diff options
Diffstat (limited to 'arch/i386/crypto/aes-i586-asm.S')
-rw-r--r-- | arch/i386/crypto/aes-i586-asm.S | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/arch/i386/crypto/aes-i586-asm.S b/arch/i386/crypto/aes-i586-asm.S new file mode 100644 index 000000000000..7b73c67cb4e8 --- /dev/null +++ b/arch/i386/crypto/aes-i586-asm.S | |||
@@ -0,0 +1,376 @@ | |||
1 | // ------------------------------------------------------------------------- | ||
2 | // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. | ||
3 | // All rights reserved. | ||
4 | // | ||
5 | // LICENSE TERMS | ||
6 | // | ||
7 | // The free distribution and use of this software in both source and binary | ||
8 | // form is allowed (with or without changes) provided that: | ||
9 | // | ||
10 | // 1. distributions of this source code include the above copyright | ||
11 | // notice, this list of conditions and the following disclaimer// | ||
12 | // | ||
13 | // 2. distributions in binary form include the above copyright | ||
14 | // notice, this list of conditions and the following disclaimer | ||
15 | // in the documentation and/or other associated materials// | ||
16 | // | ||
17 | // 3. the copyright holder's name is not used to endorse products | ||
18 | // built using this software without specific written permission. | ||
19 | // | ||
20 | // | ||
21 | // ALTERNATIVELY, provided that this notice is retained in full, this product | ||
22 | // may be distributed under the terms of the GNU General Public License (GPL), | ||
23 | // in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
24 | // | ||
25 | // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> | ||
26 | // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | ||
27 | |||
28 | // DISCLAIMER | ||
29 | // | ||
30 | // This software is provided 'as is' with no explicit or implied warranties | ||
31 | // in respect of its properties including, but not limited to, correctness | ||
32 | // and fitness for purpose. | ||
33 | // ------------------------------------------------------------------------- | ||
34 | // Issue Date: 29/07/2002 | ||
35 | |||
36 | .file "aes-i586-asm.S" | ||
37 | .text | ||
38 | |||
39 | // aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | ||
40 | // aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | ||
41 | |||
42 | #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) | ||
43 | |||
44 | // offsets to parameters with one register pushed onto stack | ||
45 | |||
46 | #define in_blk 8 // input byte array address parameter | ||
47 | #define out_blk 12 // output byte array address parameter | ||
48 | #define ctx 16 // AES context structure | ||
49 | |||
50 | // offsets in context structure | ||
51 | |||
52 | #define ekey 0 // encryption key schedule base address | ||
53 | #define nrnd 256 // number of rounds | ||
54 | #define dkey 260 // decryption key schedule base address | ||
55 | |||
56 | // register mapping for encrypt and decrypt subroutines | ||
57 | |||
58 | #define r0 eax | ||
59 | #define r1 ebx | ||
60 | #define r2 ecx | ||
61 | #define r3 edx | ||
62 | #define r4 esi | ||
63 | #define r5 edi | ||
64 | |||
65 | #define eaxl al | ||
66 | #define eaxh ah | ||
67 | #define ebxl bl | ||
68 | #define ebxh bh | ||
69 | #define ecxl cl | ||
70 | #define ecxh ch | ||
71 | #define edxl dl | ||
72 | #define edxh dh | ||
73 | |||
74 | #define _h(reg) reg##h | ||
75 | #define h(reg) _h(reg) | ||
76 | |||
77 | #define _l(reg) reg##l | ||
78 | #define l(reg) _l(reg) | ||
79 | |||
80 | // This macro takes a 32-bit word representing a column and uses | ||
81 | // each of its four bytes to index into four tables of 256 32-bit | ||
82 | // words to obtain values that are then xored into the appropriate | ||
83 | // output registers r0, r1, r4 or r5. | ||
84 | |||
85 | // Parameters: | ||
86 | // table table base address | ||
87 | // %1 out_state[0] | ||
88 | // %2 out_state[1] | ||
89 | // %3 out_state[2] | ||
90 | // %4 out_state[3] | ||
91 | // idx input register for the round (destroyed) | ||
92 | // tmp scratch register for the round | ||
93 | // sched key schedule | ||
94 | |||
95 | #define do_col(table, a1,a2,a3,a4, idx, tmp) \ | ||
96 | movzx %l(idx),%tmp; \ | ||
97 | xor table(,%tmp,4),%a1; \ | ||
98 | movzx %h(idx),%tmp; \ | ||
99 | shr $16,%idx; \ | ||
100 | xor table+tlen(,%tmp,4),%a2; \ | ||
101 | movzx %l(idx),%tmp; \ | ||
102 | movzx %h(idx),%idx; \ | ||
103 | xor table+2*tlen(,%tmp,4),%a3; \ | ||
104 | xor table+3*tlen(,%idx,4),%a4; | ||
105 | |||
106 | // initialise output registers from the key schedule | ||
107 | // NB1: original value of a3 is in idx on exit | ||
108 | // NB2: original values of a1,a2,a4 aren't used | ||
109 | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ | ||
110 | mov 0 sched,%a1; \ | ||
111 | movzx %l(idx),%tmp; \ | ||
112 | mov 12 sched,%a2; \ | ||
113 | xor table(,%tmp,4),%a1; \ | ||
114 | mov 4 sched,%a4; \ | ||
115 | movzx %h(idx),%tmp; \ | ||
116 | shr $16,%idx; \ | ||
117 | xor table+tlen(,%tmp,4),%a2; \ | ||
118 | movzx %l(idx),%tmp; \ | ||
119 | movzx %h(idx),%idx; \ | ||
120 | xor table+3*tlen(,%idx,4),%a4; \ | ||
121 | mov %a3,%idx; \ | ||
122 | mov 8 sched,%a3; \ | ||
123 | xor table+2*tlen(,%tmp,4),%a3; | ||
124 | |||
125 | // initialise output registers from the key schedule | ||
126 | // NB1: original value of a3 is in idx on exit | ||
127 | // NB2: original values of a1,a2,a4 aren't used | ||
128 | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ | ||
129 | mov 0 sched,%a1; \ | ||
130 | movzx %l(idx),%tmp; \ | ||
131 | mov 4 sched,%a2; \ | ||
132 | xor table(,%tmp,4),%a1; \ | ||
133 | mov 12 sched,%a4; \ | ||
134 | movzx %h(idx),%tmp; \ | ||
135 | shr $16,%idx; \ | ||
136 | xor table+tlen(,%tmp,4),%a2; \ | ||
137 | movzx %l(idx),%tmp; \ | ||
138 | movzx %h(idx),%idx; \ | ||
139 | xor table+3*tlen(,%idx,4),%a4; \ | ||
140 | mov %a3,%idx; \ | ||
141 | mov 8 sched,%a3; \ | ||
142 | xor table+2*tlen(,%tmp,4),%a3; | ||
143 | |||
144 | |||
145 | // original Gladman had conditional saves to MMX regs. | ||
146 | #define save(a1, a2) \ | ||
147 | mov %a2,4*a1(%esp) | ||
148 | |||
149 | #define restore(a1, a2) \ | ||
150 | mov 4*a2(%esp),%a1 | ||
151 | |||
152 | // These macros perform a forward encryption cycle. They are entered with | ||
153 | // the first previous round column values in r0,r1,r4,r5 and | ||
154 | // exit with the final values in the same registers, using stack | ||
155 | // for temporary storage. | ||
156 | |||
157 | // round column values | ||
158 | // on entry: r0,r1,r4,r5 | ||
159 | // on exit: r2,r1,r4,r5 | ||
160 | #define fwd_rnd1(arg, table) \ | ||
161 | save (0,r1); \ | ||
162 | save (1,r5); \ | ||
163 | \ | ||
164 | /* compute new column values */ \ | ||
165 | do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ | ||
166 | do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ | ||
167 | restore(r0,0); \ | ||
168 | do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ | ||
169 | restore(r0,1); \ | ||
170 | do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ | ||
171 | |||
172 | // round column values | ||
173 | // on entry: r2,r1,r4,r5 | ||
174 | // on exit: r0,r1,r4,r5 | ||
175 | #define fwd_rnd2(arg, table) \ | ||
176 | save (0,r1); \ | ||
177 | save (1,r5); \ | ||
178 | \ | ||
179 | /* compute new column values */ \ | ||
180 | do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ | ||
181 | do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ | ||
182 | restore(r2,0); \ | ||
183 | do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ | ||
184 | restore(r2,1); \ | ||
185 | do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ | ||
186 | |||
187 | // These macros performs an inverse encryption cycle. They are entered with | ||
188 | // the first previous round column values in r0,r1,r4,r5 and | ||
189 | // exit with the final values in the same registers, using stack | ||
190 | // for temporary storage | ||
191 | |||
192 | // round column values | ||
193 | // on entry: r0,r1,r4,r5 | ||
194 | // on exit: r2,r1,r4,r5 | ||
195 | #define inv_rnd1(arg, table) \ | ||
196 | save (0,r1); \ | ||
197 | save (1,r5); \ | ||
198 | \ | ||
199 | /* compute new column values */ \ | ||
200 | do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ | ||
201 | do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ | ||
202 | restore(r0,0); \ | ||
203 | do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ | ||
204 | restore(r0,1); \ | ||
205 | do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ | ||
206 | |||
207 | // round column values | ||
208 | // on entry: r2,r1,r4,r5 | ||
209 | // on exit: r0,r1,r4,r5 | ||
210 | #define inv_rnd2(arg, table) \ | ||
211 | save (0,r1); \ | ||
212 | save (1,r5); \ | ||
213 | \ | ||
214 | /* compute new column values */ \ | ||
215 | do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ | ||
216 | do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ | ||
217 | restore(r2,0); \ | ||
218 | do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ | ||
219 | restore(r2,1); \ | ||
220 | do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ | ||
221 | |||
222 | // AES (Rijndael) Encryption Subroutine | ||
223 | |||
224 | .global aes_enc_blk | ||
225 | |||
226 | .extern ft_tab | ||
227 | .extern fl_tab | ||
228 | |||
229 | .align 4 | ||
230 | |||
231 | aes_enc_blk: | ||
232 | push %ebp | ||
233 | mov ctx(%esp),%ebp // pointer to context | ||
234 | |||
235 | // CAUTION: the order and the values used in these assigns | ||
236 | // rely on the register mappings | ||
237 | |||
238 | 1: push %ebx | ||
239 | mov in_blk+4(%esp),%r2 | ||
240 | push %esi | ||
241 | mov nrnd(%ebp),%r3 // number of rounds | ||
242 | push %edi | ||
243 | #if ekey != 0 | ||
244 | lea ekey(%ebp),%ebp // key pointer | ||
245 | #endif | ||
246 | |||
247 | // input four columns and xor in first round key | ||
248 | |||
249 | mov (%r2),%r0 | ||
250 | mov 4(%r2),%r1 | ||
251 | mov 8(%r2),%r4 | ||
252 | mov 12(%r2),%r5 | ||
253 | xor (%ebp),%r0 | ||
254 | xor 4(%ebp),%r1 | ||
255 | xor 8(%ebp),%r4 | ||
256 | xor 12(%ebp),%r5 | ||
257 | |||
258 | sub $8,%esp // space for register saves on stack | ||
259 | add $16,%ebp // increment to next round key | ||
260 | sub $10,%r3 | ||
261 | je 4f // 10 rounds for 128-bit key | ||
262 | add $32,%ebp | ||
263 | sub $2,%r3 | ||
264 | je 3f // 12 rounds for 128-bit key | ||
265 | add $32,%ebp | ||
266 | |||
267 | 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key | ||
268 | fwd_rnd2( -48(%ebp) ,ft_tab) | ||
269 | 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key | ||
270 | fwd_rnd2( -16(%ebp) ,ft_tab) | ||
271 | 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key | ||
272 | fwd_rnd2( +16(%ebp) ,ft_tab) | ||
273 | fwd_rnd1( +32(%ebp) ,ft_tab) | ||
274 | fwd_rnd2( +48(%ebp) ,ft_tab) | ||
275 | fwd_rnd1( +64(%ebp) ,ft_tab) | ||
276 | fwd_rnd2( +80(%ebp) ,ft_tab) | ||
277 | fwd_rnd1( +96(%ebp) ,ft_tab) | ||
278 | fwd_rnd2(+112(%ebp) ,ft_tab) | ||
279 | fwd_rnd1(+128(%ebp) ,ft_tab) | ||
280 | fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table | ||
281 | |||
282 | // move final values to the output array. CAUTION: the | ||
283 | // order of these assigns rely on the register mappings | ||
284 | |||
285 | add $8,%esp | ||
286 | mov out_blk+12(%esp),%ebp | ||
287 | mov %r5,12(%ebp) | ||
288 | pop %edi | ||
289 | mov %r4,8(%ebp) | ||
290 | pop %esi | ||
291 | mov %r1,4(%ebp) | ||
292 | pop %ebx | ||
293 | mov %r0,(%ebp) | ||
294 | pop %ebp | ||
295 | mov $1,%eax | ||
296 | ret | ||
297 | |||
298 | // AES (Rijndael) Decryption Subroutine | ||
299 | |||
300 | .global aes_dec_blk | ||
301 | |||
302 | .extern it_tab | ||
303 | .extern il_tab | ||
304 | |||
305 | .align 4 | ||
306 | |||
307 | aes_dec_blk: | ||
308 | push %ebp | ||
309 | mov ctx(%esp),%ebp // pointer to context | ||
310 | |||
311 | // CAUTION: the order and the values used in these assigns | ||
312 | // rely on the register mappings | ||
313 | |||
314 | 1: push %ebx | ||
315 | mov in_blk+4(%esp),%r2 | ||
316 | push %esi | ||
317 | mov nrnd(%ebp),%r3 // number of rounds | ||
318 | push %edi | ||
319 | #if dkey != 0 | ||
320 | lea dkey(%ebp),%ebp // key pointer | ||
321 | #endif | ||
322 | mov %r3,%r0 | ||
323 | shl $4,%r0 | ||
324 | add %r0,%ebp | ||
325 | |||
326 | // input four columns and xor in first round key | ||
327 | |||
328 | mov (%r2),%r0 | ||
329 | mov 4(%r2),%r1 | ||
330 | mov 8(%r2),%r4 | ||
331 | mov 12(%r2),%r5 | ||
332 | xor (%ebp),%r0 | ||
333 | xor 4(%ebp),%r1 | ||
334 | xor 8(%ebp),%r4 | ||
335 | xor 12(%ebp),%r5 | ||
336 | |||
337 | sub $8,%esp // space for register saves on stack | ||
338 | sub $16,%ebp // increment to next round key | ||
339 | sub $10,%r3 | ||
340 | je 4f // 10 rounds for 128-bit key | ||
341 | sub $32,%ebp | ||
342 | sub $2,%r3 | ||
343 | je 3f // 12 rounds for 128-bit key | ||
344 | sub $32,%ebp | ||
345 | |||
346 | 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 128-bit key | ||
347 | inv_rnd2( +48(%ebp), it_tab) | ||
348 | 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 128-bit key | ||
349 | inv_rnd2( +16(%ebp), it_tab) | ||
350 | 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key | ||
351 | inv_rnd2( -16(%ebp), it_tab) | ||
352 | inv_rnd1( -32(%ebp), it_tab) | ||
353 | inv_rnd2( -48(%ebp), it_tab) | ||
354 | inv_rnd1( -64(%ebp), it_tab) | ||
355 | inv_rnd2( -80(%ebp), it_tab) | ||
356 | inv_rnd1( -96(%ebp), it_tab) | ||
357 | inv_rnd2(-112(%ebp), it_tab) | ||
358 | inv_rnd1(-128(%ebp), it_tab) | ||
359 | inv_rnd2(-144(%ebp), il_tab) // last round uses a different table | ||
360 | |||
361 | // move final values to the output array. CAUTION: the | ||
362 | // order of these assigns rely on the register mappings | ||
363 | |||
364 | add $8,%esp | ||
365 | mov out_blk+12(%esp),%ebp | ||
366 | mov %r5,12(%ebp) | ||
367 | pop %edi | ||
368 | mov %r4,8(%ebp) | ||
369 | pop %esi | ||
370 | mov %r1,4(%ebp) | ||
371 | pop %ebx | ||
372 | mov %r0,(%ebp) | ||
373 | pop %ebp | ||
374 | mov $1,%eax | ||
375 | ret | ||
376 | |||