] * 512;
325
326 /* but accept any length that fits if checksum okay */
327 if (!length || start + length > upper || !romchecksum(rom, length))
328 continue;
329
330 adapter_rom_resources[i].start = start;
331 adapter_rom_resources[i].end = start + length - 1;
332 request_resource(&iomem_resource, &adapter_rom_resources[i]);
333
334 start = adapter_rom_resources[i++].end & ~2047UL;
335 }
336}
337
338static void __init limit_regions(unsigned long long size)
339{
340 unsigned long long current_addr = 0;
341 int i;
342
343 if (efi_enabled) {
344 for (i = 0; i < memmap.nr_map; i++) {
345 current_addr = memmap.map[i].phys_addr +
346 (memmap.map[i].num_pages << 12);
347 if (memmap.map[i].type == EFI_CONVENTIONAL_MEMORY) {
348 if (current_addr >= size) {
349 memmap.map[i].num_pages -=
350 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
351 memmap.nr_map = i + 1;
352 return;
353 }
354 }
355 }
356 }
357 for (i = 0; i < e820.nr_map; i++) {
358 if (e820.map[i].type == E820_RAM) {
359 current_addr = e820.map[i].addr + e820.map[i].size;
360 if (current_addr >= size) {
361 e820.map[i].size -= current_addr-size;
362 e820.nr_map = i + 1;
363 return;
364 }
365 }
366 }
367}
368
369static void __init add_memory_region(unsigned long long start,
370 unsigned long long size, int type)
371{
372 int x;
373
374 if (!efi_enabled) {
375 x = e820.nr_map;
376
377 if (x == E820MAX) {
378 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
379 return;
380 }
381
382 e820.map[x].addr = start;
383 e820.map[x].size = size;
384 e820.map[x].type = type;
385 e820.nr_map++;
386 }
387} /* add_memory_region */
388
389#define E820_DEBUG 1
390
391static void __init print_memory_map(char *who)
392{
393 int i;
394
395 for (i = 0; i < e820.nr_map; i++) {
396 printk(" %s: %016Lx - %016Lx ", who,
397 e820.map[i].addr,
398 e820.map[i].addr + e820.map[i].size);
399 switch (e820.map[i].type) {
400 case E820_RAM: printk("(usable)\n");
401 break;
402 case E820_RESERVED:
403 printk("(reserved)\n");
404 break;
405 case E820_ACPI:
406 printk("(ACPI data)\n");
407 break;
408 case E820_NVS:
409 printk("(ACPI NVS)\n");
410 break;
411 default: printk("type %lu\n", e820.map[i].type);
412 break;
413 }
414 }
415}
416
417/*
418 * Sanitize the BIOS e820 map.
419 *
420 * Some e820 responses include overlapping entries. The following
421 * replaces the original e820 map with a new one, removing overlaps.
422 *
423 */
424struct change_member {
425 struct e820entry *pbios; /* pointer to original bios entry */
426 unsigned long long addr; /* address for this change point */
427};
428static struct change_member change_point_list[2*E820MAX] __initdata;
429static struct change_member *change_point[2*E820MAX] __initdata;
430static struct e820entry *overlap_list[E820MAX] __initdata;
431static struct e820entry new_bios[E820MAX] __initdata;
432
433static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
434{
435 struct change_member *change_tmp;
436 unsigned long current_type, last_type;
437 unsigned long long last_addr;
438 int chgidx, still_changing;
439 int overlap_entries;
440 int new_bios_entry;
441 int old_nr, new_nr, chg_nr;
442 int i;
443
444 /*
445 Visually we're performing the following (1,2,3,4 = memory types)...
446
447 Sample memory map (w/overlaps):
448 ____22__________________
449 ______________________4_
450 ____1111________________
451 _44_____________________
452 11111111________________
453 ____________________33__
454 ___________44___________
455 __________33333_________
456 ______________22________
457 ___________________2222_
458 _________111111111______
459 _____________________11_
460 _________________4______
461
462 Sanitized equivalent (no overlap):
463 1_______________________
464 _44_____________________
465 ___1____________________
466 ____22__________________
467 ______11________________
468 _________1______________
469 __________3_____________
470 ___________44___________
471 _____________33_________
472 _______________2________
473 ________________1_______
474 _________________4______
475 ___________________2____
476 ____________________33__
477 ______________________4_
478 */
479
480 /* if there's only one memory region, don't bother */
481 if (*pnr_map < 2)
482 return -1;
483
484 old_nr = *pnr_map;
485
486 /* bail out if we find any unreasonable addresses in bios map */
487 for (i=0; i<old_nr; i++)
488 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
489 return -1;
490
491 /* create pointers for initial change-point information (for sorting) */
492 for (i=0; i < 2*old_nr; i++)
493 change_point[i] = &change_point_list[i];
494
495 /* record all known change-points (starting and ending addresses),
496 omitting those that are for empty memory regions */
497 chgidx = 0;
498 for (i=0; i < old_nr; i++) {
499 if (biosmap[i].size != 0) {
500 change_point[chgidx]->addr = biosmap[i].addr;
501 change_point[chgidx++]->pbios = &biosmap[i];
502 change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
503 change_point[chgidx++]->pbios = &biosmap[i];
504 }
505 }
506 chg_nr = chgidx; /* true number of change-points */
507
508 /* sort change-point list by memory addresses (low -> high) */
509 still_changing = 1;
510 while (still_changing) {
511 still_changing = 0;
512 for (i=1; i < chg_nr; i++) {
513 /* if <current_addr> > <last_addr>, swap */
514 /* or, if current=<start_addr> & last=<end_addr>, swap */
515 if ((change_point[i]->addr < change_point[i-1]->addr) ||
516 ((change_point[i]->addr == change_point[i-1]->addr) &&
517 (change_point[i]->addr == change_point[i]->pbios->addr) &&
518 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
519 )
520 {
521 change_tmp = change_point[i];
522 change_point[i] = change_point[i-1];
523 change_point[i-1] = change_tmp;
524 still_changing=1;
525 }
526 }
527 }
528
529 /* create a new bios memory map, removing overlaps */
530 overlap_entries=0; /* number of entries in the overlap table */
531 new_bios_entry=0; /* index for creating new bios map entries */
532 last_type = 0; /* start with undefined memory type */
533 last_addr = 0; /* start with 0 as last starting address */
534 /* loop through change-points, determining affect on the new bios map */
535 for (chgidx=0; chgidx < chg_nr; chgidx++)
536 {
537 /* keep track of all overlapping bios entries */
538 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
539 {
540 /* add map entry to overlap list (> 1 entry implies an overlap) */
541 overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
542 }
543 else
544 {
545 /* remove entry from list (order independent, so swap with last) */
546 for (i=0; i<overlap_entries; i++)
547 {
548 if (overlap_list[i] == change_point[chgidx]->pbios)
549 overlap_list[i] = overlap_list[overlap_entries-1];
550 }
551 overlap_entries--;
552 }
553 /* if there are overlapping entries, decide which "type" to use */
554 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
555 current_type = 0;
556 for (i=0; i<overlap_entries; i++)
557 if (overlap_list[i]->type > current_type)
558 current_type = overlap_list[i]->type;
559 /* continue building up new bios map based on this information */
560 if (current_type != last_type) {
561 if (last_type != 0) {
562 new_bios[new_bios_entry].size =
563 change_point[chgidx]->addr - last_addr;
564 /* move forward only if the new size was non-zero */
565 if (new_bios[new_bios_entry].size != 0)
566 if (++new_bios_entry >= E820MAX)
567 break; /* no more space left for new bios entries */
568 }
569 if (current_type != 0) {
570 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
571 new_bios[new_bios_entry].type = current_type;
572 last_addr=change_point[chgidx]->addr;
573 }
574 last_type = current_type;
575 }
576 }
577 new_nr = new_bios_entry; /* retain count for new bios entries */
578
579 /* copy new bios mapping into original location */
580 memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
581 *pnr_map = new_nr;
582
583 return 0;
584}
585
586/*
587 * Copy the BIOS e820 map into a safe place.
588 *
589 * Sanity-check it while we're at it..
590 *
591 * If we're lucky and live on a modern system, the setup code
592 * will have given us a memory map that we can use to properly
593 * set up memory. If we aren't, we'll fake a memory map.
594 *
595 * We check to see that the memory map contains at least 2 elements
596 * before we'll use it, because the detection code in setup.S may
597 * not be perfect and most every PC known to man has two memory
598 * regions: one from 0 to 640k, and one from 1mb up. (The IBM
599 * thinkpad 560x, for example, does not cooperate with the memory
600 * detection code.)
601 */
602static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
603{
604 /* Only one memory region (or negative)? Ignore it */
605 if (nr_map < 2)
606 return -1;
607
608 do {
609 unsigned long long start = biosmap->addr;
610 unsigned long long size = biosmap->size;
611 unsigned long long end = start + size;
612 unsigned long type = biosmap->type;
613
614 /* Overflow in 64 bits? Ignore the memory map. */
615 if (start > end)
616 return -1;
617
618 /*
619 * Some BIOSes claim RAM in the 640k - 1M region.
620 * Not right. Fix it up.
621 */
622 if (type == E820_RAM) {
623 if (start < 0x100000ULL && end > 0xA0000ULL) {
624 if (start < 0xA0000ULL)
625 add_memory_region(start, 0xA0000ULL-start, type);
626 if (end <= 0x100000ULL)
627 continue;
628 start = 0x100000ULL;
629 size = end - start;
630 }
631 }
632 add_memory_region(start, size, type);
633 } while (biosmap++,--nr_map);
634 return 0;
635}
636
637#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
638struct edd edd;
639#ifdef CONFIG_EDD_MODULE
640EXPORT_SYMBOL(edd);
641#endif
642/**
643 * copy_edd() - Copy the BIOS EDD information
644 * from boot_params into a safe place.
645 *
646 */
647static inline void copy_edd(void)
648{
649 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
650 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
651 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
652 edd.edd_info_nr = EDD_NR;
653}
654#else
655static inline void copy_edd(void)
656{
657}
658#endif
659
660/*
661 * Do NOT EVER look at the BIOS memory size location.
662 * It does not work on many machines.
663 */
664#define LOWMEMSIZE() (0x9f000)
665
666static void __init parse_cmdline_early (char ** cmdline_p)
667{
668 char c = ' ', *to = command_line, *from = saved_command_line;
669 int len = 0;
670 int userdef = 0;
671
672 /* Save unparsed command line copy for /proc/cmdline */
673 saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
674
675 for (;;) {
676 if (c != ' ')
677 goto next_char;
678 /*
679 * "mem=nopentium" disables the 4MB page tables.
680 * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
681 * to <mem>, overriding the bios size.
682 * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
683 * <start> to <start>+<mem>, overriding the bios size.
684 *
685 * HPA tells me bootloaders need to parse mem=, so no new
686 * option should be mem= [also see Documentation/i386/boot.txt]
687 */
688 if (!memcmp(from, "mem=", 4)) {
689 if (to != command_line)
690 to--;
691 if (!memcmp(from+4, "nopentium", 9)) {
692 from += 9+4;
693 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
694 disable_pse = 1;
695 } else {
696 /* If the user specifies memory size, we
697 * limit the BIOS-provided memory map to
698 * that size. exactmap can be used to specify
699 * the exact map. mem=number can be used to
700 * trim the existing memory map.
701 */
702 unsigned long long mem_size;
703
704 mem_size = memparse(from+4, &from);
705 limit_regions(mem_size);
706 userdef=1;
707 }
708 }
709
710 else if (!memcmp(from, "memmap=", 7)) {
711 if (to != command_line)
712 to--;
713 if (!memcmp(from+7, "exactmap", 8)) {
714 from += 8+7;
715 e820.nr_map = 0;
716 userdef = 1;
717 } else {
718 /* If the user specifies memory size, we
719 * limit the BIOS-provided memory map to
720 * that size. exactmap can be used to specify
721 * the exact map. mem=number can be used to
722 * trim the existing memory map.
723 */
724 unsigned long long start_at, mem_size;
725
726 mem_size = memparse(from+7, &from);
727 if (*from == '@') {
728 start_at = memparse(from+1, &from);
729 add_memory_region(start_at, mem_size, E820_RAM);
730 } else if (*from == '#') {
731 start_at = memparse(from+1, &from);
732 add_memory_region(start_at, mem_size, E820_ACPI);
733 } else if (*from == '$') {
734 start_at = memparse(from+1, &from);
735 add_memory_region(start_at, mem_size, E820_RESERVED);
736 } else {
737 limit_regions(mem_size);
738 userdef=1;
739 }
740 }
741 }
742
743 else if (!memcmp(from, "noexec=", 7))
744 noexec_setup(from + 7);
745
746
747#ifdef CONFIG_X86_SMP
748 /*
749 * If the BIOS enumerates physical processors before logical,
750 * maxcpus=N at enumeration-time can be used to disable HT.
751 */
752 else if (!memcmp(from, "maxcpus=", 8)) {
753 extern unsigned int maxcpus;
754
755 maxcpus = simple_strtoul(from + 8, NULL, 0);
756 }
757#endif
758
759#ifdef CONFIG_ACPI_BOOT
760 /* "acpi=off" disables both ACPI table parsing and interpreter */
761 else if (!memcmp(from, "acpi=off", 8)) {
762 disable_acpi();
763 }
764
765 /* acpi=force to over-ride black-list */
766 else if (!memcmp(from, "acpi=force", 10)) {
767 acpi_force = 1;
768 acpi_ht = 1;
769 acpi_disabled = 0;
770 }
771
772 /* acpi=strict disables out-of-spec workarounds */
773 else if (!memcmp(from, "acpi=strict", 11)) {
774 acpi_strict = 1;
775 }
776
777 /* Limit ACPI just to boot-time to enable HT */
778 else if (!memcmp(from, "acpi=ht", 7)) {
779 if (!acpi_force)
780 disable_acpi();
781 acpi_ht = 1;
782 }
783
784 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
785 else if (!memcmp(from, "pci=noacpi", 10)) {
786 acpi_disable_pci();
787 }
788 /* "acpi=noirq" disables ACPI interrupt routing */
789 else if (!memcmp(from, "acpi=noirq", 10)) {
790 acpi_noirq_set();
791 }
792
793 else if (!memcmp(from, "acpi_sci=edge", 13))
794 acpi_sci_flags.trigger = 1;
795
796 else if (!memcmp(from, "acpi_sci=level", 14))
797 acpi_sci_flags.trigger = 3;
798
799 else if (!memcmp(from, "acpi_sci=high", 13))
800 acpi_sci_flags.polarity = 1;
801
802 else if (!memcmp(from, "acpi_sci=low", 12))
803 acpi_sci_flags.polarity = 3;
804
805#ifdef CONFIG_X86_IO_APIC
806 else if (!memcmp(from, "acpi_skip_timer_override", 24))
807 acpi_skip_timer_override = 1;
808#endif
809
810#ifdef CONFIG_X86_LOCAL_APIC
811 /* disable IO-APIC */
812 else if (!memcmp(from, "noapic", 6))
813 disable_ioapic_setup();
814#endif /* CONFIG_X86_LOCAL_APIC */
815#endif /* CONFIG_ACPI_BOOT */
816
817 /*
818 * highmem=size forces highmem to be exactly 'size' bytes.
819 * This works even on boxes that have no highmem otherwise.
820 * This also works to reduce highmem size on bigger boxes.
821 */
822 else if (!memcmp(from, "highmem=", 8))
823 highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
824
825 /*
826 * vmalloc=size forces the vmalloc area to be exactly 'size'
827 * bytes. This can be used to increase (or decrease) the
828 * vmalloc area - the default is 128m.
829 */
830 else if (!memcmp(from, "vmalloc=", 8))
831 __VMALLOC_RESERVE = memparse(from+8, &from);
832
833 next_char:
834 c = *(from++);
835 if (!c)
836 break;
837 if (COMMAND_LINE_SIZE <= ++len)
838 break;
839 *(to++) = c;
840 }
841 *to = '\0';
842 *cmdline_p = command_line;
843 if (userdef) {
844 printk(KERN_INFO "user-defined physical RAM map:\n");
845 print_memory_map("user");
846 }
847}
848
849/*
850 * Callback for efi_memory_walk.
851 */
852static int __init
853efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
854{
855 unsigned long *max_pfn = arg, pfn;
856
857 if (start < end) {
858 pfn = PFN_UP(end -1);
859 if (pfn > *max_pfn)
860 *max_pfn = pfn;
861 }
862 return 0;
863}
864
865
866/*
867 * Find the highest page frame number we have available
868 */
869void __init find_max_pfn(void)
870{
871 int i;
872
873 max_pfn = 0;
874 if (efi_enabled) {
875 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
876 return;
877 }
878
879 for (i = 0; i < e820.nr_map; i++) {
880 unsigned long start, end;
881 /* RAM? */
882 if (e820.map[i].type != E820_RAM)
883 continue;
884 start = PFN_UP(e820.map[i].addr);
885 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
886 if (start >= end)
887 continue;
888 if (end > max_pfn)
889 max_pfn = end;
890 }
891}
892
893/*
894 * Determine low and high memory ranges:
895 */
896unsigned long __init find_max_low_pfn(void)
897{
898 unsigned long max_low_pfn;
899
900 max_low_pfn = max_pfn;
901 if (max_low_pfn > MAXMEM_PFN) {
902 if (highmem_pages == -1)
903 highmem_pages = max_pfn - MAXMEM_PFN;
904 if (highmem_pages + MAXMEM_PFN < max_pfn)
905 max_pfn = MAXMEM_PFN + highmem_pages;
906 if (highmem_pages + MAXMEM_PFN > max_pfn) {
907 printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
908 highmem_pages = 0;
909 }
910 max_low_pfn = MAXMEM_PFN;
911#ifndef CONFIG_HIGHMEM
912 /* Maximum memory usable is what is directly addressable */
913 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
914 MAXMEM>>20);
915 if (max_pfn > MAX_NONPAE_PFN)
916 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
917 else
918 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
919 max_pfn = MAXMEM_PFN;
920#else /* !CONFIG_HIGHMEM */
921#ifndef CONFIG_X86_PAE
922 if (max_pfn > MAX_NONPAE_PFN) {
923 max_pfn = MAX_NONPAE_PFN;
924 printk(KERN_WARNING "Warning only 4GB will be used.\n");
925 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
926 }
927#endif /* !CONFIG_X86_PAE */
928#endif /* !CONFIG_HIGHMEM */
929 } else {
930 if (highmem_pages == -1)
931 highmem_pages = 0;
932#ifdef CONFIG_HIGHMEM
933 if (highmem_pages >= max_pfn) {
934 printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
935 highmem_pages = 0;
936 }
937 if (highmem_pages) {
938 if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
939 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
940 highmem_pages = 0;
941 }
942 max_low_pfn -= highmem_pages;
943 }
944#else
945 if (highmem_pages)
946 printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
947#endif
948 }
949 return max_low_pfn;
950}
951
952/*
953 * Free all available memory for boot time allocation. Used
954 * as a callback function by efi_memory_walk()
955 */
956
957static int __init
958free_available_memory(unsigned long start, unsigned long end, void *arg)
959{
960 /* check max_low_pfn */
961 if (start >= ((max_low_pfn + 1) << PAGE_SHIFT))
962 return 0;
963 if (end >= ((max_low_pfn + 1) << PAGE_SHIFT))
964 end = (max_low_pfn + 1) << PAGE_SHIFT;
965 if (start < end)
966 free_bootmem(start, end - start);
967
968 return 0;
969}
970/*
971 * Register fully available low RAM pages with the bootmem allocator.
972 */
973static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
974{
975 int i;
976
977 if (efi_enabled) {
978 efi_memmap_walk(free_available_memory, NULL);
979 return;
980 }
981 for (i = 0; i < e820.nr_map; i++) {
982 unsigned long curr_pfn, last_pfn, size;
983 /*
984 * Reserve usable low memory
985 */
986 if (e820.map[i].type != E820_RAM)
987 continue;
988 /*
989 * We are rounding up the start address of usable memory:
990 */
991 curr_pfn = PFN_UP(e820.map[i].addr);
992 if (curr_pfn >= max_low_pfn)
993 continue;
994 /*
995 * ... and at the end of the usable range downwards:
996 */
997 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
998
999 if (last_pfn > max_low_pfn)
1000 last_pfn = max_low_pfn;
1001
1002 /*
1003 * .. finally, did all the rounding and playing
1004 * around just make the area go away?
1005 */
1006 if (last_pfn <= curr_pfn)
1007 continue;
1008
1009 size = last_pfn - curr_pfn;
1010 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1011 }
1012}
1013
1014/*
1015 * workaround for Dell systems that neglect to reserve EBDA
1016 */
1017static void __init reserve_ebda_region(void)
1018{
1019 unsigned int addr;
1020 addr = get_bios_ebda();
1021 if (addr)
1022 reserve_bootmem(addr, PAGE_SIZE);
1023}
1024
1025#ifndef CONFIG_DISCONTIGMEM
1026void __init setup_bootmem_allocator(void);
1027static unsigned long __init setup_memory(void)
1028{
1029 /*
1030 * partially used pages are not usable - thus
1031 * we are rounding upwards:
1032 */
1033 min_low_pfn = PFN_UP(init_pg_tables_end);
1034
1035 find_max_pfn();
1036
1037 max_low_pfn = find_max_low_pfn();
1038
1039#ifdef CONFIG_HIGHMEM
1040 highstart_pfn = highend_pfn = max_pfn;
1041 if (max_pfn > max_low_pfn) {
1042 highstart_pfn = max_low_pfn;
1043 }
1044 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1045 pages_to_mb(highend_pfn - highstart_pfn));
1046#endif
1047 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1048 pages_to_mb(max_low_pfn));
1049
1050 setup_bootmem_allocator();
1051
1052 return max_low_pfn;
1053}
1054
1055void __init zone_sizes_init(void)
1056{
1057 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1058 unsigned int max_dma, low;
1059
1060 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1061 low = max_low_pfn;
1062
1063 if (low < max_dma)
1064 zones_size[ZONE_DMA] = low;
1065 else {
1066 zones_size[ZONE_DMA] = max_dma;
1067 zones_size[ZONE_NORMAL] = low - max_dma;
1068#ifdef CONFIG_HIGHMEM
1069 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1070#endif
1071 }
1072 free_area_init(zones_size);
1073}
1074#else
1075extern unsigned long setup_memory(void);
1076extern void zone_sizes_init(void);
1077#endif /* !CONFIG_DISCONTIGMEM */
1078
1079void __init setup_bootmem_allocator(void)
1080{
1081 unsigned long bootmap_size;
1082 /*
1083 * Initialize the boot-time allocator (with low memory only):
1084 */
1085 bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1086
1087 register_bootmem_low_pages(max_low_pfn);
1088
1089 /*
1090 * Reserve the bootmem bitmap itself as well. We do this in two
1091 * steps (first step was init_bootmem()) because this catches
1092 * the (very unlikely) case of us accidentally initializing the
1093 * bootmem allocator with an invalid RAM area.
1094 */
1095 reserve_bootmem(HIGH_MEMORY, (PFN_PHYS(min_low_pfn) +
1096 bootmap_size + PAGE_SIZE-1) - (HIGH_MEMORY));
1097
1098 /*
1099 * reserve physical page 0 - it's a special BIOS page on many boxes,
1100 * enabling clean reboots, SMP operation, laptop functions.
1101 */
1102 reserve_bootmem(0, PAGE_SIZE);
1103
1104 /* reserve EBDA region, it's a 4K region */
1105 reserve_ebda_region();
1106
1107 /* could be an AMD 768MPX chipset. Reserve a page before VGA to prevent
1108 PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1109 unless you have no PS/2 mouse plugged in. */
1110 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1111 boot_cpu_data.x86 == 6)
1112 reserve_bootmem(0xa0000 - 4096, 4096);
1113
1114#ifdef CONFIG_SMP
1115 /*
1116 * But first pinch a few for the stack/trampoline stuff
1117 * FIXME: Don't need the extra page at 4K, but need to fix
1118 * trampoline before removing it. (see the GDT stuff)
1119 */
1120 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1121#endif
1122#ifdef CONFIG_ACPI_SLEEP
1123 /*
1124 * Reserve low memory region for sleep support.
1125 */
1126 acpi_reserve_bootmem();
1127#endif
1128#ifdef CONFIG_X86_FIND_SMP_CONFIG
1129 /*
1130 * Find and reserve possible boot-time SMP configuration:
1131 */
1132 find_smp_config();
1133#endif
1134
1135#ifdef CONFIG_BLK_DEV_INITRD
1136 if (LOADER_TYPE && INITRD_START) {
1137 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1138 reserve_bootmem(INITRD_START, INITRD_SIZE);
1139 initrd_start =
1140 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1141 initrd_end = initrd_start+INITRD_SIZE;
1142 }
1143 else {
1144 printk(KERN_ERR "initrd extends beyond end of memory "
1145 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1146 INITRD_START + INITRD_SIZE,
1147 max_low_pfn << PAGE_SHIFT);
1148 initrd_start = 0;
1149 }
1150 }
1151#endif
1152}
1153
1154/*
1155 * The node 0 pgdat is initialized before all of these because
1156 * it's needed for bootmem. node>0 pgdats have their virtual
1157 * space allocated before the pagetables are in place to access
1158 * them, so they can't be cleared then.
1159 *
1160 * This should all compile down to nothing when NUMA is off.
1161 */
1162void __init remapped_pgdat_init(void)
1163{
1164 int nid;
1165
1166 for_each_online_node(nid) {
1167 if (nid != 0)
1168 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1169 }
1170}
1171
1172/*
1173 * Request address space for all standard RAM and ROM resources
1174 * and also for regions reported as reserved by the e820.
1175 */
1176static void __init
1177legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1178{
1179 int i;
1180
1181 probe_roms();
1182 for (i = 0; i < e820.nr_map; i++) {
1183 struct resource *res;
1184 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
1185 continue;
1186 res = alloc_bootmem_low(sizeof(struct resource));
1187 switch (e820.map[i].type) {
1188 case E820_RAM: res->name = "System RAM"; break;
1189 case E820_ACPI: res->name = "ACPI Tables"; break;
1190 case E820_NVS: res->name = "ACPI Non-volatile Storage"; break;
1191 default: res->name = "reserved";
1192 }
1193 res->start = e820.map[i].addr;
1194 res->end = res->start + e820.map[i].size - 1;
1195 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1196 request_resource(&iomem_resource, res);
1197 if (e820.map[i].type == E820_RAM) {
1198 /*
1199 * We don't know which RAM region contains kernel data,
1200 * so we try it repeatedly and let the resource manager
1201 * test it.
1202 */
1203 request_resource(res, code_resource);
1204 request_resource(res, data_resource);
1205 }
1206 }
1207}
1208
1209/*
1210 * Request address space for all standard resources
1211 */
1212static void __init register_memory(void)
1213{
1214 unsigned long gapstart, gapsize;
1215 unsigned long long last;
1216 int i;
1217
1218 if (efi_enabled)
1219 efi_initialize_iomem_resources(&code_resource, &data_resource);
1220 else
1221 legacy_init_iomem_resources(&code_resource, &data_resource);
1222
1223 /* EFI systems may still have VGA */
1224 request_resource(&iomem_resource, &video_ram_resource);
1225
1226 /* request I/O space for devices used on all i[345]86 PCs */
1227 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1228 request_resource(&ioport_resource, &standard_io_resources[i]);
1229
1230 /*
1231 * Search for the bigest gap in the low 32 bits of the e820
1232 * memory space.
1233 */
1234 last = 0x100000000ull;
1235 gapstart = 0x10000000;
1236 gapsize = 0x400000;
1237 i = e820.nr_map;
1238 while (--i >= 0) {
1239 unsigned long long start = e820.map[i].addr;
1240 unsigned long long end = start + e820.map[i].size;
1241
1242 /*
1243 * Since "last" is at most 4GB, we know we'll
1244 * fit in 32 bits if this condition is true
1245 */
1246 if (last > end) {
1247 unsigned long gap = last - end;
1248
1249 if (gap > gapsize) {
1250 gapsize = gap;
1251 gapstart = end;
1252 }
1253 }
1254 if (start < last)
1255 last = start;
1256 }
1257
1258 /*
1259 * Start allocating dynamic PCI memory a bit into the gap,
1260 * aligned up to the nearest megabyte.
1261 *
1262 * Question: should we try to pad it up a bit (do something
1263 * like " + (gapsize >> 3)" in there too?). We now have the
1264 * technology.
1265 */
1266 pci_mem_start = (gapstart + 0xfffff) & ~0xfffff;
1267
1268 printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1269 pci_mem_start, gapstart, gapsize);
1270}
1271
1272/* Use inline assembly to define this because the nops are defined
1273 as inline assembly strings in the include files and we cannot
1274 get them easily into strings. */
1275asm("\t.data\nintelnops: "
1276 GENERIC_NOP1 GENERIC_NOP2 GENERIC_NOP3 GENERIC_NOP4 GENERIC_NOP5 GENERIC_NOP6
1277 GENERIC_NOP7 GENERIC_NOP8);
1278asm("\t.data\nk8nops: "
1279 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
1280 K8_NOP7 K8_NOP8);
1281asm("\t.data\nk7nops: "
1282 K7_NOP1 K7_NOP2 K7_NOP3 K7_NOP4 K7_NOP5 K7_NOP6
1283 K7_NOP7 K7_NOP8);
1284
1285extern unsigned char intelnops[], k8nops[], k7nops[];
1286static unsigned char *intel_nops[ASM_NOP_MAX+1] = {
1287 NULL,
1288 intelnops,
1289 intelnops + 1,
1290 intelnops + 1 + 2,
1291 intelnops + 1 + 2 + 3,
1292 intelnops + 1 + 2 + 3 + 4,
1293 intelnops + 1 + 2 + 3 + 4 + 5,
1294 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
1295 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1296};
1297static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
1298 NULL,
1299 k8nops,
1300 k8nops + 1,
1301 k8nops + 1 + 2,
1302 k8nops + 1 + 2 + 3,
1303 k8nops + 1 + 2 + 3 + 4,
1304 k8nops + 1 + 2 + 3 + 4 + 5,
1305 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
1306 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1307};
1308static unsigned char *k7_nops[ASM_NOP_MAX+1] = {
1309 NULL,
1310 k7nops,
1311 k7nops + 1,
1312 k7nops + 1 + 2,
1313 k7nops + 1 + 2 + 3,
1314 k7nops + 1 + 2 + 3 + 4,
1315 k7nops + 1 + 2 + 3 + 4 + 5,
1316 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
1317 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1318};
1319static struct nop {
1320 int cpuid;
1321 unsigned char **noptable;
1322} noptypes[] = {
1323 { X86_FEATURE_K8, k8_nops },
1324 { X86_FEATURE_K7, k7_nops },
1325 { -1, NULL }
1326};
1327
1328/* Replace instructions with better alternatives for this CPU type.
1329
1330 This runs before SMP is initialized to avoid SMP problems with
1331 self modifying code. This implies that assymetric systems where
1332 APs have less capabilities than the boot processor are not handled.
1333 In this case boot with "noreplacement". */
1334void apply_alternatives(void *start, void *end)
1335{
1336 struct alt_instr *a;
1337 int diff, i, k;
1338 unsigned char **noptable = intel_nops;
1339 for (i = 0; noptypes[i].cpuid >= 0; i++) {
1340 if (boot_cpu_has(noptypes[i].cpuid)) {
1341 noptable = noptypes[i].noptable;
1342 break;
1343 }
1344 }
1345 for (a = start; (void *)a < end; a++) {
1346 if (!boot_cpu_has(a->cpuid))
1347 continue;
1348 BUG_ON(a->replacementlen > a->instrlen);
1349 memcpy(a->instr, a->replacement, a->replacementlen);
1350 diff = a->instrlen - a->replacementlen;
1351 /* Pad the rest with nops */
1352 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
1353 k = diff;
1354 if (k > ASM_NOP_MAX)
1355 k = ASM_NOP_MAX;
1356 memcpy(a->instr + i, noptable[k], k);
1357 }
1358 }
1359}
1360
1361static int no_replacement __initdata = 0;
1362
1363void __init alternative_instructions(void)
1364{
1365 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
1366 if (no_replacement)
1367 return;
1368 apply_alternatives(__alt_instructions, __alt_instructions_end);
1369}
1370
1371static int __init noreplacement_setup(char *s)
1372{
1373 no_replacement = 1;
1374 return 0;
1375}
1376
1377__setup("noreplacement", noreplacement_setup);
1378
1379static char * __init machine_specific_memory_setup(void);
1380
1381#ifdef CONFIG_MCA
1382static void set_mca_bus(int x)
1383{
1384 MCA_bus = x;
1385}
1386#else
1387static void set_mca_bus(int x) { }
1388#endif
1389
1390/*
1391 * Determine if we were loaded by an EFI loader. If so, then we have also been
1392 * passed the efi memmap, systab, etc., so we should use these data structures
1393 * for initialization. Note, the efi init code path is determined by the
1394 * global efi_enabled. This allows the same kernel image to be used on existing
1395 * systems (with a traditional BIOS) as well as on EFI systems.
1396 */
1397void __init setup_arch(char **cmdline_p)
1398{
1399 unsigned long max_low_pfn;
1400
1401 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1402 pre_setup_arch_hook();
1403 early_cpu_init();
1404
1405 /*
1406 * FIXME: This isn't an official loader_type right
1407 * now but does currently work with elilo.
1408 * If we were configured as an EFI kernel, check to make
1409 * sure that we were loaded correctly from elilo and that
1410 * the system table is valid. If not, then initialize normally.
1411 */
1412#ifdef CONFIG_EFI
1413 if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1414 efi_enabled = 1;
1415#endif
1416
1417 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1418 drive_info = DRIVE_INFO;
1419 screen_info = SCREEN_INFO;
1420 edid_info = EDID_INFO;
1421 apm_info.bios = APM_BIOS_INFO;
1422 ist_info = IST_INFO;
1423 saved_videomode = VIDEO_MODE;
1424 if( SYS_DESC_TABLE.length != 0 ) {
1425 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1426 machine_id = SYS_DESC_TABLE.table[0];
1427 machine_submodel_id = SYS_DESC_TABLE.table[1];
1428 BIOS_revision = SYS_DESC_TABLE.table[2];
1429 }
1430 bootloader_type = LOADER_TYPE;
1431
1432#ifdef CONFIG_BLK_DEV_RAM
1433 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1434 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1435 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1436#endif
1437 ARCH_SETUP
1438 if (efi_enabled)
1439 efi_init();
1440 else {
1441 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1442 print_memory_map(machine_specific_memory_setup());
1443 }
1444
1445 copy_edd();
1446
1447 if (!MOUNT_ROOT_RDONLY)
1448 root_mountflags &= ~MS_RDONLY;
1449 init_mm.start_code = (unsigned long) _text;
1450 init_mm.end_code = (unsigned long) _etext;
1451 init_mm.end_data = (unsigned long) _edata;
1452 init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1453
1454 code_resource.start = virt_to_phys(_text);
1455 code_resource.end = virt_to_phys(_etext)-1;
1456 data_resource.start = virt_to_phys(_etext);
1457 data_resource.end = virt_to_phys(_edata)-1;
1458
1459 parse_cmdline_early(cmdline_p);
1460
1461 max_low_pfn = setup_memory();
1462
1463 /*
1464 * NOTE: before this point _nobody_ is allowed to allocate
1465 * any memory using the bootmem allocator. Although the
1466 * alloctor is now initialised only the first 8Mb of the kernel
1467 * virtual address space has been mapped. All allocations before
1468 * paging_init() has completed must use the alloc_bootmem_low_pages()
1469 * variant (which allocates DMA'able memory) and care must be taken
1470 * not to exceed the 8Mb limit.
1471 */
1472
1473#ifdef CONFIG_SMP
1474 smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1475#endif
1476 paging_init();
1477 remapped_pgdat_init();
1478 zone_sizes_init();
1479
1480 /*
1481 * NOTE: at this point the bootmem allocator is fully available.
1482 */
1483
1484#ifdef CONFIG_EARLY_PRINTK
1485 {
1486 char *s = strstr(*cmdline_p, "earlyprintk=");
1487 if (s) {
1488 extern void setup_early_printk(char *);
1489
1490 setup_early_printk(s);
1491 printk("early console enabled\n");
1492 }
1493 }
1494#endif
1495
1496
1497 dmi_scan_machine();
1498
1499#ifdef CONFIG_X86_GENERICARCH
1500 generic_apic_probe(*cmdline_p);
1501#endif
1502 if (efi_enabled)
1503 efi_map_memmap();
1504
1505 /*
1506 * Parse the ACPI tables for possible boot-time SMP configuration.
1507 */
1508 acpi_boot_table_init();
1509 acpi_boot_init();
1510
1511#ifdef CONFIG_X86_LOCAL_APIC
1512 if (smp_found_config)
1513 get_smp_config();
1514#endif
1515
1516 register_memory();
1517
1518#ifdef CONFIG_VT
1519#if defined(CONFIG_VGA_CONSOLE)
1520 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1521 conswitchp = &vga_con;
1522#elif defined(CONFIG_DUMMY_CONSOLE)
1523 conswitchp = &dummy_con;
1524#endif
1525#endif
1526}
1527
1528#include "setup_arch_post.h"
1529/*
1530 * Local Variables:
1531 * mode:c
1532 * c-file-style:"k&r"
1533 * c-basic-offset:8
1534 * End:
1535 */