diff options
Diffstat (limited to 'arch/i386/crypto')
-rw-r--r-- | arch/i386/crypto/Makefile | 9 | ||||
-rw-r--r-- | arch/i386/crypto/aes-i586-asm.S | 376 | ||||
-rw-r--r-- | arch/i386/crypto/aes.c | 520 |
3 files changed, 905 insertions, 0 deletions
diff --git a/arch/i386/crypto/Makefile b/arch/i386/crypto/Makefile new file mode 100644 index 000000000000..103c353d0a63 --- /dev/null +++ b/arch/i386/crypto/Makefile | |||
@@ -0,0 +1,9 @@ | |||
1 | # | ||
2 | # i386/crypto/Makefile | ||
3 | # | ||
4 | # Arch-specific CryptoAPI modules. | ||
5 | # | ||
6 | |||
7 | obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o | ||
8 | |||
9 | aes-i586-y := aes-i586-asm.o aes.o | ||
diff --git a/arch/i386/crypto/aes-i586-asm.S b/arch/i386/crypto/aes-i586-asm.S new file mode 100644 index 000000000000..7b73c67cb4e8 --- /dev/null +++ b/arch/i386/crypto/aes-i586-asm.S | |||
@@ -0,0 +1,376 @@ | |||
1 | // ------------------------------------------------------------------------- | ||
2 | // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. | ||
3 | // All rights reserved. | ||
4 | // | ||
5 | // LICENSE TERMS | ||
6 | // | ||
7 | // The free distribution and use of this software in both source and binary | ||
8 | // form is allowed (with or without changes) provided that: | ||
9 | // | ||
10 | // 1. distributions of this source code include the above copyright | ||
11 | // notice, this list of conditions and the following disclaimer// | ||
12 | // | ||
13 | // 2. distributions in binary form include the above copyright | ||
14 | // notice, this list of conditions and the following disclaimer | ||
15 | // in the documentation and/or other associated materials// | ||
16 | // | ||
17 | // 3. the copyright holder's name is not used to endorse products | ||
18 | // built using this software without specific written permission. | ||
19 | // | ||
20 | // | ||
21 | // ALTERNATIVELY, provided that this notice is retained in full, this product | ||
22 | // may be distributed under the terms of the GNU General Public License (GPL), | ||
23 | // in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
24 | // | ||
25 | // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> | ||
26 | // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | ||
27 | |||
28 | // DISCLAIMER | ||
29 | // | ||
30 | // This software is provided 'as is' with no explicit or implied warranties | ||
31 | // in respect of its properties including, but not limited to, correctness | ||
32 | // and fitness for purpose. | ||
33 | // ------------------------------------------------------------------------- | ||
34 | // Issue Date: 29/07/2002 | ||
35 | |||
36 | .file "aes-i586-asm.S" | ||
37 | .text | ||
38 | |||
39 | // aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | ||
40 | // aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | ||
41 | |||
42 | #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) | ||
43 | |||
44 | // offsets to parameters with one register pushed onto stack | ||
45 | |||
46 | #define in_blk 8 // input byte array address parameter | ||
47 | #define out_blk 12 // output byte array address parameter | ||
48 | #define ctx 16 // AES context structure | ||
49 | |||
50 | // offsets in context structure | ||
51 | |||
52 | #define ekey 0 // encryption key schedule base address | ||
53 | #define nrnd 256 // number of rounds | ||
54 | #define dkey 260 // decryption key schedule base address | ||
55 | |||
56 | // register mapping for encrypt and decrypt subroutines | ||
57 | |||
58 | #define r0 eax | ||
59 | #define r1 ebx | ||
60 | #define r2 ecx | ||
61 | #define r3 edx | ||
62 | #define r4 esi | ||
63 | #define r5 edi | ||
64 | |||
65 | #define eaxl al | ||
66 | #define eaxh ah | ||
67 | #define ebxl bl | ||
68 | #define ebxh bh | ||
69 | #define ecxl cl | ||
70 | #define ecxh ch | ||
71 | #define edxl dl | ||
72 | #define edxh dh | ||
73 | |||
74 | #define _h(reg) reg##h | ||
75 | #define h(reg) _h(reg) | ||
76 | |||
77 | #define _l(reg) reg##l | ||
78 | #define l(reg) _l(reg) | ||
79 | |||
80 | // This macro takes a 32-bit word representing a column and uses | ||
81 | // each of its four bytes to index into four tables of 256 32-bit | ||
82 | // words to obtain values that are then xored into the appropriate | ||
83 | // output registers r0, r1, r4 or r5. | ||
84 | |||
85 | // Parameters: | ||
86 | // table table base address | ||
87 | // %1 out_state[0] | ||
88 | // %2 out_state[1] | ||
89 | // %3 out_state[2] | ||
90 | // %4 out_state[3] | ||
91 | // idx input register for the round (destroyed) | ||
92 | // tmp scratch register for the round | ||
93 | // sched key schedule | ||
94 | |||
95 | #define do_col(table, a1,a2,a3,a4, idx, tmp) \ | ||
96 | movzx %l(idx),%tmp; \ | ||
97 | xor table(,%tmp,4),%a1; \ | ||
98 | movzx %h(idx),%tmp; \ | ||
99 | shr $16,%idx; \ | ||
100 | xor table+tlen(,%tmp,4),%a2; \ | ||
101 | movzx %l(idx),%tmp; \ | ||
102 | movzx %h(idx),%idx; \ | ||
103 | xor table+2*tlen(,%tmp,4),%a3; \ | ||
104 | xor table+3*tlen(,%idx,4),%a4; | ||
105 | |||
106 | // initialise output registers from the key schedule | ||
107 | // NB1: original value of a3 is in idx on exit | ||
108 | // NB2: original values of a1,a2,a4 aren't used | ||
109 | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ | ||
110 | mov 0 sched,%a1; \ | ||
111 | movzx %l(idx),%tmp; \ | ||
112 | mov 12 sched,%a2; \ | ||
113 | xor table(,%tmp,4),%a1; \ | ||
114 | mov 4 sched,%a4; \ | ||
115 | movzx %h(idx),%tmp; \ | ||
116 | shr $16,%idx; \ | ||
117 | xor table+tlen(,%tmp,4),%a2; \ | ||
118 | movzx %l(idx),%tmp; \ | ||
119 | movzx %h(idx),%idx; \ | ||
120 | xor table+3*tlen(,%idx,4),%a4; \ | ||
121 | mov %a3,%idx; \ | ||
122 | mov 8 sched,%a3; \ | ||
123 | xor table+2*tlen(,%tmp,4),%a3; | ||
124 | |||
125 | // initialise output registers from the key schedule | ||
126 | // NB1: original value of a3 is in idx on exit | ||
127 | // NB2: original values of a1,a2,a4 aren't used | ||
128 | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ | ||
129 | mov 0 sched,%a1; \ | ||
130 | movzx %l(idx),%tmp; \ | ||
131 | mov 4 sched,%a2; \ | ||
132 | xor table(,%tmp,4),%a1; \ | ||
133 | mov 12 sched,%a4; \ | ||
134 | movzx %h(idx),%tmp; \ | ||
135 | shr $16,%idx; \ | ||
136 | xor table+tlen(,%tmp,4),%a2; \ | ||
137 | movzx %l(idx),%tmp; \ | ||
138 | movzx %h(idx),%idx; \ | ||
139 | xor table+3*tlen(,%idx,4),%a4; \ | ||
140 | mov %a3,%idx; \ | ||
141 | mov 8 sched,%a3; \ | ||
142 | xor table+2*tlen(,%tmp,4),%a3; | ||
143 | |||
144 | |||
145 | // original Gladman had conditional saves to MMX regs. | ||
146 | #define save(a1, a2) \ | ||
147 | mov %a2,4*a1(%esp) | ||
148 | |||
149 | #define restore(a1, a2) \ | ||
150 | mov 4*a2(%esp),%a1 | ||
151 | |||
152 | // These macros perform a forward encryption cycle. They are entered with | ||
153 | // the first previous round column values in r0,r1,r4,r5 and | ||
154 | // exit with the final values in the same registers, using stack | ||
155 | // for temporary storage. | ||
156 | |||
157 | // round column values | ||
158 | // on entry: r0,r1,r4,r5 | ||
159 | // on exit: r2,r1,r4,r5 | ||
160 | #define fwd_rnd1(arg, table) \ | ||
161 | save (0,r1); \ | ||
162 | save (1,r5); \ | ||
163 | \ | ||
164 | /* compute new column values */ \ | ||
165 | do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ | ||
166 | do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ | ||
167 | restore(r0,0); \ | ||
168 | do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ | ||
169 | restore(r0,1); \ | ||
170 | do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ | ||
171 | |||
172 | // round column values | ||
173 | // on entry: r2,r1,r4,r5 | ||
174 | // on exit: r0,r1,r4,r5 | ||
175 | #define fwd_rnd2(arg, table) \ | ||
176 | save (0,r1); \ | ||
177 | save (1,r5); \ | ||
178 | \ | ||
179 | /* compute new column values */ \ | ||
180 | do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ | ||
181 | do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ | ||
182 | restore(r2,0); \ | ||
183 | do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ | ||
184 | restore(r2,1); \ | ||
185 | do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ | ||
186 | |||
187 | // These macros performs an inverse encryption cycle. They are entered with | ||
188 | // the first previous round column values in r0,r1,r4,r5 and | ||
189 | // exit with the final values in the same registers, using stack | ||
190 | // for temporary storage | ||
191 | |||
192 | // round column values | ||
193 | // on entry: r0,r1,r4,r5 | ||
194 | // on exit: r2,r1,r4,r5 | ||
195 | #define inv_rnd1(arg, table) \ | ||
196 | save (0,r1); \ | ||
197 | save (1,r5); \ | ||
198 | \ | ||
199 | /* compute new column values */ \ | ||
200 | do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ | ||
201 | do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ | ||
202 | restore(r0,0); \ | ||
203 | do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ | ||
204 | restore(r0,1); \ | ||
205 | do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ | ||
206 | |||
207 | // round column values | ||
208 | // on entry: r2,r1,r4,r5 | ||
209 | // on exit: r0,r1,r4,r5 | ||
210 | #define inv_rnd2(arg, table) \ | ||
211 | save (0,r1); \ | ||
212 | save (1,r5); \ | ||
213 | \ | ||
214 | /* compute new column values */ \ | ||
215 | do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ | ||
216 | do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ | ||
217 | restore(r2,0); \ | ||
218 | do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ | ||
219 | restore(r2,1); \ | ||
220 | do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ | ||
221 | |||
222 | // AES (Rijndael) Encryption Subroutine | ||
223 | |||
224 | .global aes_enc_blk | ||
225 | |||
226 | .extern ft_tab | ||
227 | .extern fl_tab | ||
228 | |||
229 | .align 4 | ||
230 | |||
231 | aes_enc_blk: | ||
232 | push %ebp | ||
233 | mov ctx(%esp),%ebp // pointer to context | ||
234 | |||
235 | // CAUTION: the order and the values used in these assigns | ||
236 | // rely on the register mappings | ||
237 | |||
238 | 1: push %ebx | ||
239 | mov in_blk+4(%esp),%r2 | ||
240 | push %esi | ||
241 | mov nrnd(%ebp),%r3 // number of rounds | ||
242 | push %edi | ||
243 | #if ekey != 0 | ||
244 | lea ekey(%ebp),%ebp // key pointer | ||
245 | #endif | ||
246 | |||
247 | // input four columns and xor in first round key | ||
248 | |||
249 | mov (%r2),%r0 | ||
250 | mov 4(%r2),%r1 | ||
251 | mov 8(%r2),%r4 | ||
252 | mov 12(%r2),%r5 | ||
253 | xor (%ebp),%r0 | ||
254 | xor 4(%ebp),%r1 | ||
255 | xor 8(%ebp),%r4 | ||
256 | xor 12(%ebp),%r5 | ||
257 | |||
258 | sub $8,%esp // space for register saves on stack | ||
259 | add $16,%ebp // increment to next round key | ||
260 | sub $10,%r3 | ||
261 | je 4f // 10 rounds for 128-bit key | ||
262 | add $32,%ebp | ||
263 | sub $2,%r3 | ||
264 | je 3f // 12 rounds for 128-bit key | ||
265 | add $32,%ebp | ||
266 | |||
267 | 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key | ||
268 | fwd_rnd2( -48(%ebp) ,ft_tab) | ||
269 | 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key | ||
270 | fwd_rnd2( -16(%ebp) ,ft_tab) | ||
271 | 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key | ||
272 | fwd_rnd2( +16(%ebp) ,ft_tab) | ||
273 | fwd_rnd1( +32(%ebp) ,ft_tab) | ||
274 | fwd_rnd2( +48(%ebp) ,ft_tab) | ||
275 | fwd_rnd1( +64(%ebp) ,ft_tab) | ||
276 | fwd_rnd2( +80(%ebp) ,ft_tab) | ||
277 | fwd_rnd1( +96(%ebp) ,ft_tab) | ||
278 | fwd_rnd2(+112(%ebp) ,ft_tab) | ||
279 | fwd_rnd1(+128(%ebp) ,ft_tab) | ||
280 | fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table | ||
281 | |||
282 | // move final values to the output array. CAUTION: the | ||
283 | // order of these assigns rely on the register mappings | ||
284 | |||
285 | add $8,%esp | ||
286 | mov out_blk+12(%esp),%ebp | ||
287 | mov %r5,12(%ebp) | ||
288 | pop %edi | ||
289 | mov %r4,8(%ebp) | ||
290 | pop %esi | ||
291 | mov %r1,4(%ebp) | ||
292 | pop %ebx | ||
293 | mov %r0,(%ebp) | ||
294 | pop %ebp | ||
295 | mov $1,%eax | ||
296 | ret | ||
297 | |||
298 | // AES (Rijndael) Decryption Subroutine | ||
299 | |||
300 | .global aes_dec_blk | ||
301 | |||
302 | .extern it_tab | ||
303 | .extern il_tab | ||
304 | |||
305 | .align 4 | ||
306 | |||
307 | aes_dec_blk: | ||
308 | push %ebp | ||
309 | mov ctx(%esp),%ebp // pointer to context | ||
310 | |||
311 | // CAUTION: the order and the values used in these assigns | ||
312 | // rely on the register mappings | ||
313 | |||
314 | 1: push %ebx | ||
315 | mov in_blk+4(%esp),%r2 | ||
316 | push %esi | ||
317 | mov nrnd(%ebp),%r3 // number of rounds | ||
318 | push %edi | ||
319 | #if dkey != 0 | ||
320 | lea dkey(%ebp),%ebp // key pointer | ||
321 | #endif | ||
322 | mov %r3,%r0 | ||
323 | shl $4,%r0 | ||
324 | add %r0,%ebp | ||
325 | |||
326 | // input four columns and xor in first round key | ||
327 | |||
328 | mov (%r2),%r0 | ||
329 | mov 4(%r2),%r1 | ||
330 | mov 8(%r2),%r4 | ||
331 | mov 12(%r2),%r5 | ||
332 | xor (%ebp),%r0 | ||
333 | xor 4(%ebp),%r1 | ||
334 | xor 8(%ebp),%r4 | ||
335 | xor 12(%ebp),%r5 | ||
336 | |||
337 | sub $8,%esp // space for register saves on stack | ||
338 | sub $16,%ebp // increment to next round key | ||
339 | sub $10,%r3 | ||
340 | je 4f // 10 rounds for 128-bit key | ||
341 | sub $32,%ebp | ||
342 | sub $2,%r3 | ||
343 | je 3f // 12 rounds for 128-bit key | ||
344 | sub $32,%ebp | ||
345 | |||
346 | 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 128-bit key | ||
347 | inv_rnd2( +48(%ebp), it_tab) | ||
348 | 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 128-bit key | ||
349 | inv_rnd2( +16(%ebp), it_tab) | ||
350 | 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key | ||
351 | inv_rnd2( -16(%ebp), it_tab) | ||
352 | inv_rnd1( -32(%ebp), it_tab) | ||
353 | inv_rnd2( -48(%ebp), it_tab) | ||
354 | inv_rnd1( -64(%ebp), it_tab) | ||
355 | inv_rnd2( -80(%ebp), it_tab) | ||
356 | inv_rnd1( -96(%ebp), it_tab) | ||
357 | inv_rnd2(-112(%ebp), it_tab) | ||
358 | inv_rnd1(-128(%ebp), it_tab) | ||
359 | inv_rnd2(-144(%ebp), il_tab) // last round uses a different table | ||
360 | |||
361 | // move final values to the output array. CAUTION: the | ||
362 | // order of these assigns rely on the register mappings | ||
363 | |||
364 | add $8,%esp | ||
365 | mov out_blk+12(%esp),%ebp | ||
366 | mov %r5,12(%ebp) | ||
367 | pop %edi | ||
368 | mov %r4,8(%ebp) | ||
369 | pop %esi | ||
370 | mov %r1,4(%ebp) | ||
371 | pop %ebx | ||
372 | mov %r0,(%ebp) | ||
373 | pop %ebp | ||
374 | mov $1,%eax | ||
375 | ret | ||
376 | |||
diff --git a/arch/i386/crypto/aes.c b/arch/i386/crypto/aes.c new file mode 100644 index 000000000000..1019430fc1f1 --- /dev/null +++ b/arch/i386/crypto/aes.c | |||
@@ -0,0 +1,520 @@ | |||
1 | /* | ||
2 | * | ||
3 | * Glue Code for optimized 586 assembler version of AES | ||
4 | * | ||
5 | * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. | ||
6 | * All rights reserved. | ||
7 | * | ||
8 | * LICENSE TERMS | ||
9 | * | ||
10 | * The free distribution and use of this software in both source and binary | ||
11 | * form is allowed (with or without changes) provided that: | ||
12 | * | ||
13 | * 1. distributions of this source code include the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer; | ||
15 | * | ||
16 | * 2. distributions in binary form include the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer | ||
18 | * in the documentation and/or other associated materials; | ||
19 | * | ||
20 | * 3. the copyright holder's name is not used to endorse products | ||
21 | * built using this software without specific written permission. | ||
22 | * | ||
23 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
24 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
25 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
26 | * | ||
27 | * DISCLAIMER | ||
28 | * | ||
29 | * This software is provided 'as is' with no explicit or implied warranties | ||
30 | * in respect of its properties, including, but not limited to, correctness | ||
31 | * and/or fitness for purpose. | ||
32 | * | ||
33 | * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to | ||
34 | * 2.5 API). | ||
35 | * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> | ||
36 | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | ||
37 | * | ||
38 | */ | ||
39 | #include <linux/kernel.h> | ||
40 | #include <linux/module.h> | ||
41 | #include <linux/init.h> | ||
42 | #include <linux/types.h> | ||
43 | #include <linux/crypto.h> | ||
44 | #include <linux/linkage.h> | ||
45 | |||
46 | asmlinkage void aes_enc_blk(const u8 *src, u8 *dst, void *ctx); | ||
47 | asmlinkage void aes_dec_blk(const u8 *src, u8 *dst, void *ctx); | ||
48 | |||
49 | #define AES_MIN_KEY_SIZE 16 | ||
50 | #define AES_MAX_KEY_SIZE 32 | ||
51 | #define AES_BLOCK_SIZE 16 | ||
52 | #define AES_KS_LENGTH 4 * AES_BLOCK_SIZE | ||
53 | #define RC_LENGTH 29 | ||
54 | |||
55 | struct aes_ctx { | ||
56 | u32 ekey[AES_KS_LENGTH]; | ||
57 | u32 rounds; | ||
58 | u32 dkey[AES_KS_LENGTH]; | ||
59 | }; | ||
60 | |||
61 | #define WPOLY 0x011b | ||
62 | #define u32_in(x) le32_to_cpu(*(const u32 *)(x)) | ||
63 | #define bytes2word(b0, b1, b2, b3) \ | ||
64 | (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) | ||
65 | |||
66 | /* define the finite field multiplies required for Rijndael */ | ||
67 | #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) | ||
68 | #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) | ||
69 | #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) | ||
70 | #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) | ||
71 | #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) | ||
72 | #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) | ||
73 | #define fi(x) ((x) ? pow[255 - log[x]]: 0) | ||
74 | |||
75 | static inline u32 upr(u32 x, int n) | ||
76 | { | ||
77 | return (x << 8 * n) | (x >> (32 - 8 * n)); | ||
78 | } | ||
79 | |||
80 | static inline u8 bval(u32 x, int n) | ||
81 | { | ||
82 | return x >> 8 * n; | ||
83 | } | ||
84 | |||
85 | /* The forward and inverse affine transformations used in the S-box */ | ||
86 | #define fwd_affine(x) \ | ||
87 | (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) | ||
88 | |||
89 | #define inv_affine(x) \ | ||
90 | (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) | ||
91 | |||
92 | static u32 rcon_tab[RC_LENGTH]; | ||
93 | |||
94 | u32 ft_tab[4][256]; | ||
95 | u32 fl_tab[4][256]; | ||
96 | static u32 ls_tab[4][256]; | ||
97 | static u32 im_tab[4][256]; | ||
98 | u32 il_tab[4][256]; | ||
99 | u32 it_tab[4][256]; | ||
100 | |||
101 | static void gen_tabs(void) | ||
102 | { | ||
103 | u32 i, w; | ||
104 | u8 pow[512], log[256]; | ||
105 | |||
106 | /* | ||
107 | * log and power tables for GF(2^8) finite field with | ||
108 | * WPOLY as modular polynomial - the simplest primitive | ||
109 | * root is 0x03, used here to generate the tables. | ||
110 | */ | ||
111 | i = 0; w = 1; | ||
112 | |||
113 | do { | ||
114 | pow[i] = (u8)w; | ||
115 | pow[i + 255] = (u8)w; | ||
116 | log[w] = (u8)i++; | ||
117 | w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); | ||
118 | } while (w != 1); | ||
119 | |||
120 | for(i = 0, w = 1; i < RC_LENGTH; ++i) { | ||
121 | rcon_tab[i] = bytes2word(w, 0, 0, 0); | ||
122 | w = f2(w); | ||
123 | } | ||
124 | |||
125 | for(i = 0; i < 256; ++i) { | ||
126 | u8 b; | ||
127 | |||
128 | b = fwd_affine(fi((u8)i)); | ||
129 | w = bytes2word(f2(b), b, b, f3(b)); | ||
130 | |||
131 | /* tables for a normal encryption round */ | ||
132 | ft_tab[0][i] = w; | ||
133 | ft_tab[1][i] = upr(w, 1); | ||
134 | ft_tab[2][i] = upr(w, 2); | ||
135 | ft_tab[3][i] = upr(w, 3); | ||
136 | w = bytes2word(b, 0, 0, 0); | ||
137 | |||
138 | /* | ||
139 | * tables for last encryption round | ||
140 | * (may also be used in the key schedule) | ||
141 | */ | ||
142 | fl_tab[0][i] = w; | ||
143 | fl_tab[1][i] = upr(w, 1); | ||
144 | fl_tab[2][i] = upr(w, 2); | ||
145 | fl_tab[3][i] = upr(w, 3); | ||
146 | |||
147 | /* | ||
148 | * table for key schedule if fl_tab above is | ||
149 | * not of the required form | ||
150 | */ | ||
151 | ls_tab[0][i] = w; | ||
152 | ls_tab[1][i] = upr(w, 1); | ||
153 | ls_tab[2][i] = upr(w, 2); | ||
154 | ls_tab[3][i] = upr(w, 3); | ||
155 | |||
156 | b = fi(inv_affine((u8)i)); | ||
157 | w = bytes2word(fe(b), f9(b), fd(b), fb(b)); | ||
158 | |||
159 | /* tables for the inverse mix column operation */ | ||
160 | im_tab[0][b] = w; | ||
161 | im_tab[1][b] = upr(w, 1); | ||
162 | im_tab[2][b] = upr(w, 2); | ||
163 | im_tab[3][b] = upr(w, 3); | ||
164 | |||
165 | /* tables for a normal decryption round */ | ||
166 | it_tab[0][i] = w; | ||
167 | it_tab[1][i] = upr(w,1); | ||
168 | it_tab[2][i] = upr(w,2); | ||
169 | it_tab[3][i] = upr(w,3); | ||
170 | |||
171 | w = bytes2word(b, 0, 0, 0); | ||
172 | |||
173 | /* tables for last decryption round */ | ||
174 | il_tab[0][i] = w; | ||
175 | il_tab[1][i] = upr(w,1); | ||
176 | il_tab[2][i] = upr(w,2); | ||
177 | il_tab[3][i] = upr(w,3); | ||
178 | } | ||
179 | } | ||
180 | |||
181 | #define four_tables(x,tab,vf,rf,c) \ | ||
182 | ( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ | ||
183 | tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ | ||
184 | tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ | ||
185 | tab[3][bval(vf(x,3,c),rf(3,c))] \ | ||
186 | ) | ||
187 | |||
188 | #define vf1(x,r,c) (x) | ||
189 | #define rf1(r,c) (r) | ||
190 | #define rf2(r,c) ((r-c)&3) | ||
191 | |||
192 | #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) | ||
193 | #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) | ||
194 | |||
195 | #define ff(x) inv_mcol(x) | ||
196 | |||
197 | #define ke4(k,i) \ | ||
198 | { \ | ||
199 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
200 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
201 | k[4*(i)+6] = ss[2] ^= ss[1]; \ | ||
202 | k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
203 | } | ||
204 | |||
205 | #define kel4(k,i) \ | ||
206 | { \ | ||
207 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
208 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
209 | k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
210 | } | ||
211 | |||
212 | #define ke6(k,i) \ | ||
213 | { \ | ||
214 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
215 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
216 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
217 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
218 | k[6*(i)+10] = ss[4] ^= ss[3]; \ | ||
219 | k[6*(i)+11] = ss[5] ^= ss[4]; \ | ||
220 | } | ||
221 | |||
222 | #define kel6(k,i) \ | ||
223 | { \ | ||
224 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
225 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
226 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
227 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
228 | } | ||
229 | |||
230 | #define ke8(k,i) \ | ||
231 | { \ | ||
232 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
233 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
234 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
235 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
236 | k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ | ||
237 | k[8*(i)+13] = ss[5] ^= ss[4]; \ | ||
238 | k[8*(i)+14] = ss[6] ^= ss[5]; \ | ||
239 | k[8*(i)+15] = ss[7] ^= ss[6]; \ | ||
240 | } | ||
241 | |||
242 | #define kel8(k,i) \ | ||
243 | { \ | ||
244 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
245 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
246 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
247 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
248 | } | ||
249 | |||
250 | #define kdf4(k,i) \ | ||
251 | { \ | ||
252 | ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ | ||
253 | ss[1] = ss[1] ^ ss[3]; \ | ||
254 | ss[2] = ss[2] ^ ss[3]; \ | ||
255 | ss[3] = ss[3]; \ | ||
256 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
257 | ss[i % 4] ^= ss[4]; \ | ||
258 | ss[4] ^= k[4*(i)]; \ | ||
259 | k[4*(i)+4] = ff(ss[4]); \ | ||
260 | ss[4] ^= k[4*(i)+1]; \ | ||
261 | k[4*(i)+5] = ff(ss[4]); \ | ||
262 | ss[4] ^= k[4*(i)+2]; \ | ||
263 | k[4*(i)+6] = ff(ss[4]); \ | ||
264 | ss[4] ^= k[4*(i)+3]; \ | ||
265 | k[4*(i)+7] = ff(ss[4]); \ | ||
266 | } | ||
267 | |||
268 | #define kd4(k,i) \ | ||
269 | { \ | ||
270 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
271 | ss[i % 4] ^= ss[4]; \ | ||
272 | ss[4] = ff(ss[4]); \ | ||
273 | k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ | ||
274 | k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ | ||
275 | k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ | ||
276 | k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ | ||
277 | } | ||
278 | |||
279 | #define kdl4(k,i) \ | ||
280 | { \ | ||
281 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
282 | ss[i % 4] ^= ss[4]; \ | ||
283 | k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ | ||
284 | k[4*(i)+5] = ss[1] ^ ss[3]; \ | ||
285 | k[4*(i)+6] = ss[0]; \ | ||
286 | k[4*(i)+7] = ss[1]; \ | ||
287 | } | ||
288 | |||
289 | #define kdf6(k,i) \ | ||
290 | { \ | ||
291 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
292 | k[6*(i)+ 6] = ff(ss[0]); \ | ||
293 | ss[1] ^= ss[0]; \ | ||
294 | k[6*(i)+ 7] = ff(ss[1]); \ | ||
295 | ss[2] ^= ss[1]; \ | ||
296 | k[6*(i)+ 8] = ff(ss[2]); \ | ||
297 | ss[3] ^= ss[2]; \ | ||
298 | k[6*(i)+ 9] = ff(ss[3]); \ | ||
299 | ss[4] ^= ss[3]; \ | ||
300 | k[6*(i)+10] = ff(ss[4]); \ | ||
301 | ss[5] ^= ss[4]; \ | ||
302 | k[6*(i)+11] = ff(ss[5]); \ | ||
303 | } | ||
304 | |||
305 | #define kd6(k,i) \ | ||
306 | { \ | ||
307 | ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
308 | ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ | ||
309 | k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ | ||
310 | ss[1] ^= ss[0]; \ | ||
311 | k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ | ||
312 | ss[2] ^= ss[1]; \ | ||
313 | k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ | ||
314 | ss[3] ^= ss[2]; \ | ||
315 | k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ | ||
316 | ss[4] ^= ss[3]; \ | ||
317 | k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ | ||
318 | ss[5] ^= ss[4]; \ | ||
319 | k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ | ||
320 | } | ||
321 | |||
322 | #define kdl6(k,i) \ | ||
323 | { \ | ||
324 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
325 | k[6*(i)+ 6] = ss[0]; \ | ||
326 | ss[1] ^= ss[0]; \ | ||
327 | k[6*(i)+ 7] = ss[1]; \ | ||
328 | ss[2] ^= ss[1]; \ | ||
329 | k[6*(i)+ 8] = ss[2]; \ | ||
330 | ss[3] ^= ss[2]; \ | ||
331 | k[6*(i)+ 9] = ss[3]; \ | ||
332 | } | ||
333 | |||
334 | #define kdf8(k,i) \ | ||
335 | { \ | ||
336 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
337 | k[8*(i)+ 8] = ff(ss[0]); \ | ||
338 | ss[1] ^= ss[0]; \ | ||
339 | k[8*(i)+ 9] = ff(ss[1]); \ | ||
340 | ss[2] ^= ss[1]; \ | ||
341 | k[8*(i)+10] = ff(ss[2]); \ | ||
342 | ss[3] ^= ss[2]; \ | ||
343 | k[8*(i)+11] = ff(ss[3]); \ | ||
344 | ss[4] ^= ls_box(ss[3],0); \ | ||
345 | k[8*(i)+12] = ff(ss[4]); \ | ||
346 | ss[5] ^= ss[4]; \ | ||
347 | k[8*(i)+13] = ff(ss[5]); \ | ||
348 | ss[6] ^= ss[5]; \ | ||
349 | k[8*(i)+14] = ff(ss[6]); \ | ||
350 | ss[7] ^= ss[6]; \ | ||
351 | k[8*(i)+15] = ff(ss[7]); \ | ||
352 | } | ||
353 | |||
354 | #define kd8(k,i) \ | ||
355 | { \ | ||
356 | u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
357 | ss[0] ^= __g; \ | ||
358 | __g = ff(__g); \ | ||
359 | k[8*(i)+ 8] = __g ^= k[8*(i)]; \ | ||
360 | ss[1] ^= ss[0]; \ | ||
361 | k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ | ||
362 | ss[2] ^= ss[1]; \ | ||
363 | k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ | ||
364 | ss[3] ^= ss[2]; \ | ||
365 | k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ | ||
366 | __g = ls_box(ss[3],0); \ | ||
367 | ss[4] ^= __g; \ | ||
368 | __g = ff(__g); \ | ||
369 | k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ | ||
370 | ss[5] ^= ss[4]; \ | ||
371 | k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ | ||
372 | ss[6] ^= ss[5]; \ | ||
373 | k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ | ||
374 | ss[7] ^= ss[6]; \ | ||
375 | k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ | ||
376 | } | ||
377 | |||
378 | #define kdl8(k,i) \ | ||
379 | { \ | ||
380 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
381 | k[8*(i)+ 8] = ss[0]; \ | ||
382 | ss[1] ^= ss[0]; \ | ||
383 | k[8*(i)+ 9] = ss[1]; \ | ||
384 | ss[2] ^= ss[1]; \ | ||
385 | k[8*(i)+10] = ss[2]; \ | ||
386 | ss[3] ^= ss[2]; \ | ||
387 | k[8*(i)+11] = ss[3]; \ | ||
388 | } | ||
389 | |||
390 | static int | ||
391 | aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) | ||
392 | { | ||
393 | int i; | ||
394 | u32 ss[8]; | ||
395 | struct aes_ctx *ctx = ctx_arg; | ||
396 | |||
397 | /* encryption schedule */ | ||
398 | |||
399 | ctx->ekey[0] = ss[0] = u32_in(in_key); | ||
400 | ctx->ekey[1] = ss[1] = u32_in(in_key + 4); | ||
401 | ctx->ekey[2] = ss[2] = u32_in(in_key + 8); | ||
402 | ctx->ekey[3] = ss[3] = u32_in(in_key + 12); | ||
403 | |||
404 | switch(key_len) { | ||
405 | case 16: | ||
406 | for (i = 0; i < 9; i++) | ||
407 | ke4(ctx->ekey, i); | ||
408 | kel4(ctx->ekey, 9); | ||
409 | ctx->rounds = 10; | ||
410 | break; | ||
411 | |||
412 | case 24: | ||
413 | ctx->ekey[4] = ss[4] = u32_in(in_key + 16); | ||
414 | ctx->ekey[5] = ss[5] = u32_in(in_key + 20); | ||
415 | for (i = 0; i < 7; i++) | ||
416 | ke6(ctx->ekey, i); | ||
417 | kel6(ctx->ekey, 7); | ||
418 | ctx->rounds = 12; | ||
419 | break; | ||
420 | |||
421 | case 32: | ||
422 | ctx->ekey[4] = ss[4] = u32_in(in_key + 16); | ||
423 | ctx->ekey[5] = ss[5] = u32_in(in_key + 20); | ||
424 | ctx->ekey[6] = ss[6] = u32_in(in_key + 24); | ||
425 | ctx->ekey[7] = ss[7] = u32_in(in_key + 28); | ||
426 | for (i = 0; i < 6; i++) | ||
427 | ke8(ctx->ekey, i); | ||
428 | kel8(ctx->ekey, 6); | ||
429 | ctx->rounds = 14; | ||
430 | break; | ||
431 | |||
432 | default: | ||
433 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
434 | return -EINVAL; | ||
435 | } | ||
436 | |||
437 | /* decryption schedule */ | ||
438 | |||
439 | ctx->dkey[0] = ss[0] = u32_in(in_key); | ||
440 | ctx->dkey[1] = ss[1] = u32_in(in_key + 4); | ||
441 | ctx->dkey[2] = ss[2] = u32_in(in_key + 8); | ||
442 | ctx->dkey[3] = ss[3] = u32_in(in_key + 12); | ||
443 | |||
444 | switch (key_len) { | ||
445 | case 16: | ||
446 | kdf4(ctx->dkey, 0); | ||
447 | for (i = 1; i < 9; i++) | ||
448 | kd4(ctx->dkey, i); | ||
449 | kdl4(ctx->dkey, 9); | ||
450 | break; | ||
451 | |||
452 | case 24: | ||
453 | ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16)); | ||
454 | ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20)); | ||
455 | kdf6(ctx->dkey, 0); | ||
456 | for (i = 1; i < 7; i++) | ||
457 | kd6(ctx->dkey, i); | ||
458 | kdl6(ctx->dkey, 7); | ||
459 | break; | ||
460 | |||
461 | case 32: | ||
462 | ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16)); | ||
463 | ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20)); | ||
464 | ctx->dkey[6] = ff(ss[6] = u32_in(in_key + 24)); | ||
465 | ctx->dkey[7] = ff(ss[7] = u32_in(in_key + 28)); | ||
466 | kdf8(ctx->dkey, 0); | ||
467 | for (i = 1; i < 6; i++) | ||
468 | kd8(ctx->dkey, i); | ||
469 | kdl8(ctx->dkey, 6); | ||
470 | break; | ||
471 | } | ||
472 | return 0; | ||
473 | } | ||
474 | |||
475 | static inline void aes_encrypt(void *ctx, u8 *dst, const u8 *src) | ||
476 | { | ||
477 | aes_enc_blk(src, dst, ctx); | ||
478 | } | ||
479 | static inline void aes_decrypt(void *ctx, u8 *dst, const u8 *src) | ||
480 | { | ||
481 | aes_dec_blk(src, dst, ctx); | ||
482 | } | ||
483 | |||
484 | |||
485 | static struct crypto_alg aes_alg = { | ||
486 | .cra_name = "aes", | ||
487 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, | ||
488 | .cra_blocksize = AES_BLOCK_SIZE, | ||
489 | .cra_ctxsize = sizeof(struct aes_ctx), | ||
490 | .cra_module = THIS_MODULE, | ||
491 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | ||
492 | .cra_u = { | ||
493 | .cipher = { | ||
494 | .cia_min_keysize = AES_MIN_KEY_SIZE, | ||
495 | .cia_max_keysize = AES_MAX_KEY_SIZE, | ||
496 | .cia_setkey = aes_set_key, | ||
497 | .cia_encrypt = aes_encrypt, | ||
498 | .cia_decrypt = aes_decrypt | ||
499 | } | ||
500 | } | ||
501 | }; | ||
502 | |||
503 | static int __init aes_init(void) | ||
504 | { | ||
505 | gen_tabs(); | ||
506 | return crypto_register_alg(&aes_alg); | ||
507 | } | ||
508 | |||
509 | static void __exit aes_fini(void) | ||
510 | { | ||
511 | crypto_unregister_alg(&aes_alg); | ||
512 | } | ||
513 | |||
514 | module_init(aes_init); | ||
515 | module_exit(aes_fini); | ||
516 | |||
517 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized"); | ||
518 | MODULE_LICENSE("Dual BSD/GPL"); | ||
519 | MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter"); | ||
520 | MODULE_ALIAS("aes"); | ||