diff options
Diffstat (limited to 'arch/i386/kernel/hpet.c')
-rw-r--r-- | arch/i386/kernel/hpet.c | 496 |
1 files changed, 477 insertions, 19 deletions
diff --git a/arch/i386/kernel/hpet.c b/arch/i386/kernel/hpet.c index 7d2739fff3a3..e1006b7acc9e 100644 --- a/arch/i386/kernel/hpet.c +++ b/arch/i386/kernel/hpet.c | |||
@@ -1,4 +1,5 @@ | |||
1 | #include <linux/clocksource.h> | 1 | #include <linux/clocksource.h> |
2 | #include <linux/clockchips.h> | ||
2 | #include <linux/errno.h> | 3 | #include <linux/errno.h> |
3 | #include <linux/hpet.h> | 4 | #include <linux/hpet.h> |
4 | #include <linux/init.h> | 5 | #include <linux/init.h> |
@@ -6,17 +7,278 @@ | |||
6 | #include <asm/hpet.h> | 7 | #include <asm/hpet.h> |
7 | #include <asm/io.h> | 8 | #include <asm/io.h> |
8 | 9 | ||
10 | extern struct clock_event_device *global_clock_event; | ||
11 | |||
9 | #define HPET_MASK CLOCKSOURCE_MASK(32) | 12 | #define HPET_MASK CLOCKSOURCE_MASK(32) |
10 | #define HPET_SHIFT 22 | 13 | #define HPET_SHIFT 22 |
11 | 14 | ||
12 | /* FSEC = 10^-15 NSEC = 10^-9 */ | 15 | /* FSEC = 10^-15 NSEC = 10^-9 */ |
13 | #define FSEC_PER_NSEC 1000000 | 16 | #define FSEC_PER_NSEC 1000000 |
14 | 17 | ||
15 | static void __iomem *hpet_ptr; | 18 | /* |
19 | * HPET address is set in acpi/boot.c, when an ACPI entry exists | ||
20 | */ | ||
21 | unsigned long hpet_address; | ||
22 | static void __iomem * hpet_virt_address; | ||
23 | |||
24 | static inline unsigned long hpet_readl(unsigned long a) | ||
25 | { | ||
26 | return readl(hpet_virt_address + a); | ||
27 | } | ||
28 | |||
29 | static inline void hpet_writel(unsigned long d, unsigned long a) | ||
30 | { | ||
31 | writel(d, hpet_virt_address + a); | ||
32 | } | ||
33 | |||
34 | /* | ||
35 | * HPET command line enable / disable | ||
36 | */ | ||
37 | static int boot_hpet_disable; | ||
38 | |||
39 | static int __init hpet_setup(char* str) | ||
40 | { | ||
41 | if (str) { | ||
42 | if (!strncmp("disable", str, 7)) | ||
43 | boot_hpet_disable = 1; | ||
44 | } | ||
45 | return 1; | ||
46 | } | ||
47 | __setup("hpet=", hpet_setup); | ||
48 | |||
49 | static inline int is_hpet_capable(void) | ||
50 | { | ||
51 | return (!boot_hpet_disable && hpet_address); | ||
52 | } | ||
53 | |||
54 | /* | ||
55 | * HPET timer interrupt enable / disable | ||
56 | */ | ||
57 | static int hpet_legacy_int_enabled; | ||
58 | |||
59 | /** | ||
60 | * is_hpet_enabled - check whether the hpet timer interrupt is enabled | ||
61 | */ | ||
62 | int is_hpet_enabled(void) | ||
63 | { | ||
64 | return is_hpet_capable() && hpet_legacy_int_enabled; | ||
65 | } | ||
66 | |||
67 | /* | ||
68 | * When the hpet driver (/dev/hpet) is enabled, we need to reserve | ||
69 | * timer 0 and timer 1 in case of RTC emulation. | ||
70 | */ | ||
71 | #ifdef CONFIG_HPET | ||
72 | static void hpet_reserve_platform_timers(unsigned long id) | ||
73 | { | ||
74 | struct hpet __iomem *hpet = hpet_virt_address; | ||
75 | struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; | ||
76 | unsigned int nrtimers, i; | ||
77 | struct hpet_data hd; | ||
78 | |||
79 | nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | ||
80 | |||
81 | memset(&hd, 0, sizeof (hd)); | ||
82 | hd.hd_phys_address = hpet_address; | ||
83 | hd.hd_address = hpet_virt_address; | ||
84 | hd.hd_nirqs = nrtimers; | ||
85 | hd.hd_flags = HPET_DATA_PLATFORM; | ||
86 | hpet_reserve_timer(&hd, 0); | ||
87 | |||
88 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
89 | hpet_reserve_timer(&hd, 1); | ||
90 | #endif | ||
91 | |||
92 | hd.hd_irq[0] = HPET_LEGACY_8254; | ||
93 | hd.hd_irq[1] = HPET_LEGACY_RTC; | ||
94 | |||
95 | for (i = 2; i < nrtimers; timer++, i++) | ||
96 | hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> | ||
97 | Tn_INT_ROUTE_CNF_SHIFT; | ||
98 | |||
99 | hpet_alloc(&hd); | ||
100 | |||
101 | } | ||
102 | #else | ||
103 | static void hpet_reserve_platform_timers(unsigned long id) { } | ||
104 | #endif | ||
105 | |||
106 | /* | ||
107 | * Common hpet info | ||
108 | */ | ||
109 | static unsigned long hpet_period; | ||
110 | |||
111 | static void hpet_set_mode(enum clock_event_mode mode, | ||
112 | struct clock_event_device *evt); | ||
113 | static int hpet_next_event(unsigned long delta, | ||
114 | struct clock_event_device *evt); | ||
115 | |||
116 | /* | ||
117 | * The hpet clock event device | ||
118 | */ | ||
119 | static struct clock_event_device hpet_clockevent = { | ||
120 | .name = "hpet", | ||
121 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
122 | .set_mode = hpet_set_mode, | ||
123 | .set_next_event = hpet_next_event, | ||
124 | .shift = 32, | ||
125 | .irq = 0, | ||
126 | }; | ||
127 | |||
128 | static void hpet_start_counter(void) | ||
129 | { | ||
130 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
131 | |||
132 | cfg &= ~HPET_CFG_ENABLE; | ||
133 | hpet_writel(cfg, HPET_CFG); | ||
134 | hpet_writel(0, HPET_COUNTER); | ||
135 | hpet_writel(0, HPET_COUNTER + 4); | ||
136 | cfg |= HPET_CFG_ENABLE; | ||
137 | hpet_writel(cfg, HPET_CFG); | ||
138 | } | ||
139 | |||
140 | static void hpet_enable_int(void) | ||
141 | { | ||
142 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
143 | |||
144 | cfg |= HPET_CFG_LEGACY; | ||
145 | hpet_writel(cfg, HPET_CFG); | ||
146 | hpet_legacy_int_enabled = 1; | ||
147 | } | ||
148 | |||
149 | static void hpet_set_mode(enum clock_event_mode mode, | ||
150 | struct clock_event_device *evt) | ||
151 | { | ||
152 | unsigned long cfg, cmp, now; | ||
153 | uint64_t delta; | ||
154 | |||
155 | switch(mode) { | ||
156 | case CLOCK_EVT_MODE_PERIODIC: | ||
157 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult; | ||
158 | delta >>= hpet_clockevent.shift; | ||
159 | now = hpet_readl(HPET_COUNTER); | ||
160 | cmp = now + (unsigned long) delta; | ||
161 | cfg = hpet_readl(HPET_T0_CFG); | ||
162 | cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | | ||
163 | HPET_TN_SETVAL | HPET_TN_32BIT; | ||
164 | hpet_writel(cfg, HPET_T0_CFG); | ||
165 | /* | ||
166 | * The first write after writing TN_SETVAL to the | ||
167 | * config register sets the counter value, the second | ||
168 | * write sets the period. | ||
169 | */ | ||
170 | hpet_writel(cmp, HPET_T0_CMP); | ||
171 | udelay(1); | ||
172 | hpet_writel((unsigned long) delta, HPET_T0_CMP); | ||
173 | break; | ||
174 | |||
175 | case CLOCK_EVT_MODE_ONESHOT: | ||
176 | cfg = hpet_readl(HPET_T0_CFG); | ||
177 | cfg &= ~HPET_TN_PERIODIC; | ||
178 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
179 | hpet_writel(cfg, HPET_T0_CFG); | ||
180 | break; | ||
181 | |||
182 | case CLOCK_EVT_MODE_UNUSED: | ||
183 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
184 | cfg = hpet_readl(HPET_T0_CFG); | ||
185 | cfg &= ~HPET_TN_ENABLE; | ||
186 | hpet_writel(cfg, HPET_T0_CFG); | ||
187 | break; | ||
188 | } | ||
189 | } | ||
190 | |||
191 | static int hpet_next_event(unsigned long delta, | ||
192 | struct clock_event_device *evt) | ||
193 | { | ||
194 | unsigned long cnt; | ||
195 | |||
196 | cnt = hpet_readl(HPET_COUNTER); | ||
197 | cnt += delta; | ||
198 | hpet_writel(cnt, HPET_T0_CMP); | ||
199 | |||
200 | return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0); | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Try to setup the HPET timer | ||
205 | */ | ||
206 | int __init hpet_enable(void) | ||
207 | { | ||
208 | unsigned long id; | ||
209 | uint64_t hpet_freq; | ||
210 | |||
211 | if (!is_hpet_capable()) | ||
212 | return 0; | ||
213 | |||
214 | hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | ||
215 | |||
216 | /* | ||
217 | * Read the period and check for a sane value: | ||
218 | */ | ||
219 | hpet_period = hpet_readl(HPET_PERIOD); | ||
220 | if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) | ||
221 | goto out_nohpet; | ||
222 | |||
223 | /* | ||
224 | * The period is a femto seconds value. We need to calculate the | ||
225 | * scaled math multiplication factor for nanosecond to hpet tick | ||
226 | * conversion. | ||
227 | */ | ||
228 | hpet_freq = 1000000000000000ULL; | ||
229 | do_div(hpet_freq, hpet_period); | ||
230 | hpet_clockevent.mult = div_sc((unsigned long) hpet_freq, | ||
231 | NSEC_PER_SEC, 32); | ||
232 | /* Calculate the min / max delta */ | ||
233 | hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
234 | &hpet_clockevent); | ||
235 | hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30, | ||
236 | &hpet_clockevent); | ||
237 | |||
238 | /* | ||
239 | * Read the HPET ID register to retrieve the IRQ routing | ||
240 | * information and the number of channels | ||
241 | */ | ||
242 | id = hpet_readl(HPET_ID); | ||
243 | |||
244 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
245 | /* | ||
246 | * The legacy routing mode needs at least two channels, tick timer | ||
247 | * and the rtc emulation channel. | ||
248 | */ | ||
249 | if (!(id & HPET_ID_NUMBER)) | ||
250 | goto out_nohpet; | ||
251 | #endif | ||
252 | |||
253 | /* Start the counter */ | ||
254 | hpet_start_counter(); | ||
255 | |||
256 | if (id & HPET_ID_LEGSUP) { | ||
257 | hpet_enable_int(); | ||
258 | hpet_reserve_platform_timers(id); | ||
259 | /* | ||
260 | * Start hpet with the boot cpu mask and make it | ||
261 | * global after the IO_APIC has been initialized. | ||
262 | */ | ||
263 | hpet_clockevent.cpumask =cpumask_of_cpu(0); | ||
264 | clockevents_register_device(&hpet_clockevent); | ||
265 | global_clock_event = &hpet_clockevent; | ||
266 | return 1; | ||
267 | } | ||
268 | return 0; | ||
16 | 269 | ||
270 | out_nohpet: | ||
271 | iounmap(hpet_virt_address); | ||
272 | hpet_virt_address = NULL; | ||
273 | return 0; | ||
274 | } | ||
275 | |||
276 | /* | ||
277 | * Clock source related code | ||
278 | */ | ||
17 | static cycle_t read_hpet(void) | 279 | static cycle_t read_hpet(void) |
18 | { | 280 | { |
19 | return (cycle_t)readl(hpet_ptr); | 281 | return (cycle_t)hpet_readl(HPET_COUNTER); |
20 | } | 282 | } |
21 | 283 | ||
22 | static struct clocksource clocksource_hpet = { | 284 | static struct clocksource clocksource_hpet = { |
@@ -24,28 +286,17 @@ static struct clocksource clocksource_hpet = { | |||
24 | .rating = 250, | 286 | .rating = 250, |
25 | .read = read_hpet, | 287 | .read = read_hpet, |
26 | .mask = HPET_MASK, | 288 | .mask = HPET_MASK, |
27 | .mult = 0, /* set below */ | ||
28 | .shift = HPET_SHIFT, | 289 | .shift = HPET_SHIFT, |
29 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | 290 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
30 | }; | 291 | }; |
31 | 292 | ||
32 | static int __init init_hpet_clocksource(void) | 293 | static int __init init_hpet_clocksource(void) |
33 | { | 294 | { |
34 | unsigned long hpet_period; | ||
35 | void __iomem* hpet_base; | ||
36 | u64 tmp; | 295 | u64 tmp; |
37 | int err; | ||
38 | 296 | ||
39 | if (!is_hpet_enabled()) | 297 | if (!hpet_virt_address) |
40 | return -ENODEV; | 298 | return -ENODEV; |
41 | 299 | ||
42 | /* calculate the hpet address: */ | ||
43 | hpet_base = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | ||
44 | hpet_ptr = hpet_base + HPET_COUNTER; | ||
45 | |||
46 | /* calculate the frequency: */ | ||
47 | hpet_period = readl(hpet_base + HPET_PERIOD); | ||
48 | |||
49 | /* | 300 | /* |
50 | * hpet period is in femto seconds per cycle | 301 | * hpet period is in femto seconds per cycle |
51 | * so we need to convert this to ns/cyc units | 302 | * so we need to convert this to ns/cyc units |
@@ -61,11 +312,218 @@ static int __init init_hpet_clocksource(void) | |||
61 | do_div(tmp, FSEC_PER_NSEC); | 312 | do_div(tmp, FSEC_PER_NSEC); |
62 | clocksource_hpet.mult = (u32)tmp; | 313 | clocksource_hpet.mult = (u32)tmp; |
63 | 314 | ||
64 | err = clocksource_register(&clocksource_hpet); | 315 | return clocksource_register(&clocksource_hpet); |
65 | if (err) | ||
66 | iounmap(hpet_base); | ||
67 | |||
68 | return err; | ||
69 | } | 316 | } |
70 | 317 | ||
71 | module_init(init_hpet_clocksource); | 318 | module_init(init_hpet_clocksource); |
319 | |||
320 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
321 | |||
322 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | ||
323 | * is enabled, we support RTC interrupt functionality in software. | ||
324 | * RTC has 3 kinds of interrupts: | ||
325 | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | ||
326 | * is updated | ||
327 | * 2) Alarm Interrupt - generate an interrupt at a specific time of day | ||
328 | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | ||
329 | * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | ||
330 | * (1) and (2) above are implemented using polling at a frequency of | ||
331 | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | ||
332 | * overhead. (DEFAULT_RTC_INT_FREQ) | ||
333 | * For (3), we use interrupts at 64Hz or user specified periodic | ||
334 | * frequency, whichever is higher. | ||
335 | */ | ||
336 | #include <linux/mc146818rtc.h> | ||
337 | #include <linux/rtc.h> | ||
338 | |||
339 | #define DEFAULT_RTC_INT_FREQ 64 | ||
340 | #define DEFAULT_RTC_SHIFT 6 | ||
341 | #define RTC_NUM_INTS 1 | ||
342 | |||
343 | static unsigned long hpet_rtc_flags; | ||
344 | static unsigned long hpet_prev_update_sec; | ||
345 | static struct rtc_time hpet_alarm_time; | ||
346 | static unsigned long hpet_pie_count; | ||
347 | static unsigned long hpet_t1_cmp; | ||
348 | static unsigned long hpet_default_delta; | ||
349 | static unsigned long hpet_pie_delta; | ||
350 | static unsigned long hpet_pie_limit; | ||
351 | |||
352 | /* | ||
353 | * Timer 1 for RTC emulation. We use one shot mode, as periodic mode | ||
354 | * is not supported by all HPET implementations for timer 1. | ||
355 | * | ||
356 | * hpet_rtc_timer_init() is called when the rtc is initialized. | ||
357 | */ | ||
358 | int hpet_rtc_timer_init(void) | ||
359 | { | ||
360 | unsigned long cfg, cnt, delta, flags; | ||
361 | |||
362 | if (!is_hpet_enabled()) | ||
363 | return 0; | ||
364 | |||
365 | if (!hpet_default_delta) { | ||
366 | uint64_t clc; | ||
367 | |||
368 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
369 | clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; | ||
370 | hpet_default_delta = (unsigned long) clc; | ||
371 | } | ||
372 | |||
373 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
374 | delta = hpet_default_delta; | ||
375 | else | ||
376 | delta = hpet_pie_delta; | ||
377 | |||
378 | local_irq_save(flags); | ||
379 | |||
380 | cnt = delta + hpet_readl(HPET_COUNTER); | ||
381 | hpet_writel(cnt, HPET_T1_CMP); | ||
382 | hpet_t1_cmp = cnt; | ||
383 | |||
384 | cfg = hpet_readl(HPET_T1_CFG); | ||
385 | cfg &= ~HPET_TN_PERIODIC; | ||
386 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
387 | hpet_writel(cfg, HPET_T1_CFG); | ||
388 | |||
389 | local_irq_restore(flags); | ||
390 | |||
391 | return 1; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * The functions below are called from rtc driver. | ||
396 | * Return 0 if HPET is not being used. | ||
397 | * Otherwise do the necessary changes and return 1. | ||
398 | */ | ||
399 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | ||
400 | { | ||
401 | if (!is_hpet_enabled()) | ||
402 | return 0; | ||
403 | |||
404 | hpet_rtc_flags &= ~bit_mask; | ||
405 | return 1; | ||
406 | } | ||
407 | |||
408 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | ||
409 | { | ||
410 | unsigned long oldbits = hpet_rtc_flags; | ||
411 | |||
412 | if (!is_hpet_enabled()) | ||
413 | return 0; | ||
414 | |||
415 | hpet_rtc_flags |= bit_mask; | ||
416 | |||
417 | if (!oldbits) | ||
418 | hpet_rtc_timer_init(); | ||
419 | |||
420 | return 1; | ||
421 | } | ||
422 | |||
423 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, | ||
424 | unsigned char sec) | ||
425 | { | ||
426 | if (!is_hpet_enabled()) | ||
427 | return 0; | ||
428 | |||
429 | hpet_alarm_time.tm_hour = hrs; | ||
430 | hpet_alarm_time.tm_min = min; | ||
431 | hpet_alarm_time.tm_sec = sec; | ||
432 | |||
433 | return 1; | ||
434 | } | ||
435 | |||
436 | int hpet_set_periodic_freq(unsigned long freq) | ||
437 | { | ||
438 | uint64_t clc; | ||
439 | |||
440 | if (!is_hpet_enabled()) | ||
441 | return 0; | ||
442 | |||
443 | if (freq <= DEFAULT_RTC_INT_FREQ) | ||
444 | hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; | ||
445 | else { | ||
446 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
447 | do_div(clc, freq); | ||
448 | clc >>= hpet_clockevent.shift; | ||
449 | hpet_pie_delta = (unsigned long) clc; | ||
450 | } | ||
451 | return 1; | ||
452 | } | ||
453 | |||
454 | int hpet_rtc_dropped_irq(void) | ||
455 | { | ||
456 | return is_hpet_enabled(); | ||
457 | } | ||
458 | |||
459 | static void hpet_rtc_timer_reinit(void) | ||
460 | { | ||
461 | unsigned long cfg, delta; | ||
462 | int lost_ints = -1; | ||
463 | |||
464 | if (unlikely(!hpet_rtc_flags)) { | ||
465 | cfg = hpet_readl(HPET_T1_CFG); | ||
466 | cfg &= ~HPET_TN_ENABLE; | ||
467 | hpet_writel(cfg, HPET_T1_CFG); | ||
468 | return; | ||
469 | } | ||
470 | |||
471 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
472 | delta = hpet_default_delta; | ||
473 | else | ||
474 | delta = hpet_pie_delta; | ||
475 | |||
476 | /* | ||
477 | * Increment the comparator value until we are ahead of the | ||
478 | * current count. | ||
479 | */ | ||
480 | do { | ||
481 | hpet_t1_cmp += delta; | ||
482 | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | ||
483 | lost_ints++; | ||
484 | } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0); | ||
485 | |||
486 | if (lost_ints) { | ||
487 | if (hpet_rtc_flags & RTC_PIE) | ||
488 | hpet_pie_count += lost_ints; | ||
489 | if (printk_ratelimit()) | ||
490 | printk(KERN_WARNING "rtc: lost %d interrupts\n", | ||
491 | lost_ints); | ||
492 | } | ||
493 | } | ||
494 | |||
495 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | ||
496 | { | ||
497 | struct rtc_time curr_time; | ||
498 | unsigned long rtc_int_flag = 0; | ||
499 | |||
500 | hpet_rtc_timer_reinit(); | ||
501 | |||
502 | if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) | ||
503 | rtc_get_rtc_time(&curr_time); | ||
504 | |||
505 | if (hpet_rtc_flags & RTC_UIE && | ||
506 | curr_time.tm_sec != hpet_prev_update_sec) { | ||
507 | rtc_int_flag = RTC_UF; | ||
508 | hpet_prev_update_sec = curr_time.tm_sec; | ||
509 | } | ||
510 | |||
511 | if (hpet_rtc_flags & RTC_PIE && | ||
512 | ++hpet_pie_count >= hpet_pie_limit) { | ||
513 | rtc_int_flag |= RTC_PF; | ||
514 | hpet_pie_count = 0; | ||
515 | } | ||
516 | |||
517 | if (hpet_rtc_flags & RTC_PIE && | ||
518 | (curr_time.tm_sec == hpet_alarm_time.tm_sec) && | ||
519 | (curr_time.tm_min == hpet_alarm_time.tm_min) && | ||
520 | (curr_time.tm_hour == hpet_alarm_time.tm_hour)) | ||
521 | rtc_int_flag |= RTC_AF; | ||
522 | |||
523 | if (rtc_int_flag) { | ||
524 | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | ||
525 | rtc_interrupt(rtc_int_flag, dev_id); | ||
526 | } | ||
527 | return IRQ_HANDLED; | ||
528 | } | ||
529 | #endif | ||