diff options
Diffstat (limited to 'arch/i386/crypto/aes_32.c')
-rw-r--r-- | arch/i386/crypto/aes_32.c | 515 |
1 files changed, 515 insertions, 0 deletions
diff --git a/arch/i386/crypto/aes_32.c b/arch/i386/crypto/aes_32.c new file mode 100644 index 000000000000..49aad9397f10 --- /dev/null +++ b/arch/i386/crypto/aes_32.c | |||
@@ -0,0 +1,515 @@ | |||
1 | /* | ||
2 | * | ||
3 | * Glue Code for optimized 586 assembler version of AES | ||
4 | * | ||
5 | * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. | ||
6 | * All rights reserved. | ||
7 | * | ||
8 | * LICENSE TERMS | ||
9 | * | ||
10 | * The free distribution and use of this software in both source and binary | ||
11 | * form is allowed (with or without changes) provided that: | ||
12 | * | ||
13 | * 1. distributions of this source code include the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer; | ||
15 | * | ||
16 | * 2. distributions in binary form include the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer | ||
18 | * in the documentation and/or other associated materials; | ||
19 | * | ||
20 | * 3. the copyright holder's name is not used to endorse products | ||
21 | * built using this software without specific written permission. | ||
22 | * | ||
23 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
24 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
25 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
26 | * | ||
27 | * DISCLAIMER | ||
28 | * | ||
29 | * This software is provided 'as is' with no explicit or implied warranties | ||
30 | * in respect of its properties, including, but not limited to, correctness | ||
31 | * and/or fitness for purpose. | ||
32 | * | ||
33 | * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to | ||
34 | * 2.5 API). | ||
35 | * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> | ||
36 | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | ||
37 | * | ||
38 | */ | ||
39 | |||
40 | #include <asm/byteorder.h> | ||
41 | #include <linux/kernel.h> | ||
42 | #include <linux/module.h> | ||
43 | #include <linux/init.h> | ||
44 | #include <linux/types.h> | ||
45 | #include <linux/crypto.h> | ||
46 | #include <linux/linkage.h> | ||
47 | |||
48 | asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | ||
49 | asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | ||
50 | |||
51 | #define AES_MIN_KEY_SIZE 16 | ||
52 | #define AES_MAX_KEY_SIZE 32 | ||
53 | #define AES_BLOCK_SIZE 16 | ||
54 | #define AES_KS_LENGTH 4 * AES_BLOCK_SIZE | ||
55 | #define RC_LENGTH 29 | ||
56 | |||
57 | struct aes_ctx { | ||
58 | u32 ekey[AES_KS_LENGTH]; | ||
59 | u32 rounds; | ||
60 | u32 dkey[AES_KS_LENGTH]; | ||
61 | }; | ||
62 | |||
63 | #define WPOLY 0x011b | ||
64 | #define bytes2word(b0, b1, b2, b3) \ | ||
65 | (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) | ||
66 | |||
67 | /* define the finite field multiplies required for Rijndael */ | ||
68 | #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) | ||
69 | #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) | ||
70 | #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) | ||
71 | #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) | ||
72 | #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) | ||
73 | #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) | ||
74 | #define fi(x) ((x) ? pow[255 - log[x]]: 0) | ||
75 | |||
76 | static inline u32 upr(u32 x, int n) | ||
77 | { | ||
78 | return (x << 8 * n) | (x >> (32 - 8 * n)); | ||
79 | } | ||
80 | |||
81 | static inline u8 bval(u32 x, int n) | ||
82 | { | ||
83 | return x >> 8 * n; | ||
84 | } | ||
85 | |||
86 | /* The forward and inverse affine transformations used in the S-box */ | ||
87 | #define fwd_affine(x) \ | ||
88 | (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) | ||
89 | |||
90 | #define inv_affine(x) \ | ||
91 | (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) | ||
92 | |||
93 | static u32 rcon_tab[RC_LENGTH]; | ||
94 | |||
95 | u32 ft_tab[4][256]; | ||
96 | u32 fl_tab[4][256]; | ||
97 | static u32 im_tab[4][256]; | ||
98 | u32 il_tab[4][256]; | ||
99 | u32 it_tab[4][256]; | ||
100 | |||
101 | static void gen_tabs(void) | ||
102 | { | ||
103 | u32 i, w; | ||
104 | u8 pow[512], log[256]; | ||
105 | |||
106 | /* | ||
107 | * log and power tables for GF(2^8) finite field with | ||
108 | * WPOLY as modular polynomial - the simplest primitive | ||
109 | * root is 0x03, used here to generate the tables. | ||
110 | */ | ||
111 | i = 0; w = 1; | ||
112 | |||
113 | do { | ||
114 | pow[i] = (u8)w; | ||
115 | pow[i + 255] = (u8)w; | ||
116 | log[w] = (u8)i++; | ||
117 | w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); | ||
118 | } while (w != 1); | ||
119 | |||
120 | for(i = 0, w = 1; i < RC_LENGTH; ++i) { | ||
121 | rcon_tab[i] = bytes2word(w, 0, 0, 0); | ||
122 | w = f2(w); | ||
123 | } | ||
124 | |||
125 | for(i = 0; i < 256; ++i) { | ||
126 | u8 b; | ||
127 | |||
128 | b = fwd_affine(fi((u8)i)); | ||
129 | w = bytes2word(f2(b), b, b, f3(b)); | ||
130 | |||
131 | /* tables for a normal encryption round */ | ||
132 | ft_tab[0][i] = w; | ||
133 | ft_tab[1][i] = upr(w, 1); | ||
134 | ft_tab[2][i] = upr(w, 2); | ||
135 | ft_tab[3][i] = upr(w, 3); | ||
136 | w = bytes2word(b, 0, 0, 0); | ||
137 | |||
138 | /* | ||
139 | * tables for last encryption round | ||
140 | * (may also be used in the key schedule) | ||
141 | */ | ||
142 | fl_tab[0][i] = w; | ||
143 | fl_tab[1][i] = upr(w, 1); | ||
144 | fl_tab[2][i] = upr(w, 2); | ||
145 | fl_tab[3][i] = upr(w, 3); | ||
146 | |||
147 | b = fi(inv_affine((u8)i)); | ||
148 | w = bytes2word(fe(b), f9(b), fd(b), fb(b)); | ||
149 | |||
150 | /* tables for the inverse mix column operation */ | ||
151 | im_tab[0][b] = w; | ||
152 | im_tab[1][b] = upr(w, 1); | ||
153 | im_tab[2][b] = upr(w, 2); | ||
154 | im_tab[3][b] = upr(w, 3); | ||
155 | |||
156 | /* tables for a normal decryption round */ | ||
157 | it_tab[0][i] = w; | ||
158 | it_tab[1][i] = upr(w,1); | ||
159 | it_tab[2][i] = upr(w,2); | ||
160 | it_tab[3][i] = upr(w,3); | ||
161 | |||
162 | w = bytes2word(b, 0, 0, 0); | ||
163 | |||
164 | /* tables for last decryption round */ | ||
165 | il_tab[0][i] = w; | ||
166 | il_tab[1][i] = upr(w,1); | ||
167 | il_tab[2][i] = upr(w,2); | ||
168 | il_tab[3][i] = upr(w,3); | ||
169 | } | ||
170 | } | ||
171 | |||
172 | #define four_tables(x,tab,vf,rf,c) \ | ||
173 | ( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ | ||
174 | tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ | ||
175 | tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ | ||
176 | tab[3][bval(vf(x,3,c),rf(3,c))] \ | ||
177 | ) | ||
178 | |||
179 | #define vf1(x,r,c) (x) | ||
180 | #define rf1(r,c) (r) | ||
181 | #define rf2(r,c) ((r-c)&3) | ||
182 | |||
183 | #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) | ||
184 | #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) | ||
185 | |||
186 | #define ff(x) inv_mcol(x) | ||
187 | |||
188 | #define ke4(k,i) \ | ||
189 | { \ | ||
190 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
191 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
192 | k[4*(i)+6] = ss[2] ^= ss[1]; \ | ||
193 | k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
194 | } | ||
195 | |||
196 | #define kel4(k,i) \ | ||
197 | { \ | ||
198 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
199 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
200 | k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
201 | } | ||
202 | |||
203 | #define ke6(k,i) \ | ||
204 | { \ | ||
205 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
206 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
207 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
208 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
209 | k[6*(i)+10] = ss[4] ^= ss[3]; \ | ||
210 | k[6*(i)+11] = ss[5] ^= ss[4]; \ | ||
211 | } | ||
212 | |||
213 | #define kel6(k,i) \ | ||
214 | { \ | ||
215 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
216 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
217 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
218 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
219 | } | ||
220 | |||
221 | #define ke8(k,i) \ | ||
222 | { \ | ||
223 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
224 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
225 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
226 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
227 | k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ | ||
228 | k[8*(i)+13] = ss[5] ^= ss[4]; \ | ||
229 | k[8*(i)+14] = ss[6] ^= ss[5]; \ | ||
230 | k[8*(i)+15] = ss[7] ^= ss[6]; \ | ||
231 | } | ||
232 | |||
233 | #define kel8(k,i) \ | ||
234 | { \ | ||
235 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
236 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
237 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
238 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
239 | } | ||
240 | |||
241 | #define kdf4(k,i) \ | ||
242 | { \ | ||
243 | ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ | ||
244 | ss[1] = ss[1] ^ ss[3]; \ | ||
245 | ss[2] = ss[2] ^ ss[3]; \ | ||
246 | ss[3] = ss[3]; \ | ||
247 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
248 | ss[i % 4] ^= ss[4]; \ | ||
249 | ss[4] ^= k[4*(i)]; \ | ||
250 | k[4*(i)+4] = ff(ss[4]); \ | ||
251 | ss[4] ^= k[4*(i)+1]; \ | ||
252 | k[4*(i)+5] = ff(ss[4]); \ | ||
253 | ss[4] ^= k[4*(i)+2]; \ | ||
254 | k[4*(i)+6] = ff(ss[4]); \ | ||
255 | ss[4] ^= k[4*(i)+3]; \ | ||
256 | k[4*(i)+7] = ff(ss[4]); \ | ||
257 | } | ||
258 | |||
259 | #define kd4(k,i) \ | ||
260 | { \ | ||
261 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
262 | ss[i % 4] ^= ss[4]; \ | ||
263 | ss[4] = ff(ss[4]); \ | ||
264 | k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ | ||
265 | k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ | ||
266 | k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ | ||
267 | k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ | ||
268 | } | ||
269 | |||
270 | #define kdl4(k,i) \ | ||
271 | { \ | ||
272 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
273 | ss[i % 4] ^= ss[4]; \ | ||
274 | k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ | ||
275 | k[4*(i)+5] = ss[1] ^ ss[3]; \ | ||
276 | k[4*(i)+6] = ss[0]; \ | ||
277 | k[4*(i)+7] = ss[1]; \ | ||
278 | } | ||
279 | |||
280 | #define kdf6(k,i) \ | ||
281 | { \ | ||
282 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
283 | k[6*(i)+ 6] = ff(ss[0]); \ | ||
284 | ss[1] ^= ss[0]; \ | ||
285 | k[6*(i)+ 7] = ff(ss[1]); \ | ||
286 | ss[2] ^= ss[1]; \ | ||
287 | k[6*(i)+ 8] = ff(ss[2]); \ | ||
288 | ss[3] ^= ss[2]; \ | ||
289 | k[6*(i)+ 9] = ff(ss[3]); \ | ||
290 | ss[4] ^= ss[3]; \ | ||
291 | k[6*(i)+10] = ff(ss[4]); \ | ||
292 | ss[5] ^= ss[4]; \ | ||
293 | k[6*(i)+11] = ff(ss[5]); \ | ||
294 | } | ||
295 | |||
296 | #define kd6(k,i) \ | ||
297 | { \ | ||
298 | ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
299 | ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ | ||
300 | k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ | ||
301 | ss[1] ^= ss[0]; \ | ||
302 | k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ | ||
303 | ss[2] ^= ss[1]; \ | ||
304 | k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ | ||
305 | ss[3] ^= ss[2]; \ | ||
306 | k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ | ||
307 | ss[4] ^= ss[3]; \ | ||
308 | k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ | ||
309 | ss[5] ^= ss[4]; \ | ||
310 | k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ | ||
311 | } | ||
312 | |||
313 | #define kdl6(k,i) \ | ||
314 | { \ | ||
315 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
316 | k[6*(i)+ 6] = ss[0]; \ | ||
317 | ss[1] ^= ss[0]; \ | ||
318 | k[6*(i)+ 7] = ss[1]; \ | ||
319 | ss[2] ^= ss[1]; \ | ||
320 | k[6*(i)+ 8] = ss[2]; \ | ||
321 | ss[3] ^= ss[2]; \ | ||
322 | k[6*(i)+ 9] = ss[3]; \ | ||
323 | } | ||
324 | |||
325 | #define kdf8(k,i) \ | ||
326 | { \ | ||
327 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
328 | k[8*(i)+ 8] = ff(ss[0]); \ | ||
329 | ss[1] ^= ss[0]; \ | ||
330 | k[8*(i)+ 9] = ff(ss[1]); \ | ||
331 | ss[2] ^= ss[1]; \ | ||
332 | k[8*(i)+10] = ff(ss[2]); \ | ||
333 | ss[3] ^= ss[2]; \ | ||
334 | k[8*(i)+11] = ff(ss[3]); \ | ||
335 | ss[4] ^= ls_box(ss[3],0); \ | ||
336 | k[8*(i)+12] = ff(ss[4]); \ | ||
337 | ss[5] ^= ss[4]; \ | ||
338 | k[8*(i)+13] = ff(ss[5]); \ | ||
339 | ss[6] ^= ss[5]; \ | ||
340 | k[8*(i)+14] = ff(ss[6]); \ | ||
341 | ss[7] ^= ss[6]; \ | ||
342 | k[8*(i)+15] = ff(ss[7]); \ | ||
343 | } | ||
344 | |||
345 | #define kd8(k,i) \ | ||
346 | { \ | ||
347 | u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
348 | ss[0] ^= __g; \ | ||
349 | __g = ff(__g); \ | ||
350 | k[8*(i)+ 8] = __g ^= k[8*(i)]; \ | ||
351 | ss[1] ^= ss[0]; \ | ||
352 | k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ | ||
353 | ss[2] ^= ss[1]; \ | ||
354 | k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ | ||
355 | ss[3] ^= ss[2]; \ | ||
356 | k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ | ||
357 | __g = ls_box(ss[3],0); \ | ||
358 | ss[4] ^= __g; \ | ||
359 | __g = ff(__g); \ | ||
360 | k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ | ||
361 | ss[5] ^= ss[4]; \ | ||
362 | k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ | ||
363 | ss[6] ^= ss[5]; \ | ||
364 | k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ | ||
365 | ss[7] ^= ss[6]; \ | ||
366 | k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ | ||
367 | } | ||
368 | |||
369 | #define kdl8(k,i) \ | ||
370 | { \ | ||
371 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
372 | k[8*(i)+ 8] = ss[0]; \ | ||
373 | ss[1] ^= ss[0]; \ | ||
374 | k[8*(i)+ 9] = ss[1]; \ | ||
375 | ss[2] ^= ss[1]; \ | ||
376 | k[8*(i)+10] = ss[2]; \ | ||
377 | ss[3] ^= ss[2]; \ | ||
378 | k[8*(i)+11] = ss[3]; \ | ||
379 | } | ||
380 | |||
381 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | ||
382 | unsigned int key_len) | ||
383 | { | ||
384 | int i; | ||
385 | u32 ss[8]; | ||
386 | struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | ||
387 | const __le32 *key = (const __le32 *)in_key; | ||
388 | u32 *flags = &tfm->crt_flags; | ||
389 | |||
390 | /* encryption schedule */ | ||
391 | |||
392 | ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); | ||
393 | ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); | ||
394 | ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); | ||
395 | ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); | ||
396 | |||
397 | switch(key_len) { | ||
398 | case 16: | ||
399 | for (i = 0; i < 9; i++) | ||
400 | ke4(ctx->ekey, i); | ||
401 | kel4(ctx->ekey, 9); | ||
402 | ctx->rounds = 10; | ||
403 | break; | ||
404 | |||
405 | case 24: | ||
406 | ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | ||
407 | ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | ||
408 | for (i = 0; i < 7; i++) | ||
409 | ke6(ctx->ekey, i); | ||
410 | kel6(ctx->ekey, 7); | ||
411 | ctx->rounds = 12; | ||
412 | break; | ||
413 | |||
414 | case 32: | ||
415 | ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | ||
416 | ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | ||
417 | ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); | ||
418 | ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); | ||
419 | for (i = 0; i < 6; i++) | ||
420 | ke8(ctx->ekey, i); | ||
421 | kel8(ctx->ekey, 6); | ||
422 | ctx->rounds = 14; | ||
423 | break; | ||
424 | |||
425 | default: | ||
426 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
427 | return -EINVAL; | ||
428 | } | ||
429 | |||
430 | /* decryption schedule */ | ||
431 | |||
432 | ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); | ||
433 | ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); | ||
434 | ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); | ||
435 | ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); | ||
436 | |||
437 | switch (key_len) { | ||
438 | case 16: | ||
439 | kdf4(ctx->dkey, 0); | ||
440 | for (i = 1; i < 9; i++) | ||
441 | kd4(ctx->dkey, i); | ||
442 | kdl4(ctx->dkey, 9); | ||
443 | break; | ||
444 | |||
445 | case 24: | ||
446 | ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | ||
447 | ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | ||
448 | kdf6(ctx->dkey, 0); | ||
449 | for (i = 1; i < 7; i++) | ||
450 | kd6(ctx->dkey, i); | ||
451 | kdl6(ctx->dkey, 7); | ||
452 | break; | ||
453 | |||
454 | case 32: | ||
455 | ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | ||
456 | ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | ||
457 | ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); | ||
458 | ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); | ||
459 | kdf8(ctx->dkey, 0); | ||
460 | for (i = 1; i < 6; i++) | ||
461 | kd8(ctx->dkey, i); | ||
462 | kdl8(ctx->dkey, 6); | ||
463 | break; | ||
464 | } | ||
465 | return 0; | ||
466 | } | ||
467 | |||
468 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | ||
469 | { | ||
470 | aes_enc_blk(tfm, dst, src); | ||
471 | } | ||
472 | |||
473 | static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | ||
474 | { | ||
475 | aes_dec_blk(tfm, dst, src); | ||
476 | } | ||
477 | |||
478 | static struct crypto_alg aes_alg = { | ||
479 | .cra_name = "aes", | ||
480 | .cra_driver_name = "aes-i586", | ||
481 | .cra_priority = 200, | ||
482 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, | ||
483 | .cra_blocksize = AES_BLOCK_SIZE, | ||
484 | .cra_ctxsize = sizeof(struct aes_ctx), | ||
485 | .cra_module = THIS_MODULE, | ||
486 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | ||
487 | .cra_u = { | ||
488 | .cipher = { | ||
489 | .cia_min_keysize = AES_MIN_KEY_SIZE, | ||
490 | .cia_max_keysize = AES_MAX_KEY_SIZE, | ||
491 | .cia_setkey = aes_set_key, | ||
492 | .cia_encrypt = aes_encrypt, | ||
493 | .cia_decrypt = aes_decrypt | ||
494 | } | ||
495 | } | ||
496 | }; | ||
497 | |||
498 | static int __init aes_init(void) | ||
499 | { | ||
500 | gen_tabs(); | ||
501 | return crypto_register_alg(&aes_alg); | ||
502 | } | ||
503 | |||
504 | static void __exit aes_fini(void) | ||
505 | { | ||
506 | crypto_unregister_alg(&aes_alg); | ||
507 | } | ||
508 | |||
509 | module_init(aes_init); | ||
510 | module_exit(aes_fini); | ||
511 | |||
512 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized"); | ||
513 | MODULE_LICENSE("Dual BSD/GPL"); | ||
514 | MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter"); | ||
515 | MODULE_ALIAS("aes"); | ||