diff options
Diffstat (limited to 'arch/cris/arch-v32/kernel/kgdb.c')
| -rw-r--r-- | arch/cris/arch-v32/kernel/kgdb.c | 1660 |
1 files changed, 1660 insertions, 0 deletions
diff --git a/arch/cris/arch-v32/kernel/kgdb.c b/arch/cris/arch-v32/kernel/kgdb.c new file mode 100644 index 000000000000..480e56348be2 --- /dev/null +++ b/arch/cris/arch-v32/kernel/kgdb.c | |||
| @@ -0,0 +1,1660 @@ | |||
| 1 | /* | ||
| 2 | * arch/cris/arch-v32/kernel/kgdb.c | ||
| 3 | * | ||
| 4 | * CRIS v32 version by Orjan Friberg, Axis Communications AB. | ||
| 5 | * | ||
| 6 | * S390 version | ||
| 7 | * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation | ||
| 8 | * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), | ||
| 9 | * | ||
| 10 | * Originally written by Glenn Engel, Lake Stevens Instrument Division | ||
| 11 | * | ||
| 12 | * Contributed by HP Systems | ||
| 13 | * | ||
| 14 | * Modified for SPARC by Stu Grossman, Cygnus Support. | ||
| 15 | * | ||
| 16 | * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse | ||
| 17 | * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> | ||
| 18 | * | ||
| 19 | * Copyright (C) 1995 Andreas Busse | ||
| 20 | */ | ||
| 21 | |||
| 22 | /* FIXME: Check the documentation. */ | ||
| 23 | |||
| 24 | /* | ||
| 25 | * kgdb usage notes: | ||
| 26 | * ----------------- | ||
| 27 | * | ||
| 28 | * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be | ||
| 29 | * built with different gcc flags: "-g" is added to get debug infos, and | ||
| 30 | * "-fomit-frame-pointer" is omitted to make debugging easier. Since the | ||
| 31 | * resulting kernel will be quite big (approx. > 7 MB), it will be stripped | ||
| 32 | * before compresion. Such a kernel will behave just as usually, except if | ||
| 33 | * given a "debug=<device>" command line option. (Only serial devices are | ||
| 34 | * allowed for <device>, i.e. no printers or the like; possible values are | ||
| 35 | * machine depedend and are the same as for the usual debug device, the one | ||
| 36 | * for logging kernel messages.) If that option is given and the device can be | ||
| 37 | * initialized, the kernel will connect to the remote gdb in trap_init(). The | ||
| 38 | * serial parameters are fixed to 8N1 and 115200 bps, for easyness of | ||
| 39 | * implementation. | ||
| 40 | * | ||
| 41 | * To start a debugging session, start that gdb with the debugging kernel | ||
| 42 | * image (the one with the symbols, vmlinux.debug) named on the command line. | ||
| 43 | * This file will be used by gdb to get symbol and debugging infos about the | ||
| 44 | * kernel. Next, select remote debug mode by | ||
| 45 | * target remote <device> | ||
| 46 | * where <device> is the name of the serial device over which the debugged | ||
| 47 | * machine is connected. Maybe you have to adjust the baud rate by | ||
| 48 | * set remotebaud <rate> | ||
| 49 | * or also other parameters with stty: | ||
| 50 | * shell stty ... </dev/... | ||
| 51 | * If the kernel to debug has already booted, it waited for gdb and now | ||
| 52 | * connects, and you'll see a breakpoint being reported. If the kernel isn't | ||
| 53 | * running yet, start it now. The order of gdb and the kernel doesn't matter. | ||
| 54 | * Another thing worth knowing about in the getting-started phase is how to | ||
| 55 | * debug the remote protocol itself. This is activated with | ||
| 56 | * set remotedebug 1 | ||
| 57 | * gdb will then print out each packet sent or received. You'll also get some | ||
| 58 | * messages about the gdb stub on the console of the debugged machine. | ||
| 59 | * | ||
| 60 | * If all that works, you can use lots of the usual debugging techniques on | ||
| 61 | * the kernel, e.g. inspecting and changing variables/memory, setting | ||
| 62 | * breakpoints, single stepping and so on. It's also possible to interrupt the | ||
| 63 | * debugged kernel by pressing C-c in gdb. Have fun! :-) | ||
| 64 | * | ||
| 65 | * The gdb stub is entered (and thus the remote gdb gets control) in the | ||
| 66 | * following situations: | ||
| 67 | * | ||
| 68 | * - If breakpoint() is called. This is just after kgdb initialization, or if | ||
| 69 | * a breakpoint() call has been put somewhere into the kernel source. | ||
| 70 | * (Breakpoints can of course also be set the usual way in gdb.) | ||
| 71 | * In eLinux, we call breakpoint() in init/main.c after IRQ initialization. | ||
| 72 | * | ||
| 73 | * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel() | ||
| 74 | * are entered. All the CPU exceptions are mapped to (more or less..., see | ||
| 75 | * the hard_trap_info array below) appropriate signal, which are reported | ||
| 76 | * to gdb. die_if_kernel() is usually called after some kind of access | ||
| 77 | * error and thus is reported as SIGSEGV. | ||
| 78 | * | ||
| 79 | * - When panic() is called. This is reported as SIGABRT. | ||
| 80 | * | ||
| 81 | * - If C-c is received over the serial line, which is treated as | ||
| 82 | * SIGINT. | ||
| 83 | * | ||
| 84 | * Of course, all these signals are just faked for gdb, since there is no | ||
| 85 | * signal concept as such for the kernel. It also isn't possible --obviously-- | ||
| 86 | * to set signal handlers from inside gdb, or restart the kernel with a | ||
| 87 | * signal. | ||
| 88 | * | ||
| 89 | * Current limitations: | ||
| 90 | * | ||
| 91 | * - While the kernel is stopped, interrupts are disabled for safety reasons | ||
| 92 | * (i.e., variables not changing magically or the like). But this also | ||
| 93 | * means that the clock isn't running anymore, and that interrupts from the | ||
| 94 | * hardware may get lost/not be served in time. This can cause some device | ||
| 95 | * errors... | ||
| 96 | * | ||
| 97 | * - When single-stepping, only one instruction of the current thread is | ||
| 98 | * executed, but interrupts are allowed for that time and will be serviced | ||
| 99 | * if pending. Be prepared for that. | ||
| 100 | * | ||
| 101 | * - All debugging happens in kernel virtual address space. There's no way to | ||
| 102 | * access physical memory not mapped in kernel space, or to access user | ||
| 103 | * space. A way to work around this is using get_user_long & Co. in gdb | ||
| 104 | * expressions, but only for the current process. | ||
| 105 | * | ||
| 106 | * - Interrupting the kernel only works if interrupts are currently allowed, | ||
| 107 | * and the interrupt of the serial line isn't blocked by some other means | ||
| 108 | * (IPL too high, disabled, ...) | ||
| 109 | * | ||
| 110 | * - The gdb stub is currently not reentrant, i.e. errors that happen therein | ||
| 111 | * (e.g. accessing invalid memory) may not be caught correctly. This could | ||
| 112 | * be removed in future by introducing a stack of struct registers. | ||
| 113 | * | ||
| 114 | */ | ||
| 115 | |||
| 116 | /* | ||
| 117 | * To enable debugger support, two things need to happen. One, a | ||
| 118 | * call to kgdb_init() is necessary in order to allow any breakpoints | ||
| 119 | * or error conditions to be properly intercepted and reported to gdb. | ||
| 120 | * Two, a breakpoint needs to be generated to begin communication. This | ||
| 121 | * is most easily accomplished by a call to breakpoint(). | ||
| 122 | * | ||
| 123 | * The following gdb commands are supported: | ||
| 124 | * | ||
| 125 | * command function Return value | ||
| 126 | * | ||
| 127 | * g return the value of the CPU registers hex data or ENN | ||
| 128 | * G set the value of the CPU registers OK or ENN | ||
| 129 | * | ||
| 130 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN | ||
| 131 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN | ||
| 132 | * | ||
| 133 | * c Resume at current address SNN ( signal NN) | ||
| 134 | * cAA..AA Continue at address AA..AA SNN | ||
| 135 | * | ||
| 136 | * s Step one instruction SNN | ||
| 137 | * sAA..AA Step one instruction from AA..AA SNN | ||
| 138 | * | ||
| 139 | * k kill | ||
| 140 | * | ||
| 141 | * ? What was the last sigval ? SNN (signal NN) | ||
| 142 | * | ||
| 143 | * bBB..BB Set baud rate to BB..BB OK or BNN, then sets | ||
| 144 | * baud rate | ||
| 145 | * | ||
| 146 | * All commands and responses are sent with a packet which includes a | ||
| 147 | * checksum. A packet consists of | ||
| 148 | * | ||
| 149 | * $<packet info>#<checksum>. | ||
| 150 | * | ||
| 151 | * where | ||
| 152 | * <packet info> :: <characters representing the command or response> | ||
| 153 | * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> | ||
| 154 | * | ||
| 155 | * When a packet is received, it is first acknowledged with either '+' or '-'. | ||
| 156 | * '+' indicates a successful transfer. '-' indicates a failed transfer. | ||
| 157 | * | ||
| 158 | * Example: | ||
| 159 | * | ||
| 160 | * Host: Reply: | ||
| 161 | * $m0,10#2a +$00010203040506070809101112131415#42 | ||
| 162 | * | ||
| 163 | */ | ||
| 164 | |||
| 165 | |||
| 166 | #include <linux/string.h> | ||
| 167 | #include <linux/signal.h> | ||
| 168 | #include <linux/kernel.h> | ||
| 169 | #include <linux/delay.h> | ||
| 170 | #include <linux/linkage.h> | ||
| 171 | #include <linux/reboot.h> | ||
| 172 | |||
| 173 | #include <asm/setup.h> | ||
| 174 | #include <asm/ptrace.h> | ||
| 175 | |||
| 176 | #include <asm/irq.h> | ||
| 177 | #include <asm/arch/hwregs/reg_map.h> | ||
| 178 | #include <asm/arch/hwregs/reg_rdwr.h> | ||
| 179 | #include <asm/arch/hwregs/intr_vect_defs.h> | ||
| 180 | #include <asm/arch/hwregs/ser_defs.h> | ||
| 181 | |||
| 182 | /* From entry.S. */ | ||
| 183 | extern void gdb_handle_exception(void); | ||
| 184 | /* From kgdb_asm.S. */ | ||
| 185 | extern void kgdb_handle_exception(void); | ||
| 186 | |||
| 187 | static int kgdb_started = 0; | ||
| 188 | |||
| 189 | /********************************* Register image ****************************/ | ||
| 190 | |||
| 191 | typedef | ||
| 192 | struct register_image | ||
| 193 | { | ||
| 194 | /* Offset */ | ||
| 195 | unsigned int r0; /* 0x00 */ | ||
| 196 | unsigned int r1; /* 0x04 */ | ||
| 197 | unsigned int r2; /* 0x08 */ | ||
| 198 | unsigned int r3; /* 0x0C */ | ||
| 199 | unsigned int r4; /* 0x10 */ | ||
| 200 | unsigned int r5; /* 0x14 */ | ||
| 201 | unsigned int r6; /* 0x18 */ | ||
| 202 | unsigned int r7; /* 0x1C */ | ||
| 203 | unsigned int r8; /* 0x20; Frame pointer (if any) */ | ||
| 204 | unsigned int r9; /* 0x24 */ | ||
| 205 | unsigned int r10; /* 0x28 */ | ||
| 206 | unsigned int r11; /* 0x2C */ | ||
| 207 | unsigned int r12; /* 0x30 */ | ||
| 208 | unsigned int r13; /* 0x34 */ | ||
| 209 | unsigned int sp; /* 0x38; R14, Stack pointer */ | ||
| 210 | unsigned int acr; /* 0x3C; R15, Address calculation register. */ | ||
| 211 | |||
| 212 | unsigned char bz; /* 0x40; P0, 8-bit zero register */ | ||
| 213 | unsigned char vr; /* 0x41; P1, Version register (8-bit) */ | ||
| 214 | unsigned int pid; /* 0x42; P2, Process ID */ | ||
| 215 | unsigned char srs; /* 0x46; P3, Support register select (8-bit) */ | ||
| 216 | unsigned short wz; /* 0x47; P4, 16-bit zero register */ | ||
| 217 | unsigned int exs; /* 0x49; P5, Exception status */ | ||
| 218 | unsigned int eda; /* 0x4D; P6, Exception data address */ | ||
| 219 | unsigned int mof; /* 0x51; P7, Multiply overflow register */ | ||
| 220 | unsigned int dz; /* 0x55; P8, 32-bit zero register */ | ||
| 221 | unsigned int ebp; /* 0x59; P9, Exception base pointer */ | ||
| 222 | unsigned int erp; /* 0x5D; P10, Exception return pointer. Contains the PC we are interested in. */ | ||
| 223 | unsigned int srp; /* 0x61; P11, Subroutine return pointer */ | ||
| 224 | unsigned int nrp; /* 0x65; P12, NMI return pointer */ | ||
| 225 | unsigned int ccs; /* 0x69; P13, Condition code stack */ | ||
| 226 | unsigned int usp; /* 0x6D; P14, User mode stack pointer */ | ||
| 227 | unsigned int spc; /* 0x71; P15, Single step PC */ | ||
| 228 | unsigned int pc; /* 0x75; Pseudo register (for the most part set to ERP). */ | ||
| 229 | |||
| 230 | } registers; | ||
| 231 | |||
| 232 | typedef | ||
| 233 | struct bp_register_image | ||
| 234 | { | ||
| 235 | /* Support register bank 0. */ | ||
| 236 | unsigned int s0_0; | ||
| 237 | unsigned int s1_0; | ||
| 238 | unsigned int s2_0; | ||
| 239 | unsigned int s3_0; | ||
| 240 | unsigned int s4_0; | ||
| 241 | unsigned int s5_0; | ||
| 242 | unsigned int s6_0; | ||
| 243 | unsigned int s7_0; | ||
| 244 | unsigned int s8_0; | ||
| 245 | unsigned int s9_0; | ||
| 246 | unsigned int s10_0; | ||
| 247 | unsigned int s11_0; | ||
| 248 | unsigned int s12_0; | ||
| 249 | unsigned int s13_0; | ||
| 250 | unsigned int s14_0; | ||
| 251 | unsigned int s15_0; | ||
| 252 | |||
| 253 | /* Support register bank 1. */ | ||
| 254 | unsigned int s0_1; | ||
| 255 | unsigned int s1_1; | ||
| 256 | unsigned int s2_1; | ||
| 257 | unsigned int s3_1; | ||
| 258 | unsigned int s4_1; | ||
| 259 | unsigned int s5_1; | ||
| 260 | unsigned int s6_1; | ||
| 261 | unsigned int s7_1; | ||
| 262 | unsigned int s8_1; | ||
| 263 | unsigned int s9_1; | ||
| 264 | unsigned int s10_1; | ||
| 265 | unsigned int s11_1; | ||
| 266 | unsigned int s12_1; | ||
| 267 | unsigned int s13_1; | ||
| 268 | unsigned int s14_1; | ||
| 269 | unsigned int s15_1; | ||
| 270 | |||
| 271 | /* Support register bank 2. */ | ||
| 272 | unsigned int s0_2; | ||
| 273 | unsigned int s1_2; | ||
| 274 | unsigned int s2_2; | ||
| 275 | unsigned int s3_2; | ||
| 276 | unsigned int s4_2; | ||
| 277 | unsigned int s5_2; | ||
| 278 | unsigned int s6_2; | ||
| 279 | unsigned int s7_2; | ||
| 280 | unsigned int s8_2; | ||
| 281 | unsigned int s9_2; | ||
| 282 | unsigned int s10_2; | ||
| 283 | unsigned int s11_2; | ||
| 284 | unsigned int s12_2; | ||
| 285 | unsigned int s13_2; | ||
| 286 | unsigned int s14_2; | ||
| 287 | unsigned int s15_2; | ||
| 288 | |||
| 289 | /* Support register bank 3. */ | ||
| 290 | unsigned int s0_3; /* BP_CTRL */ | ||
| 291 | unsigned int s1_3; /* BP_I0_START */ | ||
| 292 | unsigned int s2_3; /* BP_I0_END */ | ||
| 293 | unsigned int s3_3; /* BP_D0_START */ | ||
| 294 | unsigned int s4_3; /* BP_D0_END */ | ||
| 295 | unsigned int s5_3; /* BP_D1_START */ | ||
| 296 | unsigned int s6_3; /* BP_D1_END */ | ||
| 297 | unsigned int s7_3; /* BP_D2_START */ | ||
| 298 | unsigned int s8_3; /* BP_D2_END */ | ||
| 299 | unsigned int s9_3; /* BP_D3_START */ | ||
| 300 | unsigned int s10_3; /* BP_D3_END */ | ||
| 301 | unsigned int s11_3; /* BP_D4_START */ | ||
| 302 | unsigned int s12_3; /* BP_D4_END */ | ||
| 303 | unsigned int s13_3; /* BP_D5_START */ | ||
| 304 | unsigned int s14_3; /* BP_D5_END */ | ||
| 305 | unsigned int s15_3; /* BP_RESERVED */ | ||
| 306 | |||
| 307 | } support_registers; | ||
| 308 | |||
| 309 | enum register_name | ||
| 310 | { | ||
| 311 | R0, R1, R2, R3, | ||
| 312 | R4, R5, R6, R7, | ||
| 313 | R8, R9, R10, R11, | ||
| 314 | R12, R13, SP, ACR, | ||
| 315 | |||
| 316 | BZ, VR, PID, SRS, | ||
| 317 | WZ, EXS, EDA, MOF, | ||
| 318 | DZ, EBP, ERP, SRP, | ||
| 319 | NRP, CCS, USP, SPC, | ||
| 320 | PC, | ||
| 321 | |||
| 322 | S0, S1, S2, S3, | ||
| 323 | S4, S5, S6, S7, | ||
| 324 | S8, S9, S10, S11, | ||
| 325 | S12, S13, S14, S15 | ||
| 326 | |||
| 327 | }; | ||
| 328 | |||
| 329 | /* The register sizes of the registers in register_name. An unimplemented register | ||
| 330 | is designated by size 0 in this array. */ | ||
| 331 | static int register_size[] = | ||
| 332 | { | ||
| 333 | 4, 4, 4, 4, | ||
| 334 | 4, 4, 4, 4, | ||
| 335 | 4, 4, 4, 4, | ||
| 336 | 4, 4, 4, 4, | ||
| 337 | |||
| 338 | 1, 1, 4, 1, | ||
| 339 | 2, 4, 4, 4, | ||
| 340 | 4, 4, 4, 4, | ||
| 341 | 4, 4, 4, 4, | ||
| 342 | |||
| 343 | 4, | ||
| 344 | |||
| 345 | 4, 4, 4, 4, | ||
| 346 | 4, 4, 4, 4, | ||
| 347 | 4, 4, 4, 4, | ||
| 348 | 4, 4, 4 | ||
| 349 | |||
| 350 | }; | ||
| 351 | |||
| 352 | /* Contains the register image of the kernel. | ||
| 353 | (Global so that they can be reached from assembler code.) */ | ||
| 354 | registers reg; | ||
| 355 | support_registers sreg; | ||
| 356 | |||
| 357 | /************** Prototypes for local library functions ***********************/ | ||
| 358 | |||
| 359 | /* Copy of strcpy from libc. */ | ||
| 360 | static char *gdb_cris_strcpy(char *s1, const char *s2); | ||
| 361 | |||
| 362 | /* Copy of strlen from libc. */ | ||
| 363 | static int gdb_cris_strlen(const char *s); | ||
| 364 | |||
| 365 | /* Copy of memchr from libc. */ | ||
| 366 | static void *gdb_cris_memchr(const void *s, int c, int n); | ||
| 367 | |||
| 368 | /* Copy of strtol from libc. Does only support base 16. */ | ||
| 369 | static int gdb_cris_strtol(const char *s, char **endptr, int base); | ||
| 370 | |||
| 371 | /********************** Prototypes for local functions. **********************/ | ||
| 372 | |||
| 373 | /* Write a value to a specified register regno in the register image | ||
| 374 | of the current thread. */ | ||
| 375 | static int write_register(int regno, char *val); | ||
| 376 | |||
| 377 | /* Read a value from a specified register in the register image. Returns the | ||
| 378 | status of the read operation. The register value is returned in valptr. */ | ||
| 379 | static int read_register(char regno, unsigned int *valptr); | ||
| 380 | |||
| 381 | /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */ | ||
| 382 | int getDebugChar(void); | ||
| 383 | |||
| 384 | #ifdef CONFIG_ETRAXFS_SIM | ||
| 385 | int getDebugChar(void) | ||
| 386 | { | ||
| 387 | return socketread(); | ||
| 388 | } | ||
| 389 | #endif | ||
| 390 | |||
| 391 | /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */ | ||
| 392 | void putDebugChar(int val); | ||
| 393 | |||
| 394 | #ifdef CONFIG_ETRAXFS_SIM | ||
| 395 | void putDebugChar(int val) | ||
| 396 | { | ||
| 397 | socketwrite((char *)&val, 1); | ||
| 398 | } | ||
| 399 | #endif | ||
| 400 | |||
| 401 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, | ||
| 402 | represented by int x. */ | ||
| 403 | static char highhex(int x); | ||
| 404 | |||
| 405 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, | ||
| 406 | represented by int x. */ | ||
| 407 | static char lowhex(int x); | ||
| 408 | |||
| 409 | /* Returns the integer equivalent of a hexadecimal character. */ | ||
| 410 | static int hex(char ch); | ||
| 411 | |||
| 412 | /* Convert the memory, pointed to by mem into hexadecimal representation. | ||
| 413 | Put the result in buf, and return a pointer to the last character | ||
| 414 | in buf (null). */ | ||
| 415 | static char *mem2hex(char *buf, unsigned char *mem, int count); | ||
| 416 | |||
| 417 | /* Convert the array, in hexadecimal representation, pointed to by buf into | ||
| 418 | binary representation. Put the result in mem, and return a pointer to | ||
| 419 | the character after the last byte written. */ | ||
| 420 | static unsigned char *hex2mem(unsigned char *mem, char *buf, int count); | ||
| 421 | |||
| 422 | /* Put the content of the array, in binary representation, pointed to by buf | ||
| 423 | into memory pointed to by mem, and return a pointer to | ||
| 424 | the character after the last byte written. */ | ||
| 425 | static unsigned char *bin2mem(unsigned char *mem, unsigned char *buf, int count); | ||
| 426 | |||
| 427 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer | ||
| 428 | returned. */ | ||
| 429 | static void getpacket(char *buffer); | ||
| 430 | |||
| 431 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ | ||
| 432 | static void putpacket(char *buffer); | ||
| 433 | |||
| 434 | /* Build and send a response packet in order to inform the host the | ||
| 435 | stub is stopped. */ | ||
| 436 | static void stub_is_stopped(int sigval); | ||
| 437 | |||
| 438 | /* All expected commands are sent from remote.c. Send a response according | ||
| 439 | to the description in remote.c. Not static since it needs to be reached | ||
| 440 | from assembler code. */ | ||
| 441 | void handle_exception(int sigval); | ||
| 442 | |||
| 443 | /* Performs a complete re-start from scratch. ETRAX specific. */ | ||
| 444 | static void kill_restart(void); | ||
| 445 | |||
| 446 | /******************** Prototypes for global functions. ***********************/ | ||
| 447 | |||
| 448 | /* The string str is prepended with the GDB printout token and sent. */ | ||
| 449 | void putDebugString(const unsigned char *str, int len); | ||
| 450 | |||
| 451 | /* A static breakpoint to be used at startup. */ | ||
| 452 | void breakpoint(void); | ||
| 453 | |||
| 454 | /* Avoid warning as the internal_stack is not used in the C-code. */ | ||
| 455 | #define USEDVAR(name) { if (name) { ; } } | ||
| 456 | #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) } | ||
| 457 | |||
| 458 | /********************************** Packet I/O ******************************/ | ||
| 459 | /* BUFMAX defines the maximum number of characters in | ||
| 460 | inbound/outbound buffers */ | ||
| 461 | /* FIXME: How do we know it's enough? */ | ||
| 462 | #define BUFMAX 512 | ||
| 463 | |||
| 464 | /* Run-length encoding maximum length. Send 64 at most. */ | ||
| 465 | #define RUNLENMAX 64 | ||
| 466 | |||
| 467 | /* Definition of all valid hexadecimal characters */ | ||
| 468 | static const char hexchars[] = "0123456789abcdef"; | ||
| 469 | |||
| 470 | /* The inbound/outbound buffers used in packet I/O */ | ||
| 471 | static char input_buffer[BUFMAX]; | ||
| 472 | static char output_buffer[BUFMAX]; | ||
| 473 | |||
| 474 | /* Error and warning messages. */ | ||
| 475 | enum error_type | ||
| 476 | { | ||
| 477 | SUCCESS, E01, E02, E03, E04, E05, E06, | ||
| 478 | }; | ||
| 479 | |||
| 480 | static char *error_message[] = | ||
| 481 | { | ||
| 482 | "", | ||
| 483 | "E01 Set current or general thread - H[c,g] - internal error.", | ||
| 484 | "E02 Change register content - P - cannot change read-only register.", | ||
| 485 | "E03 Thread is not alive.", /* T, not used. */ | ||
| 486 | "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.", | ||
| 487 | "E05 Change register content - P - the register is not implemented..", | ||
| 488 | "E06 Change memory content - M - internal error.", | ||
| 489 | }; | ||
| 490 | |||
| 491 | /********************************** Breakpoint *******************************/ | ||
| 492 | /* Use an internal stack in the breakpoint and interrupt response routines. | ||
| 493 | FIXME: How do we know the size of this stack is enough? | ||
| 494 | Global so it can be reached from assembler code. */ | ||
| 495 | #define INTERNAL_STACK_SIZE 1024 | ||
| 496 | char internal_stack[INTERNAL_STACK_SIZE]; | ||
| 497 | |||
| 498 | /* Due to the breakpoint return pointer, a state variable is needed to keep | ||
| 499 | track of whether it is a static (compiled) or dynamic (gdb-invoked) | ||
| 500 | breakpoint to be handled. A static breakpoint uses the content of register | ||
| 501 | ERP as it is whereas a dynamic breakpoint requires subtraction with 2 | ||
| 502 | in order to execute the instruction. The first breakpoint is static; all | ||
| 503 | following are assumed to be dynamic. */ | ||
| 504 | static int dynamic_bp = 0; | ||
| 505 | |||
| 506 | /********************************* String library ****************************/ | ||
| 507 | /* Single-step over library functions creates trap loops. */ | ||
| 508 | |||
| 509 | /* Copy char s2[] to s1[]. */ | ||
| 510 | static char* | ||
| 511 | gdb_cris_strcpy(char *s1, const char *s2) | ||
| 512 | { | ||
| 513 | char *s = s1; | ||
| 514 | |||
| 515 | for (s = s1; (*s++ = *s2++) != '\0'; ) | ||
| 516 | ; | ||
| 517 | return s1; | ||
| 518 | } | ||
| 519 | |||
| 520 | /* Find length of s[]. */ | ||
| 521 | static int | ||
| 522 | gdb_cris_strlen(const char *s) | ||
| 523 | { | ||
| 524 | const char *sc; | ||
| 525 | |||
| 526 | for (sc = s; *sc != '\0'; sc++) | ||
| 527 | ; | ||
| 528 | return (sc - s); | ||
| 529 | } | ||
| 530 | |||
| 531 | /* Find first occurrence of c in s[n]. */ | ||
| 532 | static void* | ||
| 533 | gdb_cris_memchr(const void *s, int c, int n) | ||
| 534 | { | ||
| 535 | const unsigned char uc = c; | ||
| 536 | const unsigned char *su; | ||
| 537 | |||
| 538 | for (su = s; 0 < n; ++su, --n) | ||
| 539 | if (*su == uc) | ||
| 540 | return (void *)su; | ||
| 541 | return NULL; | ||
| 542 | } | ||
| 543 | /******************************* Standard library ****************************/ | ||
| 544 | /* Single-step over library functions creates trap loops. */ | ||
| 545 | /* Convert string to long. */ | ||
| 546 | static int | ||
| 547 | gdb_cris_strtol(const char *s, char **endptr, int base) | ||
| 548 | { | ||
| 549 | char *s1; | ||
| 550 | char *sd; | ||
| 551 | int x = 0; | ||
| 552 | |||
| 553 | for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1) | ||
| 554 | x = x * base + (sd - hexchars); | ||
| 555 | |||
| 556 | if (endptr) { | ||
| 557 | /* Unconverted suffix is stored in endptr unless endptr is NULL. */ | ||
| 558 | *endptr = s1; | ||
| 559 | } | ||
| 560 | |||
| 561 | return x; | ||
| 562 | } | ||
| 563 | |||
| 564 | /********************************* Register image ****************************/ | ||
| 565 | |||
| 566 | /* Write a value to a specified register in the register image of the current | ||
| 567 | thread. Returns status code SUCCESS, E02 or E05. */ | ||
| 568 | static int | ||
| 569 | write_register(int regno, char *val) | ||
| 570 | { | ||
| 571 | int status = SUCCESS; | ||
| 572 | |||
| 573 | if (regno >= R0 && regno <= ACR) { | ||
| 574 | /* Consecutive 32-bit registers. */ | ||
| 575 | hex2mem((unsigned char *)®.r0 + (regno - R0) * sizeof(unsigned int), | ||
| 576 | val, sizeof(unsigned int)); | ||
| 577 | |||
| 578 | } else if (regno == BZ || regno == VR || regno == WZ || regno == DZ) { | ||
| 579 | /* Read-only registers. */ | ||
| 580 | status = E02; | ||
| 581 | |||
| 582 | } else if (regno == PID) { | ||
| 583 | /* 32-bit register. (Even though we already checked SRS and WZ, we cannot | ||
| 584 | combine this with the EXS - SPC write since SRS and WZ have different size.) */ | ||
| 585 | hex2mem((unsigned char *)®.pid, val, sizeof(unsigned int)); | ||
| 586 | |||
| 587 | } else if (regno == SRS) { | ||
| 588 | /* 8-bit register. */ | ||
| 589 | hex2mem((unsigned char *)®.srs, val, sizeof(unsigned char)); | ||
| 590 | |||
| 591 | } else if (regno >= EXS && regno <= SPC) { | ||
| 592 | /* Consecutive 32-bit registers. */ | ||
| 593 | hex2mem((unsigned char *)®.exs + (regno - EXS) * sizeof(unsigned int), | ||
| 594 | val, sizeof(unsigned int)); | ||
| 595 | |||
| 596 | } else if (regno == PC) { | ||
| 597 | /* Pseudo-register. Treat as read-only. */ | ||
| 598 | status = E02; | ||
| 599 | |||
| 600 | } else if (regno >= S0 && regno <= S15) { | ||
| 601 | /* 32-bit registers. */ | ||
| 602 | hex2mem((unsigned char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int), val, sizeof(unsigned int)); | ||
| 603 | } else { | ||
| 604 | /* Non-existing register. */ | ||
| 605 | status = E05; | ||
| 606 | } | ||
| 607 | return status; | ||
| 608 | } | ||
| 609 | |||
| 610 | /* Read a value from a specified register in the register image. Returns the | ||
| 611 | value in the register or -1 for non-implemented registers. */ | ||
| 612 | static int | ||
| 613 | read_register(char regno, unsigned int *valptr) | ||
| 614 | { | ||
| 615 | int status = SUCCESS; | ||
| 616 | |||
| 617 | /* We read the zero registers from the register struct (instead of just returning 0) | ||
| 618 | to catch errors. */ | ||
| 619 | |||
| 620 | if (regno >= R0 && regno <= ACR) { | ||
| 621 | /* Consecutive 32-bit registers. */ | ||
| 622 | *valptr = *(unsigned int *)((char *)®.r0 + (regno - R0) * sizeof(unsigned int)); | ||
| 623 | |||
| 624 | } else if (regno == BZ || regno == VR) { | ||
| 625 | /* Consecutive 8-bit registers. */ | ||
| 626 | *valptr = (unsigned int)(*(unsigned char *) | ||
| 627 | ((char *)®.bz + (regno - BZ) * sizeof(char))); | ||
| 628 | |||
| 629 | } else if (regno == PID) { | ||
| 630 | /* 32-bit register. */ | ||
| 631 | *valptr = *(unsigned int *)((char *)®.pid); | ||
| 632 | |||
| 633 | } else if (regno == SRS) { | ||
| 634 | /* 8-bit register. */ | ||
| 635 | *valptr = (unsigned int)(*(unsigned char *)((char *)®.srs)); | ||
| 636 | |||
| 637 | } else if (regno == WZ) { | ||
| 638 | /* 16-bit register. */ | ||
| 639 | *valptr = (unsigned int)(*(unsigned short *)(char *)®.wz); | ||
| 640 | |||
| 641 | } else if (regno >= EXS && regno <= PC) { | ||
| 642 | /* Consecutive 32-bit registers. */ | ||
| 643 | *valptr = *(unsigned int *)((char *)®.exs + (regno - EXS) * sizeof(unsigned int)); | ||
| 644 | |||
| 645 | } else if (regno >= S0 && regno <= S15) { | ||
| 646 | /* Consecutive 32-bit registers, located elsewhere. */ | ||
| 647 | *valptr = *(unsigned int *)((char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int)); | ||
| 648 | |||
| 649 | } else { | ||
| 650 | /* Non-existing register. */ | ||
| 651 | status = E05; | ||
| 652 | } | ||
| 653 | return status; | ||
| 654 | |||
| 655 | } | ||
| 656 | |||
| 657 | /********************************** Packet I/O ******************************/ | ||
| 658 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, | ||
| 659 | represented by int x. */ | ||
| 660 | static inline char | ||
| 661 | highhex(int x) | ||
| 662 | { | ||
| 663 | return hexchars[(x >> 4) & 0xf]; | ||
| 664 | } | ||
| 665 | |||
| 666 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, | ||
| 667 | represented by int x. */ | ||
| 668 | static inline char | ||
| 669 | lowhex(int x) | ||
| 670 | { | ||
| 671 | return hexchars[x & 0xf]; | ||
| 672 | } | ||
| 673 | |||
| 674 | /* Returns the integer equivalent of a hexadecimal character. */ | ||
| 675 | static int | ||
| 676 | hex(char ch) | ||
| 677 | { | ||
| 678 | if ((ch >= 'a') && (ch <= 'f')) | ||
| 679 | return (ch - 'a' + 10); | ||
| 680 | if ((ch >= '0') && (ch <= '9')) | ||
| 681 | return (ch - '0'); | ||
| 682 | if ((ch >= 'A') && (ch <= 'F')) | ||
| 683 | return (ch - 'A' + 10); | ||
| 684 | return -1; | ||
| 685 | } | ||
| 686 | |||
| 687 | /* Convert the memory, pointed to by mem into hexadecimal representation. | ||
| 688 | Put the result in buf, and return a pointer to the last character | ||
| 689 | in buf (null). */ | ||
| 690 | |||
| 691 | static char * | ||
| 692 | mem2hex(char *buf, unsigned char *mem, int count) | ||
| 693 | { | ||
| 694 | int i; | ||
| 695 | int ch; | ||
| 696 | |||
| 697 | if (mem == NULL) { | ||
| 698 | /* Invalid address, caught by 'm' packet handler. */ | ||
| 699 | for (i = 0; i < count; i++) { | ||
| 700 | *buf++ = '0'; | ||
| 701 | *buf++ = '0'; | ||
| 702 | } | ||
| 703 | } else { | ||
| 704 | /* Valid mem address. */ | ||
| 705 | for (i = 0; i < count; i++) { | ||
| 706 | ch = *mem++; | ||
| 707 | *buf++ = highhex (ch); | ||
| 708 | *buf++ = lowhex (ch); | ||
| 709 | } | ||
| 710 | } | ||
| 711 | /* Terminate properly. */ | ||
| 712 | *buf = '\0'; | ||
| 713 | return buf; | ||
| 714 | } | ||
| 715 | |||
| 716 | /* Same as mem2hex, but puts it in network byte order. */ | ||
| 717 | static char * | ||
| 718 | mem2hex_nbo(char *buf, unsigned char *mem, int count) | ||
| 719 | { | ||
| 720 | int i; | ||
| 721 | int ch; | ||
| 722 | |||
| 723 | mem += count - 1; | ||
| 724 | for (i = 0; i < count; i++) { | ||
| 725 | ch = *mem--; | ||
| 726 | *buf++ = highhex (ch); | ||
| 727 | *buf++ = lowhex (ch); | ||
| 728 | } | ||
| 729 | |||
| 730 | /* Terminate properly. */ | ||
| 731 | *buf = '\0'; | ||
| 732 | return buf; | ||
| 733 | } | ||
| 734 | |||
| 735 | /* Convert the array, in hexadecimal representation, pointed to by buf into | ||
| 736 | binary representation. Put the result in mem, and return a pointer to | ||
| 737 | the character after the last byte written. */ | ||
| 738 | static unsigned char* | ||
| 739 | hex2mem(unsigned char *mem, char *buf, int count) | ||
| 740 | { | ||
| 741 | int i; | ||
| 742 | unsigned char ch; | ||
| 743 | for (i = 0; i < count; i++) { | ||
| 744 | ch = hex (*buf++) << 4; | ||
| 745 | ch = ch + hex (*buf++); | ||
| 746 | *mem++ = ch; | ||
| 747 | } | ||
| 748 | return mem; | ||
| 749 | } | ||
| 750 | |||
| 751 | /* Put the content of the array, in binary representation, pointed to by buf | ||
| 752 | into memory pointed to by mem, and return a pointer to the character after | ||
| 753 | the last byte written. | ||
| 754 | Gdb will escape $, #, and the escape char (0x7d). */ | ||
| 755 | static unsigned char* | ||
| 756 | bin2mem(unsigned char *mem, unsigned char *buf, int count) | ||
| 757 | { | ||
| 758 | int i; | ||
| 759 | unsigned char *next; | ||
| 760 | for (i = 0; i < count; i++) { | ||
| 761 | /* Check for any escaped characters. Be paranoid and | ||
| 762 | only unescape chars that should be escaped. */ | ||
| 763 | if (*buf == 0x7d) { | ||
| 764 | next = buf + 1; | ||
| 765 | if (*next == 0x3 || *next == 0x4 || *next == 0x5D) { | ||
| 766 | /* #, $, ESC */ | ||
| 767 | buf++; | ||
| 768 | *buf += 0x20; | ||
| 769 | } | ||
| 770 | } | ||
| 771 | *mem++ = *buf++; | ||
| 772 | } | ||
| 773 | return mem; | ||
| 774 | } | ||
| 775 | |||
| 776 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer | ||
| 777 | returned. */ | ||
| 778 | static void | ||
| 779 | getpacket(char *buffer) | ||
| 780 | { | ||
| 781 | unsigned char checksum; | ||
| 782 | unsigned char xmitcsum; | ||
| 783 | int i; | ||
| 784 | int count; | ||
| 785 | char ch; | ||
| 786 | |||
| 787 | do { | ||
| 788 | while((ch = getDebugChar ()) != '$') | ||
| 789 | /* Wait for the start character $ and ignore all other characters */; | ||
| 790 | checksum = 0; | ||
| 791 | xmitcsum = -1; | ||
| 792 | count = 0; | ||
| 793 | /* Read until a # or the end of the buffer is reached */ | ||
| 794 | while (count < BUFMAX) { | ||
| 795 | ch = getDebugChar(); | ||
| 796 | if (ch == '#') | ||
| 797 | break; | ||
| 798 | checksum = checksum + ch; | ||
| 799 | buffer[count] = ch; | ||
| 800 | count = count + 1; | ||
| 801 | } | ||
| 802 | |||
| 803 | if (count >= BUFMAX) | ||
| 804 | continue; | ||
| 805 | |||
| 806 | buffer[count] = 0; | ||
| 807 | |||
| 808 | if (ch == '#') { | ||
| 809 | xmitcsum = hex(getDebugChar()) << 4; | ||
| 810 | xmitcsum += hex(getDebugChar()); | ||
| 811 | if (checksum != xmitcsum) { | ||
| 812 | /* Wrong checksum */ | ||
| 813 | putDebugChar('-'); | ||
| 814 | } else { | ||
| 815 | /* Correct checksum */ | ||
| 816 | putDebugChar('+'); | ||
| 817 | /* If sequence characters are received, reply with them */ | ||
| 818 | if (buffer[2] == ':') { | ||
| 819 | putDebugChar(buffer[0]); | ||
| 820 | putDebugChar(buffer[1]); | ||
| 821 | /* Remove the sequence characters from the buffer */ | ||
| 822 | count = gdb_cris_strlen(buffer); | ||
| 823 | for (i = 3; i <= count; i++) | ||
| 824 | buffer[i - 3] = buffer[i]; | ||
| 825 | } | ||
| 826 | } | ||
| 827 | } | ||
| 828 | } while (checksum != xmitcsum); | ||
| 829 | } | ||
| 830 | |||
| 831 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ | ||
| 832 | |||
| 833 | static void | ||
| 834 | putpacket(char *buffer) | ||
| 835 | { | ||
| 836 | int checksum; | ||
| 837 | int runlen; | ||
| 838 | int encode; | ||
| 839 | |||
| 840 | do { | ||
| 841 | char *src = buffer; | ||
| 842 | putDebugChar('$'); | ||
| 843 | checksum = 0; | ||
| 844 | while (*src) { | ||
| 845 | /* Do run length encoding */ | ||
| 846 | putDebugChar(*src); | ||
| 847 | checksum += *src; | ||
| 848 | runlen = 0; | ||
| 849 | while (runlen < RUNLENMAX && *src == src[runlen]) { | ||
| 850 | runlen++; | ||
| 851 | } | ||
| 852 | if (runlen > 3) { | ||
| 853 | /* Got a useful amount */ | ||
| 854 | putDebugChar ('*'); | ||
| 855 | checksum += '*'; | ||
| 856 | encode = runlen + ' ' - 4; | ||
| 857 | putDebugChar(encode); | ||
| 858 | checksum += encode; | ||
| 859 | src += runlen; | ||
| 860 | } else { | ||
| 861 | src++; | ||
| 862 | } | ||
| 863 | } | ||
| 864 | putDebugChar('#'); | ||
| 865 | putDebugChar(highhex (checksum)); | ||
| 866 | putDebugChar(lowhex (checksum)); | ||
| 867 | } while(kgdb_started && (getDebugChar() != '+')); | ||
| 868 | } | ||
| 869 | |||
| 870 | /* The string str is prepended with the GDB printout token and sent. Required | ||
| 871 | in traditional implementations. */ | ||
| 872 | void | ||
| 873 | putDebugString(const unsigned char *str, int len) | ||
| 874 | { | ||
| 875 | /* Move SPC forward if we are single-stepping. */ | ||
| 876 | asm("spchere:"); | ||
| 877 | asm("move $spc, $r10"); | ||
| 878 | asm("cmp.d spchere, $r10"); | ||
| 879 | asm("bne nosstep"); | ||
| 880 | asm("nop"); | ||
| 881 | asm("move.d spccont, $r10"); | ||
| 882 | asm("move $r10, $spc"); | ||
| 883 | asm("nosstep:"); | ||
| 884 | |||
| 885 | output_buffer[0] = 'O'; | ||
| 886 | mem2hex(&output_buffer[1], (unsigned char *)str, len); | ||
| 887 | putpacket(output_buffer); | ||
| 888 | |||
| 889 | asm("spccont:"); | ||
| 890 | } | ||
| 891 | |||
| 892 | /********************************** Handle exceptions ************************/ | ||
| 893 | /* Build and send a response packet in order to inform the host the | ||
| 894 | stub is stopped. TAAn...:r...;n...:r...;n...:r...; | ||
| 895 | AA = signal number | ||
| 896 | n... = register number (hex) | ||
| 897 | r... = register contents | ||
| 898 | n... = `thread' | ||
| 899 | r... = thread process ID. This is a hex integer. | ||
| 900 | n... = other string not starting with valid hex digit. | ||
| 901 | gdb should ignore this n,r pair and go on to the next. | ||
| 902 | This way we can extend the protocol. */ | ||
| 903 | static void | ||
| 904 | stub_is_stopped(int sigval) | ||
| 905 | { | ||
| 906 | char *ptr = output_buffer; | ||
| 907 | unsigned int reg_cont; | ||
| 908 | |||
| 909 | /* Send trap type (converted to signal) */ | ||
| 910 | |||
| 911 | *ptr++ = 'T'; | ||
| 912 | *ptr++ = highhex(sigval); | ||
| 913 | *ptr++ = lowhex(sigval); | ||
| 914 | |||
| 915 | if (((reg.exs & 0xff00) >> 8) == 0xc) { | ||
| 916 | |||
| 917 | /* Some kind of hardware watchpoint triggered. Find which one | ||
| 918 | and determine its type (read/write/access). */ | ||
| 919 | int S, bp, trig_bits = 0, rw_bits = 0; | ||
| 920 | int trig_mask = 0; | ||
| 921 | unsigned int *bp_d_regs = &sreg.s3_3; | ||
| 922 | /* In a lot of cases, the stopped data address will simply be EDA. | ||
| 923 | In some cases, we adjust it to match the watched data range. | ||
| 924 | (We don't want to change the actual EDA though). */ | ||
| 925 | unsigned int stopped_data_address; | ||
| 926 | /* The S field of EXS. */ | ||
| 927 | S = (reg.exs & 0xffff0000) >> 16; | ||
| 928 | |||
| 929 | if (S & 1) { | ||
| 930 | /* Instruction watchpoint. */ | ||
| 931 | /* FIXME: Check against, and possibly adjust reported EDA. */ | ||
| 932 | } else { | ||
| 933 | /* Data watchpoint. Find the one that triggered. */ | ||
| 934 | for (bp = 0; bp < 6; bp++) { | ||
| 935 | |||
| 936 | /* Dx_RD, Dx_WR in the S field of EXS for this BP. */ | ||
| 937 | int bitpos_trig = 1 + bp * 2; | ||
| 938 | /* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */ | ||
| 939 | int bitpos_config = 2 + bp * 4; | ||
| 940 | |||
| 941 | /* Get read/write trig bits for this BP. */ | ||
| 942 | trig_bits = (S & (3 << bitpos_trig)) >> bitpos_trig; | ||
| 943 | |||
| 944 | /* Read/write config bits for this BP. */ | ||
| 945 | rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config; | ||
| 946 | if (trig_bits) { | ||
| 947 | /* Sanity check: the BP shouldn't trigger for accesses | ||
| 948 | that it isn't configured for. */ | ||
| 949 | if ((rw_bits == 0x1 && trig_bits != 0x1) || | ||
| 950 | (rw_bits == 0x2 && trig_bits != 0x2)) | ||
| 951 | panic("Invalid r/w trigging for this BP"); | ||
| 952 | |||
| 953 | /* Mark this BP as trigged for future reference. */ | ||
| 954 | trig_mask |= (1 << bp); | ||
| 955 | |||
| 956 | if (reg.eda >= bp_d_regs[bp * 2] && | ||
| 957 | reg.eda <= bp_d_regs[bp * 2 + 1]) { | ||
| 958 | /* EDA withing range for this BP; it must be the one | ||
| 959 | we're looking for. */ | ||
| 960 | stopped_data_address = reg.eda; | ||
| 961 | break; | ||
| 962 | } | ||
| 963 | } | ||
| 964 | } | ||
| 965 | if (bp < 6) { | ||
| 966 | /* Found a trigged BP with EDA within its configured data range. */ | ||
| 967 | } else if (trig_mask) { | ||
| 968 | /* Something triggered, but EDA doesn't match any BP's range. */ | ||
| 969 | for (bp = 0; bp < 6; bp++) { | ||
| 970 | /* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */ | ||
| 971 | int bitpos_config = 2 + bp * 4; | ||
| 972 | |||
| 973 | /* Read/write config bits for this BP (needed later). */ | ||
| 974 | rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config; | ||
| 975 | |||
| 976 | if (trig_mask & (1 << bp)) { | ||
| 977 | /* EDA within 31 bytes of the configured start address? */ | ||
| 978 | if (reg.eda + 31 >= bp_d_regs[bp * 2]) { | ||
| 979 | /* Changing the reported address to match | ||
| 980 | the start address of the first applicable BP. */ | ||
| 981 | stopped_data_address = bp_d_regs[bp * 2]; | ||
| 982 | break; | ||
| 983 | } else { | ||
| 984 | /* We continue since we might find another useful BP. */ | ||
| 985 | printk("EDA doesn't match trigged BP's range"); | ||
| 986 | } | ||
| 987 | } | ||
| 988 | } | ||
| 989 | } | ||
| 990 | |||
| 991 | /* No match yet? */ | ||
| 992 | BUG_ON(bp >= 6); | ||
| 993 | /* Note that we report the type according to what the BP is configured | ||
| 994 | for (otherwise we'd never report an 'awatch'), not according to how | ||
| 995 | it trigged. We did check that the trigged bits match what the BP is | ||
| 996 | configured for though. */ | ||
| 997 | if (rw_bits == 0x1) { | ||
| 998 | /* read */ | ||
| 999 | strncpy(ptr, "rwatch", 6); | ||
| 1000 | ptr += 6; | ||
| 1001 | } else if (rw_bits == 0x2) { | ||
| 1002 | /* write */ | ||
| 1003 | strncpy(ptr, "watch", 5); | ||
| 1004 | ptr += 5; | ||
| 1005 | } else if (rw_bits == 0x3) { | ||
| 1006 | /* access */ | ||
| 1007 | strncpy(ptr, "awatch", 6); | ||
| 1008 | ptr += 6; | ||
| 1009 | } else { | ||
| 1010 | panic("Invalid r/w bits for this BP."); | ||
| 1011 | } | ||
| 1012 | |||
| 1013 | *ptr++ = ':'; | ||
| 1014 | /* Note that we don't read_register(EDA, ...) */ | ||
| 1015 | ptr = mem2hex_nbo(ptr, (unsigned char *)&stopped_data_address, register_size[EDA]); | ||
| 1016 | *ptr++ = ';'; | ||
| 1017 | } | ||
| 1018 | } | ||
| 1019 | /* Only send PC, frame and stack pointer. */ | ||
| 1020 | read_register(PC, ®_cont); | ||
| 1021 | *ptr++ = highhex(PC); | ||
| 1022 | *ptr++ = lowhex(PC); | ||
| 1023 | *ptr++ = ':'; | ||
| 1024 | ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[PC]); | ||
| 1025 | *ptr++ = ';'; | ||
| 1026 | |||
| 1027 | read_register(R8, ®_cont); | ||
| 1028 | *ptr++ = highhex(R8); | ||
| 1029 | *ptr++ = lowhex(R8); | ||
| 1030 | *ptr++ = ':'; | ||
| 1031 | ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[R8]); | ||
| 1032 | *ptr++ = ';'; | ||
| 1033 | |||
| 1034 | read_register(SP, ®_cont); | ||
| 1035 | *ptr++ = highhex(SP); | ||
| 1036 | *ptr++ = lowhex(SP); | ||
| 1037 | *ptr++ = ':'; | ||
| 1038 | ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[SP]); | ||
| 1039 | *ptr++ = ';'; | ||
| 1040 | |||
| 1041 | /* Send ERP as well; this will save us an entire register fetch in some cases. */ | ||
| 1042 | read_register(ERP, ®_cont); | ||
| 1043 | *ptr++ = highhex(ERP); | ||
| 1044 | *ptr++ = lowhex(ERP); | ||
| 1045 | *ptr++ = ':'; | ||
| 1046 | ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[ERP]); | ||
| 1047 | *ptr++ = ';'; | ||
| 1048 | |||
| 1049 | /* null-terminate and send it off */ | ||
| 1050 | *ptr = 0; | ||
| 1051 | putpacket(output_buffer); | ||
| 1052 | } | ||
| 1053 | |||
| 1054 | /* Returns the size of an instruction that has a delay slot. */ | ||
| 1055 | |||
| 1056 | int insn_size(unsigned long pc) | ||
| 1057 | { | ||
| 1058 | unsigned short opcode = *(unsigned short *)pc; | ||
| 1059 | int size = 0; | ||
| 1060 | |||
| 1061 | switch ((opcode & 0x0f00) >> 8) { | ||
| 1062 | case 0x0: | ||
| 1063 | case 0x9: | ||
| 1064 | case 0xb: | ||
| 1065 | size = 2; | ||
| 1066 | break; | ||
| 1067 | case 0xe: | ||
| 1068 | case 0xf: | ||
| 1069 | size = 6; | ||
| 1070 | break; | ||
| 1071 | case 0xd: | ||
| 1072 | /* Could be 4 or 6; check more bits. */ | ||
| 1073 | if ((opcode & 0xff) == 0xff) | ||
| 1074 | size = 4; | ||
| 1075 | else | ||
| 1076 | size = 6; | ||
| 1077 | break; | ||
| 1078 | default: | ||
| 1079 | panic("Couldn't find size of opcode 0x%x at 0x%lx\n", opcode, pc); | ||
| 1080 | } | ||
| 1081 | |||
| 1082 | return size; | ||
| 1083 | } | ||
| 1084 | |||
| 1085 | void register_fixup(int sigval) | ||
| 1086 | { | ||
| 1087 | /* Compensate for ACR push at the beginning of exception handler. */ | ||
| 1088 | reg.sp += 4; | ||
| 1089 | |||
| 1090 | /* Standard case. */ | ||
| 1091 | reg.pc = reg.erp; | ||
| 1092 | if (reg.erp & 0x1) { | ||
| 1093 | /* Delay slot bit set. Report as stopped on proper instruction. */ | ||
| 1094 | if (reg.spc) { | ||
| 1095 | /* Rely on SPC if set. */ | ||
| 1096 | reg.pc = reg.spc; | ||
| 1097 | } else { | ||
| 1098 | /* Calculate the PC from the size of the instruction | ||
| 1099 | that the delay slot we're in belongs to. */ | ||
| 1100 | reg.pc += insn_size(reg.erp & ~1) - 1 ; | ||
| 1101 | } | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | if ((reg.exs & 0x3) == 0x0) { | ||
| 1105 | /* Bits 1 - 0 indicate the type of memory operation performed | ||
| 1106 | by the interrupted instruction. 0 means no memory operation, | ||
| 1107 | and EDA is undefined in that case. We zero it to avoid confusion. */ | ||
| 1108 | reg.eda = 0; | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | if (sigval == SIGTRAP) { | ||
| 1112 | /* Break 8, single step or hardware breakpoint exception. */ | ||
| 1113 | |||
| 1114 | /* Check IDX field of EXS. */ | ||
| 1115 | if (((reg.exs & 0xff00) >> 8) == 0x18) { | ||
| 1116 | |||
| 1117 | /* Break 8. */ | ||
| 1118 | |||
| 1119 | /* Static (compiled) breakpoints must return to the next instruction | ||
| 1120 | in order to avoid infinite loops (default value of ERP). Dynamic | ||
| 1121 | (gdb-invoked) must subtract the size of the break instruction from | ||
| 1122 | the ERP so that the instruction that was originally in the break | ||
| 1123 | instruction's place will be run when we return from the exception. */ | ||
| 1124 | if (!dynamic_bp) { | ||
| 1125 | /* Assuming that all breakpoints are dynamic from now on. */ | ||
| 1126 | dynamic_bp = 1; | ||
| 1127 | } else { | ||
| 1128 | |||
| 1129 | /* Only if not in a delay slot. */ | ||
| 1130 | if (!(reg.erp & 0x1)) { | ||
| 1131 | reg.erp -= 2; | ||
| 1132 | reg.pc -= 2; | ||
| 1133 | } | ||
| 1134 | } | ||
| 1135 | |||
| 1136 | } else if (((reg.exs & 0xff00) >> 8) == 0x3) { | ||
| 1137 | /* Single step. */ | ||
| 1138 | /* Don't fiddle with S1. */ | ||
| 1139 | |||
| 1140 | } else if (((reg.exs & 0xff00) >> 8) == 0xc) { | ||
| 1141 | |||
| 1142 | /* Hardware watchpoint exception. */ | ||
| 1143 | |||
| 1144 | /* SPC has been updated so that we will get a single step exception | ||
| 1145 | when we return, but we don't want that. */ | ||
| 1146 | reg.spc = 0; | ||
| 1147 | |||
| 1148 | /* Don't fiddle with S1. */ | ||
| 1149 | } | ||
| 1150 | |||
| 1151 | } else if (sigval == SIGINT) { | ||
| 1152 | /* Nothing special. */ | ||
| 1153 | } | ||
| 1154 | } | ||
| 1155 | |||
| 1156 | static void insert_watchpoint(char type, int addr, int len) | ||
| 1157 | { | ||
| 1158 | /* Breakpoint/watchpoint types (GDB terminology): | ||
| 1159 | 0 = memory breakpoint for instructions | ||
| 1160 | (not supported; done via memory write instead) | ||
| 1161 | 1 = hardware breakpoint for instructions (supported) | ||
| 1162 | 2 = write watchpoint (supported) | ||
| 1163 | 3 = read watchpoint (supported) | ||
| 1164 | 4 = access watchpoint (supported) */ | ||
| 1165 | |||
| 1166 | if (type < '1' || type > '4') { | ||
| 1167 | output_buffer[0] = 0; | ||
| 1168 | return; | ||
| 1169 | } | ||
| 1170 | |||
| 1171 | /* Read watchpoints are set as access watchpoints, because of GDB's | ||
| 1172 | inability to deal with pure read watchpoints. */ | ||
| 1173 | if (type == '3') | ||
| 1174 | type = '4'; | ||
| 1175 | |||
| 1176 | if (type == '1') { | ||
| 1177 | /* Hardware (instruction) breakpoint. */ | ||
| 1178 | /* Bit 0 in BP_CTRL holds the configuration for I0. */ | ||
| 1179 | if (sreg.s0_3 & 0x1) { | ||
| 1180 | /* Already in use. */ | ||
| 1181 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1182 | return; | ||
| 1183 | } | ||
| 1184 | /* Configure. */ | ||
| 1185 | sreg.s1_3 = addr; | ||
| 1186 | sreg.s2_3 = (addr + len - 1); | ||
| 1187 | sreg.s0_3 |= 1; | ||
| 1188 | } else { | ||
| 1189 | int bp; | ||
| 1190 | unsigned int *bp_d_regs = &sreg.s3_3; | ||
| 1191 | |||
| 1192 | /* The watchpoint allocation scheme is the simplest possible. | ||
| 1193 | For example, if a region is watched for read and | ||
| 1194 | a write watch is requested, a new watchpoint will | ||
| 1195 | be used. Also, if a watch for a region that is already | ||
| 1196 | covered by one or more existing watchpoints, a new | ||
| 1197 | watchpoint will be used. */ | ||
| 1198 | |||
| 1199 | /* First, find a free data watchpoint. */ | ||
| 1200 | for (bp = 0; bp < 6; bp++) { | ||
| 1201 | /* Each data watchpoint's control registers occupy 2 bits | ||
| 1202 | (hence the 3), starting at bit 2 for D0 (hence the 2) | ||
| 1203 | with 4 bits between for each watchpoint (yes, the 4). */ | ||
| 1204 | if (!(sreg.s0_3 & (0x3 << (2 + (bp * 4))))) { | ||
| 1205 | break; | ||
| 1206 | } | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | if (bp > 5) { | ||
| 1210 | /* We're out of watchpoints. */ | ||
| 1211 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1212 | return; | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* Configure the control register first. */ | ||
| 1216 | if (type == '3' || type == '4') { | ||
| 1217 | /* Trigger on read. */ | ||
| 1218 | sreg.s0_3 |= (1 << (2 + bp * 4)); | ||
| 1219 | } | ||
| 1220 | if (type == '2' || type == '4') { | ||
| 1221 | /* Trigger on write. */ | ||
| 1222 | sreg.s0_3 |= (2 << (2 + bp * 4)); | ||
| 1223 | } | ||
| 1224 | |||
| 1225 | /* Ugly pointer arithmetics to configure the watched range. */ | ||
| 1226 | bp_d_regs[bp * 2] = addr; | ||
| 1227 | bp_d_regs[bp * 2 + 1] = (addr + len - 1); | ||
| 1228 | } | ||
| 1229 | |||
| 1230 | /* Set the S1 flag to enable watchpoints. */ | ||
| 1231 | reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT)); | ||
| 1232 | gdb_cris_strcpy(output_buffer, "OK"); | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | static void remove_watchpoint(char type, int addr, int len) | ||
| 1236 | { | ||
| 1237 | /* Breakpoint/watchpoint types: | ||
| 1238 | 0 = memory breakpoint for instructions | ||
| 1239 | (not supported; done via memory write instead) | ||
| 1240 | 1 = hardware breakpoint for instructions (supported) | ||
| 1241 | 2 = write watchpoint (supported) | ||
| 1242 | 3 = read watchpoint (supported) | ||
| 1243 | 4 = access watchpoint (supported) */ | ||
| 1244 | if (type < '1' || type > '4') { | ||
| 1245 | output_buffer[0] = 0; | ||
| 1246 | return; | ||
| 1247 | } | ||
| 1248 | |||
| 1249 | /* Read watchpoints are set as access watchpoints, because of GDB's | ||
| 1250 | inability to deal with pure read watchpoints. */ | ||
| 1251 | if (type == '3') | ||
| 1252 | type = '4'; | ||
| 1253 | |||
| 1254 | if (type == '1') { | ||
| 1255 | /* Hardware breakpoint. */ | ||
| 1256 | /* Bit 0 in BP_CTRL holds the configuration for I0. */ | ||
| 1257 | if (!(sreg.s0_3 & 0x1)) { | ||
| 1258 | /* Not in use. */ | ||
| 1259 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1260 | return; | ||
| 1261 | } | ||
| 1262 | /* Deconfigure. */ | ||
| 1263 | sreg.s1_3 = 0; | ||
| 1264 | sreg.s2_3 = 0; | ||
| 1265 | sreg.s0_3 &= ~1; | ||
| 1266 | } else { | ||
| 1267 | int bp; | ||
| 1268 | unsigned int *bp_d_regs = &sreg.s3_3; | ||
| 1269 | /* Try to find a watchpoint that is configured for the | ||
| 1270 | specified range, then check that read/write also matches. */ | ||
| 1271 | |||
| 1272 | /* Ugly pointer arithmetic, since I cannot rely on a | ||
| 1273 | single switch (addr) as there may be several watchpoints with | ||
| 1274 | the same start address for example. */ | ||
| 1275 | |||
| 1276 | for (bp = 0; bp < 6; bp++) { | ||
| 1277 | if (bp_d_regs[bp * 2] == addr && | ||
| 1278 | bp_d_regs[bp * 2 + 1] == (addr + len - 1)) { | ||
| 1279 | /* Matching range. */ | ||
| 1280 | int bitpos = 2 + bp * 4; | ||
| 1281 | int rw_bits; | ||
| 1282 | |||
| 1283 | /* Read/write bits for this BP. */ | ||
| 1284 | rw_bits = (sreg.s0_3 & (0x3 << bitpos)) >> bitpos; | ||
| 1285 | |||
| 1286 | if ((type == '3' && rw_bits == 0x1) || | ||
| 1287 | (type == '2' && rw_bits == 0x2) || | ||
| 1288 | (type == '4' && rw_bits == 0x3)) { | ||
| 1289 | /* Read/write matched. */ | ||
| 1290 | break; | ||
| 1291 | } | ||
| 1292 | } | ||
| 1293 | } | ||
| 1294 | |||
| 1295 | if (bp > 5) { | ||
| 1296 | /* No watchpoint matched. */ | ||
| 1297 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1298 | return; | ||
| 1299 | } | ||
| 1300 | |||
| 1301 | /* Found a matching watchpoint. Now, deconfigure it by | ||
| 1302 | both disabling read/write in bp_ctrl and zeroing its | ||
| 1303 | start/end addresses. */ | ||
| 1304 | sreg.s0_3 &= ~(3 << (2 + (bp * 4))); | ||
| 1305 | bp_d_regs[bp * 2] = 0; | ||
| 1306 | bp_d_regs[bp * 2 + 1] = 0; | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | /* Note that we don't clear the S1 flag here. It's done when continuing. */ | ||
| 1310 | gdb_cris_strcpy(output_buffer, "OK"); | ||
| 1311 | } | ||
| 1312 | |||
| 1313 | |||
| 1314 | |||
| 1315 | /* All expected commands are sent from remote.c. Send a response according | ||
| 1316 | to the description in remote.c. */ | ||
| 1317 | void | ||
| 1318 | handle_exception(int sigval) | ||
| 1319 | { | ||
| 1320 | /* Avoid warning of not used. */ | ||
| 1321 | |||
| 1322 | USEDFUN(handle_exception); | ||
| 1323 | USEDVAR(internal_stack[0]); | ||
| 1324 | |||
| 1325 | register_fixup(sigval); | ||
| 1326 | |||
| 1327 | /* Send response. */ | ||
| 1328 | stub_is_stopped(sigval); | ||
| 1329 | |||
| 1330 | for (;;) { | ||
| 1331 | output_buffer[0] = '\0'; | ||
| 1332 | getpacket(input_buffer); | ||
| 1333 | switch (input_buffer[0]) { | ||
| 1334 | case 'g': | ||
| 1335 | /* Read registers: g | ||
| 1336 | Success: Each byte of register data is described by two hex digits. | ||
| 1337 | Registers are in the internal order for GDB, and the bytes | ||
| 1338 | in a register are in the same order the machine uses. | ||
| 1339 | Failure: void. */ | ||
| 1340 | { | ||
| 1341 | char *buf; | ||
| 1342 | /* General and special registers. */ | ||
| 1343 | buf = mem2hex(output_buffer, (char *)®, sizeof(registers)); | ||
| 1344 | /* Support registers. */ | ||
| 1345 | /* -1 because of the null termination that mem2hex adds. */ | ||
| 1346 | mem2hex(buf, | ||
| 1347 | (char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)), | ||
| 1348 | 16 * sizeof(unsigned int)); | ||
| 1349 | break; | ||
| 1350 | } | ||
| 1351 | case 'G': | ||
| 1352 | /* Write registers. GXX..XX | ||
| 1353 | Each byte of register data is described by two hex digits. | ||
| 1354 | Success: OK | ||
| 1355 | Failure: void. */ | ||
| 1356 | /* General and special registers. */ | ||
| 1357 | hex2mem((char *)®, &input_buffer[1], sizeof(registers)); | ||
| 1358 | /* Support registers. */ | ||
| 1359 | hex2mem((char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)), | ||
| 1360 | &input_buffer[1] + sizeof(registers), | ||
| 1361 | 16 * sizeof(unsigned int)); | ||
| 1362 | gdb_cris_strcpy(output_buffer, "OK"); | ||
| 1363 | break; | ||
| 1364 | |||
| 1365 | case 'P': | ||
| 1366 | /* Write register. Pn...=r... | ||
| 1367 | Write register n..., hex value without 0x, with value r..., | ||
| 1368 | which contains a hex value without 0x and two hex digits | ||
| 1369 | for each byte in the register (target byte order). P1f=11223344 means | ||
| 1370 | set register 31 to 44332211. | ||
| 1371 | Success: OK | ||
| 1372 | Failure: E02, E05 */ | ||
| 1373 | { | ||
| 1374 | char *suffix; | ||
| 1375 | int regno = gdb_cris_strtol(&input_buffer[1], &suffix, 16); | ||
| 1376 | int status; | ||
| 1377 | |||
| 1378 | status = write_register(regno, suffix+1); | ||
| 1379 | |||
| 1380 | switch (status) { | ||
| 1381 | case E02: | ||
| 1382 | /* Do not support read-only registers. */ | ||
| 1383 | gdb_cris_strcpy(output_buffer, error_message[E02]); | ||
| 1384 | break; | ||
| 1385 | case E05: | ||
| 1386 | /* Do not support non-existing registers. */ | ||
| 1387 | gdb_cris_strcpy(output_buffer, error_message[E05]); | ||
| 1388 | break; | ||
| 1389 | default: | ||
| 1390 | /* Valid register number. */ | ||
| 1391 | gdb_cris_strcpy(output_buffer, "OK"); | ||
| 1392 | break; | ||
| 1393 | } | ||
| 1394 | } | ||
| 1395 | break; | ||
| 1396 | |||
| 1397 | case 'm': | ||
| 1398 | /* Read from memory. mAA..AA,LLLL | ||
| 1399 | AA..AA is the address and LLLL is the length. | ||
| 1400 | Success: XX..XX is the memory content. Can be fewer bytes than | ||
| 1401 | requested if only part of the data may be read. m6000120a,6c means | ||
| 1402 | retrieve 108 byte from base address 6000120a. | ||
| 1403 | Failure: void. */ | ||
| 1404 | { | ||
| 1405 | char *suffix; | ||
| 1406 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1], | ||
| 1407 | &suffix, 16); | ||
| 1408 | int len = gdb_cris_strtol(suffix+1, 0, 16); | ||
| 1409 | |||
| 1410 | /* Bogus read (i.e. outside the kernel's | ||
| 1411 | segment)? . */ | ||
| 1412 | if (!((unsigned int)addr >= 0xc0000000 && | ||
| 1413 | (unsigned int)addr < 0xd0000000)) | ||
| 1414 | addr = NULL; | ||
| 1415 | |||
| 1416 | mem2hex(output_buffer, addr, len); | ||
| 1417 | } | ||
| 1418 | break; | ||
| 1419 | |||
| 1420 | case 'X': | ||
| 1421 | /* Write to memory. XAA..AA,LLLL:XX..XX | ||
| 1422 | AA..AA is the start address, LLLL is the number of bytes, and | ||
| 1423 | XX..XX is the binary data. | ||
| 1424 | Success: OK | ||
| 1425 | Failure: void. */ | ||
| 1426 | case 'M': | ||
| 1427 | /* Write to memory. MAA..AA,LLLL:XX..XX | ||
| 1428 | AA..AA is the start address, LLLL is the number of bytes, and | ||
| 1429 | XX..XX is the hexadecimal data. | ||
| 1430 | Success: OK | ||
| 1431 | Failure: void. */ | ||
| 1432 | { | ||
| 1433 | char *lenptr; | ||
| 1434 | char *dataptr; | ||
| 1435 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1], | ||
| 1436 | &lenptr, 16); | ||
| 1437 | int len = gdb_cris_strtol(lenptr+1, &dataptr, 16); | ||
| 1438 | if (*lenptr == ',' && *dataptr == ':') { | ||
| 1439 | if (input_buffer[0] == 'M') { | ||
| 1440 | hex2mem(addr, dataptr + 1, len); | ||
| 1441 | } else /* X */ { | ||
| 1442 | bin2mem(addr, dataptr + 1, len); | ||
| 1443 | } | ||
| 1444 | gdb_cris_strcpy(output_buffer, "OK"); | ||
| 1445 | } | ||
| 1446 | else { | ||
| 1447 | gdb_cris_strcpy(output_buffer, error_message[E06]); | ||
| 1448 | } | ||
| 1449 | } | ||
| 1450 | break; | ||
| 1451 | |||
| 1452 | case 'c': | ||
| 1453 | /* Continue execution. cAA..AA | ||
| 1454 | AA..AA is the address where execution is resumed. If AA..AA is | ||
| 1455 | omitted, resume at the present address. | ||
| 1456 | Success: return to the executing thread. | ||
| 1457 | Failure: will never know. */ | ||
| 1458 | |||
| 1459 | if (input_buffer[1] != '\0') { | ||
| 1460 | /* FIXME: Doesn't handle address argument. */ | ||
| 1461 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1462 | break; | ||
| 1463 | } | ||
| 1464 | |||
| 1465 | /* Before continuing, make sure everything is set up correctly. */ | ||
| 1466 | |||
| 1467 | /* Set the SPC to some unlikely value. */ | ||
| 1468 | reg.spc = 0; | ||
| 1469 | /* Set the S1 flag to 0 unless some watchpoint is enabled (since setting | ||
| 1470 | S1 to 0 would also disable watchpoints). (Note that bits 26-31 in BP_CTRL | ||
| 1471 | are reserved, so don't check against those). */ | ||
| 1472 | if ((sreg.s0_3 & 0x3fff) == 0) { | ||
| 1473 | reg.ccs &= ~(1 << (S_CCS_BITNR + CCS_SHIFT)); | ||
| 1474 | } | ||
| 1475 | |||
| 1476 | return; | ||
| 1477 | |||
| 1478 | case 's': | ||
| 1479 | /* Step. sAA..AA | ||
| 1480 | AA..AA is the address where execution is resumed. If AA..AA is | ||
| 1481 | omitted, resume at the present address. Success: return to the | ||
| 1482 | executing thread. Failure: will never know. */ | ||
| 1483 | |||
| 1484 | if (input_buffer[1] != '\0') { | ||
| 1485 | /* FIXME: Doesn't handle address argument. */ | ||
| 1486 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1487 | break; | ||
| 1488 | } | ||
| 1489 | |||
| 1490 | /* Set the SPC to PC, which is where we'll return | ||
| 1491 | (deduced previously). */ | ||
| 1492 | reg.spc = reg.pc; | ||
| 1493 | |||
| 1494 | /* Set the S1 (first stacked, not current) flag, which will | ||
| 1495 | kick into action when we rfe. */ | ||
| 1496 | reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT)); | ||
| 1497 | return; | ||
| 1498 | |||
| 1499 | case 'Z': | ||
| 1500 | |||
| 1501 | /* Insert breakpoint or watchpoint, Ztype,addr,length. | ||
| 1502 | Remote protocol says: A remote target shall return an empty string | ||
| 1503 | for an unrecognized breakpoint or watchpoint packet type. */ | ||
| 1504 | { | ||
| 1505 | char *lenptr; | ||
| 1506 | char *dataptr; | ||
| 1507 | int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16); | ||
| 1508 | int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16); | ||
| 1509 | char type = input_buffer[1]; | ||
| 1510 | |||
| 1511 | insert_watchpoint(type, addr, len); | ||
| 1512 | break; | ||
| 1513 | } | ||
| 1514 | |||
| 1515 | case 'z': | ||
| 1516 | /* Remove breakpoint or watchpoint, Ztype,addr,length. | ||
| 1517 | Remote protocol says: A remote target shall return an empty string | ||
| 1518 | for an unrecognized breakpoint or watchpoint packet type. */ | ||
| 1519 | { | ||
| 1520 | char *lenptr; | ||
| 1521 | char *dataptr; | ||
| 1522 | int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16); | ||
| 1523 | int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16); | ||
| 1524 | char type = input_buffer[1]; | ||
| 1525 | |||
| 1526 | remove_watchpoint(type, addr, len); | ||
| 1527 | break; | ||
| 1528 | } | ||
| 1529 | |||
| 1530 | |||
| 1531 | case '?': | ||
| 1532 | /* The last signal which caused a stop. ? | ||
| 1533 | Success: SAA, where AA is the signal number. | ||
| 1534 | Failure: void. */ | ||
| 1535 | output_buffer[0] = 'S'; | ||
| 1536 | output_buffer[1] = highhex(sigval); | ||
| 1537 | output_buffer[2] = lowhex(sigval); | ||
| 1538 | output_buffer[3] = 0; | ||
| 1539 | break; | ||
| 1540 | |||
| 1541 | case 'D': | ||
| 1542 | /* Detach from host. D | ||
| 1543 | Success: OK, and return to the executing thread. | ||
| 1544 | Failure: will never know */ | ||
| 1545 | putpacket("OK"); | ||
| 1546 | return; | ||
| 1547 | |||
| 1548 | case 'k': | ||
| 1549 | case 'r': | ||
| 1550 | /* kill request or reset request. | ||
| 1551 | Success: restart of target. | ||
| 1552 | Failure: will never know. */ | ||
| 1553 | kill_restart(); | ||
| 1554 | break; | ||
| 1555 | |||
| 1556 | case 'C': | ||
| 1557 | case 'S': | ||
| 1558 | case '!': | ||
| 1559 | case 'R': | ||
| 1560 | case 'd': | ||
| 1561 | /* Continue with signal sig. Csig;AA..AA | ||
| 1562 | Step with signal sig. Ssig;AA..AA | ||
| 1563 | Use the extended remote protocol. ! | ||
| 1564 | Restart the target system. R0 | ||
| 1565 | Toggle debug flag. d | ||
| 1566 | Search backwards. tAA:PP,MM | ||
| 1567 | Not supported: E04 */ | ||
| 1568 | |||
| 1569 | /* FIXME: What's the difference between not supported | ||
| 1570 | and ignored (below)? */ | ||
| 1571 | gdb_cris_strcpy(output_buffer, error_message[E04]); | ||
| 1572 | break; | ||
| 1573 | |||
| 1574 | default: | ||
| 1575 | /* The stub should ignore other request and send an empty | ||
| 1576 | response ($#<checksum>). This way we can extend the protocol and GDB | ||
| 1577 | can tell whether the stub it is talking to uses the old or the new. */ | ||
| 1578 | output_buffer[0] = 0; | ||
| 1579 | break; | ||
| 1580 | } | ||
| 1581 | putpacket(output_buffer); | ||
| 1582 | } | ||
| 1583 | } | ||
| 1584 | |||
| 1585 | void | ||
| 1586 | kgdb_init(void) | ||
| 1587 | { | ||
| 1588 | reg_intr_vect_rw_mask intr_mask; | ||
| 1589 | reg_ser_rw_intr_mask ser_intr_mask; | ||
| 1590 | |||
| 1591 | /* Configure the kgdb serial port. */ | ||
| 1592 | #if defined(CONFIG_ETRAX_KGDB_PORT0) | ||
| 1593 | /* Note: no shortcut registered (not handled by multiple_interrupt). | ||
| 1594 | See entry.S. */ | ||
| 1595 | set_exception_vector(SER0_INTR_VECT, kgdb_handle_exception); | ||
| 1596 | /* Enable the ser irq in the global config. */ | ||
| 1597 | intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); | ||
| 1598 | intr_mask.ser0 = 1; | ||
| 1599 | REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); | ||
| 1600 | |||
| 1601 | ser_intr_mask = REG_RD(ser, regi_ser0, rw_intr_mask); | ||
| 1602 | ser_intr_mask.data_avail = regk_ser_yes; | ||
| 1603 | REG_WR(ser, regi_ser0, rw_intr_mask, ser_intr_mask); | ||
| 1604 | #elif defined(CONFIG_ETRAX_KGDB_PORT1) | ||
| 1605 | /* Note: no shortcut registered (not handled by multiple_interrupt). | ||
| 1606 | See entry.S. */ | ||
| 1607 | set_exception_vector(SER1_INTR_VECT, kgdb_handle_exception); | ||
| 1608 | /* Enable the ser irq in the global config. */ | ||
| 1609 | intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); | ||
| 1610 | intr_mask.ser1 = 1; | ||
| 1611 | REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); | ||
| 1612 | |||
| 1613 | ser_intr_mask = REG_RD(ser, regi_ser1, rw_intr_mask); | ||
| 1614 | ser_intr_mask.data_avail = regk_ser_yes; | ||
| 1615 | REG_WR(ser, regi_ser1, rw_intr_mask, ser_intr_mask); | ||
| 1616 | #elif defined(CONFIG_ETRAX_KGDB_PORT2) | ||
| 1617 | /* Note: no shortcut registered (not handled by multiple_interrupt). | ||
| 1618 | See entry.S. */ | ||
| 1619 | set_exception_vector(SER2_INTR_VECT, kgdb_handle_exception); | ||
| 1620 | /* Enable the ser irq in the global config. */ | ||
| 1621 | intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); | ||
| 1622 | intr_mask.ser2 = 1; | ||
| 1623 | REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); | ||
| 1624 | |||
| 1625 | ser_intr_mask = REG_RD(ser, regi_ser2, rw_intr_mask); | ||
| 1626 | ser_intr_mask.data_avail = regk_ser_yes; | ||
| 1627 | REG_WR(ser, regi_ser2, rw_intr_mask, ser_intr_mask); | ||
| 1628 | #elif defined(CONFIG_ETRAX_KGDB_PORT3) | ||
| 1629 | /* Note: no shortcut registered (not handled by multiple_interrupt). | ||
| 1630 | See entry.S. */ | ||
| 1631 | set_exception_vector(SER3_INTR_VECT, kgdb_handle_exception); | ||
| 1632 | /* Enable the ser irq in the global config. */ | ||
| 1633 | intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); | ||
| 1634 | intr_mask.ser3 = 1; | ||
| 1635 | REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); | ||
| 1636 | |||
| 1637 | ser_intr_mask = REG_RD(ser, regi_ser3, rw_intr_mask); | ||
| 1638 | ser_intr_mask.data_avail = regk_ser_yes; | ||
| 1639 | REG_WR(ser, regi_ser3, rw_intr_mask, ser_intr_mask); | ||
| 1640 | #endif | ||
| 1641 | |||
| 1642 | } | ||
| 1643 | /* Performs a complete re-start from scratch. */ | ||
| 1644 | static void | ||
| 1645 | kill_restart(void) | ||
| 1646 | { | ||
| 1647 | machine_restart(""); | ||
| 1648 | } | ||
| 1649 | |||
| 1650 | /* Use this static breakpoint in the start-up only. */ | ||
| 1651 | |||
| 1652 | void | ||
| 1653 | breakpoint(void) | ||
| 1654 | { | ||
| 1655 | kgdb_started = 1; | ||
| 1656 | dynamic_bp = 0; /* This is a static, not a dynamic breakpoint. */ | ||
| 1657 | __asm__ volatile ("break 8"); /* Jump to kgdb_handle_breakpoint. */ | ||
| 1658 | } | ||
| 1659 | |||
| 1660 | /****************************** End of file **********************************/ | ||
