diff options
Diffstat (limited to 'arch/cris/arch-v10/kernel/kgdb.c')
-rw-r--r-- | arch/cris/arch-v10/kernel/kgdb.c | 1568 |
1 files changed, 1568 insertions, 0 deletions
diff --git a/arch/cris/arch-v10/kernel/kgdb.c b/arch/cris/arch-v10/kernel/kgdb.c new file mode 100644 index 000000000000..7d368c877ee9 --- /dev/null +++ b/arch/cris/arch-v10/kernel/kgdb.c | |||
@@ -0,0 +1,1568 @@ | |||
1 | /*!************************************************************************** | ||
2 | *! | ||
3 | *! FILE NAME : kgdb.c | ||
4 | *! | ||
5 | *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100. | ||
6 | *! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c. | ||
7 | *! | ||
8 | *!--------------------------------------------------------------------------- | ||
9 | *! HISTORY | ||
10 | *! | ||
11 | *! DATE NAME CHANGES | ||
12 | *! ---- ---- ------- | ||
13 | *! Apr 26 1999 Hendrik Ruijter Initial version. | ||
14 | *! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed | ||
15 | *! struct assignment as it generates calls to | ||
16 | *! memcpy in libc. | ||
17 | *! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'. | ||
18 | *! Jul 21 1999 Bjorn Wesen eLinux port | ||
19 | *! | ||
20 | *! $Log: kgdb.c,v $ | ||
21 | *! Revision 1.5 2004/10/07 13:59:08 starvik | ||
22 | *! Corrected call to set_int_vector | ||
23 | *! | ||
24 | *! Revision 1.4 2003/04/09 05:20:44 starvik | ||
25 | *! Merge of Linux 2.5.67 | ||
26 | *! | ||
27 | *! Revision 1.3 2003/01/21 19:11:08 starvik | ||
28 | *! Modified include path for new dir layout | ||
29 | *! | ||
30 | *! Revision 1.2 2002/11/19 14:35:24 starvik | ||
31 | *! Changes from linux 2.4 | ||
32 | *! Changed struct initializer syntax to the currently prefered notation | ||
33 | *! | ||
34 | *! Revision 1.1 2001/12/17 13:59:27 bjornw | ||
35 | *! Initial revision | ||
36 | *! | ||
37 | *! Revision 1.6 2001/10/09 13:10:03 matsfg | ||
38 | *! Added $ on registers and removed some underscores | ||
39 | *! | ||
40 | *! Revision 1.5 2001/04/17 13:58:39 orjanf | ||
41 | *! * Renamed CONFIG_KGDB to CONFIG_ETRAX_KGDB. | ||
42 | *! | ||
43 | *! Revision 1.4 2001/02/23 13:45:19 bjornw | ||
44 | *! config.h check | ||
45 | *! | ||
46 | *! Revision 1.3 2001/01/31 18:08:23 orjanf | ||
47 | *! Removed kgdb_handle_breakpoint from being the break 8 handler. | ||
48 | *! | ||
49 | *! Revision 1.2 2001/01/12 14:22:25 orjanf | ||
50 | *! Updated kernel debugging support to work with ETRAX 100LX. | ||
51 | *! | ||
52 | *! Revision 1.1 2000/07/10 16:25:21 bjornw | ||
53 | *! Initial revision | ||
54 | *! | ||
55 | *! Revision 1.1.1.1 1999/12/03 14:57:31 bjornw | ||
56 | *! * Initial version of arch/cris, the latest CRIS architecture with an MMU. | ||
57 | *! Mostly copied from arch/etrax100 with appropriate renames of files. | ||
58 | *! The mm/ subdir is copied from arch/i386. | ||
59 | *! This does not compile yet at all. | ||
60 | *! | ||
61 | *! | ||
62 | *! Revision 1.4 1999/07/22 17:25:25 bjornw | ||
63 | *! Dont wait for + in putpacket if we havent hit the initial breakpoint yet. Added a kgdb_init function which sets up the break and irq vectors. | ||
64 | *! | ||
65 | *! Revision 1.3 1999/07/21 19:51:18 bjornw | ||
66 | *! Check if the interrupting char is a ctrl-C, ignore otherwise. | ||
67 | *! | ||
68 | *! Revision 1.2 1999/07/21 18:09:39 bjornw | ||
69 | *! Ported to eLinux architecture, and added some kgdb documentation. | ||
70 | *! | ||
71 | *! | ||
72 | *!--------------------------------------------------------------------------- | ||
73 | *! | ||
74 | *! $Id: kgdb.c,v 1.5 2004/10/07 13:59:08 starvik Exp $ | ||
75 | *! | ||
76 | *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN | ||
77 | *! | ||
78 | *!**************************************************************************/ | ||
79 | /* @(#) cris_stub.c 1.3 06/17/99 */ | ||
80 | |||
81 | /* | ||
82 | * kgdb usage notes: | ||
83 | * ----------------- | ||
84 | * | ||
85 | * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be | ||
86 | * built with different gcc flags: "-g" is added to get debug infos, and | ||
87 | * "-fomit-frame-pointer" is omitted to make debugging easier. Since the | ||
88 | * resulting kernel will be quite big (approx. > 7 MB), it will be stripped | ||
89 | * before compresion. Such a kernel will behave just as usually, except if | ||
90 | * given a "debug=<device>" command line option. (Only serial devices are | ||
91 | * allowed for <device>, i.e. no printers or the like; possible values are | ||
92 | * machine depedend and are the same as for the usual debug device, the one | ||
93 | * for logging kernel messages.) If that option is given and the device can be | ||
94 | * initialized, the kernel will connect to the remote gdb in trap_init(). The | ||
95 | * serial parameters are fixed to 8N1 and 115200 bps, for easyness of | ||
96 | * implementation. | ||
97 | * | ||
98 | * To start a debugging session, start that gdb with the debugging kernel | ||
99 | * image (the one with the symbols, vmlinux.debug) named on the command line. | ||
100 | * This file will be used by gdb to get symbol and debugging infos about the | ||
101 | * kernel. Next, select remote debug mode by | ||
102 | * target remote <device> | ||
103 | * where <device> is the name of the serial device over which the debugged | ||
104 | * machine is connected. Maybe you have to adjust the baud rate by | ||
105 | * set remotebaud <rate> | ||
106 | * or also other parameters with stty: | ||
107 | * shell stty ... </dev/... | ||
108 | * If the kernel to debug has already booted, it waited for gdb and now | ||
109 | * connects, and you'll see a breakpoint being reported. If the kernel isn't | ||
110 | * running yet, start it now. The order of gdb and the kernel doesn't matter. | ||
111 | * Another thing worth knowing about in the getting-started phase is how to | ||
112 | * debug the remote protocol itself. This is activated with | ||
113 | * set remotedebug 1 | ||
114 | * gdb will then print out each packet sent or received. You'll also get some | ||
115 | * messages about the gdb stub on the console of the debugged machine. | ||
116 | * | ||
117 | * If all that works, you can use lots of the usual debugging techniques on | ||
118 | * the kernel, e.g. inspecting and changing variables/memory, setting | ||
119 | * breakpoints, single stepping and so on. It's also possible to interrupt the | ||
120 | * debugged kernel by pressing C-c in gdb. Have fun! :-) | ||
121 | * | ||
122 | * The gdb stub is entered (and thus the remote gdb gets control) in the | ||
123 | * following situations: | ||
124 | * | ||
125 | * - If breakpoint() is called. This is just after kgdb initialization, or if | ||
126 | * a breakpoint() call has been put somewhere into the kernel source. | ||
127 | * (Breakpoints can of course also be set the usual way in gdb.) | ||
128 | * In eLinux, we call breakpoint() in init/main.c after IRQ initialization. | ||
129 | * | ||
130 | * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel() | ||
131 | * are entered. All the CPU exceptions are mapped to (more or less..., see | ||
132 | * the hard_trap_info array below) appropriate signal, which are reported | ||
133 | * to gdb. die_if_kernel() is usually called after some kind of access | ||
134 | * error and thus is reported as SIGSEGV. | ||
135 | * | ||
136 | * - When panic() is called. This is reported as SIGABRT. | ||
137 | * | ||
138 | * - If C-c is received over the serial line, which is treated as | ||
139 | * SIGINT. | ||
140 | * | ||
141 | * Of course, all these signals are just faked for gdb, since there is no | ||
142 | * signal concept as such for the kernel. It also isn't possible --obviously-- | ||
143 | * to set signal handlers from inside gdb, or restart the kernel with a | ||
144 | * signal. | ||
145 | * | ||
146 | * Current limitations: | ||
147 | * | ||
148 | * - While the kernel is stopped, interrupts are disabled for safety reasons | ||
149 | * (i.e., variables not changing magically or the like). But this also | ||
150 | * means that the clock isn't running anymore, and that interrupts from the | ||
151 | * hardware may get lost/not be served in time. This can cause some device | ||
152 | * errors... | ||
153 | * | ||
154 | * - When single-stepping, only one instruction of the current thread is | ||
155 | * executed, but interrupts are allowed for that time and will be serviced | ||
156 | * if pending. Be prepared for that. | ||
157 | * | ||
158 | * - All debugging happens in kernel virtual address space. There's no way to | ||
159 | * access physical memory not mapped in kernel space, or to access user | ||
160 | * space. A way to work around this is using get_user_long & Co. in gdb | ||
161 | * expressions, but only for the current process. | ||
162 | * | ||
163 | * - Interrupting the kernel only works if interrupts are currently allowed, | ||
164 | * and the interrupt of the serial line isn't blocked by some other means | ||
165 | * (IPL too high, disabled, ...) | ||
166 | * | ||
167 | * - The gdb stub is currently not reentrant, i.e. errors that happen therein | ||
168 | * (e.g. accessing invalid memory) may not be caught correctly. This could | ||
169 | * be removed in future by introducing a stack of struct registers. | ||
170 | * | ||
171 | */ | ||
172 | |||
173 | /* | ||
174 | * To enable debugger support, two things need to happen. One, a | ||
175 | * call to kgdb_init() is necessary in order to allow any breakpoints | ||
176 | * or error conditions to be properly intercepted and reported to gdb. | ||
177 | * Two, a breakpoint needs to be generated to begin communication. This | ||
178 | * is most easily accomplished by a call to breakpoint(). | ||
179 | * | ||
180 | * The following gdb commands are supported: | ||
181 | * | ||
182 | * command function Return value | ||
183 | * | ||
184 | * g return the value of the CPU registers hex data or ENN | ||
185 | * G set the value of the CPU registers OK or ENN | ||
186 | * | ||
187 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN | ||
188 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN | ||
189 | * | ||
190 | * c Resume at current address SNN ( signal NN) | ||
191 | * cAA..AA Continue at address AA..AA SNN | ||
192 | * | ||
193 | * s Step one instruction SNN | ||
194 | * sAA..AA Step one instruction from AA..AA SNN | ||
195 | * | ||
196 | * k kill | ||
197 | * | ||
198 | * ? What was the last sigval ? SNN (signal NN) | ||
199 | * | ||
200 | * bBB..BB Set baud rate to BB..BB OK or BNN, then sets | ||
201 | * baud rate | ||
202 | * | ||
203 | * All commands and responses are sent with a packet which includes a | ||
204 | * checksum. A packet consists of | ||
205 | * | ||
206 | * $<packet info>#<checksum>. | ||
207 | * | ||
208 | * where | ||
209 | * <packet info> :: <characters representing the command or response> | ||
210 | * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> | ||
211 | * | ||
212 | * When a packet is received, it is first acknowledged with either '+' or '-'. | ||
213 | * '+' indicates a successful transfer. '-' indicates a failed transfer. | ||
214 | * | ||
215 | * Example: | ||
216 | * | ||
217 | * Host: Reply: | ||
218 | * $m0,10#2a +$00010203040506070809101112131415#42 | ||
219 | * | ||
220 | */ | ||
221 | |||
222 | |||
223 | #include <linux/string.h> | ||
224 | #include <linux/signal.h> | ||
225 | #include <linux/kernel.h> | ||
226 | #include <linux/delay.h> | ||
227 | #include <linux/linkage.h> | ||
228 | |||
229 | #include <asm/setup.h> | ||
230 | #include <asm/ptrace.h> | ||
231 | |||
232 | #include <asm/arch/svinto.h> | ||
233 | #include <asm/irq.h> | ||
234 | |||
235 | static int kgdb_started = 0; | ||
236 | |||
237 | /********************************* Register image ****************************/ | ||
238 | /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's | ||
239 | Reference", p. 1-1, with the additional register definitions of the | ||
240 | ETRAX 100LX in cris-opc.h. | ||
241 | There are 16 general 32-bit registers, R0-R15, where R14 is the stack | ||
242 | pointer, SP, and R15 is the program counter, PC. | ||
243 | There are 16 special registers, P0-P15, where three of the unimplemented | ||
244 | registers, P0, P4 and P8, are reserved as zero-registers. A read from | ||
245 | any of these registers returns zero and a write has no effect. */ | ||
246 | |||
247 | typedef | ||
248 | struct register_image | ||
249 | { | ||
250 | /* Offset */ | ||
251 | unsigned int r0; /* 0x00 */ | ||
252 | unsigned int r1; /* 0x04 */ | ||
253 | unsigned int r2; /* 0x08 */ | ||
254 | unsigned int r3; /* 0x0C */ | ||
255 | unsigned int r4; /* 0x10 */ | ||
256 | unsigned int r5; /* 0x14 */ | ||
257 | unsigned int r6; /* 0x18 */ | ||
258 | unsigned int r7; /* 0x1C */ | ||
259 | unsigned int r8; /* 0x20 Frame pointer */ | ||
260 | unsigned int r9; /* 0x24 */ | ||
261 | unsigned int r10; /* 0x28 */ | ||
262 | unsigned int r11; /* 0x2C */ | ||
263 | unsigned int r12; /* 0x30 */ | ||
264 | unsigned int r13; /* 0x34 */ | ||
265 | unsigned int sp; /* 0x38 Stack pointer */ | ||
266 | unsigned int pc; /* 0x3C Program counter */ | ||
267 | |||
268 | unsigned char p0; /* 0x40 8-bit zero-register */ | ||
269 | unsigned char vr; /* 0x41 Version register */ | ||
270 | |||
271 | unsigned short p4; /* 0x42 16-bit zero-register */ | ||
272 | unsigned short ccr; /* 0x44 Condition code register */ | ||
273 | |||
274 | unsigned int mof; /* 0x46 Multiply overflow register */ | ||
275 | |||
276 | unsigned int p8; /* 0x4A 32-bit zero-register */ | ||
277 | unsigned int ibr; /* 0x4E Interrupt base register */ | ||
278 | unsigned int irp; /* 0x52 Interrupt return pointer */ | ||
279 | unsigned int srp; /* 0x56 Subroutine return pointer */ | ||
280 | unsigned int bar; /* 0x5A Breakpoint address register */ | ||
281 | unsigned int dccr; /* 0x5E Double condition code register */ | ||
282 | unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */ | ||
283 | unsigned int usp; /* 0x66 User mode stack pointer */ | ||
284 | } registers; | ||
285 | |||
286 | /************** Prototypes for local library functions ***********************/ | ||
287 | |||
288 | /* Copy of strcpy from libc. */ | ||
289 | static char *gdb_cris_strcpy (char *s1, const char *s2); | ||
290 | |||
291 | /* Copy of strlen from libc. */ | ||
292 | static int gdb_cris_strlen (const char *s); | ||
293 | |||
294 | /* Copy of memchr from libc. */ | ||
295 | static void *gdb_cris_memchr (const void *s, int c, int n); | ||
296 | |||
297 | /* Copy of strtol from libc. Does only support base 16. */ | ||
298 | static int gdb_cris_strtol (const char *s, char **endptr, int base); | ||
299 | |||
300 | /********************** Prototypes for local functions. **********************/ | ||
301 | /* Copy the content of a register image into another. The size n is | ||
302 | the size of the register image. Due to struct assignment generation of | ||
303 | memcpy in libc. */ | ||
304 | static void copy_registers (registers *dptr, registers *sptr, int n); | ||
305 | |||
306 | /* Copy the stored registers from the stack. Put the register contents | ||
307 | of thread thread_id in the struct reg. */ | ||
308 | static void copy_registers_from_stack (int thread_id, registers *reg); | ||
309 | |||
310 | /* Copy the registers to the stack. Put the register contents of thread | ||
311 | thread_id from struct reg to the stack. */ | ||
312 | static void copy_registers_to_stack (int thread_id, registers *reg); | ||
313 | |||
314 | /* Write a value to a specified register regno in the register image | ||
315 | of the current thread. */ | ||
316 | static int write_register (int regno, char *val); | ||
317 | |||
318 | /* Write a value to a specified register in the stack of a thread other | ||
319 | than the current thread. */ | ||
320 | static write_stack_register (int thread_id, int regno, char *valptr); | ||
321 | |||
322 | /* Read a value from a specified register in the register image. Returns the | ||
323 | status of the read operation. The register value is returned in valptr. */ | ||
324 | static int read_register (char regno, unsigned int *valptr); | ||
325 | |||
326 | /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */ | ||
327 | int getDebugChar (void); | ||
328 | |||
329 | /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */ | ||
330 | void putDebugChar (int val); | ||
331 | |||
332 | void enableDebugIRQ (void); | ||
333 | |||
334 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, | ||
335 | represented by int x. */ | ||
336 | static char highhex (int x); | ||
337 | |||
338 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, | ||
339 | represented by int x. */ | ||
340 | static char lowhex (int x); | ||
341 | |||
342 | /* Returns the integer equivalent of a hexadecimal character. */ | ||
343 | static int hex (char ch); | ||
344 | |||
345 | /* Convert the memory, pointed to by mem into hexadecimal representation. | ||
346 | Put the result in buf, and return a pointer to the last character | ||
347 | in buf (null). */ | ||
348 | static char *mem2hex (char *buf, unsigned char *mem, int count); | ||
349 | |||
350 | /* Convert the array, in hexadecimal representation, pointed to by buf into | ||
351 | binary representation. Put the result in mem, and return a pointer to | ||
352 | the character after the last byte written. */ | ||
353 | static unsigned char *hex2mem (unsigned char *mem, char *buf, int count); | ||
354 | |||
355 | /* Put the content of the array, in binary representation, pointed to by buf | ||
356 | into memory pointed to by mem, and return a pointer to | ||
357 | the character after the last byte written. */ | ||
358 | static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count); | ||
359 | |||
360 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer | ||
361 | returned. */ | ||
362 | static void getpacket (char *buffer); | ||
363 | |||
364 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ | ||
365 | static void putpacket (char *buffer); | ||
366 | |||
367 | /* Build and send a response packet in order to inform the host the | ||
368 | stub is stopped. */ | ||
369 | static void stub_is_stopped (int sigval); | ||
370 | |||
371 | /* All expected commands are sent from remote.c. Send a response according | ||
372 | to the description in remote.c. */ | ||
373 | static void handle_exception (int sigval); | ||
374 | |||
375 | /* Performs a complete re-start from scratch. ETRAX specific. */ | ||
376 | static void kill_restart (void); | ||
377 | |||
378 | /******************** Prototypes for global functions. ***********************/ | ||
379 | |||
380 | /* The string str is prepended with the GDB printout token and sent. */ | ||
381 | void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */ | ||
382 | |||
383 | /* The hook for both static (compiled) and dynamic breakpoints set by GDB. | ||
384 | ETRAX 100 specific. */ | ||
385 | void handle_breakpoint (void); /* used by irq.c */ | ||
386 | |||
387 | /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */ | ||
388 | void handle_interrupt (void); /* used by irq.c */ | ||
389 | |||
390 | /* A static breakpoint to be used at startup. */ | ||
391 | void breakpoint (void); /* called by init/main.c */ | ||
392 | |||
393 | /* From osys_int.c, executing_task contains the number of the current | ||
394 | executing task in osys. Does not know of object-oriented threads. */ | ||
395 | extern unsigned char executing_task; | ||
396 | |||
397 | /* The number of characters used for a 64 bit thread identifier. */ | ||
398 | #define HEXCHARS_IN_THREAD_ID 16 | ||
399 | |||
400 | /* Avoid warning as the internal_stack is not used in the C-code. */ | ||
401 | #define USEDVAR(name) { if (name) { ; } } | ||
402 | #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) } | ||
403 | |||
404 | /********************************** Packet I/O ******************************/ | ||
405 | /* BUFMAX defines the maximum number of characters in | ||
406 | inbound/outbound buffers */ | ||
407 | #define BUFMAX 512 | ||
408 | |||
409 | /* Run-length encoding maximum length. Send 64 at most. */ | ||
410 | #define RUNLENMAX 64 | ||
411 | |||
412 | /* Definition of all valid hexadecimal characters */ | ||
413 | static const char hexchars[] = "0123456789abcdef"; | ||
414 | |||
415 | /* The inbound/outbound buffers used in packet I/O */ | ||
416 | static char remcomInBuffer[BUFMAX]; | ||
417 | static char remcomOutBuffer[BUFMAX]; | ||
418 | |||
419 | /* Error and warning messages. */ | ||
420 | enum error_type | ||
421 | { | ||
422 | SUCCESS, E01, E02, E03, E04, E05, E06, E07 | ||
423 | }; | ||
424 | static char *error_message[] = | ||
425 | { | ||
426 | "", | ||
427 | "E01 Set current or general thread - H[c,g] - internal error.", | ||
428 | "E02 Change register content - P - cannot change read-only register.", | ||
429 | "E03 Thread is not alive.", /* T, not used. */ | ||
430 | "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.", | ||
431 | "E05 Change register content - P - the register is not implemented..", | ||
432 | "E06 Change memory content - M - internal error.", | ||
433 | "E07 Change register content - P - the register is not stored on the stack" | ||
434 | }; | ||
435 | /********************************* Register image ****************************/ | ||
436 | /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's | ||
437 | Reference", p. 1-1, with the additional register definitions of the | ||
438 | ETRAX 100LX in cris-opc.h. | ||
439 | There are 16 general 32-bit registers, R0-R15, where R14 is the stack | ||
440 | pointer, SP, and R15 is the program counter, PC. | ||
441 | There are 16 special registers, P0-P15, where three of the unimplemented | ||
442 | registers, P0, P4 and P8, are reserved as zero-registers. A read from | ||
443 | any of these registers returns zero and a write has no effect. */ | ||
444 | enum register_name | ||
445 | { | ||
446 | R0, R1, R2, R3, | ||
447 | R4, R5, R6, R7, | ||
448 | R8, R9, R10, R11, | ||
449 | R12, R13, SP, PC, | ||
450 | P0, VR, P2, P3, | ||
451 | P4, CCR, P6, MOF, | ||
452 | P8, IBR, IRP, SRP, | ||
453 | BAR, DCCR, BRP, USP | ||
454 | }; | ||
455 | |||
456 | /* The register sizes of the registers in register_name. An unimplemented register | ||
457 | is designated by size 0 in this array. */ | ||
458 | static int register_size[] = | ||
459 | { | ||
460 | 4, 4, 4, 4, | ||
461 | 4, 4, 4, 4, | ||
462 | 4, 4, 4, 4, | ||
463 | 4, 4, 4, 4, | ||
464 | 1, 1, 0, 0, | ||
465 | 2, 2, 0, 4, | ||
466 | 4, 4, 4, 4, | ||
467 | 4, 4, 4, 4 | ||
468 | }; | ||
469 | |||
470 | /* Contains the register image of the executing thread in the assembler | ||
471 | part of the code in order to avoid horrible addressing modes. */ | ||
472 | static registers reg; | ||
473 | |||
474 | /* FIXME: Should this be used? Delete otherwise. */ | ||
475 | /* Contains the assumed consistency state of the register image. Uses the | ||
476 | enum error_type for state information. */ | ||
477 | static int consistency_status = SUCCESS; | ||
478 | |||
479 | /********************************** Handle exceptions ************************/ | ||
480 | /* The variable reg contains the register image associated with the | ||
481 | current_thread_c variable. It is a complete register image created at | ||
482 | entry. The reg_g contains a register image of a task where the general | ||
483 | registers are taken from the stack and all special registers are taken | ||
484 | from the executing task. It is associated with current_thread_g and used | ||
485 | in order to provide access mainly for 'g', 'G' and 'P'. | ||
486 | */ | ||
487 | |||
488 | /* Need two task id pointers in order to handle Hct and Hgt commands. */ | ||
489 | static int current_thread_c = 0; | ||
490 | static int current_thread_g = 0; | ||
491 | |||
492 | /* Need two register images in order to handle Hct and Hgt commands. The | ||
493 | variable reg_g is in addition to reg above. */ | ||
494 | static registers reg_g; | ||
495 | |||
496 | /********************************** Breakpoint *******************************/ | ||
497 | /* Use an internal stack in the breakpoint and interrupt response routines */ | ||
498 | #define INTERNAL_STACK_SIZE 1024 | ||
499 | static char internal_stack[INTERNAL_STACK_SIZE]; | ||
500 | |||
501 | /* Due to the breakpoint return pointer, a state variable is needed to keep | ||
502 | track of whether it is a static (compiled) or dynamic (gdb-invoked) | ||
503 | breakpoint to be handled. A static breakpoint uses the content of register | ||
504 | BRP as it is whereas a dynamic breakpoint requires subtraction with 2 | ||
505 | in order to execute the instruction. The first breakpoint is static. */ | ||
506 | static unsigned char is_dyn_brkp = 0; | ||
507 | |||
508 | /********************************* String library ****************************/ | ||
509 | /* Single-step over library functions creates trap loops. */ | ||
510 | |||
511 | /* Copy char s2[] to s1[]. */ | ||
512 | static char* | ||
513 | gdb_cris_strcpy (char *s1, const char *s2) | ||
514 | { | ||
515 | char *s = s1; | ||
516 | |||
517 | for (s = s1; (*s++ = *s2++) != '\0'; ) | ||
518 | ; | ||
519 | return (s1); | ||
520 | } | ||
521 | |||
522 | /* Find length of s[]. */ | ||
523 | static int | ||
524 | gdb_cris_strlen (const char *s) | ||
525 | { | ||
526 | const char *sc; | ||
527 | |||
528 | for (sc = s; *sc != '\0'; sc++) | ||
529 | ; | ||
530 | return (sc - s); | ||
531 | } | ||
532 | |||
533 | /* Find first occurrence of c in s[n]. */ | ||
534 | static void* | ||
535 | gdb_cris_memchr (const void *s, int c, int n) | ||
536 | { | ||
537 | const unsigned char uc = c; | ||
538 | const unsigned char *su; | ||
539 | |||
540 | for (su = s; 0 < n; ++su, --n) | ||
541 | if (*su == uc) | ||
542 | return ((void *)su); | ||
543 | return (NULL); | ||
544 | } | ||
545 | /******************************* Standard library ****************************/ | ||
546 | /* Single-step over library functions creates trap loops. */ | ||
547 | /* Convert string to long. */ | ||
548 | static int | ||
549 | gdb_cris_strtol (const char *s, char **endptr, int base) | ||
550 | { | ||
551 | char *s1; | ||
552 | char *sd; | ||
553 | int x = 0; | ||
554 | |||
555 | for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1) | ||
556 | x = x * base + (sd - hexchars); | ||
557 | |||
558 | if (endptr) | ||
559 | { | ||
560 | /* Unconverted suffix is stored in endptr unless endptr is NULL. */ | ||
561 | *endptr = s1; | ||
562 | } | ||
563 | |||
564 | return x; | ||
565 | } | ||
566 | |||
567 | int | ||
568 | double_this(int x) | ||
569 | { | ||
570 | return 2 * x; | ||
571 | } | ||
572 | |||
573 | /********************************* Register image ****************************/ | ||
574 | /* Copy the content of a register image into another. The size n is | ||
575 | the size of the register image. Due to struct assignment generation of | ||
576 | memcpy in libc. */ | ||
577 | static void | ||
578 | copy_registers (registers *dptr, registers *sptr, int n) | ||
579 | { | ||
580 | unsigned char *dreg; | ||
581 | unsigned char *sreg; | ||
582 | |||
583 | for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--) | ||
584 | *dreg++ = *sreg++; | ||
585 | } | ||
586 | |||
587 | #ifdef PROCESS_SUPPORT | ||
588 | /* Copy the stored registers from the stack. Put the register contents | ||
589 | of thread thread_id in the struct reg. */ | ||
590 | static void | ||
591 | copy_registers_from_stack (int thread_id, registers *regptr) | ||
592 | { | ||
593 | int j; | ||
594 | stack_registers *s = (stack_registers *)stack_list[thread_id]; | ||
595 | unsigned int *d = (unsigned int *)regptr; | ||
596 | |||
597 | for (j = 13; j >= 0; j--) | ||
598 | *d++ = s->r[j]; | ||
599 | regptr->sp = (unsigned int)stack_list[thread_id]; | ||
600 | regptr->pc = s->pc; | ||
601 | regptr->dccr = s->dccr; | ||
602 | regptr->srp = s->srp; | ||
603 | } | ||
604 | |||
605 | /* Copy the registers to the stack. Put the register contents of thread | ||
606 | thread_id from struct reg to the stack. */ | ||
607 | static void | ||
608 | copy_registers_to_stack (int thread_id, registers *regptr) | ||
609 | { | ||
610 | int i; | ||
611 | stack_registers *d = (stack_registers *)stack_list[thread_id]; | ||
612 | unsigned int *s = (unsigned int *)regptr; | ||
613 | |||
614 | for (i = 0; i < 14; i++) { | ||
615 | d->r[i] = *s++; | ||
616 | } | ||
617 | d->pc = regptr->pc; | ||
618 | d->dccr = regptr->dccr; | ||
619 | d->srp = regptr->srp; | ||
620 | } | ||
621 | #endif | ||
622 | |||
623 | /* Write a value to a specified register in the register image of the current | ||
624 | thread. Returns status code SUCCESS, E02 or E05. */ | ||
625 | static int | ||
626 | write_register (int regno, char *val) | ||
627 | { | ||
628 | int status = SUCCESS; | ||
629 | registers *current_reg = ® | ||
630 | |||
631 | if (regno >= R0 && regno <= PC) { | ||
632 | /* 32-bit register with simple offset. */ | ||
633 | hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int), | ||
634 | val, sizeof(unsigned int)); | ||
635 | } | ||
636 | else if (regno == P0 || regno == VR || regno == P4 || regno == P8) { | ||
637 | /* Do not support read-only registers. */ | ||
638 | status = E02; | ||
639 | } | ||
640 | else if (regno == CCR) { | ||
641 | /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented, | ||
642 | and P7 (MOF) is 32 bits in ETRAX 100LX. */ | ||
643 | hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short), | ||
644 | val, sizeof(unsigned short)); | ||
645 | } | ||
646 | else if (regno >= MOF && regno <= USP) { | ||
647 | /* 32 bit register with complex offset. (P8 has been taken care of.) */ | ||
648 | hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int), | ||
649 | val, sizeof(unsigned int)); | ||
650 | } | ||
651 | else { | ||
652 | /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */ | ||
653 | status = E05; | ||
654 | } | ||
655 | return status; | ||
656 | } | ||
657 | |||
658 | #ifdef PROCESS_SUPPORT | ||
659 | /* Write a value to a specified register in the stack of a thread other | ||
660 | than the current thread. Returns status code SUCCESS or E07. */ | ||
661 | static int | ||
662 | write_stack_register (int thread_id, int regno, char *valptr) | ||
663 | { | ||
664 | int status = SUCCESS; | ||
665 | stack_registers *d = (stack_registers *)stack_list[thread_id]; | ||
666 | unsigned int val; | ||
667 | |||
668 | hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int)); | ||
669 | if (regno >= R0 && regno < SP) { | ||
670 | d->r[regno] = val; | ||
671 | } | ||
672 | else if (regno == SP) { | ||
673 | stack_list[thread_id] = val; | ||
674 | } | ||
675 | else if (regno == PC) { | ||
676 | d->pc = val; | ||
677 | } | ||
678 | else if (regno == SRP) { | ||
679 | d->srp = val; | ||
680 | } | ||
681 | else if (regno == DCCR) { | ||
682 | d->dccr = val; | ||
683 | } | ||
684 | else { | ||
685 | /* Do not support registers in the current thread. */ | ||
686 | status = E07; | ||
687 | } | ||
688 | return status; | ||
689 | } | ||
690 | #endif | ||
691 | |||
692 | /* Read a value from a specified register in the register image. Returns the | ||
693 | value in the register or -1 for non-implemented registers. | ||
694 | Should check consistency_status after a call which may be E05 after changes | ||
695 | in the implementation. */ | ||
696 | static int | ||
697 | read_register (char regno, unsigned int *valptr) | ||
698 | { | ||
699 | registers *current_reg = ® | ||
700 | |||
701 | if (regno >= R0 && regno <= PC) { | ||
702 | /* 32-bit register with simple offset. */ | ||
703 | *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int)); | ||
704 | return SUCCESS; | ||
705 | } | ||
706 | else if (regno == P0 || regno == VR) { | ||
707 | /* 8 bit register with complex offset. */ | ||
708 | *valptr = (unsigned int)(*(unsigned char *) | ||
709 | ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char))); | ||
710 | return SUCCESS; | ||
711 | } | ||
712 | else if (regno == P4 || regno == CCR) { | ||
713 | /* 16 bit register with complex offset. */ | ||
714 | *valptr = (unsigned int)(*(unsigned short *) | ||
715 | ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short))); | ||
716 | return SUCCESS; | ||
717 | } | ||
718 | else if (regno >= MOF && regno <= USP) { | ||
719 | /* 32 bit register with complex offset. */ | ||
720 | *valptr = *(unsigned int *)((char *)&(current_reg->p8) | ||
721 | + (regno-P8) * sizeof(unsigned int)); | ||
722 | return SUCCESS; | ||
723 | } | ||
724 | else { | ||
725 | /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */ | ||
726 | consistency_status = E05; | ||
727 | return E05; | ||
728 | } | ||
729 | } | ||
730 | |||
731 | /********************************** Packet I/O ******************************/ | ||
732 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, | ||
733 | represented by int x. */ | ||
734 | static inline char | ||
735 | highhex(int x) | ||
736 | { | ||
737 | return hexchars[(x >> 4) & 0xf]; | ||
738 | } | ||
739 | |||
740 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, | ||
741 | represented by int x. */ | ||
742 | static inline char | ||
743 | lowhex(int x) | ||
744 | { | ||
745 | return hexchars[x & 0xf]; | ||
746 | } | ||
747 | |||
748 | /* Returns the integer equivalent of a hexadecimal character. */ | ||
749 | static int | ||
750 | hex (char ch) | ||
751 | { | ||
752 | if ((ch >= 'a') && (ch <= 'f')) | ||
753 | return (ch - 'a' + 10); | ||
754 | if ((ch >= '0') && (ch <= '9')) | ||
755 | return (ch - '0'); | ||
756 | if ((ch >= 'A') && (ch <= 'F')) | ||
757 | return (ch - 'A' + 10); | ||
758 | return (-1); | ||
759 | } | ||
760 | |||
761 | /* Convert the memory, pointed to by mem into hexadecimal representation. | ||
762 | Put the result in buf, and return a pointer to the last character | ||
763 | in buf (null). */ | ||
764 | |||
765 | static int do_printk = 0; | ||
766 | |||
767 | static char * | ||
768 | mem2hex(char *buf, unsigned char *mem, int count) | ||
769 | { | ||
770 | int i; | ||
771 | int ch; | ||
772 | |||
773 | if (mem == NULL) { | ||
774 | /* Bogus read from m0. FIXME: What constitutes a valid address? */ | ||
775 | for (i = 0; i < count; i++) { | ||
776 | *buf++ = '0'; | ||
777 | *buf++ = '0'; | ||
778 | } | ||
779 | } else { | ||
780 | /* Valid mem address. */ | ||
781 | for (i = 0; i < count; i++) { | ||
782 | ch = *mem++; | ||
783 | *buf++ = highhex (ch); | ||
784 | *buf++ = lowhex (ch); | ||
785 | } | ||
786 | } | ||
787 | |||
788 | /* Terminate properly. */ | ||
789 | *buf = '\0'; | ||
790 | return (buf); | ||
791 | } | ||
792 | |||
793 | /* Convert the array, in hexadecimal representation, pointed to by buf into | ||
794 | binary representation. Put the result in mem, and return a pointer to | ||
795 | the character after the last byte written. */ | ||
796 | static unsigned char* | ||
797 | hex2mem (unsigned char *mem, char *buf, int count) | ||
798 | { | ||
799 | int i; | ||
800 | unsigned char ch; | ||
801 | for (i = 0; i < count; i++) { | ||
802 | ch = hex (*buf++) << 4; | ||
803 | ch = ch + hex (*buf++); | ||
804 | *mem++ = ch; | ||
805 | } | ||
806 | return (mem); | ||
807 | } | ||
808 | |||
809 | /* Put the content of the array, in binary representation, pointed to by buf | ||
810 | into memory pointed to by mem, and return a pointer to the character after | ||
811 | the last byte written. | ||
812 | Gdb will escape $, #, and the escape char (0x7d). */ | ||
813 | static unsigned char* | ||
814 | bin2mem (unsigned char *mem, unsigned char *buf, int count) | ||
815 | { | ||
816 | int i; | ||
817 | unsigned char *next; | ||
818 | for (i = 0; i < count; i++) { | ||
819 | /* Check for any escaped characters. Be paranoid and | ||
820 | only unescape chars that should be escaped. */ | ||
821 | if (*buf == 0x7d) { | ||
822 | next = buf + 1; | ||
823 | if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */ | ||
824 | { | ||
825 | buf++; | ||
826 | *buf += 0x20; | ||
827 | } | ||
828 | } | ||
829 | *mem++ = *buf++; | ||
830 | } | ||
831 | return (mem); | ||
832 | } | ||
833 | |||
834 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer | ||
835 | returned. */ | ||
836 | static void | ||
837 | getpacket (char *buffer) | ||
838 | { | ||
839 | unsigned char checksum; | ||
840 | unsigned char xmitcsum; | ||
841 | int i; | ||
842 | int count; | ||
843 | char ch; | ||
844 | do { | ||
845 | while ((ch = getDebugChar ()) != '$') | ||
846 | /* Wait for the start character $ and ignore all other characters */; | ||
847 | checksum = 0; | ||
848 | xmitcsum = -1; | ||
849 | count = 0; | ||
850 | /* Read until a # or the end of the buffer is reached */ | ||
851 | while (count < BUFMAX) { | ||
852 | ch = getDebugChar (); | ||
853 | if (ch == '#') | ||
854 | break; | ||
855 | checksum = checksum + ch; | ||
856 | buffer[count] = ch; | ||
857 | count = count + 1; | ||
858 | } | ||
859 | buffer[count] = '\0'; | ||
860 | |||
861 | if (ch == '#') { | ||
862 | xmitcsum = hex (getDebugChar ()) << 4; | ||
863 | xmitcsum += hex (getDebugChar ()); | ||
864 | if (checksum != xmitcsum) { | ||
865 | /* Wrong checksum */ | ||
866 | putDebugChar ('-'); | ||
867 | } | ||
868 | else { | ||
869 | /* Correct checksum */ | ||
870 | putDebugChar ('+'); | ||
871 | /* If sequence characters are received, reply with them */ | ||
872 | if (buffer[2] == ':') { | ||
873 | putDebugChar (buffer[0]); | ||
874 | putDebugChar (buffer[1]); | ||
875 | /* Remove the sequence characters from the buffer */ | ||
876 | count = gdb_cris_strlen (buffer); | ||
877 | for (i = 3; i <= count; i++) | ||
878 | buffer[i - 3] = buffer[i]; | ||
879 | } | ||
880 | } | ||
881 | } | ||
882 | } while (checksum != xmitcsum); | ||
883 | } | ||
884 | |||
885 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ | ||
886 | |||
887 | static void | ||
888 | putpacket(char *buffer) | ||
889 | { | ||
890 | int checksum; | ||
891 | int runlen; | ||
892 | int encode; | ||
893 | |||
894 | do { | ||
895 | char *src = buffer; | ||
896 | putDebugChar ('$'); | ||
897 | checksum = 0; | ||
898 | while (*src) { | ||
899 | /* Do run length encoding */ | ||
900 | putDebugChar (*src); | ||
901 | checksum += *src; | ||
902 | runlen = 0; | ||
903 | while (runlen < RUNLENMAX && *src == src[runlen]) { | ||
904 | runlen++; | ||
905 | } | ||
906 | if (runlen > 3) { | ||
907 | /* Got a useful amount */ | ||
908 | putDebugChar ('*'); | ||
909 | checksum += '*'; | ||
910 | encode = runlen + ' ' - 4; | ||
911 | putDebugChar (encode); | ||
912 | checksum += encode; | ||
913 | src += runlen; | ||
914 | } | ||
915 | else { | ||
916 | src++; | ||
917 | } | ||
918 | } | ||
919 | putDebugChar ('#'); | ||
920 | putDebugChar (highhex (checksum)); | ||
921 | putDebugChar (lowhex (checksum)); | ||
922 | } while(kgdb_started && (getDebugChar() != '+')); | ||
923 | } | ||
924 | |||
925 | /* The string str is prepended with the GDB printout token and sent. Required | ||
926 | in traditional implementations. */ | ||
927 | void | ||
928 | putDebugString (const unsigned char *str, int length) | ||
929 | { | ||
930 | remcomOutBuffer[0] = 'O'; | ||
931 | mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length); | ||
932 | putpacket(remcomOutBuffer); | ||
933 | } | ||
934 | |||
935 | /********************************** Handle exceptions ************************/ | ||
936 | /* Build and send a response packet in order to inform the host the | ||
937 | stub is stopped. TAAn...:r...;n...:r...;n...:r...; | ||
938 | AA = signal number | ||
939 | n... = register number (hex) | ||
940 | r... = register contents | ||
941 | n... = `thread' | ||
942 | r... = thread process ID. This is a hex integer. | ||
943 | n... = other string not starting with valid hex digit. | ||
944 | gdb should ignore this n,r pair and go on to the next. | ||
945 | This way we can extend the protocol. */ | ||
946 | static void | ||
947 | stub_is_stopped(int sigval) | ||
948 | { | ||
949 | char *ptr = remcomOutBuffer; | ||
950 | int regno; | ||
951 | |||
952 | unsigned int reg_cont; | ||
953 | int status; | ||
954 | |||
955 | /* Send trap type (converted to signal) */ | ||
956 | |||
957 | *ptr++ = 'T'; | ||
958 | *ptr++ = highhex (sigval); | ||
959 | *ptr++ = lowhex (sigval); | ||
960 | |||
961 | /* Send register contents. We probably only need to send the | ||
962 | * PC, frame pointer and stack pointer here. Other registers will be | ||
963 | * explicitely asked for. But for now, send all. | ||
964 | */ | ||
965 | |||
966 | for (regno = R0; regno <= USP; regno++) { | ||
967 | /* Store n...:r...; for the registers in the buffer. */ | ||
968 | |||
969 | status = read_register (regno, ®_cont); | ||
970 | |||
971 | if (status == SUCCESS) { | ||
972 | |||
973 | *ptr++ = highhex (regno); | ||
974 | *ptr++ = lowhex (regno); | ||
975 | *ptr++ = ':'; | ||
976 | |||
977 | ptr = mem2hex(ptr, (unsigned char *)®_cont, | ||
978 | register_size[regno]); | ||
979 | *ptr++ = ';'; | ||
980 | } | ||
981 | |||
982 | } | ||
983 | |||
984 | #ifdef PROCESS_SUPPORT | ||
985 | /* Store the registers of the executing thread. Assume that both step, | ||
986 | continue, and register content requests are with respect to this | ||
987 | thread. The executing task is from the operating system scheduler. */ | ||
988 | |||
989 | current_thread_c = executing_task; | ||
990 | current_thread_g = executing_task; | ||
991 | |||
992 | /* A struct assignment translates into a libc memcpy call. Avoid | ||
993 | all libc functions in order to prevent recursive break points. */ | ||
994 | copy_registers (®_g, ®, sizeof(registers)); | ||
995 | |||
996 | /* Store thread:r...; with the executing task TID. */ | ||
997 | gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:"); | ||
998 | pos += gdb_cris_strlen ("thread:"); | ||
999 | remcomOutBuffer[pos++] = highhex (executing_task); | ||
1000 | remcomOutBuffer[pos++] = lowhex (executing_task); | ||
1001 | gdb_cris_strcpy (&remcomOutBuffer[pos], ";"); | ||
1002 | #endif | ||
1003 | |||
1004 | /* null-terminate and send it off */ | ||
1005 | |||
1006 | *ptr = 0; | ||
1007 | |||
1008 | putpacket (remcomOutBuffer); | ||
1009 | } | ||
1010 | |||
1011 | /* All expected commands are sent from remote.c. Send a response according | ||
1012 | to the description in remote.c. */ | ||
1013 | static void | ||
1014 | handle_exception (int sigval) | ||
1015 | { | ||
1016 | /* Avoid warning of not used. */ | ||
1017 | |||
1018 | USEDFUN(handle_exception); | ||
1019 | USEDVAR(internal_stack[0]); | ||
1020 | |||
1021 | /* Send response. */ | ||
1022 | |||
1023 | stub_is_stopped (sigval); | ||
1024 | |||
1025 | for (;;) { | ||
1026 | remcomOutBuffer[0] = '\0'; | ||
1027 | getpacket (remcomInBuffer); | ||
1028 | switch (remcomInBuffer[0]) { | ||
1029 | case 'g': | ||
1030 | /* Read registers: g | ||
1031 | Success: Each byte of register data is described by two hex digits. | ||
1032 | Registers are in the internal order for GDB, and the bytes | ||
1033 | in a register are in the same order the machine uses. | ||
1034 | Failure: void. */ | ||
1035 | |||
1036 | { | ||
1037 | #ifdef PROCESS_SUPPORT | ||
1038 | /* Use the special register content in the executing thread. */ | ||
1039 | copy_registers (®_g, ®, sizeof(registers)); | ||
1040 | /* Replace the content available on the stack. */ | ||
1041 | if (current_thread_g != executing_task) { | ||
1042 | copy_registers_from_stack (current_thread_g, ®_g); | ||
1043 | } | ||
1044 | mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)®_g, sizeof(registers)); | ||
1045 | #else | ||
1046 | mem2hex(remcomOutBuffer, (char *)®, sizeof(registers)); | ||
1047 | #endif | ||
1048 | } | ||
1049 | break; | ||
1050 | |||
1051 | case 'G': | ||
1052 | /* Write registers. GXX..XX | ||
1053 | Each byte of register data is described by two hex digits. | ||
1054 | Success: OK | ||
1055 | Failure: void. */ | ||
1056 | #ifdef PROCESS_SUPPORT | ||
1057 | hex2mem ((unsigned char *)®_g, &remcomInBuffer[1], sizeof(registers)); | ||
1058 | if (current_thread_g == executing_task) { | ||
1059 | copy_registers (®, ®_g, sizeof(registers)); | ||
1060 | } | ||
1061 | else { | ||
1062 | copy_registers_to_stack(current_thread_g, ®_g); | ||
1063 | } | ||
1064 | #else | ||
1065 | hex2mem((char *)®, &remcomInBuffer[1], sizeof(registers)); | ||
1066 | #endif | ||
1067 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1068 | break; | ||
1069 | |||
1070 | case 'P': | ||
1071 | /* Write register. Pn...=r... | ||
1072 | Write register n..., hex value without 0x, with value r..., | ||
1073 | which contains a hex value without 0x and two hex digits | ||
1074 | for each byte in the register (target byte order). P1f=11223344 means | ||
1075 | set register 31 to 44332211. | ||
1076 | Success: OK | ||
1077 | Failure: E02, E05 */ | ||
1078 | { | ||
1079 | char *suffix; | ||
1080 | int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16); | ||
1081 | int status; | ||
1082 | #ifdef PROCESS_SUPPORT | ||
1083 | if (current_thread_g != executing_task) | ||
1084 | status = write_stack_register (current_thread_g, regno, suffix+1); | ||
1085 | else | ||
1086 | #endif | ||
1087 | status = write_register (regno, suffix+1); | ||
1088 | |||
1089 | switch (status) { | ||
1090 | case E02: | ||
1091 | /* Do not support read-only registers. */ | ||
1092 | gdb_cris_strcpy (remcomOutBuffer, error_message[E02]); | ||
1093 | break; | ||
1094 | case E05: | ||
1095 | /* Do not support non-existing registers. */ | ||
1096 | gdb_cris_strcpy (remcomOutBuffer, error_message[E05]); | ||
1097 | break; | ||
1098 | case E07: | ||
1099 | /* Do not support non-existing registers on the stack. */ | ||
1100 | gdb_cris_strcpy (remcomOutBuffer, error_message[E07]); | ||
1101 | break; | ||
1102 | default: | ||
1103 | /* Valid register number. */ | ||
1104 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1105 | break; | ||
1106 | } | ||
1107 | } | ||
1108 | break; | ||
1109 | |||
1110 | case 'm': | ||
1111 | /* Read from memory. mAA..AA,LLLL | ||
1112 | AA..AA is the address and LLLL is the length. | ||
1113 | Success: XX..XX is the memory content. Can be fewer bytes than | ||
1114 | requested if only part of the data may be read. m6000120a,6c means | ||
1115 | retrieve 108 byte from base address 6000120a. | ||
1116 | Failure: void. */ | ||
1117 | { | ||
1118 | char *suffix; | ||
1119 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1], | ||
1120 | &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16); | ||
1121 | |||
1122 | mem2hex(remcomOutBuffer, addr, length); | ||
1123 | } | ||
1124 | break; | ||
1125 | |||
1126 | case 'X': | ||
1127 | /* Write to memory. XAA..AA,LLLL:XX..XX | ||
1128 | AA..AA is the start address, LLLL is the number of bytes, and | ||
1129 | XX..XX is the binary data. | ||
1130 | Success: OK | ||
1131 | Failure: void. */ | ||
1132 | case 'M': | ||
1133 | /* Write to memory. MAA..AA,LLLL:XX..XX | ||
1134 | AA..AA is the start address, LLLL is the number of bytes, and | ||
1135 | XX..XX is the hexadecimal data. | ||
1136 | Success: OK | ||
1137 | Failure: void. */ | ||
1138 | { | ||
1139 | char *lenptr; | ||
1140 | char *dataptr; | ||
1141 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1], | ||
1142 | &lenptr, 16); | ||
1143 | int length = gdb_cris_strtol(lenptr+1, &dataptr, 16); | ||
1144 | if (*lenptr == ',' && *dataptr == ':') { | ||
1145 | if (remcomInBuffer[0] == 'M') { | ||
1146 | hex2mem(addr, dataptr + 1, length); | ||
1147 | } | ||
1148 | else /* X */ { | ||
1149 | bin2mem(addr, dataptr + 1, length); | ||
1150 | } | ||
1151 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1152 | } | ||
1153 | else { | ||
1154 | gdb_cris_strcpy (remcomOutBuffer, error_message[E06]); | ||
1155 | } | ||
1156 | } | ||
1157 | break; | ||
1158 | |||
1159 | case 'c': | ||
1160 | /* Continue execution. cAA..AA | ||
1161 | AA..AA is the address where execution is resumed. If AA..AA is | ||
1162 | omitted, resume at the present address. | ||
1163 | Success: return to the executing thread. | ||
1164 | Failure: will never know. */ | ||
1165 | if (remcomInBuffer[1] != '\0') { | ||
1166 | reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16); | ||
1167 | } | ||
1168 | enableDebugIRQ(); | ||
1169 | return; | ||
1170 | |||
1171 | case 's': | ||
1172 | /* Step. sAA..AA | ||
1173 | AA..AA is the address where execution is resumed. If AA..AA is | ||
1174 | omitted, resume at the present address. Success: return to the | ||
1175 | executing thread. Failure: will never know. | ||
1176 | |||
1177 | Should never be invoked. The single-step is implemented on | ||
1178 | the host side. If ever invoked, it is an internal error E04. */ | ||
1179 | gdb_cris_strcpy (remcomOutBuffer, error_message[E04]); | ||
1180 | putpacket (remcomOutBuffer); | ||
1181 | return; | ||
1182 | |||
1183 | case '?': | ||
1184 | /* The last signal which caused a stop. ? | ||
1185 | Success: SAA, where AA is the signal number. | ||
1186 | Failure: void. */ | ||
1187 | remcomOutBuffer[0] = 'S'; | ||
1188 | remcomOutBuffer[1] = highhex (sigval); | ||
1189 | remcomOutBuffer[2] = lowhex (sigval); | ||
1190 | remcomOutBuffer[3] = 0; | ||
1191 | break; | ||
1192 | |||
1193 | case 'D': | ||
1194 | /* Detach from host. D | ||
1195 | Success: OK, and return to the executing thread. | ||
1196 | Failure: will never know */ | ||
1197 | putpacket ("OK"); | ||
1198 | return; | ||
1199 | |||
1200 | case 'k': | ||
1201 | case 'r': | ||
1202 | /* kill request or reset request. | ||
1203 | Success: restart of target. | ||
1204 | Failure: will never know. */ | ||
1205 | kill_restart (); | ||
1206 | break; | ||
1207 | |||
1208 | case 'C': | ||
1209 | case 'S': | ||
1210 | case '!': | ||
1211 | case 'R': | ||
1212 | case 'd': | ||
1213 | /* Continue with signal sig. Csig;AA..AA | ||
1214 | Step with signal sig. Ssig;AA..AA | ||
1215 | Use the extended remote protocol. ! | ||
1216 | Restart the target system. R0 | ||
1217 | Toggle debug flag. d | ||
1218 | Search backwards. tAA:PP,MM | ||
1219 | Not supported: E04 */ | ||
1220 | gdb_cris_strcpy (remcomOutBuffer, error_message[E04]); | ||
1221 | break; | ||
1222 | #ifdef PROCESS_SUPPORT | ||
1223 | |||
1224 | case 'T': | ||
1225 | /* Thread alive. TXX | ||
1226 | Is thread XX alive? | ||
1227 | Success: OK, thread XX is alive. | ||
1228 | Failure: E03, thread XX is dead. */ | ||
1229 | { | ||
1230 | int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16); | ||
1231 | /* Cannot tell whether it is alive or not. */ | ||
1232 | if (thread_id >= 0 && thread_id < number_of_tasks) | ||
1233 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1234 | } | ||
1235 | break; | ||
1236 | |||
1237 | case 'H': | ||
1238 | /* Set thread for subsequent operations: Hct | ||
1239 | c = 'c' for thread used in step and continue; | ||
1240 | t can be -1 for all threads. | ||
1241 | c = 'g' for thread used in other operations. | ||
1242 | t = 0 means pick any thread. | ||
1243 | Success: OK | ||
1244 | Failure: E01 */ | ||
1245 | { | ||
1246 | int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16); | ||
1247 | if (remcomInBuffer[1] == 'c') { | ||
1248 | /* c = 'c' for thread used in step and continue */ | ||
1249 | /* Do not change current_thread_c here. It would create a mess in | ||
1250 | the scheduler. */ | ||
1251 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1252 | } | ||
1253 | else if (remcomInBuffer[1] == 'g') { | ||
1254 | /* c = 'g' for thread used in other operations. | ||
1255 | t = 0 means pick any thread. Impossible since the scheduler does | ||
1256 | not allow that. */ | ||
1257 | if (thread_id >= 0 && thread_id < number_of_tasks) { | ||
1258 | current_thread_g = thread_id; | ||
1259 | gdb_cris_strcpy (remcomOutBuffer, "OK"); | ||
1260 | } | ||
1261 | else { | ||
1262 | /* Not expected - send an error message. */ | ||
1263 | gdb_cris_strcpy (remcomOutBuffer, error_message[E01]); | ||
1264 | } | ||
1265 | } | ||
1266 | else { | ||
1267 | /* Not expected - send an error message. */ | ||
1268 | gdb_cris_strcpy (remcomOutBuffer, error_message[E01]); | ||
1269 | } | ||
1270 | } | ||
1271 | break; | ||
1272 | |||
1273 | case 'q': | ||
1274 | case 'Q': | ||
1275 | /* Query of general interest. qXXXX | ||
1276 | Set general value XXXX. QXXXX=yyyy */ | ||
1277 | { | ||
1278 | int pos; | ||
1279 | int nextpos; | ||
1280 | int thread_id; | ||
1281 | |||
1282 | switch (remcomInBuffer[1]) { | ||
1283 | case 'C': | ||
1284 | /* Identify the remote current thread. */ | ||
1285 | gdb_cris_strcpy (&remcomOutBuffer[0], "QC"); | ||
1286 | remcomOutBuffer[2] = highhex (current_thread_c); | ||
1287 | remcomOutBuffer[3] = lowhex (current_thread_c); | ||
1288 | remcomOutBuffer[4] = '\0'; | ||
1289 | break; | ||
1290 | case 'L': | ||
1291 | gdb_cris_strcpy (&remcomOutBuffer[0], "QM"); | ||
1292 | /* Reply with number of threads. */ | ||
1293 | if (os_is_started()) { | ||
1294 | remcomOutBuffer[2] = highhex (number_of_tasks); | ||
1295 | remcomOutBuffer[3] = lowhex (number_of_tasks); | ||
1296 | } | ||
1297 | else { | ||
1298 | remcomOutBuffer[2] = highhex (0); | ||
1299 | remcomOutBuffer[3] = lowhex (1); | ||
1300 | } | ||
1301 | /* Done with the reply. */ | ||
1302 | remcomOutBuffer[4] = lowhex (1); | ||
1303 | pos = 5; | ||
1304 | /* Expects the argument thread id. */ | ||
1305 | for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++) | ||
1306 | remcomOutBuffer[pos] = remcomInBuffer[pos]; | ||
1307 | /* Reply with the thread identifiers. */ | ||
1308 | if (os_is_started()) { | ||
1309 | /* Store the thread identifiers of all tasks. */ | ||
1310 | for (thread_id = 0; thread_id < number_of_tasks; thread_id++) { | ||
1311 | nextpos = pos + HEXCHARS_IN_THREAD_ID - 1; | ||
1312 | for (; pos < nextpos; pos ++) | ||
1313 | remcomOutBuffer[pos] = lowhex (0); | ||
1314 | remcomOutBuffer[pos++] = lowhex (thread_id); | ||
1315 | } | ||
1316 | } | ||
1317 | else { | ||
1318 | /* Store the thread identifier of the boot task. */ | ||
1319 | nextpos = pos + HEXCHARS_IN_THREAD_ID - 1; | ||
1320 | for (; pos < nextpos; pos ++) | ||
1321 | remcomOutBuffer[pos] = lowhex (0); | ||
1322 | remcomOutBuffer[pos++] = lowhex (current_thread_c); | ||
1323 | } | ||
1324 | remcomOutBuffer[pos] = '\0'; | ||
1325 | break; | ||
1326 | default: | ||
1327 | /* Not supported: "" */ | ||
1328 | /* Request information about section offsets: qOffsets. */ | ||
1329 | remcomOutBuffer[0] = 0; | ||
1330 | break; | ||
1331 | } | ||
1332 | } | ||
1333 | break; | ||
1334 | #endif /* PROCESS_SUPPORT */ | ||
1335 | |||
1336 | default: | ||
1337 | /* The stub should ignore other request and send an empty | ||
1338 | response ($#<checksum>). This way we can extend the protocol and GDB | ||
1339 | can tell whether the stub it is talking to uses the old or the new. */ | ||
1340 | remcomOutBuffer[0] = 0; | ||
1341 | break; | ||
1342 | } | ||
1343 | putpacket(remcomOutBuffer); | ||
1344 | } | ||
1345 | } | ||
1346 | |||
1347 | /* The jump is to the address 0x00000002. Performs a complete re-start | ||
1348 | from scratch. */ | ||
1349 | static void | ||
1350 | kill_restart () | ||
1351 | { | ||
1352 | __asm__ volatile ("jump 2"); | ||
1353 | } | ||
1354 | |||
1355 | /********************************** Breakpoint *******************************/ | ||
1356 | /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB. | ||
1357 | An internal stack is used by the stub. The register image of the caller is | ||
1358 | stored in the structure register_image. | ||
1359 | Interactive communication with the host is handled by handle_exception and | ||
1360 | finally the register image is restored. */ | ||
1361 | |||
1362 | void kgdb_handle_breakpoint(void); | ||
1363 | |||
1364 | asm (" | ||
1365 | .global kgdb_handle_breakpoint | ||
1366 | kgdb_handle_breakpoint: | ||
1367 | ;; | ||
1368 | ;; Response to the break-instruction | ||
1369 | ;; | ||
1370 | ;; Create a register image of the caller | ||
1371 | ;; | ||
1372 | move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts | ||
1373 | di ; Disable interrupts | ||
1374 | move.d $r0,[reg] ; Save R0 | ||
1375 | move.d $r1,[reg+0x04] ; Save R1 | ||
1376 | move.d $r2,[reg+0x08] ; Save R2 | ||
1377 | move.d $r3,[reg+0x0C] ; Save R3 | ||
1378 | move.d $r4,[reg+0x10] ; Save R4 | ||
1379 | move.d $r5,[reg+0x14] ; Save R5 | ||
1380 | move.d $r6,[reg+0x18] ; Save R6 | ||
1381 | move.d $r7,[reg+0x1C] ; Save R7 | ||
1382 | move.d $r8,[reg+0x20] ; Save R8 | ||
1383 | move.d $r9,[reg+0x24] ; Save R9 | ||
1384 | move.d $r10,[reg+0x28] ; Save R10 | ||
1385 | move.d $r11,[reg+0x2C] ; Save R11 | ||
1386 | move.d $r12,[reg+0x30] ; Save R12 | ||
1387 | move.d $r13,[reg+0x34] ; Save R13 | ||
1388 | move.d $sp,[reg+0x38] ; Save SP (R14) | ||
1389 | ;; Due to the old assembler-versions BRP might not be recognized | ||
1390 | .word 0xE670 ; move brp,$r0 | ||
1391 | subq 2,$r0 ; Set to address of previous instruction. | ||
1392 | move.d $r0,[reg+0x3c] ; Save the address in PC (R15) | ||
1393 | clear.b [reg+0x40] ; Clear P0 | ||
1394 | move $vr,[reg+0x41] ; Save special register P1 | ||
1395 | clear.w [reg+0x42] ; Clear P4 | ||
1396 | move $ccr,[reg+0x44] ; Save special register CCR | ||
1397 | move $mof,[reg+0x46] ; P7 | ||
1398 | clear.d [reg+0x4A] ; Clear P8 | ||
1399 | move $ibr,[reg+0x4E] ; P9, | ||
1400 | move $irp,[reg+0x52] ; P10, | ||
1401 | move $srp,[reg+0x56] ; P11, | ||
1402 | move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR | ||
1403 | ; P13, register DCCR already saved | ||
1404 | ;; Due to the old assembler-versions BRP might not be recognized | ||
1405 | .word 0xE670 ; move brp,r0 | ||
1406 | ;; Static (compiled) breakpoints must return to the next instruction in order | ||
1407 | ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction | ||
1408 | ;; in order to execute it when execution is continued. | ||
1409 | test.b [is_dyn_brkp] ; Is this a dynamic breakpoint? | ||
1410 | beq is_static ; No, a static breakpoint | ||
1411 | nop | ||
1412 | subq 2,$r0 ; rerun the instruction the break replaced | ||
1413 | is_static: | ||
1414 | moveq 1,$r1 | ||
1415 | move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint | ||
1416 | move.d $r0,[reg+0x62] ; Save the return address in BRP | ||
1417 | move $usp,[reg+0x66] ; USP | ||
1418 | ;; | ||
1419 | ;; Handle the communication | ||
1420 | ;; | ||
1421 | move.d internal_stack+1020,$sp ; Use the internal stack which grows upward | ||
1422 | moveq 5,$r10 ; SIGTRAP | ||
1423 | jsr handle_exception ; Interactive routine | ||
1424 | ;; | ||
1425 | ;; Return to the caller | ||
1426 | ;; | ||
1427 | move.d [reg],$r0 ; Restore R0 | ||
1428 | move.d [reg+0x04],$r1 ; Restore R1 | ||
1429 | move.d [reg+0x08],$r2 ; Restore R2 | ||
1430 | move.d [reg+0x0C],$r3 ; Restore R3 | ||
1431 | move.d [reg+0x10],$r4 ; Restore R4 | ||
1432 | move.d [reg+0x14],$r5 ; Restore R5 | ||
1433 | move.d [reg+0x18],$r6 ; Restore R6 | ||
1434 | move.d [reg+0x1C],$r7 ; Restore R7 | ||
1435 | move.d [reg+0x20],$r8 ; Restore R8 | ||
1436 | move.d [reg+0x24],$r9 ; Restore R9 | ||
1437 | move.d [reg+0x28],$r10 ; Restore R10 | ||
1438 | move.d [reg+0x2C],$r11 ; Restore R11 | ||
1439 | move.d [reg+0x30],$r12 ; Restore R12 | ||
1440 | move.d [reg+0x34],$r13 ; Restore R13 | ||
1441 | ;; | ||
1442 | ;; FIXME: Which registers should be restored? | ||
1443 | ;; | ||
1444 | move.d [reg+0x38],$sp ; Restore SP (R14) | ||
1445 | move [reg+0x56],$srp ; Restore the subroutine return pointer. | ||
1446 | move [reg+0x5E],$dccr ; Restore DCCR | ||
1447 | move [reg+0x66],$usp ; Restore USP | ||
1448 | jump [reg+0x62] ; A jump to the content in register BRP works. | ||
1449 | nop ; | ||
1450 | "); | ||
1451 | |||
1452 | /* The hook for an interrupt generated by GDB. An internal stack is used | ||
1453 | by the stub. The register image of the caller is stored in the structure | ||
1454 | register_image. Interactive communication with the host is handled by | ||
1455 | handle_exception and finally the register image is restored. Due to the | ||
1456 | old assembler which does not recognise the break instruction and the | ||
1457 | breakpoint return pointer hex-code is used. */ | ||
1458 | |||
1459 | void kgdb_handle_serial(void); | ||
1460 | |||
1461 | asm (" | ||
1462 | .global kgdb_handle_serial | ||
1463 | kgdb_handle_serial: | ||
1464 | ;; | ||
1465 | ;; Response to a serial interrupt | ||
1466 | ;; | ||
1467 | |||
1468 | move $dccr,[reg+0x5E] ; Save the flags in DCCR | ||
1469 | di ; Disable interrupts | ||
1470 | move.d $r0,[reg] ; Save R0 | ||
1471 | move.d $r1,[reg+0x04] ; Save R1 | ||
1472 | move.d $r2,[reg+0x08] ; Save R2 | ||
1473 | move.d $r3,[reg+0x0C] ; Save R3 | ||
1474 | move.d $r4,[reg+0x10] ; Save R4 | ||
1475 | move.d $r5,[reg+0x14] ; Save R5 | ||
1476 | move.d $r6,[reg+0x18] ; Save R6 | ||
1477 | move.d $r7,[reg+0x1C] ; Save R7 | ||
1478 | move.d $r8,[reg+0x20] ; Save R8 | ||
1479 | move.d $r9,[reg+0x24] ; Save R9 | ||
1480 | move.d $r10,[reg+0x28] ; Save R10 | ||
1481 | move.d $r11,[reg+0x2C] ; Save R11 | ||
1482 | move.d $r12,[reg+0x30] ; Save R12 | ||
1483 | move.d $r13,[reg+0x34] ; Save R13 | ||
1484 | move.d $sp,[reg+0x38] ; Save SP (R14) | ||
1485 | move $irp,[reg+0x3c] ; Save the address in PC (R15) | ||
1486 | clear.b [reg+0x40] ; Clear P0 | ||
1487 | move $vr,[reg+0x41] ; Save special register P1, | ||
1488 | clear.w [reg+0x42] ; Clear P4 | ||
1489 | move $ccr,[reg+0x44] ; Save special register CCR | ||
1490 | move $mof,[reg+0x46] ; P7 | ||
1491 | clear.d [reg+0x4A] ; Clear P8 | ||
1492 | move $ibr,[reg+0x4E] ; P9, | ||
1493 | move $irp,[reg+0x52] ; P10, | ||
1494 | move $srp,[reg+0x56] ; P11, | ||
1495 | move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR | ||
1496 | ; P13, register DCCR already saved | ||
1497 | ;; Due to the old assembler-versions BRP might not be recognized | ||
1498 | .word 0xE670 ; move brp,r0 | ||
1499 | move.d $r0,[reg+0x62] ; Save the return address in BRP | ||
1500 | move $usp,[reg+0x66] ; USP | ||
1501 | |||
1502 | ;; get the serial character (from debugport.c) and check if it is a ctrl-c | ||
1503 | |||
1504 | jsr getDebugChar | ||
1505 | cmp.b 3, $r10 | ||
1506 | bne goback | ||
1507 | nop | ||
1508 | |||
1509 | ;; | ||
1510 | ;; Handle the communication | ||
1511 | ;; | ||
1512 | move.d internal_stack+1020,$sp ; Use the internal stack | ||
1513 | moveq 2,$r10 ; SIGINT | ||
1514 | jsr handle_exception ; Interactive routine | ||
1515 | |||
1516 | goback: | ||
1517 | ;; | ||
1518 | ;; Return to the caller | ||
1519 | ;; | ||
1520 | move.d [reg],$r0 ; Restore R0 | ||
1521 | move.d [reg+0x04],$r1 ; Restore R1 | ||
1522 | move.d [reg+0x08],$r2 ; Restore R2 | ||
1523 | move.d [reg+0x0C],$r3 ; Restore R3 | ||
1524 | move.d [reg+0x10],$r4 ; Restore R4 | ||
1525 | move.d [reg+0x14],$r5 ; Restore R5 | ||
1526 | move.d [reg+0x18],$r6 ; Restore R6 | ||
1527 | move.d [reg+0x1C],$r7 ; Restore R7 | ||
1528 | move.d [reg+0x20],$r8 ; Restore R8 | ||
1529 | move.d [reg+0x24],$r9 ; Restore R9 | ||
1530 | move.d [reg+0x28],$r10 ; Restore R10 | ||
1531 | move.d [reg+0x2C],$r11 ; Restore R11 | ||
1532 | move.d [reg+0x30],$r12 ; Restore R12 | ||
1533 | move.d [reg+0x34],$r13 ; Restore R13 | ||
1534 | ;; | ||
1535 | ;; FIXME: Which registers should be restored? | ||
1536 | ;; | ||
1537 | move.d [reg+0x38],$sp ; Restore SP (R14) | ||
1538 | move [reg+0x56],$srp ; Restore the subroutine return pointer. | ||
1539 | move [reg+0x5E],$dccr ; Restore DCCR | ||
1540 | move [reg+0x66],$usp ; Restore USP | ||
1541 | reti ; Return from the interrupt routine | ||
1542 | nop | ||
1543 | "); | ||
1544 | |||
1545 | /* Use this static breakpoint in the start-up only. */ | ||
1546 | |||
1547 | void | ||
1548 | breakpoint(void) | ||
1549 | { | ||
1550 | kgdb_started = 1; | ||
1551 | is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */ | ||
1552 | __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */ | ||
1553 | } | ||
1554 | |||
1555 | /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */ | ||
1556 | |||
1557 | void | ||
1558 | kgdb_init(void) | ||
1559 | { | ||
1560 | /* could initialize debug port as well but it's done in head.S already... */ | ||
1561 | |||
1562 | /* breakpoint handler is now set in irq.c */ | ||
1563 | set_int_vector(8, kgdb_handle_serial); | ||
1564 | |||
1565 | enableDebugIRQ(); | ||
1566 | } | ||
1567 | |||
1568 | /****************************** End of file **********************************/ | ||