aboutsummaryrefslogtreecommitdiffstats
path: root/arch/hexagon/include/asm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/hexagon/include/asm')
-rw-r--r--arch/hexagon/include/asm/bitops.h301
1 files changed, 301 insertions, 0 deletions
diff --git a/arch/hexagon/include/asm/bitops.h b/arch/hexagon/include/asm/bitops.h
new file mode 100644
index 000000000000..d23461e080ff
--- /dev/null
+++ b/arch/hexagon/include/asm/bitops.h
@@ -0,0 +1,301 @@
1/*
2 * Bit operations for the Hexagon architecture
3 *
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 * 02110-1301, USA.
20 */
21
22#ifndef _ASM_BITOPS_H
23#define _ASM_BITOPS_H
24
25#include <linux/compiler.h>
26#include <asm/byteorder.h>
27#include <asm/system.h>
28#include <asm/atomic.h>
29
30#ifdef __KERNEL__
31
32#define smp_mb__before_clear_bit() barrier()
33#define smp_mb__after_clear_bit() barrier()
34
35/*
36 * The offset calculations for these are based on BITS_PER_LONG == 32
37 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
38 * mask by 0x0000001F)
39 *
40 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
41 */
42
43/**
44 * test_and_clear_bit - clear a bit and return its old value
45 * @nr: bit number to clear
46 * @addr: pointer to memory
47 */
48static inline int test_and_clear_bit(int nr, volatile void *addr)
49{
50 int oldval;
51
52 __asm__ __volatile__ (
53 " {R10 = %1; R11 = asr(%2,#5); }\n"
54 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
55 "1: R12 = memw_locked(R10);\n"
56 " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
57 " memw_locked(R10,P1) = R12;\n"
58 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
59 : "=&r" (oldval)
60 : "r" (addr), "r" (nr)
61 : "r10", "r11", "r12", "p0", "p1", "memory"
62 );
63
64 return oldval;
65}
66
67/**
68 * test_and_set_bit - set a bit and return its old value
69 * @nr: bit number to set
70 * @addr: pointer to memory
71 */
72static inline int test_and_set_bit(int nr, volatile void *addr)
73{
74 int oldval;
75
76 __asm__ __volatile__ (
77 " {R10 = %1; R11 = asr(%2,#5); }\n"
78 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
79 "1: R12 = memw_locked(R10);\n"
80 " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
81 " memw_locked(R10,P1) = R12;\n"
82 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
83 : "=&r" (oldval)
84 : "r" (addr), "r" (nr)
85 : "r10", "r11", "r12", "p0", "p1", "memory"
86 );
87
88
89 return oldval;
90
91}
92
93/**
94 * test_and_change_bit - toggle a bit and return its old value
95 * @nr: bit number to set
96 * @addr: pointer to memory
97 */
98static inline int test_and_change_bit(int nr, volatile void *addr)
99{
100 int oldval;
101
102 __asm__ __volatile__ (
103 " {R10 = %1; R11 = asr(%2,#5); }\n"
104 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
105 "1: R12 = memw_locked(R10);\n"
106 " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
107 " memw_locked(R10,P1) = R12;\n"
108 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
109 : "=&r" (oldval)
110 : "r" (addr), "r" (nr)
111 : "r10", "r11", "r12", "p0", "p1", "memory"
112 );
113
114 return oldval;
115
116}
117
118/*
119 * Atomic, but doesn't care about the return value.
120 * Rewrite later to save a cycle or two.
121 */
122
123static inline void clear_bit(int nr, volatile void *addr)
124{
125 test_and_clear_bit(nr, addr);
126}
127
128static inline void set_bit(int nr, volatile void *addr)
129{
130 test_and_set_bit(nr, addr);
131}
132
133static inline void change_bit(int nr, volatile void *addr)
134{
135 test_and_change_bit(nr, addr);
136}
137
138
139/*
140 * These are allowed to be non-atomic. In fact the generic flavors are
141 * in non-atomic.h. Would it be better to use intrinsics for this?
142 *
143 * OK, writes in our architecture do not invalidate LL/SC, so this has to
144 * be atomic, particularly for things like slab_lock and slab_unlock.
145 *
146 */
147static inline void __clear_bit(int nr, volatile unsigned long *addr)
148{
149 test_and_clear_bit(nr, addr);
150}
151
152static inline void __set_bit(int nr, volatile unsigned long *addr)
153{
154 test_and_set_bit(nr, addr);
155}
156
157static inline void __change_bit(int nr, volatile unsigned long *addr)
158{
159 test_and_change_bit(nr, addr);
160}
161
162/* Apparently, at least some of these are allowed to be non-atomic */
163static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
164{
165 return test_and_clear_bit(nr, addr);
166}
167
168static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
169{
170 return test_and_set_bit(nr, addr);
171}
172
173static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
174{
175 return test_and_change_bit(nr, addr);
176}
177
178static inline int __test_bit(int nr, const volatile unsigned long *addr)
179{
180 int retval;
181
182 asm volatile(
183 "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
184 : "=&r" (retval)
185 : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
186 : "p0"
187 );
188
189 return retval;
190}
191
192#define test_bit(nr, addr) __test_bit(nr, addr)
193
194/*
195 * ffz - find first zero in word.
196 * @word: The word to search
197 *
198 * Undefined if no zero exists, so code should check against ~0UL first.
199 */
200static inline long ffz(int x)
201{
202 int r;
203
204 asm("%0 = ct1(%1);\n"
205 : "=&r" (r)
206 : "r" (x));
207 return r;
208}
209
210/*
211 * fls - find last (most-significant) bit set
212 * @x: the word to search
213 *
214 * This is defined the same way as ffs.
215 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
216 */
217static inline long fls(int x)
218{
219 int r;
220
221 asm("{ %0 = cl0(%1);}\n"
222 "%0 = sub(#32,%0);\n"
223 : "=&r" (r)
224 : "r" (x)
225 : "p0");
226
227 return r;
228}
229
230/*
231 * ffs - find first bit set
232 * @x: the word to search
233 *
234 * This is defined the same way as
235 * the libc and compiler builtin ffs routines, therefore
236 * differs in spirit from the above ffz (man ffs).
237 */
238static inline long ffs(int x)
239{
240 int r;
241
242 asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
243 "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
244 : "=&r" (r)
245 : "r" (x)
246 : "p0");
247
248 return r;
249}
250
251/*
252 * __ffs - find first bit in word.
253 * @word: The word to search
254 *
255 * Undefined if no bit exists, so code should check against 0 first.
256 *
257 * bits_per_long assumed to be 32
258 * numbering starts at 0 I think (instead of 1 like ffs)
259 */
260static inline unsigned long __ffs(unsigned long word)
261{
262 int num;
263
264 asm("%0 = ct0(%1);\n"
265 : "=&r" (num)
266 : "r" (word));
267
268 return num;
269}
270
271/*
272 * __fls - find last (most-significant) set bit in a long word
273 * @word: the word to search
274 *
275 * Undefined if no set bit exists, so code should check against 0 first.
276 * bits_per_long assumed to be 32
277 */
278static inline unsigned long __fls(unsigned long word)
279{
280 int num;
281
282 asm("%0 = cl0(%1);\n"
283 "%0 = sub(#31,%0);\n"
284 : "=&r" (num)
285 : "r" (word));
286
287 return num;
288}
289
290#include <asm-generic/bitops/lock.h>
291#include <asm-generic/bitops/find.h>
292
293#include <asm-generic/bitops/fls64.h>
294#include <asm-generic/bitops/sched.h>
295#include <asm-generic/bitops/hweight.h>
296
297#include <asm-generic/bitops/le.h>
298#include <asm-generic/bitops/ext2-atomic.h>
299
300#endif /* __KERNEL__ */
301#endif