diff options
Diffstat (limited to 'arch/cris/arch-v10/kernel/time.c')
-rw-r--r-- | arch/cris/arch-v10/kernel/time.c | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/arch/cris/arch-v10/kernel/time.c b/arch/cris/arch-v10/kernel/time.c new file mode 100644 index 000000000000..6b7b4e0802e3 --- /dev/null +++ b/arch/cris/arch-v10/kernel/time.c | |||
@@ -0,0 +1,369 @@ | |||
1 | /* $Id: time.c,v 1.5 2004/09/29 06:12:46 starvik Exp $ | ||
2 | * | ||
3 | * linux/arch/cris/arch-v10/kernel/time.c | ||
4 | * | ||
5 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds | ||
6 | * Copyright (C) 1999-2002 Axis Communications AB | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | #include <linux/config.h> | ||
11 | #include <linux/timex.h> | ||
12 | #include <linux/time.h> | ||
13 | #include <linux/jiffies.h> | ||
14 | #include <linux/interrupt.h> | ||
15 | #include <linux/swap.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <asm/arch/svinto.h> | ||
19 | #include <asm/types.h> | ||
20 | #include <asm/signal.h> | ||
21 | #include <asm/io.h> | ||
22 | #include <asm/delay.h> | ||
23 | #include <asm/rtc.h> | ||
24 | |||
25 | /* define this if you need to use print_timestamp */ | ||
26 | /* it will make jiffies at 96 hz instead of 100 hz though */ | ||
27 | #undef USE_CASCADE_TIMERS | ||
28 | |||
29 | extern void update_xtime_from_cmos(void); | ||
30 | extern int set_rtc_mmss(unsigned long nowtime); | ||
31 | extern int setup_irq(int, struct irqaction *); | ||
32 | extern int have_rtc; | ||
33 | |||
34 | unsigned long get_ns_in_jiffie(void) | ||
35 | { | ||
36 | unsigned char timer_count, t1; | ||
37 | unsigned short presc_count; | ||
38 | unsigned long ns; | ||
39 | unsigned long flags; | ||
40 | |||
41 | local_irq_save(flags); | ||
42 | local_irq_disable(); | ||
43 | timer_count = *R_TIMER0_DATA; | ||
44 | presc_count = *R_TIM_PRESC_STATUS; | ||
45 | /* presc_count might be wrapped */ | ||
46 | t1 = *R_TIMER0_DATA; | ||
47 | |||
48 | if (timer_count != t1){ | ||
49 | /* it wrapped, read prescaler again... */ | ||
50 | presc_count = *R_TIM_PRESC_STATUS; | ||
51 | timer_count = t1; | ||
52 | } | ||
53 | local_irq_restore(flags); | ||
54 | if (presc_count >= PRESCALE_VALUE/2 ){ | ||
55 | presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; | ||
56 | } else { | ||
57 | presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; | ||
58 | } | ||
59 | |||
60 | ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + | ||
61 | ( (presc_count) * (1000000000/PRESCALE_FREQ)); | ||
62 | return ns; | ||
63 | } | ||
64 | |||
65 | unsigned long do_slow_gettimeoffset(void) | ||
66 | { | ||
67 | unsigned long count, t1; | ||
68 | unsigned long usec_count = 0; | ||
69 | unsigned short presc_count; | ||
70 | |||
71 | static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */ | ||
72 | static unsigned long jiffies_p = 0; | ||
73 | |||
74 | /* | ||
75 | * cache volatile jiffies temporarily; we have IRQs turned off. | ||
76 | */ | ||
77 | unsigned long jiffies_t; | ||
78 | |||
79 | /* The timer interrupt comes from Etrax timer 0. In order to get | ||
80 | * better precision, we check the current value. It might have | ||
81 | * underflowed already though. | ||
82 | */ | ||
83 | |||
84 | #ifndef CONFIG_SVINTO_SIM | ||
85 | /* Not available in the xsim simulator. */ | ||
86 | count = *R_TIMER0_DATA; | ||
87 | presc_count = *R_TIM_PRESC_STATUS; | ||
88 | /* presc_count might be wrapped */ | ||
89 | t1 = *R_TIMER0_DATA; | ||
90 | if (count != t1){ | ||
91 | /* it wrapped, read prescaler again... */ | ||
92 | presc_count = *R_TIM_PRESC_STATUS; | ||
93 | count = t1; | ||
94 | } | ||
95 | #else | ||
96 | count = 0; | ||
97 | presc_count = 0; | ||
98 | #endif | ||
99 | |||
100 | jiffies_t = jiffies; | ||
101 | |||
102 | /* | ||
103 | * avoiding timer inconsistencies (they are rare, but they happen)... | ||
104 | * there are one problem that must be avoided here: | ||
105 | * 1. the timer counter underflows | ||
106 | */ | ||
107 | if( jiffies_t == jiffies_p ) { | ||
108 | if( count > count_p ) { | ||
109 | /* Timer wrapped, use new count and prescale | ||
110 | * increase the time corresponding to one jiffie | ||
111 | */ | ||
112 | usec_count = 1000000/HZ; | ||
113 | } | ||
114 | } else | ||
115 | jiffies_p = jiffies_t; | ||
116 | count_p = count; | ||
117 | if (presc_count >= PRESCALE_VALUE/2 ){ | ||
118 | presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; | ||
119 | } else { | ||
120 | presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; | ||
121 | } | ||
122 | /* Convert timer value to usec */ | ||
123 | usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) + | ||
124 | (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000); | ||
125 | |||
126 | return usec_count; | ||
127 | } | ||
128 | |||
129 | /* Excerpt from the Etrax100 HSDD about the built-in watchdog: | ||
130 | * | ||
131 | * 3.10.4 Watchdog timer | ||
132 | |||
133 | * When the watchdog timer is started, it generates an NMI if the watchdog | ||
134 | * isn't restarted or stopped within 0.1 s. If it still isn't restarted or | ||
135 | * stopped after an additional 3.3 ms, the watchdog resets the chip. | ||
136 | * The watchdog timer is stopped after reset. The watchdog timer is controlled | ||
137 | * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit | ||
138 | * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is | ||
139 | * described in the table below: | ||
140 | * | ||
141 | * Watchdog Value written: | ||
142 | * state: To enable: To key: Operation: | ||
143 | * -------- ---------- ------- ---------- | ||
144 | * stopped 0 X No effect. | ||
145 | * stopped 1 key_val Start watchdog with key = key_val. | ||
146 | * started 0 ~key Stop watchdog | ||
147 | * started 1 ~key Restart watchdog with key = ~key. | ||
148 | * started X new_key_val Change key to new_key_val. | ||
149 | * | ||
150 | * Note: '~' is the bitwise NOT operator. | ||
151 | * | ||
152 | */ | ||
153 | |||
154 | /* right now, starting the watchdog is the same as resetting it */ | ||
155 | #define start_watchdog reset_watchdog | ||
156 | |||
157 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) | ||
158 | static int watchdog_key = 0; /* arbitrary number */ | ||
159 | #endif | ||
160 | |||
161 | /* number of pages to consider "out of memory". it is normal that the memory | ||
162 | * is used though, so put this really low. | ||
163 | */ | ||
164 | |||
165 | #define WATCHDOG_MIN_FREE_PAGES 8 | ||
166 | |||
167 | void | ||
168 | reset_watchdog(void) | ||
169 | { | ||
170 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) | ||
171 | /* only keep watchdog happy as long as we have memory left! */ | ||
172 | if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { | ||
173 | /* reset the watchdog with the inverse of the old key */ | ||
174 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ | ||
175 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | | ||
176 | IO_STATE(R_WATCHDOG, enable, start); | ||
177 | } | ||
178 | #endif | ||
179 | } | ||
180 | |||
181 | /* stop the watchdog - we still need the correct key */ | ||
182 | |||
183 | void | ||
184 | stop_watchdog(void) | ||
185 | { | ||
186 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) | ||
187 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ | ||
188 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | | ||
189 | IO_STATE(R_WATCHDOG, enable, stop); | ||
190 | #endif | ||
191 | } | ||
192 | |||
193 | /* last time the cmos clock got updated */ | ||
194 | static long last_rtc_update = 0; | ||
195 | |||
196 | /* | ||
197 | * timer_interrupt() needs to keep up the real-time clock, | ||
198 | * as well as call the "do_timer()" routine every clocktick | ||
199 | */ | ||
200 | |||
201 | //static unsigned short myjiff; /* used by our debug routine print_timestamp */ | ||
202 | |||
203 | extern void cris_do_profile(struct pt_regs *regs); | ||
204 | |||
205 | static inline irqreturn_t | ||
206 | timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
207 | { | ||
208 | /* acknowledge the timer irq */ | ||
209 | |||
210 | #ifdef USE_CASCADE_TIMERS | ||
211 | *R_TIMER_CTRL = | ||
212 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | | ||
213 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | | ||
214 | IO_STATE( R_TIMER_CTRL, i1, clr) | | ||
215 | IO_STATE( R_TIMER_CTRL, tm1, run) | | ||
216 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | | ||
217 | IO_STATE( R_TIMER_CTRL, i0, clr) | | ||
218 | IO_STATE( R_TIMER_CTRL, tm0, run) | | ||
219 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); | ||
220 | #else | ||
221 | *R_TIMER_CTRL = r_timer_ctrl_shadow | | ||
222 | IO_STATE(R_TIMER_CTRL, i0, clr); | ||
223 | #endif | ||
224 | |||
225 | /* reset watchdog otherwise it resets us! */ | ||
226 | |||
227 | reset_watchdog(); | ||
228 | |||
229 | /* call the real timer interrupt handler */ | ||
230 | |||
231 | do_timer(regs); | ||
232 | |||
233 | cris_do_profile(regs); /* Save profiling information */ | ||
234 | |||
235 | /* | ||
236 | * If we have an externally synchronized Linux clock, then update | ||
237 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | ||
238 | * called as close as possible to 500 ms before the new second starts. | ||
239 | * | ||
240 | * The division here is not time critical since it will run once in | ||
241 | * 11 minutes | ||
242 | */ | ||
243 | if ((time_status & STA_UNSYNC) == 0 && | ||
244 | xtime.tv_sec > last_rtc_update + 660 && | ||
245 | (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && | ||
246 | (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { | ||
247 | if (set_rtc_mmss(xtime.tv_sec) == 0) | ||
248 | last_rtc_update = xtime.tv_sec; | ||
249 | else | ||
250 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ | ||
251 | } | ||
252 | return IRQ_HANDLED; | ||
253 | } | ||
254 | |||
255 | /* timer is SA_SHIRQ so drivers can add stuff to the timer irq chain | ||
256 | * it needs to be SA_INTERRUPT to make the jiffies update work properly | ||
257 | */ | ||
258 | |||
259 | static struct irqaction irq2 = { timer_interrupt, SA_SHIRQ | SA_INTERRUPT, | ||
260 | CPU_MASK_NONE, "timer", NULL, NULL}; | ||
261 | |||
262 | void __init | ||
263 | time_init(void) | ||
264 | { | ||
265 | /* probe for the RTC and read it if it exists | ||
266 | * Before the RTC can be probed the loops_per_usec variable needs | ||
267 | * to be initialized to make usleep work. A better value for | ||
268 | * loops_per_usec is calculated by the kernel later once the | ||
269 | * clock has started. | ||
270 | */ | ||
271 | loops_per_usec = 50; | ||
272 | |||
273 | if(RTC_INIT() < 0) { | ||
274 | /* no RTC, start at 1980 */ | ||
275 | xtime.tv_sec = 0; | ||
276 | xtime.tv_nsec = 0; | ||
277 | have_rtc = 0; | ||
278 | } else { | ||
279 | /* get the current time */ | ||
280 | have_rtc = 1; | ||
281 | update_xtime_from_cmos(); | ||
282 | } | ||
283 | |||
284 | /* | ||
285 | * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the | ||
286 | * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). | ||
287 | */ | ||
288 | set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); | ||
289 | |||
290 | /* Setup the etrax timers | ||
291 | * Base frequency is 25000 hz, divider 250 -> 100 HZ | ||
292 | * In normal mode, we use timer0, so timer1 is free. In cascade | ||
293 | * mode (which we sometimes use for debugging) both timers are used. | ||
294 | * Remember that linux/timex.h contains #defines that rely on the | ||
295 | * timer settings below (hz and divide factor) !!! | ||
296 | */ | ||
297 | |||
298 | #ifdef USE_CASCADE_TIMERS | ||
299 | *R_TIMER_CTRL = | ||
300 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | | ||
301 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | | ||
302 | IO_STATE( R_TIMER_CTRL, i1, nop) | | ||
303 | IO_STATE( R_TIMER_CTRL, tm1, stop_ld) | | ||
304 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | | ||
305 | IO_STATE( R_TIMER_CTRL, i0, nop) | | ||
306 | IO_STATE( R_TIMER_CTRL, tm0, stop_ld) | | ||
307 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); | ||
308 | |||
309 | *R_TIMER_CTRL = r_timer_ctrl_shadow = | ||
310 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | | ||
311 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | | ||
312 | IO_STATE( R_TIMER_CTRL, i1, nop) | | ||
313 | IO_STATE( R_TIMER_CTRL, tm1, run) | | ||
314 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | | ||
315 | IO_STATE( R_TIMER_CTRL, i0, nop) | | ||
316 | IO_STATE( R_TIMER_CTRL, tm0, run) | | ||
317 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); | ||
318 | #else | ||
319 | *R_TIMER_CTRL = | ||
320 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | | ||
321 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | | ||
322 | IO_STATE(R_TIMER_CTRL, i1, nop) | | ||
323 | IO_STATE(R_TIMER_CTRL, tm1, stop_ld) | | ||
324 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | | ||
325 | IO_STATE(R_TIMER_CTRL, i0, nop) | | ||
326 | IO_STATE(R_TIMER_CTRL, tm0, stop_ld) | | ||
327 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); | ||
328 | |||
329 | *R_TIMER_CTRL = r_timer_ctrl_shadow = | ||
330 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | | ||
331 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | | ||
332 | IO_STATE(R_TIMER_CTRL, i1, nop) | | ||
333 | IO_STATE(R_TIMER_CTRL, tm1, run) | | ||
334 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | | ||
335 | IO_STATE(R_TIMER_CTRL, i0, nop) | | ||
336 | IO_STATE(R_TIMER_CTRL, tm0, run) | | ||
337 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); | ||
338 | |||
339 | *R_TIMER_PRESCALE = PRESCALE_VALUE; | ||
340 | #endif | ||
341 | |||
342 | *R_IRQ_MASK0_SET = | ||
343 | IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */ | ||
344 | |||
345 | /* now actually register the timer irq handler that calls timer_interrupt() */ | ||
346 | |||
347 | setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */ | ||
348 | |||
349 | /* enable watchdog if we should use one */ | ||
350 | |||
351 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) | ||
352 | printk("Enabling watchdog...\n"); | ||
353 | start_watchdog(); | ||
354 | |||
355 | /* If we use the hardware watchdog, we want to trap it as an NMI | ||
356 | and dump registers before it resets us. For this to happen, we | ||
357 | must set the "m" NMI enable flag (which once set, is unset only | ||
358 | when an NMI is taken). | ||
359 | |||
360 | The same goes for the external NMI, but that doesn't have any | ||
361 | driver or infrastructure support yet. */ | ||
362 | asm ("setf m"); | ||
363 | |||
364 | *R_IRQ_MASK0_SET = | ||
365 | IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set); | ||
366 | *R_VECT_MASK_SET = | ||
367 | IO_STATE(R_VECT_MASK_SET, nmi, set); | ||
368 | #endif | ||
369 | } | ||