diff options
Diffstat (limited to 'arch/i386/kernel/hpet_32.c')
-rw-r--r-- | arch/i386/kernel/hpet_32.c | 553 |
1 files changed, 553 insertions, 0 deletions
diff --git a/arch/i386/kernel/hpet_32.c b/arch/i386/kernel/hpet_32.c new file mode 100644 index 000000000000..533d4932bc79 --- /dev/null +++ b/arch/i386/kernel/hpet_32.c | |||
@@ -0,0 +1,553 @@ | |||
1 | #include <linux/clocksource.h> | ||
2 | #include <linux/clockchips.h> | ||
3 | #include <linux/errno.h> | ||
4 | #include <linux/hpet.h> | ||
5 | #include <linux/init.h> | ||
6 | #include <linux/sysdev.h> | ||
7 | #include <linux/pm.h> | ||
8 | #include <linux/delay.h> | ||
9 | |||
10 | #include <asm/hpet.h> | ||
11 | #include <asm/io.h> | ||
12 | |||
13 | extern struct clock_event_device *global_clock_event; | ||
14 | |||
15 | #define HPET_MASK CLOCKSOURCE_MASK(32) | ||
16 | #define HPET_SHIFT 22 | ||
17 | |||
18 | /* FSEC = 10^-15 NSEC = 10^-9 */ | ||
19 | #define FSEC_PER_NSEC 1000000 | ||
20 | |||
21 | /* | ||
22 | * HPET address is set in acpi/boot.c, when an ACPI entry exists | ||
23 | */ | ||
24 | unsigned long hpet_address; | ||
25 | static void __iomem * hpet_virt_address; | ||
26 | |||
27 | static inline unsigned long hpet_readl(unsigned long a) | ||
28 | { | ||
29 | return readl(hpet_virt_address + a); | ||
30 | } | ||
31 | |||
32 | static inline void hpet_writel(unsigned long d, unsigned long a) | ||
33 | { | ||
34 | writel(d, hpet_virt_address + a); | ||
35 | } | ||
36 | |||
37 | /* | ||
38 | * HPET command line enable / disable | ||
39 | */ | ||
40 | static int boot_hpet_disable; | ||
41 | |||
42 | static int __init hpet_setup(char* str) | ||
43 | { | ||
44 | if (str) { | ||
45 | if (!strncmp("disable", str, 7)) | ||
46 | boot_hpet_disable = 1; | ||
47 | } | ||
48 | return 1; | ||
49 | } | ||
50 | __setup("hpet=", hpet_setup); | ||
51 | |||
52 | static inline int is_hpet_capable(void) | ||
53 | { | ||
54 | return (!boot_hpet_disable && hpet_address); | ||
55 | } | ||
56 | |||
57 | /* | ||
58 | * HPET timer interrupt enable / disable | ||
59 | */ | ||
60 | static int hpet_legacy_int_enabled; | ||
61 | |||
62 | /** | ||
63 | * is_hpet_enabled - check whether the hpet timer interrupt is enabled | ||
64 | */ | ||
65 | int is_hpet_enabled(void) | ||
66 | { | ||
67 | return is_hpet_capable() && hpet_legacy_int_enabled; | ||
68 | } | ||
69 | |||
70 | /* | ||
71 | * When the hpet driver (/dev/hpet) is enabled, we need to reserve | ||
72 | * timer 0 and timer 1 in case of RTC emulation. | ||
73 | */ | ||
74 | #ifdef CONFIG_HPET | ||
75 | static void hpet_reserve_platform_timers(unsigned long id) | ||
76 | { | ||
77 | struct hpet __iomem *hpet = hpet_virt_address; | ||
78 | struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; | ||
79 | unsigned int nrtimers, i; | ||
80 | struct hpet_data hd; | ||
81 | |||
82 | nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | ||
83 | |||
84 | memset(&hd, 0, sizeof (hd)); | ||
85 | hd.hd_phys_address = hpet_address; | ||
86 | hd.hd_address = hpet_virt_address; | ||
87 | hd.hd_nirqs = nrtimers; | ||
88 | hd.hd_flags = HPET_DATA_PLATFORM; | ||
89 | hpet_reserve_timer(&hd, 0); | ||
90 | |||
91 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
92 | hpet_reserve_timer(&hd, 1); | ||
93 | #endif | ||
94 | |||
95 | hd.hd_irq[0] = HPET_LEGACY_8254; | ||
96 | hd.hd_irq[1] = HPET_LEGACY_RTC; | ||
97 | |||
98 | for (i = 2; i < nrtimers; timer++, i++) | ||
99 | hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> | ||
100 | Tn_INT_ROUTE_CNF_SHIFT; | ||
101 | |||
102 | hpet_alloc(&hd); | ||
103 | |||
104 | } | ||
105 | #else | ||
106 | static void hpet_reserve_platform_timers(unsigned long id) { } | ||
107 | #endif | ||
108 | |||
109 | /* | ||
110 | * Common hpet info | ||
111 | */ | ||
112 | static unsigned long hpet_period; | ||
113 | |||
114 | static void hpet_set_mode(enum clock_event_mode mode, | ||
115 | struct clock_event_device *evt); | ||
116 | static int hpet_next_event(unsigned long delta, | ||
117 | struct clock_event_device *evt); | ||
118 | |||
119 | /* | ||
120 | * The hpet clock event device | ||
121 | */ | ||
122 | static struct clock_event_device hpet_clockevent = { | ||
123 | .name = "hpet", | ||
124 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
125 | .set_mode = hpet_set_mode, | ||
126 | .set_next_event = hpet_next_event, | ||
127 | .shift = 32, | ||
128 | .irq = 0, | ||
129 | }; | ||
130 | |||
131 | static void hpet_start_counter(void) | ||
132 | { | ||
133 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
134 | |||
135 | cfg &= ~HPET_CFG_ENABLE; | ||
136 | hpet_writel(cfg, HPET_CFG); | ||
137 | hpet_writel(0, HPET_COUNTER); | ||
138 | hpet_writel(0, HPET_COUNTER + 4); | ||
139 | cfg |= HPET_CFG_ENABLE; | ||
140 | hpet_writel(cfg, HPET_CFG); | ||
141 | } | ||
142 | |||
143 | static void hpet_enable_int(void) | ||
144 | { | ||
145 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
146 | |||
147 | cfg |= HPET_CFG_LEGACY; | ||
148 | hpet_writel(cfg, HPET_CFG); | ||
149 | hpet_legacy_int_enabled = 1; | ||
150 | } | ||
151 | |||
152 | static void hpet_set_mode(enum clock_event_mode mode, | ||
153 | struct clock_event_device *evt) | ||
154 | { | ||
155 | unsigned long cfg, cmp, now; | ||
156 | uint64_t delta; | ||
157 | |||
158 | switch(mode) { | ||
159 | case CLOCK_EVT_MODE_PERIODIC: | ||
160 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult; | ||
161 | delta >>= hpet_clockevent.shift; | ||
162 | now = hpet_readl(HPET_COUNTER); | ||
163 | cmp = now + (unsigned long) delta; | ||
164 | cfg = hpet_readl(HPET_T0_CFG); | ||
165 | cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | | ||
166 | HPET_TN_SETVAL | HPET_TN_32BIT; | ||
167 | hpet_writel(cfg, HPET_T0_CFG); | ||
168 | /* | ||
169 | * The first write after writing TN_SETVAL to the | ||
170 | * config register sets the counter value, the second | ||
171 | * write sets the period. | ||
172 | */ | ||
173 | hpet_writel(cmp, HPET_T0_CMP); | ||
174 | udelay(1); | ||
175 | hpet_writel((unsigned long) delta, HPET_T0_CMP); | ||
176 | break; | ||
177 | |||
178 | case CLOCK_EVT_MODE_ONESHOT: | ||
179 | cfg = hpet_readl(HPET_T0_CFG); | ||
180 | cfg &= ~HPET_TN_PERIODIC; | ||
181 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
182 | hpet_writel(cfg, HPET_T0_CFG); | ||
183 | break; | ||
184 | |||
185 | case CLOCK_EVT_MODE_UNUSED: | ||
186 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
187 | cfg = hpet_readl(HPET_T0_CFG); | ||
188 | cfg &= ~HPET_TN_ENABLE; | ||
189 | hpet_writel(cfg, HPET_T0_CFG); | ||
190 | break; | ||
191 | |||
192 | case CLOCK_EVT_MODE_RESUME: | ||
193 | hpet_enable_int(); | ||
194 | break; | ||
195 | } | ||
196 | } | ||
197 | |||
198 | static int hpet_next_event(unsigned long delta, | ||
199 | struct clock_event_device *evt) | ||
200 | { | ||
201 | unsigned long cnt; | ||
202 | |||
203 | cnt = hpet_readl(HPET_COUNTER); | ||
204 | cnt += delta; | ||
205 | hpet_writel(cnt, HPET_T0_CMP); | ||
206 | |||
207 | return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0; | ||
208 | } | ||
209 | |||
210 | /* | ||
211 | * Clock source related code | ||
212 | */ | ||
213 | static cycle_t read_hpet(void) | ||
214 | { | ||
215 | return (cycle_t)hpet_readl(HPET_COUNTER); | ||
216 | } | ||
217 | |||
218 | static struct clocksource clocksource_hpet = { | ||
219 | .name = "hpet", | ||
220 | .rating = 250, | ||
221 | .read = read_hpet, | ||
222 | .mask = HPET_MASK, | ||
223 | .shift = HPET_SHIFT, | ||
224 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
225 | .resume = hpet_start_counter, | ||
226 | }; | ||
227 | |||
228 | /* | ||
229 | * Try to setup the HPET timer | ||
230 | */ | ||
231 | int __init hpet_enable(void) | ||
232 | { | ||
233 | unsigned long id; | ||
234 | uint64_t hpet_freq; | ||
235 | u64 tmp, start, now; | ||
236 | cycle_t t1; | ||
237 | |||
238 | if (!is_hpet_capable()) | ||
239 | return 0; | ||
240 | |||
241 | hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | ||
242 | |||
243 | /* | ||
244 | * Read the period and check for a sane value: | ||
245 | */ | ||
246 | hpet_period = hpet_readl(HPET_PERIOD); | ||
247 | if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) | ||
248 | goto out_nohpet; | ||
249 | |||
250 | /* | ||
251 | * The period is a femto seconds value. We need to calculate the | ||
252 | * scaled math multiplication factor for nanosecond to hpet tick | ||
253 | * conversion. | ||
254 | */ | ||
255 | hpet_freq = 1000000000000000ULL; | ||
256 | do_div(hpet_freq, hpet_period); | ||
257 | hpet_clockevent.mult = div_sc((unsigned long) hpet_freq, | ||
258 | NSEC_PER_SEC, 32); | ||
259 | /* Calculate the min / max delta */ | ||
260 | hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
261 | &hpet_clockevent); | ||
262 | hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30, | ||
263 | &hpet_clockevent); | ||
264 | |||
265 | /* | ||
266 | * Read the HPET ID register to retrieve the IRQ routing | ||
267 | * information and the number of channels | ||
268 | */ | ||
269 | id = hpet_readl(HPET_ID); | ||
270 | |||
271 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
272 | /* | ||
273 | * The legacy routing mode needs at least two channels, tick timer | ||
274 | * and the rtc emulation channel. | ||
275 | */ | ||
276 | if (!(id & HPET_ID_NUMBER)) | ||
277 | goto out_nohpet; | ||
278 | #endif | ||
279 | |||
280 | /* Start the counter */ | ||
281 | hpet_start_counter(); | ||
282 | |||
283 | /* Verify whether hpet counter works */ | ||
284 | t1 = read_hpet(); | ||
285 | rdtscll(start); | ||
286 | |||
287 | /* | ||
288 | * We don't know the TSC frequency yet, but waiting for | ||
289 | * 200000 TSC cycles is safe: | ||
290 | * 4 GHz == 50us | ||
291 | * 1 GHz == 200us | ||
292 | */ | ||
293 | do { | ||
294 | rep_nop(); | ||
295 | rdtscll(now); | ||
296 | } while ((now - start) < 200000UL); | ||
297 | |||
298 | if (t1 == read_hpet()) { | ||
299 | printk(KERN_WARNING | ||
300 | "HPET counter not counting. HPET disabled\n"); | ||
301 | goto out_nohpet; | ||
302 | } | ||
303 | |||
304 | /* Initialize and register HPET clocksource | ||
305 | * | ||
306 | * hpet period is in femto seconds per cycle | ||
307 | * so we need to convert this to ns/cyc units | ||
308 | * aproximated by mult/2^shift | ||
309 | * | ||
310 | * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift | ||
311 | * fsec/cyc * 1ns/1000000fsec * 2^shift = mult | ||
312 | * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult | ||
313 | * (fsec/cyc << shift)/1000000 = mult | ||
314 | * (hpet_period << shift)/FSEC_PER_NSEC = mult | ||
315 | */ | ||
316 | tmp = (u64)hpet_period << HPET_SHIFT; | ||
317 | do_div(tmp, FSEC_PER_NSEC); | ||
318 | clocksource_hpet.mult = (u32)tmp; | ||
319 | |||
320 | clocksource_register(&clocksource_hpet); | ||
321 | |||
322 | if (id & HPET_ID_LEGSUP) { | ||
323 | hpet_enable_int(); | ||
324 | hpet_reserve_platform_timers(id); | ||
325 | /* | ||
326 | * Start hpet with the boot cpu mask and make it | ||
327 | * global after the IO_APIC has been initialized. | ||
328 | */ | ||
329 | hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id()); | ||
330 | clockevents_register_device(&hpet_clockevent); | ||
331 | global_clock_event = &hpet_clockevent; | ||
332 | return 1; | ||
333 | } | ||
334 | return 0; | ||
335 | |||
336 | out_nohpet: | ||
337 | iounmap(hpet_virt_address); | ||
338 | hpet_virt_address = NULL; | ||
339 | boot_hpet_disable = 1; | ||
340 | return 0; | ||
341 | } | ||
342 | |||
343 | |||
344 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
345 | |||
346 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | ||
347 | * is enabled, we support RTC interrupt functionality in software. | ||
348 | * RTC has 3 kinds of interrupts: | ||
349 | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | ||
350 | * is updated | ||
351 | * 2) Alarm Interrupt - generate an interrupt at a specific time of day | ||
352 | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | ||
353 | * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | ||
354 | * (1) and (2) above are implemented using polling at a frequency of | ||
355 | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | ||
356 | * overhead. (DEFAULT_RTC_INT_FREQ) | ||
357 | * For (3), we use interrupts at 64Hz or user specified periodic | ||
358 | * frequency, whichever is higher. | ||
359 | */ | ||
360 | #include <linux/mc146818rtc.h> | ||
361 | #include <linux/rtc.h> | ||
362 | |||
363 | #define DEFAULT_RTC_INT_FREQ 64 | ||
364 | #define DEFAULT_RTC_SHIFT 6 | ||
365 | #define RTC_NUM_INTS 1 | ||
366 | |||
367 | static unsigned long hpet_rtc_flags; | ||
368 | static unsigned long hpet_prev_update_sec; | ||
369 | static struct rtc_time hpet_alarm_time; | ||
370 | static unsigned long hpet_pie_count; | ||
371 | static unsigned long hpet_t1_cmp; | ||
372 | static unsigned long hpet_default_delta; | ||
373 | static unsigned long hpet_pie_delta; | ||
374 | static unsigned long hpet_pie_limit; | ||
375 | |||
376 | /* | ||
377 | * Timer 1 for RTC emulation. We use one shot mode, as periodic mode | ||
378 | * is not supported by all HPET implementations for timer 1. | ||
379 | * | ||
380 | * hpet_rtc_timer_init() is called when the rtc is initialized. | ||
381 | */ | ||
382 | int hpet_rtc_timer_init(void) | ||
383 | { | ||
384 | unsigned long cfg, cnt, delta, flags; | ||
385 | |||
386 | if (!is_hpet_enabled()) | ||
387 | return 0; | ||
388 | |||
389 | if (!hpet_default_delta) { | ||
390 | uint64_t clc; | ||
391 | |||
392 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
393 | clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; | ||
394 | hpet_default_delta = (unsigned long) clc; | ||
395 | } | ||
396 | |||
397 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
398 | delta = hpet_default_delta; | ||
399 | else | ||
400 | delta = hpet_pie_delta; | ||
401 | |||
402 | local_irq_save(flags); | ||
403 | |||
404 | cnt = delta + hpet_readl(HPET_COUNTER); | ||
405 | hpet_writel(cnt, HPET_T1_CMP); | ||
406 | hpet_t1_cmp = cnt; | ||
407 | |||
408 | cfg = hpet_readl(HPET_T1_CFG); | ||
409 | cfg &= ~HPET_TN_PERIODIC; | ||
410 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
411 | hpet_writel(cfg, HPET_T1_CFG); | ||
412 | |||
413 | local_irq_restore(flags); | ||
414 | |||
415 | return 1; | ||
416 | } | ||
417 | |||
418 | /* | ||
419 | * The functions below are called from rtc driver. | ||
420 | * Return 0 if HPET is not being used. | ||
421 | * Otherwise do the necessary changes and return 1. | ||
422 | */ | ||
423 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | ||
424 | { | ||
425 | if (!is_hpet_enabled()) | ||
426 | return 0; | ||
427 | |||
428 | hpet_rtc_flags &= ~bit_mask; | ||
429 | return 1; | ||
430 | } | ||
431 | |||
432 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | ||
433 | { | ||
434 | unsigned long oldbits = hpet_rtc_flags; | ||
435 | |||
436 | if (!is_hpet_enabled()) | ||
437 | return 0; | ||
438 | |||
439 | hpet_rtc_flags |= bit_mask; | ||
440 | |||
441 | if (!oldbits) | ||
442 | hpet_rtc_timer_init(); | ||
443 | |||
444 | return 1; | ||
445 | } | ||
446 | |||
447 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, | ||
448 | unsigned char sec) | ||
449 | { | ||
450 | if (!is_hpet_enabled()) | ||
451 | return 0; | ||
452 | |||
453 | hpet_alarm_time.tm_hour = hrs; | ||
454 | hpet_alarm_time.tm_min = min; | ||
455 | hpet_alarm_time.tm_sec = sec; | ||
456 | |||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | int hpet_set_periodic_freq(unsigned long freq) | ||
461 | { | ||
462 | uint64_t clc; | ||
463 | |||
464 | if (!is_hpet_enabled()) | ||
465 | return 0; | ||
466 | |||
467 | if (freq <= DEFAULT_RTC_INT_FREQ) | ||
468 | hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; | ||
469 | else { | ||
470 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
471 | do_div(clc, freq); | ||
472 | clc >>= hpet_clockevent.shift; | ||
473 | hpet_pie_delta = (unsigned long) clc; | ||
474 | } | ||
475 | return 1; | ||
476 | } | ||
477 | |||
478 | int hpet_rtc_dropped_irq(void) | ||
479 | { | ||
480 | return is_hpet_enabled(); | ||
481 | } | ||
482 | |||
483 | static void hpet_rtc_timer_reinit(void) | ||
484 | { | ||
485 | unsigned long cfg, delta; | ||
486 | int lost_ints = -1; | ||
487 | |||
488 | if (unlikely(!hpet_rtc_flags)) { | ||
489 | cfg = hpet_readl(HPET_T1_CFG); | ||
490 | cfg &= ~HPET_TN_ENABLE; | ||
491 | hpet_writel(cfg, HPET_T1_CFG); | ||
492 | return; | ||
493 | } | ||
494 | |||
495 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
496 | delta = hpet_default_delta; | ||
497 | else | ||
498 | delta = hpet_pie_delta; | ||
499 | |||
500 | /* | ||
501 | * Increment the comparator value until we are ahead of the | ||
502 | * current count. | ||
503 | */ | ||
504 | do { | ||
505 | hpet_t1_cmp += delta; | ||
506 | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | ||
507 | lost_ints++; | ||
508 | } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0); | ||
509 | |||
510 | if (lost_ints) { | ||
511 | if (hpet_rtc_flags & RTC_PIE) | ||
512 | hpet_pie_count += lost_ints; | ||
513 | if (printk_ratelimit()) | ||
514 | printk(KERN_WARNING "rtc: lost %d interrupts\n", | ||
515 | lost_ints); | ||
516 | } | ||
517 | } | ||
518 | |||
519 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | ||
520 | { | ||
521 | struct rtc_time curr_time; | ||
522 | unsigned long rtc_int_flag = 0; | ||
523 | |||
524 | hpet_rtc_timer_reinit(); | ||
525 | |||
526 | if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) | ||
527 | rtc_get_rtc_time(&curr_time); | ||
528 | |||
529 | if (hpet_rtc_flags & RTC_UIE && | ||
530 | curr_time.tm_sec != hpet_prev_update_sec) { | ||
531 | rtc_int_flag = RTC_UF; | ||
532 | hpet_prev_update_sec = curr_time.tm_sec; | ||
533 | } | ||
534 | |||
535 | if (hpet_rtc_flags & RTC_PIE && | ||
536 | ++hpet_pie_count >= hpet_pie_limit) { | ||
537 | rtc_int_flag |= RTC_PF; | ||
538 | hpet_pie_count = 0; | ||
539 | } | ||
540 | |||
541 | if (hpet_rtc_flags & RTC_PIE && | ||
542 | (curr_time.tm_sec == hpet_alarm_time.tm_sec) && | ||
543 | (curr_time.tm_min == hpet_alarm_time.tm_min) && | ||
544 | (curr_time.tm_hour == hpet_alarm_time.tm_hour)) | ||
545 | rtc_int_flag |= RTC_AF; | ||
546 | |||
547 | if (rtc_int_flag) { | ||
548 | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | ||
549 | rtc_interrupt(rtc_int_flag, dev_id); | ||
550 | } | ||
551 | return IRQ_HANDLED; | ||
552 | } | ||
553 | #endif | ||