diff options
Diffstat (limited to 'arch/blackfin/kernel/cplb-nompu')
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/Makefile | 7 | ||||
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cacheinit.c | 26 | ||||
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbhdlr.S | 130 | ||||
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbinit.c | 498 | ||||
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbmgr.S | 648 | ||||
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbmgr.c | 283 |
6 files changed, 410 insertions, 1182 deletions
diff --git a/arch/blackfin/kernel/cplb-nompu/Makefile b/arch/blackfin/kernel/cplb-nompu/Makefile index 4010eca1c6c2..7d70d3bf3212 100644 --- a/arch/blackfin/kernel/cplb-nompu/Makefile +++ b/arch/blackfin/kernel/cplb-nompu/Makefile | |||
@@ -2,4 +2,9 @@ | |||
2 | # arch/blackfin/kernel/cplb-nompu/Makefile | 2 | # arch/blackfin/kernel/cplb-nompu/Makefile |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-y := cplbinit.o cacheinit.o cplbhdlr.o cplbmgr.o | 5 | obj-y := cplbinit.o cacheinit.o cplbmgr.o |
6 | |||
7 | CFLAGS_cplbmgr.o := -ffixed-I0 -ffixed-I1 -ffixed-I2 -ffixed-I3 \ | ||
8 | -ffixed-L0 -ffixed-L1 -ffixed-L2 -ffixed-L3 \ | ||
9 | -ffixed-M0 -ffixed-M1 -ffixed-M2 -ffixed-M3 \ | ||
10 | -ffixed-B0 -ffixed-B1 -ffixed-B2 -ffixed-B3 | ||
diff --git a/arch/blackfin/kernel/cplb-nompu/cacheinit.c b/arch/blackfin/kernel/cplb-nompu/cacheinit.c index 3a385aec67d5..c6ff947f9d37 100644 --- a/arch/blackfin/kernel/cplb-nompu/cacheinit.c +++ b/arch/blackfin/kernel/cplb-nompu/cacheinit.c | |||
@@ -25,19 +25,15 @@ | |||
25 | #include <asm/cplbinit.h> | 25 | #include <asm/cplbinit.h> |
26 | 26 | ||
27 | #if defined(CONFIG_BFIN_ICACHE) | 27 | #if defined(CONFIG_BFIN_ICACHE) |
28 | void __cpuinit bfin_icache_init(u_long icplb[]) | 28 | void __cpuinit bfin_icache_init(struct cplb_entry *icplb_tbl) |
29 | { | 29 | { |
30 | unsigned long *table = icplb; | ||
31 | unsigned long ctrl; | 30 | unsigned long ctrl; |
32 | int i; | 31 | int i; |
33 | 32 | ||
33 | SSYNC(); | ||
34 | for (i = 0; i < MAX_CPLBS; i++) { | 34 | for (i = 0; i < MAX_CPLBS; i++) { |
35 | unsigned long addr = *table++; | 35 | bfin_write32(ICPLB_ADDR0 + i * 4, icplb_tbl[i].addr); |
36 | unsigned long data = *table++; | 36 | bfin_write32(ICPLB_DATA0 + i * 4, icplb_tbl[i].data); |
37 | if (addr == (unsigned long)-1) | ||
38 | break; | ||
39 | bfin_write32(ICPLB_ADDR0 + i * 4, addr); | ||
40 | bfin_write32(ICPLB_DATA0 + i * 4, data); | ||
41 | } | 37 | } |
42 | ctrl = bfin_read_IMEM_CONTROL(); | 38 | ctrl = bfin_read_IMEM_CONTROL(); |
43 | ctrl |= IMC | ENICPLB; | 39 | ctrl |= IMC | ENICPLB; |
@@ -47,24 +43,20 @@ void __cpuinit bfin_icache_init(u_long icplb[]) | |||
47 | #endif | 43 | #endif |
48 | 44 | ||
49 | #if defined(CONFIG_BFIN_DCACHE) | 45 | #if defined(CONFIG_BFIN_DCACHE) |
50 | void __cpuinit bfin_dcache_init(u_long dcplb[]) | 46 | void __cpuinit bfin_dcache_init(struct cplb_entry *dcplb_tbl) |
51 | { | 47 | { |
52 | unsigned long *table = dcplb; | ||
53 | unsigned long ctrl; | 48 | unsigned long ctrl; |
54 | int i; | 49 | int i; |
55 | 50 | ||
51 | SSYNC(); | ||
56 | for (i = 0; i < MAX_CPLBS; i++) { | 52 | for (i = 0; i < MAX_CPLBS; i++) { |
57 | unsigned long addr = *table++; | 53 | bfin_write32(DCPLB_ADDR0 + i * 4, dcplb_tbl[i].addr); |
58 | unsigned long data = *table++; | 54 | bfin_write32(DCPLB_DATA0 + i * 4, dcplb_tbl[i].data); |
59 | if (addr == (unsigned long)-1) | ||
60 | break; | ||
61 | bfin_write32(DCPLB_ADDR0 + i * 4, addr); | ||
62 | bfin_write32(DCPLB_DATA0 + i * 4, data); | ||
63 | } | 55 | } |
56 | |||
64 | ctrl = bfin_read_DMEM_CONTROL(); | 57 | ctrl = bfin_read_DMEM_CONTROL(); |
65 | ctrl |= DMEM_CNTR; | 58 | ctrl |= DMEM_CNTR; |
66 | bfin_write_DMEM_CONTROL(ctrl); | 59 | bfin_write_DMEM_CONTROL(ctrl); |
67 | |||
68 | SSYNC(); | 60 | SSYNC(); |
69 | } | 61 | } |
70 | #endif | 62 | #endif |
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbhdlr.S b/arch/blackfin/kernel/cplb-nompu/cplbhdlr.S deleted file mode 100644 index ecbabc0a1fed..000000000000 --- a/arch/blackfin/kernel/cplb-nompu/cplbhdlr.S +++ /dev/null | |||
@@ -1,130 +0,0 @@ | |||
1 | /* | ||
2 | * File: arch/blackfin/mach-common/cplbhdlr.S | ||
3 | * Based on: | ||
4 | * Author: LG Soft India | ||
5 | * | ||
6 | * Created: ? | ||
7 | * Description: CPLB exception handler | ||
8 | * | ||
9 | * Modified: | ||
10 | * Copyright 2004-2006 Analog Devices Inc. | ||
11 | * | ||
12 | * Bugs: Enter bugs at http://blackfin.uclinux.org/ | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or modify | ||
15 | * it under the terms of the GNU General Public License as published by | ||
16 | * the Free Software Foundation; either version 2 of the License, or | ||
17 | * (at your option) any later version. | ||
18 | * | ||
19 | * This program is distributed in the hope that it will be useful, | ||
20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
22 | * GNU General Public License for more details. | ||
23 | * | ||
24 | * You should have received a copy of the GNU General Public License | ||
25 | * along with this program; if not, see the file COPYING, or write | ||
26 | * to the Free Software Foundation, Inc., | ||
27 | * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
28 | */ | ||
29 | |||
30 | #include <linux/linkage.h> | ||
31 | #include <asm/cplb.h> | ||
32 | #include <asm/entry.h> | ||
33 | |||
34 | #ifdef CONFIG_EXCPT_IRQ_SYSC_L1 | ||
35 | .section .l1.text | ||
36 | #else | ||
37 | .text | ||
38 | #endif | ||
39 | |||
40 | .type _cplb_mgr, STT_FUNC; | ||
41 | .type _panic_cplb_error, STT_FUNC; | ||
42 | |||
43 | .align 2 | ||
44 | |||
45 | ENTRY(__cplb_hdr) | ||
46 | R2 = SEQSTAT; | ||
47 | |||
48 | /* Mask the contents of SEQSTAT and leave only EXCAUSE in R2 */ | ||
49 | R2 <<= 26; | ||
50 | R2 >>= 26; | ||
51 | |||
52 | R1 = 0x23; /* Data access CPLB protection violation */ | ||
53 | CC = R2 == R1; | ||
54 | IF !CC JUMP .Lnot_data_write; | ||
55 | R0 = 2; /* is a write to data space*/ | ||
56 | JUMP .Lis_icplb_miss; | ||
57 | |||
58 | .Lnot_data_write: | ||
59 | R1 = 0x2C; /* CPLB miss on an instruction fetch */ | ||
60 | CC = R2 == R1; | ||
61 | R0 = 0; /* is_data_miss == False*/ | ||
62 | IF CC JUMP .Lis_icplb_miss; | ||
63 | |||
64 | R1 = 0x26; | ||
65 | CC = R2 == R1; | ||
66 | IF !CC JUMP .Lunknown; | ||
67 | |||
68 | R0 = 1; /* is_data_miss == True*/ | ||
69 | |||
70 | .Lis_icplb_miss: | ||
71 | |||
72 | #if defined(CONFIG_BFIN_ICACHE) || defined(CONFIG_BFIN_DCACHE) | ||
73 | # if defined(CONFIG_BFIN_ICACHE) && !defined(CONFIG_BFIN_DCACHE) | ||
74 | R1 = CPLB_ENABLE_ICACHE; | ||
75 | # endif | ||
76 | # if !defined(CONFIG_BFIN_ICACHE) && defined(CONFIG_BFIN_DCACHE) | ||
77 | R1 = CPLB_ENABLE_DCACHE; | ||
78 | # endif | ||
79 | # if defined(CONFIG_BFIN_ICACHE) && defined(CONFIG_BFIN_DCACHE) | ||
80 | R1 = CPLB_ENABLE_DCACHE | CPLB_ENABLE_ICACHE; | ||
81 | # endif | ||
82 | #else | ||
83 | R1 = 0; | ||
84 | #endif | ||
85 | |||
86 | [--SP] = RETS; | ||
87 | CALL _cplb_mgr; | ||
88 | RETS = [SP++]; | ||
89 | CC = R0 == 0; | ||
90 | IF !CC JUMP .Lnot_replaced; | ||
91 | RTS; | ||
92 | |||
93 | /* | ||
94 | * Diagnostic exception handlers | ||
95 | */ | ||
96 | .Lunknown: | ||
97 | R0 = CPLB_UNKNOWN_ERR; | ||
98 | JUMP .Lcplb_error; | ||
99 | |||
100 | .Lnot_replaced: | ||
101 | CC = R0 == CPLB_NO_UNLOCKED; | ||
102 | IF !CC JUMP .Lnext_check; | ||
103 | R0 = CPLB_NO_UNLOCKED; | ||
104 | JUMP .Lcplb_error; | ||
105 | |||
106 | .Lnext_check: | ||
107 | CC = R0 == CPLB_NO_ADDR_MATCH; | ||
108 | IF !CC JUMP .Lnext_check2; | ||
109 | R0 = CPLB_NO_ADDR_MATCH; | ||
110 | JUMP .Lcplb_error; | ||
111 | |||
112 | .Lnext_check2: | ||
113 | CC = R0 == CPLB_PROT_VIOL; | ||
114 | IF !CC JUMP .Lstrange_return_from_cplb_mgr; | ||
115 | R0 = CPLB_PROT_VIOL; | ||
116 | JUMP .Lcplb_error; | ||
117 | |||
118 | .Lstrange_return_from_cplb_mgr: | ||
119 | IDLE; | ||
120 | CSYNC; | ||
121 | JUMP .Lstrange_return_from_cplb_mgr; | ||
122 | |||
123 | .Lcplb_error: | ||
124 | R1 = sp; | ||
125 | SP += -12; | ||
126 | call _panic_cplb_error; | ||
127 | SP += 12; | ||
128 | JUMP.L _handle_bad_cplb; | ||
129 | |||
130 | ENDPROC(__cplb_hdr) | ||
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbinit.c b/arch/blackfin/kernel/cplb-nompu/cplbinit.c index 4c010ba50a80..0e28f7595733 100644 --- a/arch/blackfin/kernel/cplb-nompu/cplbinit.c +++ b/arch/blackfin/kernel/cplb-nompu/cplbinit.c | |||
@@ -29,417 +29,143 @@ | |||
29 | #include <asm/cplbinit.h> | 29 | #include <asm/cplbinit.h> |
30 | #include <asm/mem_map.h> | 30 | #include <asm/mem_map.h> |
31 | 31 | ||
32 | u_long icplb_tables[NR_CPUS][CPLB_TBL_ENTRIES+1]; | 32 | struct cplb_entry icplb_tbl[NR_CPUS][MAX_CPLBS] PDT_ATTR; |
33 | u_long dcplb_tables[NR_CPUS][CPLB_TBL_ENTRIES+1]; | 33 | struct cplb_entry dcplb_tbl[NR_CPUS][MAX_CPLBS] PDT_ATTR; |
34 | 34 | ||
35 | #ifdef CONFIG_CPLB_SWITCH_TAB_L1 | 35 | int first_switched_icplb PDT_ATTR; |
36 | #define PDT_ATTR __attribute__((l1_data)) | 36 | int first_switched_dcplb PDT_ATTR; |
37 | #else | ||
38 | #define PDT_ATTR | ||
39 | #endif | ||
40 | |||
41 | u_long ipdt_tables[NR_CPUS][MAX_SWITCH_I_CPLBS+1] PDT_ATTR; | ||
42 | u_long dpdt_tables[NR_CPUS][MAX_SWITCH_D_CPLBS+1] PDT_ATTR; | ||
43 | #ifdef CONFIG_CPLB_INFO | ||
44 | u_long ipdt_swapcount_tables[NR_CPUS][MAX_SWITCH_I_CPLBS] PDT_ATTR; | ||
45 | u_long dpdt_swapcount_tables[NR_CPUS][MAX_SWITCH_D_CPLBS] PDT_ATTR; | ||
46 | #endif | ||
47 | 37 | ||
48 | struct s_cplb { | 38 | struct cplb_boundary dcplb_bounds[9] PDT_ATTR; |
49 | struct cplb_tab init_i; | 39 | struct cplb_boundary icplb_bounds[7] PDT_ATTR; |
50 | struct cplb_tab init_d; | ||
51 | struct cplb_tab switch_i; | ||
52 | struct cplb_tab switch_d; | ||
53 | }; | ||
54 | 40 | ||
55 | #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) | 41 | int icplb_nr_bounds PDT_ATTR; |
56 | static struct cplb_desc cplb_data[] = { | 42 | int dcplb_nr_bounds PDT_ATTR; |
57 | { | ||
58 | .start = 0, | ||
59 | .end = SIZE_1K, | ||
60 | .psize = SIZE_1K, | ||
61 | .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB, | ||
62 | .i_conf = SDRAM_OOPS, | ||
63 | .d_conf = SDRAM_OOPS, | ||
64 | #if defined(CONFIG_DEBUG_HUNT_FOR_ZERO) | ||
65 | .valid = 1, | ||
66 | #else | ||
67 | .valid = 0, | ||
68 | #endif | ||
69 | .name = "Zero Pointer Guard Page", | ||
70 | }, | ||
71 | { | ||
72 | .start = 0, /* dyanmic */ | ||
73 | .end = 0, /* dynamic */ | ||
74 | .psize = SIZE_4M, | ||
75 | .attr = INITIAL_T | SWITCH_T | I_CPLB, | ||
76 | .i_conf = L1_IMEMORY, | ||
77 | .d_conf = 0, | ||
78 | .valid = 1, | ||
79 | .name = "L1 I-Memory", | ||
80 | }, | ||
81 | { | ||
82 | .start = 0, /* dynamic */ | ||
83 | .end = 0, /* dynamic */ | ||
84 | .psize = SIZE_4M, | ||
85 | .attr = INITIAL_T | SWITCH_T | D_CPLB, | ||
86 | .i_conf = 0, | ||
87 | .d_conf = L1_DMEMORY, | ||
88 | #if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0)) | ||
89 | .valid = 1, | ||
90 | #else | ||
91 | .valid = 0, | ||
92 | #endif | ||
93 | .name = "L1 D-Memory", | ||
94 | }, | ||
95 | { | ||
96 | .start = L2_START, | ||
97 | .end = L2_START + L2_LENGTH, | ||
98 | .psize = SIZE_1M, | ||
99 | .attr = L2_ATTR, | ||
100 | .i_conf = L2_IMEMORY, | ||
101 | .d_conf = L2_DMEMORY, | ||
102 | .valid = (L2_LENGTH > 0), | ||
103 | .name = "L2 Memory", | ||
104 | }, | ||
105 | { | ||
106 | .start = 0, | ||
107 | .end = 0, /* dynamic */ | ||
108 | .psize = 0, | ||
109 | .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB, | ||
110 | .i_conf = SDRAM_IGENERIC, | ||
111 | .d_conf = SDRAM_DGENERIC, | ||
112 | .valid = 1, | ||
113 | .name = "Kernel Memory", | ||
114 | }, | ||
115 | { | ||
116 | .start = 0, /* dynamic */ | ||
117 | .end = 0, /* dynamic */ | ||
118 | .psize = 0, | ||
119 | .attr = INITIAL_T | SWITCH_T | D_CPLB, | ||
120 | .i_conf = SDRAM_IGENERIC, | ||
121 | .d_conf = SDRAM_DNON_CHBL, | ||
122 | .valid = 1, | ||
123 | .name = "uClinux MTD Memory", | ||
124 | }, | ||
125 | { | ||
126 | .start = 0, /* dynamic */ | ||
127 | .end = 0, /* dynamic */ | ||
128 | .psize = SIZE_1M, | ||
129 | .attr = INITIAL_T | SWITCH_T | D_CPLB, | ||
130 | .d_conf = SDRAM_DNON_CHBL, | ||
131 | .valid = 1, | ||
132 | .name = "Uncached DMA Zone", | ||
133 | }, | ||
134 | { | ||
135 | .start = 0, /* dynamic */ | ||
136 | .end = 0, /* dynamic */ | ||
137 | .psize = 0, | ||
138 | .attr = SWITCH_T | D_CPLB, | ||
139 | .i_conf = 0, /* dynamic */ | ||
140 | .d_conf = 0, /* dynamic */ | ||
141 | .valid = 1, | ||
142 | .name = "Reserved Memory", | ||
143 | }, | ||
144 | { | ||
145 | .start = ASYNC_BANK0_BASE, | ||
146 | .end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE, | ||
147 | .psize = 0, | ||
148 | .attr = SWITCH_T | D_CPLB, | ||
149 | .d_conf = SDRAM_EBIU, | ||
150 | .valid = 1, | ||
151 | .name = "Asynchronous Memory Banks", | ||
152 | }, | ||
153 | { | ||
154 | .start = BOOT_ROM_START, | ||
155 | .end = BOOT_ROM_START + BOOT_ROM_LENGTH, | ||
156 | .psize = SIZE_1M, | ||
157 | .attr = SWITCH_T | I_CPLB | D_CPLB, | ||
158 | .i_conf = SDRAM_IGENERIC, | ||
159 | .d_conf = SDRAM_DGENERIC, | ||
160 | .valid = 1, | ||
161 | .name = "On-Chip BootROM", | ||
162 | }, | ||
163 | }; | ||
164 | 43 | ||
165 | static bool __init lock_kernel_check(u32 start, u32 end) | 44 | void __init generate_cplb_tables_cpu(unsigned int cpu) |
166 | { | 45 | { |
167 | if (start >= (u32)__init_begin || end <= (u32)_stext) | 46 | int i_d, i_i; |
168 | return false; | 47 | unsigned long addr; |
169 | |||
170 | /* This cplb block overlapped with kernel area. */ | ||
171 | return true; | ||
172 | } | ||
173 | 48 | ||
174 | static void __init | 49 | struct cplb_entry *d_tbl = dcplb_tbl[cpu]; |
175 | fill_cplbtab(struct cplb_tab *table, | 50 | struct cplb_entry *i_tbl = icplb_tbl[cpu]; |
176 | unsigned long start, unsigned long end, | ||
177 | unsigned long block_size, unsigned long cplb_data) | ||
178 | { | ||
179 | int i; | ||
180 | 51 | ||
181 | switch (block_size) { | 52 | printk(KERN_INFO "NOMPU: setting up cplb tables\n"); |
182 | case SIZE_4M: | ||
183 | i = 3; | ||
184 | break; | ||
185 | case SIZE_1M: | ||
186 | i = 2; | ||
187 | break; | ||
188 | case SIZE_4K: | ||
189 | i = 1; | ||
190 | break; | ||
191 | case SIZE_1K: | ||
192 | default: | ||
193 | i = 0; | ||
194 | break; | ||
195 | } | ||
196 | 53 | ||
197 | cplb_data = (cplb_data & ~(3 << 16)) | (i << 16); | 54 | i_d = i_i = 0; |
198 | 55 | ||
199 | while ((start < end) && (table->pos < table->size)) { | 56 | /* Set up the zero page. */ |
57 | d_tbl[i_d].addr = 0; | ||
58 | d_tbl[i_d++].data = SDRAM_OOPS | PAGE_SIZE_1KB; | ||
200 | 59 | ||
201 | table->tab[table->pos++] = start; | 60 | /* Cover kernel memory with 4M pages. */ |
61 | addr = 0; | ||
202 | 62 | ||
203 | if (lock_kernel_check(start, start + block_size)) | 63 | for (; addr < memory_start; addr += 4 * 1024 * 1024) { |
204 | table->tab[table->pos++] = | 64 | d_tbl[i_d].addr = addr; |
205 | cplb_data | CPLB_LOCK | CPLB_DIRTY; | 65 | d_tbl[i_d++].data = SDRAM_DGENERIC | PAGE_SIZE_4MB; |
206 | else | 66 | i_tbl[i_i].addr = addr; |
207 | table->tab[table->pos++] = cplb_data; | 67 | i_tbl[i_i++].data = SDRAM_IGENERIC | PAGE_SIZE_4MB; |
68 | } | ||
208 | 69 | ||
209 | start += block_size; | 70 | /* Cover L1 memory. One 4M area for code and data each is enough. */ |
71 | if (L1_DATA_A_LENGTH || L1_DATA_B_LENGTH) { | ||
72 | d_tbl[i_d].addr = L1_DATA_A_START; | ||
73 | d_tbl[i_d++].data = L1_DMEMORY | PAGE_SIZE_4MB; | ||
210 | } | 74 | } |
211 | } | 75 | i_tbl[i_i].addr = L1_CODE_START; |
76 | i_tbl[i_i++].data = L1_IMEMORY | PAGE_SIZE_4MB; | ||
212 | 77 | ||
213 | static void __init close_cplbtab(struct cplb_tab *table) | 78 | first_switched_dcplb = i_d; |
214 | { | 79 | first_switched_icplb = i_i; |
215 | while (table->pos < table->size) | ||
216 | table->tab[table->pos++] = 0; | ||
217 | } | ||
218 | 80 | ||
219 | /* helper function */ | 81 | BUG_ON(first_switched_dcplb > MAX_CPLBS); |
220 | static void __init | 82 | BUG_ON(first_switched_icplb > MAX_CPLBS); |
221 | __fill_code_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end) | ||
222 | { | ||
223 | if (cplb_data[i].psize) { | ||
224 | fill_cplbtab(t, | ||
225 | cplb_data[i].start, | ||
226 | cplb_data[i].end, | ||
227 | cplb_data[i].psize, | ||
228 | cplb_data[i].i_conf); | ||
229 | } else { | ||
230 | #if defined(CONFIG_BFIN_ICACHE) | ||
231 | if (ANOMALY_05000263 && i == SDRAM_KERN) { | ||
232 | fill_cplbtab(t, | ||
233 | cplb_data[i].start, | ||
234 | cplb_data[i].end, | ||
235 | SIZE_4M, | ||
236 | cplb_data[i].i_conf); | ||
237 | } else | ||
238 | #endif | ||
239 | { | ||
240 | fill_cplbtab(t, | ||
241 | cplb_data[i].start, | ||
242 | a_start, | ||
243 | SIZE_1M, | ||
244 | cplb_data[i].i_conf); | ||
245 | fill_cplbtab(t, | ||
246 | a_start, | ||
247 | a_end, | ||
248 | SIZE_4M, | ||
249 | cplb_data[i].i_conf); | ||
250 | fill_cplbtab(t, a_end, | ||
251 | cplb_data[i].end, | ||
252 | SIZE_1M, | ||
253 | cplb_data[i].i_conf); | ||
254 | } | ||
255 | } | ||
256 | } | ||
257 | 83 | ||
258 | static void __init | 84 | while (i_d < MAX_CPLBS) |
259 | __fill_data_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end) | 85 | d_tbl[i_d++].data = 0; |
260 | { | 86 | while (i_i < MAX_CPLBS) |
261 | if (cplb_data[i].psize) { | 87 | i_tbl[i_i++].data = 0; |
262 | fill_cplbtab(t, | ||
263 | cplb_data[i].start, | ||
264 | cplb_data[i].end, | ||
265 | cplb_data[i].psize, | ||
266 | cplb_data[i].d_conf); | ||
267 | } else { | ||
268 | fill_cplbtab(t, | ||
269 | cplb_data[i].start, | ||
270 | a_start, SIZE_1M, | ||
271 | cplb_data[i].d_conf); | ||
272 | fill_cplbtab(t, a_start, | ||
273 | a_end, SIZE_4M, | ||
274 | cplb_data[i].d_conf); | ||
275 | fill_cplbtab(t, a_end, | ||
276 | cplb_data[i].end, | ||
277 | SIZE_1M, | ||
278 | cplb_data[i].d_conf); | ||
279 | } | ||
280 | } | 88 | } |
281 | 89 | ||
282 | void __init generate_cplb_tables_cpu(unsigned int cpu) | 90 | void __init generate_cplb_tables_all(void) |
283 | { | 91 | { |
92 | int i_d, i_i; | ||
284 | 93 | ||
285 | u16 i, j, process; | 94 | i_d = 0; |
286 | u32 a_start, a_end, as, ae, as_1m; | 95 | /* Normal RAM, including MTD FS. */ |
287 | |||
288 | struct cplb_tab *t_i = NULL; | ||
289 | struct cplb_tab *t_d = NULL; | ||
290 | struct s_cplb cplb; | ||
291 | |||
292 | printk(KERN_INFO "NOMPU: setting up cplb tables for global access\n"); | ||
293 | |||
294 | cplb.init_i.size = CPLB_TBL_ENTRIES; | ||
295 | cplb.init_d.size = CPLB_TBL_ENTRIES; | ||
296 | cplb.switch_i.size = MAX_SWITCH_I_CPLBS; | ||
297 | cplb.switch_d.size = MAX_SWITCH_D_CPLBS; | ||
298 | |||
299 | cplb.init_i.pos = 0; | ||
300 | cplb.init_d.pos = 0; | ||
301 | cplb.switch_i.pos = 0; | ||
302 | cplb.switch_d.pos = 0; | ||
303 | |||
304 | cplb.init_i.tab = icplb_tables[cpu]; | ||
305 | cplb.init_d.tab = dcplb_tables[cpu]; | ||
306 | cplb.switch_i.tab = ipdt_tables[cpu]; | ||
307 | cplb.switch_d.tab = dpdt_tables[cpu]; | ||
308 | |||
309 | cplb_data[L1I_MEM].start = get_l1_code_start_cpu(cpu); | ||
310 | cplb_data[L1I_MEM].end = cplb_data[L1I_MEM].start + L1_CODE_LENGTH; | ||
311 | cplb_data[L1D_MEM].start = get_l1_data_a_start_cpu(cpu); | ||
312 | cplb_data[L1D_MEM].end = get_l1_data_b_start_cpu(cpu) + L1_DATA_B_LENGTH; | ||
313 | cplb_data[SDRAM_KERN].end = memory_end; | ||
314 | |||
315 | #ifdef CONFIG_MTD_UCLINUX | 96 | #ifdef CONFIG_MTD_UCLINUX |
316 | cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start; | 97 | dcplb_bounds[i_d].eaddr = memory_mtd_start + mtd_size; |
317 | cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size; | ||
318 | cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0; | ||
319 | # if defined(CONFIG_ROMFS_FS) | ||
320 | cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB; | ||
321 | |||
322 | /* | ||
323 | * The ROMFS_FS size is often not multiple of 1MB. | ||
324 | * This can cause multiple CPLB sets covering the same memory area. | ||
325 | * This will then cause multiple CPLB hit exceptions. | ||
326 | * Workaround: We ensure a contiguous memory area by extending the kernel | ||
327 | * memory section over the mtd section. | ||
328 | * For ROMFS_FS memory must be covered with ICPLBs anyways. | ||
329 | * So there is no difference between kernel and mtd memory setup. | ||
330 | */ | ||
331 | |||
332 | cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;; | ||
333 | cplb_data[SDRAM_RAM_MTD].valid = 0; | ||
334 | |||
335 | # endif | ||
336 | #else | 98 | #else |
337 | cplb_data[SDRAM_RAM_MTD].valid = 0; | 99 | dcplb_bounds[i_d].eaddr = memory_end; |
338 | #endif | 100 | #endif |
101 | dcplb_bounds[i_d++].data = SDRAM_DGENERIC; | ||
102 | /* DMA uncached region. */ | ||
103 | if (DMA_UNCACHED_REGION) { | ||
104 | dcplb_bounds[i_d].eaddr = _ramend; | ||
105 | dcplb_bounds[i_d++].data = SDRAM_DNON_CHBL; | ||
106 | } | ||
107 | if (_ramend != physical_mem_end) { | ||
108 | /* Reserved memory. */ | ||
109 | dcplb_bounds[i_d].eaddr = physical_mem_end; | ||
110 | dcplb_bounds[i_d++].data = (reserved_mem_dcache_on ? | ||
111 | SDRAM_DGENERIC : SDRAM_DNON_CHBL); | ||
112 | } | ||
113 | /* Addressing hole up to the async bank. */ | ||
114 | dcplb_bounds[i_d].eaddr = ASYNC_BANK0_BASE; | ||
115 | dcplb_bounds[i_d++].data = 0; | ||
116 | /* ASYNC banks. */ | ||
117 | dcplb_bounds[i_d].eaddr = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE; | ||
118 | dcplb_bounds[i_d++].data = SDRAM_EBIU; | ||
119 | /* Addressing hole up to BootROM. */ | ||
120 | dcplb_bounds[i_d].eaddr = BOOT_ROM_START; | ||
121 | dcplb_bounds[i_d++].data = 0; | ||
122 | /* BootROM -- largest one should be less than 1 meg. */ | ||
123 | dcplb_bounds[i_d].eaddr = BOOT_ROM_START + (1 * 1024 * 1024); | ||
124 | dcplb_bounds[i_d++].data = SDRAM_DGENERIC; | ||
125 | if (L2_LENGTH) { | ||
126 | /* Addressing hole up to L2 SRAM. */ | ||
127 | dcplb_bounds[i_d].eaddr = L2_START; | ||
128 | dcplb_bounds[i_d++].data = 0; | ||
129 | /* L2 SRAM. */ | ||
130 | dcplb_bounds[i_d].eaddr = L2_START + L2_LENGTH; | ||
131 | dcplb_bounds[i_d++].data = L2_DMEMORY; | ||
132 | } | ||
133 | dcplb_nr_bounds = i_d; | ||
134 | BUG_ON(dcplb_nr_bounds > ARRAY_SIZE(dcplb_bounds)); | ||
339 | 135 | ||
340 | cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION; | 136 | i_i = 0; |
341 | cplb_data[SDRAM_DMAZ].end = _ramend; | 137 | /* Normal RAM, including MTD FS. */ |
342 | |||
343 | cplb_data[RES_MEM].start = _ramend; | ||
344 | cplb_data[RES_MEM].end = physical_mem_end; | ||
345 | |||
346 | if (reserved_mem_dcache_on) | ||
347 | cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC; | ||
348 | else | ||
349 | cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL; | ||
350 | |||
351 | if (reserved_mem_icache_on) | ||
352 | cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC; | ||
353 | else | ||
354 | cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL; | ||
355 | |||
356 | for (i = ZERO_P; i < ARRAY_SIZE(cplb_data); ++i) { | ||
357 | if (!cplb_data[i].valid) | ||
358 | continue; | ||
359 | |||
360 | as_1m = cplb_data[i].start % SIZE_1M; | ||
361 | |||
362 | /* We need to make sure all sections are properly 1M aligned | ||
363 | * However between Kernel Memory and the Kernel mtd section, depending on the | ||
364 | * rootfs size, there can be overlapping memory areas. | ||
365 | */ | ||
366 | |||
367 | if (as_1m && i != L1I_MEM && i != L1D_MEM) { | ||
368 | #ifdef CONFIG_MTD_UCLINUX | 138 | #ifdef CONFIG_MTD_UCLINUX |
369 | if (i == SDRAM_RAM_MTD) { | 139 | icplb_bounds[i_i].eaddr = memory_mtd_start + mtd_size; |
370 | if ((cplb_data[SDRAM_KERN].end + 1) > cplb_data[SDRAM_RAM_MTD].start) | 140 | #else |
371 | cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)) + SIZE_1M; | 141 | icplb_bounds[i_i].eaddr = memory_end; |
372 | else | ||
373 | cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)); | ||
374 | } else | ||
375 | #endif | 142 | #endif |
376 | printk(KERN_WARNING "Unaligned Start of %s at 0x%X\n", | 143 | icplb_bounds[i_i++].data = SDRAM_IGENERIC; |
377 | cplb_data[i].name, cplb_data[i].start); | 144 | /* DMA uncached region. */ |
378 | } | 145 | if (DMA_UNCACHED_REGION) { |
379 | 146 | icplb_bounds[i_i].eaddr = _ramend; | |
380 | as = cplb_data[i].start % SIZE_4M; | 147 | icplb_bounds[i_i++].data = 0; |
381 | ae = cplb_data[i].end % SIZE_4M; | ||
382 | |||
383 | if (as) | ||
384 | a_start = cplb_data[i].start + (SIZE_4M - (as)); | ||
385 | else | ||
386 | a_start = cplb_data[i].start; | ||
387 | |||
388 | a_end = cplb_data[i].end - ae; | ||
389 | |||
390 | for (j = INITIAL_T; j <= SWITCH_T; j++) { | ||
391 | |||
392 | switch (j) { | ||
393 | case INITIAL_T: | ||
394 | if (cplb_data[i].attr & INITIAL_T) { | ||
395 | t_i = &cplb.init_i; | ||
396 | t_d = &cplb.init_d; | ||
397 | process = 1; | ||
398 | } else | ||
399 | process = 0; | ||
400 | break; | ||
401 | case SWITCH_T: | ||
402 | if (cplb_data[i].attr & SWITCH_T) { | ||
403 | t_i = &cplb.switch_i; | ||
404 | t_d = &cplb.switch_d; | ||
405 | process = 1; | ||
406 | } else | ||
407 | process = 0; | ||
408 | break; | ||
409 | default: | ||
410 | process = 0; | ||
411 | break; | ||
412 | } | ||
413 | |||
414 | if (!process) | ||
415 | continue; | ||
416 | if (cplb_data[i].attr & I_CPLB) | ||
417 | __fill_code_cplbtab(t_i, i, a_start, a_end); | ||
418 | |||
419 | if (cplb_data[i].attr & D_CPLB) | ||
420 | __fill_data_cplbtab(t_d, i, a_start, a_end); | ||
421 | } | ||
422 | } | 148 | } |
423 | 149 | if (_ramend != physical_mem_end) { | |
424 | /* make sure we locked the kernel start */ | 150 | /* Reserved memory. */ |
425 | BUG_ON(cplb.init_i.pos < 2 + cplb_data[ZERO_P].valid); | 151 | icplb_bounds[i_i].eaddr = physical_mem_end; |
426 | BUG_ON(cplb.init_d.pos < 1 + cplb_data[ZERO_P].valid + cplb_data[L1D_MEM].valid); | 152 | icplb_bounds[i_i++].data = (reserved_mem_icache_on ? |
427 | 153 | SDRAM_IGENERIC : SDRAM_INON_CHBL); | |
428 | /* make sure we didnt overflow the table */ | 154 | } |
429 | BUG_ON(cplb.init_i.size < cplb.init_i.pos); | 155 | /* Addressing hole up to BootROM. */ |
430 | BUG_ON(cplb.init_d.size < cplb.init_d.pos); | 156 | icplb_bounds[i_i].eaddr = BOOT_ROM_START; |
431 | BUG_ON(cplb.switch_i.size < cplb.switch_i.pos); | 157 | icplb_bounds[i_i++].data = 0; |
432 | BUG_ON(cplb.switch_d.size < cplb.switch_d.pos); | 158 | /* BootROM -- largest one should be less than 1 meg. */ |
433 | 159 | icplb_bounds[i_i].eaddr = BOOT_ROM_START + (1 * 1024 * 1024); | |
434 | /* close tables */ | 160 | icplb_bounds[i_i++].data = SDRAM_IGENERIC; |
435 | close_cplbtab(&cplb.init_i); | 161 | if (L2_LENGTH) { |
436 | close_cplbtab(&cplb.init_d); | 162 | /* Addressing hole up to L2 SRAM, including the async bank. */ |
437 | 163 | icplb_bounds[i_i].eaddr = L2_START; | |
438 | cplb.init_i.tab[cplb.init_i.pos] = -1; | 164 | icplb_bounds[i_i++].data = 0; |
439 | cplb.init_d.tab[cplb.init_d.pos] = -1; | 165 | /* L2 SRAM. */ |
440 | cplb.switch_i.tab[cplb.switch_i.pos] = -1; | 166 | icplb_bounds[i_i].eaddr = L2_START + L2_LENGTH; |
441 | cplb.switch_d.tab[cplb.switch_d.pos] = -1; | 167 | icplb_bounds[i_i++].data = L2_IMEMORY; |
442 | 168 | } | |
169 | icplb_nr_bounds = i_i; | ||
170 | BUG_ON(icplb_nr_bounds > ARRAY_SIZE(icplb_bounds)); | ||
443 | } | 171 | } |
444 | |||
445 | #endif | ||
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S b/arch/blackfin/kernel/cplb-nompu/cplbmgr.S deleted file mode 100644 index f4ca76c72394..000000000000 --- a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S +++ /dev/null | |||
@@ -1,648 +0,0 @@ | |||
1 | /* | ||
2 | * File: arch/blackfin/mach-common/cplbmgtr.S | ||
3 | * Based on: | ||
4 | * Author: LG Soft India | ||
5 | * | ||
6 | * Created: ? | ||
7 | * Description: CPLB replacement routine for CPLB mismatch | ||
8 | * | ||
9 | * Modified: | ||
10 | * Copyright 2004-2006 Analog Devices Inc. | ||
11 | * | ||
12 | * Bugs: Enter bugs at http://blackfin.uclinux.org/ | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or modify | ||
15 | * it under the terms of the GNU General Public License as published by | ||
16 | * the Free Software Foundation; either version 2 of the License, or | ||
17 | * (at your option) any later version. | ||
18 | * | ||
19 | * This program is distributed in the hope that it will be useful, | ||
20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
22 | * GNU General Public License for more details. | ||
23 | * | ||
24 | * You should have received a copy of the GNU General Public License | ||
25 | * along with this program; if not, see the file COPYING, or write | ||
26 | * to the Free Software Foundation, Inc., | ||
27 | * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
28 | */ | ||
29 | |||
30 | /* Usage: int _cplb_mgr(is_data_miss,int enable_cache) | ||
31 | * is_data_miss==2 => Mark as Dirty, write to the clean data page | ||
32 | * is_data_miss==1 => Replace a data CPLB. | ||
33 | * is_data_miss==0 => Replace an instruction CPLB. | ||
34 | * | ||
35 | * Returns: | ||
36 | * CPLB_RELOADED => Successfully updated CPLB table. | ||
37 | * CPLB_NO_UNLOCKED => All CPLBs are locked, so cannot be evicted. | ||
38 | * This indicates that the CPLBs in the configuration | ||
39 | * tablei are badly configured, as this should never | ||
40 | * occur. | ||
41 | * CPLB_NO_ADDR_MATCH => The address being accessed, that triggered the | ||
42 | * exception, is not covered by any of the CPLBs in | ||
43 | * the configuration table. The application is | ||
44 | * presumably misbehaving. | ||
45 | * CPLB_PROT_VIOL => The address being accessed, that triggered the | ||
46 | * exception, was not a first-write to a clean Write | ||
47 | * Back Data page, and so presumably is a genuine | ||
48 | * violation of the page's protection attributes. | ||
49 | * The application is misbehaving. | ||
50 | */ | ||
51 | |||
52 | #include <linux/linkage.h> | ||
53 | #include <asm/blackfin.h> | ||
54 | #include <asm/cplb.h> | ||
55 | #include <asm/asm-offsets.h> | ||
56 | |||
57 | #ifdef CONFIG_EXCPT_IRQ_SYSC_L1 | ||
58 | .section .l1.text | ||
59 | #else | ||
60 | .text | ||
61 | #endif | ||
62 | |||
63 | .align 2; | ||
64 | ENTRY(_cplb_mgr) | ||
65 | |||
66 | [--SP]=( R7:4,P5:3 ); | ||
67 | |||
68 | CC = R0 == 2; | ||
69 | IF CC JUMP .Ldcplb_write; | ||
70 | |||
71 | CC = R0 == 0; | ||
72 | IF !CC JUMP .Ldcplb_miss_compare; | ||
73 | |||
74 | /* ICPLB Miss Exception. We need to choose one of the | ||
75 | * currently-installed CPLBs, and replace it with one | ||
76 | * from the configuration table. | ||
77 | */ | ||
78 | |||
79 | /* A multi-word instruction can cross a page boundary. This means the | ||
80 | * first part of the instruction can be in a valid page, but the | ||
81 | * second part is not, and hence generates the instruction miss. | ||
82 | * However, the fault address is for the start of the instruction, | ||
83 | * not the part that's in the bad page. Therefore, we have to check | ||
84 | * whether the fault address applies to a page that is already present | ||
85 | * in the table. | ||
86 | */ | ||
87 | |||
88 | P4.L = LO(ICPLB_FAULT_ADDR); | ||
89 | P4.H = HI(ICPLB_FAULT_ADDR); | ||
90 | |||
91 | P1 = 16; | ||
92 | P5.L = _page_size_table; | ||
93 | P5.H = _page_size_table; | ||
94 | |||
95 | P0.L = LO(ICPLB_DATA0); | ||
96 | P0.H = HI(ICPLB_DATA0); | ||
97 | R4 = [P4]; /* Get faulting address*/ | ||
98 | R6 = 64; /* Advance past the fault address, which*/ | ||
99 | R6 = R6 + R4; /* we'll use if we find a match*/ | ||
100 | R3 = ((16 << 8) | 2); /* Extract mask, two bits at posn 16 */ | ||
101 | |||
102 | R5 = 0; | ||
103 | .Lisearch: | ||
104 | |||
105 | R1 = [P0-0x100]; /* Address for this CPLB */ | ||
106 | |||
107 | R0 = [P0++]; /* Info for this CPLB*/ | ||
108 | CC = BITTST(R0,0); /* Is the CPLB valid?*/ | ||
109 | IF !CC JUMP .Lnomatch; /* Skip it, if not.*/ | ||
110 | CC = R4 < R1(IU); /* If fault address less than page start*/ | ||
111 | IF CC JUMP .Lnomatch; /* then skip this one.*/ | ||
112 | R2 = EXTRACT(R0,R3.L) (Z); /* Get page size*/ | ||
113 | P1 = R2; | ||
114 | P1 = P5 + (P1<<2); /* index into page-size table*/ | ||
115 | R2 = [P1]; /* Get the page size*/ | ||
116 | R1 = R1 + R2; /* and add to page start, to get page end*/ | ||
117 | CC = R4 < R1(IU); /* and see whether fault addr is in page.*/ | ||
118 | IF !CC R4 = R6; /* If so, advance the address and finish loop.*/ | ||
119 | IF !CC JUMP .Lisearch_done; | ||
120 | .Lnomatch: | ||
121 | /* Go around again*/ | ||
122 | R5 += 1; | ||
123 | CC = BITTST(R5, 4); /* i.e CC = R5 >= 16*/ | ||
124 | IF !CC JUMP .Lisearch; | ||
125 | |||
126 | .Lisearch_done: | ||
127 | I0 = R4; /* Fault address we'll search for*/ | ||
128 | |||
129 | /* set up pointers */ | ||
130 | P0.L = LO(ICPLB_DATA0); | ||
131 | P0.H = HI(ICPLB_DATA0); | ||
132 | |||
133 | /* The replacement procedure for ICPLBs */ | ||
134 | |||
135 | P4.L = LO(IMEM_CONTROL); | ||
136 | P4.H = HI(IMEM_CONTROL); | ||
137 | |||
138 | /* Turn off CPLBs while we work, necessary according to HRM before | ||
139 | * modifying CPLB descriptors | ||
140 | */ | ||
141 | R5 = [P4]; /* Control Register*/ | ||
142 | BITCLR(R5,ENICPLB_P); | ||
143 | CLI R1; | ||
144 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
145 | .align 8; | ||
146 | [P4] = R5; | ||
147 | SSYNC; | ||
148 | STI R1; | ||
149 | |||
150 | R1 = -1; /* end point comparison */ | ||
151 | R3 = 16; /* counter */ | ||
152 | |||
153 | /* Search through CPLBs for first non-locked entry */ | ||
154 | /* Overwrite it by moving everyone else up by 1 */ | ||
155 | .Licheck_lock: | ||
156 | R0 = [P0++]; | ||
157 | R3 = R3 + R1; | ||
158 | CC = R3 == R1; | ||
159 | IF CC JUMP .Lall_locked; | ||
160 | CC = BITTST(R0, 0); /* an invalid entry is good */ | ||
161 | IF !CC JUMP .Lifound_victim; | ||
162 | CC = BITTST(R0,1); /* but a locked entry isn't */ | ||
163 | IF CC JUMP .Licheck_lock; | ||
164 | |||
165 | .Lifound_victim: | ||
166 | #ifdef CONFIG_CPLB_INFO | ||
167 | R7 = [P0 - 0x104]; | ||
168 | GET_PDA(P2, R2); | ||
169 | P3 = [P2 + PDA_IPDT_SWAPCOUNT]; | ||
170 | P2 = [P2 + PDA_IPDT]; | ||
171 | P3 += -4; | ||
172 | .Licount: | ||
173 | R2 = [P2]; /* address from config table */ | ||
174 | P2 += 8; | ||
175 | P3 += 8; | ||
176 | CC = R2==-1; | ||
177 | IF CC JUMP .Licount_done; | ||
178 | CC = R7==R2; | ||
179 | IF !CC JUMP .Licount; | ||
180 | R7 = [P3]; | ||
181 | R7 += 1; | ||
182 | [P3] = R7; | ||
183 | CSYNC; | ||
184 | .Licount_done: | ||
185 | #endif | ||
186 | LC0=R3; | ||
187 | LSETUP(.Lis_move,.Lie_move) LC0; | ||
188 | .Lis_move: | ||
189 | R0 = [P0]; | ||
190 | [P0 - 4] = R0; | ||
191 | R0 = [P0 - 0x100]; | ||
192 | [P0-0x104] = R0; | ||
193 | .Lie_move: | ||
194 | P0+=4; | ||
195 | |||
196 | /* Clear ICPLB_DATA15, in case we don't find a replacement | ||
197 | * otherwise, we would have a duplicate entry, and will crash | ||
198 | */ | ||
199 | R0 = 0; | ||
200 | [P0 - 4] = R0; | ||
201 | |||
202 | /* We've made space in the ICPLB table, so that ICPLB15 | ||
203 | * is now free to be overwritten. Next, we have to determine | ||
204 | * which CPLB we need to install, from the configuration | ||
205 | * table. This is a matter of getting the start-of-page | ||
206 | * addresses and page-lengths from the config table, and | ||
207 | * determining whether the fault address falls within that | ||
208 | * range. | ||
209 | */ | ||
210 | |||
211 | GET_PDA(P3, R0); | ||
212 | P2 = [P3 + PDA_IPDT]; | ||
213 | #ifdef CONFIG_CPLB_INFO | ||
214 | P3 = [P3 + PDA_IPDT_SWAPCOUNT]; | ||
215 | P3 += -8; | ||
216 | #endif | ||
217 | P0.L = _page_size_table; | ||
218 | P0.H = _page_size_table; | ||
219 | |||
220 | /* Retrieve our fault address (which may have been advanced | ||
221 | * because the faulting instruction crossed a page boundary). | ||
222 | */ | ||
223 | |||
224 | R0 = I0; | ||
225 | |||
226 | /* An extraction pattern, to get the page-size bits from | ||
227 | * the CPLB data entry. Bits 16-17, so two bits at posn 16. | ||
228 | */ | ||
229 | |||
230 | R1 = ((16<<8)|2); | ||
231 | .Linext: R4 = [P2++]; /* address from config table */ | ||
232 | R2 = [P2++]; /* data from config table */ | ||
233 | #ifdef CONFIG_CPLB_INFO | ||
234 | P3 += 8; | ||
235 | #endif | ||
236 | |||
237 | CC = R4 == -1; /* End of config table*/ | ||
238 | IF CC JUMP .Lno_page_in_table; | ||
239 | |||
240 | /* See if failed address > start address */ | ||
241 | CC = R4 <= R0(IU); | ||
242 | IF !CC JUMP .Linext; | ||
243 | |||
244 | /* extract page size (17:16)*/ | ||
245 | R3 = EXTRACT(R2, R1.L) (Z); | ||
246 | |||
247 | /* add page size to addr to get range */ | ||
248 | |||
249 | P5 = R3; | ||
250 | P5 = P0 + (P5 << 2); /* scaled, for int access*/ | ||
251 | R3 = [P5]; | ||
252 | R3 = R3 + R4; | ||
253 | |||
254 | /* See if failed address < (start address + page size) */ | ||
255 | CC = R0 < R3(IU); | ||
256 | IF !CC JUMP .Linext; | ||
257 | |||
258 | /* We've found a CPLB in the config table that covers | ||
259 | * the faulting address, so install this CPLB into the | ||
260 | * last entry of the table. | ||
261 | */ | ||
262 | |||
263 | P1.L = LO(ICPLB_DATA15); /* ICPLB_DATA15 */ | ||
264 | P1.H = HI(ICPLB_DATA15); | ||
265 | [P1] = R2; | ||
266 | [P1-0x100] = R4; | ||
267 | #ifdef CONFIG_CPLB_INFO | ||
268 | R3 = [P3]; | ||
269 | R3 += 1; | ||
270 | [P3] = R3; | ||
271 | #endif | ||
272 | |||
273 | /* P4 points to IMEM_CONTROL, and R5 contains its old | ||
274 | * value, after we disabled ICPLBS. Re-enable them. | ||
275 | */ | ||
276 | |||
277 | BITSET(R5,ENICPLB_P); | ||
278 | CLI R2; | ||
279 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
280 | .align 8; | ||
281 | [P4] = R5; | ||
282 | SSYNC; | ||
283 | STI R2; | ||
284 | |||
285 | ( R7:4,P5:3 ) = [SP++]; | ||
286 | R0 = CPLB_RELOADED; | ||
287 | RTS; | ||
288 | |||
289 | /* FAILED CASES*/ | ||
290 | .Lno_page_in_table: | ||
291 | R0 = CPLB_NO_ADDR_MATCH; | ||
292 | JUMP .Lfail_ret; | ||
293 | |||
294 | .Lall_locked: | ||
295 | R0 = CPLB_NO_UNLOCKED; | ||
296 | JUMP .Lfail_ret; | ||
297 | |||
298 | .Lprot_violation: | ||
299 | R0 = CPLB_PROT_VIOL; | ||
300 | |||
301 | .Lfail_ret: | ||
302 | /* Make sure we turn protection/cache back on, even in the failing case */ | ||
303 | BITSET(R5,ENICPLB_P); | ||
304 | CLI R2; | ||
305 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
306 | .align 8; | ||
307 | [P4] = R5; | ||
308 | SSYNC; | ||
309 | STI R2; | ||
310 | |||
311 | ( R7:4,P5:3 ) = [SP++]; | ||
312 | RTS; | ||
313 | |||
314 | .Ldcplb_write: | ||
315 | |||
316 | /* if a DCPLB is marked as write-back (CPLB_WT==0), and | ||
317 | * it is clean (CPLB_DIRTY==0), then a write to the | ||
318 | * CPLB's page triggers a protection violation. We have to | ||
319 | * mark the CPLB as dirty, to indicate that there are | ||
320 | * pending writes associated with the CPLB. | ||
321 | */ | ||
322 | |||
323 | P4.L = LO(DCPLB_STATUS); | ||
324 | P4.H = HI(DCPLB_STATUS); | ||
325 | P3.L = LO(DCPLB_DATA0); | ||
326 | P3.H = HI(DCPLB_DATA0); | ||
327 | R5 = [P4]; | ||
328 | |||
329 | /* A protection violation can be caused by more than just writes | ||
330 | * to a clean WB page, so we have to ensure that: | ||
331 | * - It's a write | ||
332 | * - to a clean WB page | ||
333 | * - and is allowed in the mode the access occurred. | ||
334 | */ | ||
335 | |||
336 | CC = BITTST(R5, 16); /* ensure it was a write*/ | ||
337 | IF !CC JUMP .Lprot_violation; | ||
338 | |||
339 | /* to check the rest, we have to retrieve the DCPLB.*/ | ||
340 | |||
341 | /* The low half of DCPLB_STATUS is a bit mask*/ | ||
342 | |||
343 | R2 = R5.L (Z); /* indicating which CPLB triggered the event.*/ | ||
344 | R3 = 30; /* so we can use this to determine the offset*/ | ||
345 | R2.L = SIGNBITS R2; | ||
346 | R2 = R2.L (Z); /* into the DCPLB table.*/ | ||
347 | R3 = R3 - R2; | ||
348 | P4 = R3; | ||
349 | P3 = P3 + (P4<<2); | ||
350 | R3 = [P3]; /* Retrieve the CPLB*/ | ||
351 | |||
352 | /* Now we can check whether it's a clean WB page*/ | ||
353 | |||
354 | CC = BITTST(R3, 14); /* 0==WB, 1==WT*/ | ||
355 | IF CC JUMP .Lprot_violation; | ||
356 | CC = BITTST(R3, 7); /* 0 == clean, 1 == dirty*/ | ||
357 | IF CC JUMP .Lprot_violation; | ||
358 | |||
359 | /* Check whether the write is allowed in the mode that was active.*/ | ||
360 | |||
361 | R2 = 1<<3; /* checking write in user mode*/ | ||
362 | CC = BITTST(R5, 17); /* 0==was user, 1==was super*/ | ||
363 | R5 = CC; | ||
364 | R2 <<= R5; /* if was super, check write in super mode*/ | ||
365 | R2 = R3 & R2; | ||
366 | CC = R2 == 0; | ||
367 | IF CC JUMP .Lprot_violation; | ||
368 | |||
369 | /* It's a genuine write-to-clean-page.*/ | ||
370 | |||
371 | BITSET(R3, 7); /* mark as dirty*/ | ||
372 | [P3] = R3; /* and write back.*/ | ||
373 | NOP; | ||
374 | CSYNC; | ||
375 | ( R7:4,P5:3 ) = [SP++]; | ||
376 | R0 = CPLB_RELOADED; | ||
377 | RTS; | ||
378 | |||
379 | .Ldcplb_miss_compare: | ||
380 | |||
381 | /* Data CPLB Miss event. We need to choose a CPLB to | ||
382 | * evict, and then locate a new CPLB to install from the | ||
383 | * config table, that covers the faulting address. | ||
384 | */ | ||
385 | |||
386 | P1.L = LO(DCPLB_DATA15); | ||
387 | P1.H = HI(DCPLB_DATA15); | ||
388 | |||
389 | P4.L = LO(DCPLB_FAULT_ADDR); | ||
390 | P4.H = HI(DCPLB_FAULT_ADDR); | ||
391 | R4 = [P4]; | ||
392 | I0 = R4; | ||
393 | |||
394 | /* The replacement procedure for DCPLBs*/ | ||
395 | |||
396 | R6 = R1; /* Save for later*/ | ||
397 | |||
398 | /* Turn off CPLBs while we work.*/ | ||
399 | P4.L = LO(DMEM_CONTROL); | ||
400 | P4.H = HI(DMEM_CONTROL); | ||
401 | R5 = [P4]; | ||
402 | BITCLR(R5,ENDCPLB_P); | ||
403 | CLI R0; | ||
404 | SSYNC; /* SSYNC required before writing to DMEM_CONTROL. */ | ||
405 | .align 8; | ||
406 | [P4] = R5; | ||
407 | SSYNC; | ||
408 | STI R0; | ||
409 | |||
410 | /* Start looking for a CPLB to evict. Our order of preference | ||
411 | * is: invalid CPLBs, clean CPLBs, dirty CPLBs. Locked CPLBs | ||
412 | * are no good. | ||
413 | */ | ||
414 | |||
415 | I1.L = LO(DCPLB_DATA0); | ||
416 | I1.H = HI(DCPLB_DATA0); | ||
417 | P1 = 2; | ||
418 | P2 = 16; | ||
419 | I2.L = _dcplb_preference; | ||
420 | I2.H = _dcplb_preference; | ||
421 | LSETUP(.Lsdsearch1, .Ledsearch1) LC0 = P1; | ||
422 | .Lsdsearch1: | ||
423 | R0 = [I2++]; /* Get the bits we're interested in*/ | ||
424 | P0 = I1; /* Go back to start of table*/ | ||
425 | LSETUP (.Lsdsearch2, .Ledsearch2) LC1 = P2; | ||
426 | .Lsdsearch2: | ||
427 | R1 = [P0++]; /* Fetch each installed CPLB in turn*/ | ||
428 | R2 = R1 & R0; /* and test for interesting bits.*/ | ||
429 | CC = R2 == 0; /* If none are set, it'll do.*/ | ||
430 | IF !CC JUMP .Lskip_stack_check; | ||
431 | |||
432 | R2 = [P0 - 0x104]; /* R2 - PageStart */ | ||
433 | P3.L = _page_size_table; /* retrieve end address */ | ||
434 | P3.H = _page_size_table; /* retrieve end address */ | ||
435 | R3 = 0x1002; /* 16th - position, 2 bits -length */ | ||
436 | #if ANOMALY_05000209 | ||
437 | nop; /* Anomaly 05000209 */ | ||
438 | #endif | ||
439 | R7 = EXTRACT(R1,R3.l); | ||
440 | R7 = R7 << 2; /* Page size index offset */ | ||
441 | P5 = R7; | ||
442 | P3 = P3 + P5; | ||
443 | R7 = [P3]; /* page size in bytes */ | ||
444 | |||
445 | R7 = R2 + R7; /* R7 - PageEnd */ | ||
446 | R4 = SP; /* Test SP is in range */ | ||
447 | |||
448 | CC = R7 < R4; /* if PageEnd < SP */ | ||
449 | IF CC JUMP .Ldfound_victim; | ||
450 | R3 = 0x284; /* stack length from start of trap till | ||
451 | * the point. | ||
452 | * 20 stack locations for future modifications | ||
453 | */ | ||
454 | R4 = R4 + R3; | ||
455 | CC = R4 < R2; /* if SP + stacklen < PageStart */ | ||
456 | IF CC JUMP .Ldfound_victim; | ||
457 | .Lskip_stack_check: | ||
458 | |||
459 | .Ledsearch2: NOP; | ||
460 | .Ledsearch1: NOP; | ||
461 | |||
462 | /* If we got here, we didn't find a DCPLB we considered | ||
463 | * replacable, which means all of them were locked. | ||
464 | */ | ||
465 | |||
466 | JUMP .Lall_locked; | ||
467 | .Ldfound_victim: | ||
468 | |||
469 | #ifdef CONFIG_CPLB_INFO | ||
470 | R7 = [P0 - 0x104]; | ||
471 | GET_PDA(P2, R2); | ||
472 | P3 = [P2 + PDA_DPDT_SWAPCOUNT]; | ||
473 | P2 = [P2 + PDA_DPDT]; | ||
474 | P3 += -4; | ||
475 | .Ldicount: | ||
476 | R2 = [P2]; | ||
477 | P2 += 8; | ||
478 | P3 += 8; | ||
479 | CC = R2==-1; | ||
480 | IF CC JUMP .Ldicount_done; | ||
481 | CC = R7==R2; | ||
482 | IF !CC JUMP .Ldicount; | ||
483 | R7 = [P3]; | ||
484 | R7 += 1; | ||
485 | [P3] = R7; | ||
486 | .Ldicount_done: | ||
487 | #endif | ||
488 | |||
489 | /* Clean down the hardware loops*/ | ||
490 | R2 = 0; | ||
491 | LC1 = R2; | ||
492 | LC0 = R2; | ||
493 | |||
494 | /* There's a suitable victim in [P0-4] (because we've | ||
495 | * advanced already). | ||
496 | */ | ||
497 | |||
498 | .LDdoverwrite: | ||
499 | |||
500 | /* [P0-4] is a suitable victim CPLB, so we want to | ||
501 | * overwrite it by moving all the following CPLBs | ||
502 | * one space closer to the start. | ||
503 | */ | ||
504 | |||
505 | R1.L = LO(DCPLB_DATA16); /* DCPLB_DATA15 + 4 */ | ||
506 | R1.H = HI(DCPLB_DATA16); | ||
507 | R0 = P0; | ||
508 | |||
509 | /* If the victim happens to be in DCPLB15, | ||
510 | * we don't need to move anything. | ||
511 | */ | ||
512 | |||
513 | CC = R1 == R0; | ||
514 | IF CC JUMP .Lde_moved; | ||
515 | R1 = R1 - R0; | ||
516 | R1 >>= 2; | ||
517 | P1 = R1; | ||
518 | LSETUP(.Lds_move, .Lde_move) LC0=P1; | ||
519 | .Lds_move: | ||
520 | R0 = [P0++]; /* move data */ | ||
521 | [P0 - 8] = R0; | ||
522 | R0 = [P0-0x104] /* move address */ | ||
523 | .Lde_move: | ||
524 | [P0-0x108] = R0; | ||
525 | |||
526 | .Lde_moved: | ||
527 | NOP; | ||
528 | |||
529 | /* Clear DCPLB_DATA15, in case we don't find a replacement | ||
530 | * otherwise, we would have a duplicate entry, and will crash | ||
531 | */ | ||
532 | R0 = 0; | ||
533 | [P0 - 0x4] = R0; | ||
534 | |||
535 | /* We've now made space in DCPLB15 for the new CPLB to be | ||
536 | * installed. The next stage is to locate a CPLB in the | ||
537 | * config table that covers the faulting address. | ||
538 | */ | ||
539 | |||
540 | R0 = I0; /* Our faulting address */ | ||
541 | |||
542 | GET_PDA(P3, R1); | ||
543 | P2 = [P3 + PDA_DPDT]; | ||
544 | #ifdef CONFIG_CPLB_INFO | ||
545 | P3 = [P3 + PDA_DPDT_SWAPCOUNT]; | ||
546 | P3 += -8; | ||
547 | #endif | ||
548 | |||
549 | P1.L = _page_size_table; | ||
550 | P1.H = _page_size_table; | ||
551 | |||
552 | /* An extraction pattern, to retrieve bits 17:16.*/ | ||
553 | |||
554 | R1 = (16<<8)|2; | ||
555 | .Ldnext: R4 = [P2++]; /* address */ | ||
556 | R2 = [P2++]; /* data */ | ||
557 | #ifdef CONFIG_CPLB_INFO | ||
558 | P3 += 8; | ||
559 | #endif | ||
560 | |||
561 | CC = R4 == -1; | ||
562 | IF CC JUMP .Lno_page_in_table; | ||
563 | |||
564 | /* See if failed address > start address */ | ||
565 | CC = R4 <= R0(IU); | ||
566 | IF !CC JUMP .Ldnext; | ||
567 | |||
568 | /* extract page size (17:16)*/ | ||
569 | R3 = EXTRACT(R2, R1.L) (Z); | ||
570 | |||
571 | /* add page size to addr to get range */ | ||
572 | |||
573 | P5 = R3; | ||
574 | P5 = P1 + (P5 << 2); | ||
575 | R3 = [P5]; | ||
576 | R3 = R3 + R4; | ||
577 | |||
578 | /* See if failed address < (start address + page size) */ | ||
579 | CC = R0 < R3(IU); | ||
580 | IF !CC JUMP .Ldnext; | ||
581 | |||
582 | /* We've found the CPLB that should be installed, so | ||
583 | * write it into CPLB15, masking off any caching bits | ||
584 | * if necessary. | ||
585 | */ | ||
586 | |||
587 | P1.L = LO(DCPLB_DATA15); | ||
588 | P1.H = HI(DCPLB_DATA15); | ||
589 | |||
590 | /* If the DCPLB has cache bits set, but caching hasn't | ||
591 | * been enabled, then we want to mask off the cache-in-L1 | ||
592 | * bit before installing. Moreover, if caching is off, we | ||
593 | * also want to ensure that the DCPLB has WT mode set, rather | ||
594 | * than WB, since WB pages still trigger first-write exceptions | ||
595 | * even when not caching is off, and the page isn't marked as | ||
596 | * cachable. Finally, we could mark the page as clean, not dirty, | ||
597 | * but we choose to leave that decision to the user; if the user | ||
598 | * chooses to have a CPLB pre-defined as dirty, then they always | ||
599 | * pay the cost of flushing during eviction, but don't pay the | ||
600 | * cost of first-write exceptions to mark the page as dirty. | ||
601 | */ | ||
602 | |||
603 | #ifdef CONFIG_BFIN_WT | ||
604 | BITSET(R6, 14); /* Set WT*/ | ||
605 | #endif | ||
606 | |||
607 | [P1] = R2; | ||
608 | [P1-0x100] = R4; | ||
609 | #ifdef CONFIG_CPLB_INFO | ||
610 | R3 = [P3]; | ||
611 | R3 += 1; | ||
612 | [P3] = R3; | ||
613 | #endif | ||
614 | |||
615 | /* We've installed the CPLB, so re-enable CPLBs. P4 | ||
616 | * points to DMEM_CONTROL, and R5 is the value we | ||
617 | * last wrote to it, when we were disabling CPLBs. | ||
618 | */ | ||
619 | |||
620 | BITSET(R5,ENDCPLB_P); | ||
621 | CLI R2; | ||
622 | .align 8; | ||
623 | [P4] = R5; | ||
624 | SSYNC; | ||
625 | STI R2; | ||
626 | |||
627 | ( R7:4,P5:3 ) = [SP++]; | ||
628 | R0 = CPLB_RELOADED; | ||
629 | RTS; | ||
630 | ENDPROC(_cplb_mgr) | ||
631 | |||
632 | #ifdef CONFIG_CPLB_SWITCH_TAB_L1 | ||
633 | .section .l1.data | ||
634 | #else | ||
635 | .data | ||
636 | #endif | ||
637 | |||
638 | ENTRY(_page_size_table) | ||
639 | .byte4 0x00000400; /* 1K */ | ||
640 | .byte4 0x00001000; /* 4K */ | ||
641 | .byte4 0x00100000; /* 1M */ | ||
642 | .byte4 0x00400000; /* 4M */ | ||
643 | END(_page_size_table) | ||
644 | |||
645 | ENTRY(_dcplb_preference) | ||
646 | .byte4 0x00000001; /* valid bit */ | ||
647 | .byte4 0x00000002; /* lock bit */ | ||
648 | END(_dcplb_preference) | ||
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbmgr.c b/arch/blackfin/kernel/cplb-nompu/cplbmgr.c new file mode 100644 index 000000000000..376249ab2694 --- /dev/null +++ b/arch/blackfin/kernel/cplb-nompu/cplbmgr.c | |||
@@ -0,0 +1,283 @@ | |||
1 | /* | ||
2 | * File: arch/blackfin/kernel/cplb-nompu-c/cplbmgr.c | ||
3 | * Based on: arch/blackfin/kernel/cplb-mpu/cplbmgr.c | ||
4 | * Author: Michael McTernan <mmcternan@airvana.com> | ||
5 | * | ||
6 | * Created: 01Nov2008 | ||
7 | * Description: CPLB miss handler. | ||
8 | * | ||
9 | * Modified: | ||
10 | * Copyright 2008 Airvana Inc. | ||
11 | * Copyright 2004-2007 Analog Devices Inc. | ||
12 | * | ||
13 | * Bugs: Enter bugs at http://blackfin.uclinux.org/ | ||
14 | * | ||
15 | * This program is free software; you can redistribute it and/or modify | ||
16 | * it under the terms of the GNU General Public License as published by | ||
17 | * the Free Software Foundation; either version 2 of the License, or | ||
18 | * (at your option) any later version. | ||
19 | * | ||
20 | * This program is distributed in the hope that it will be useful, | ||
21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
23 | * GNU General Public License for more details. | ||
24 | */ | ||
25 | |||
26 | #include <linux/kernel.h> | ||
27 | #include <asm/blackfin.h> | ||
28 | #include <asm/cplbinit.h> | ||
29 | #include <asm/cplb.h> | ||
30 | #include <asm/mmu_context.h> | ||
31 | |||
32 | /* | ||
33 | * WARNING | ||
34 | * | ||
35 | * This file is compiled with certain -ffixed-reg options. We have to | ||
36 | * make sure not to call any functions here that could clobber these | ||
37 | * registers. | ||
38 | */ | ||
39 | |||
40 | int nr_dcplb_miss[NR_CPUS], nr_icplb_miss[NR_CPUS]; | ||
41 | int nr_dcplb_supv_miss[NR_CPUS], nr_icplb_supv_miss[NR_CPUS]; | ||
42 | int nr_cplb_flush[NR_CPUS], nr_dcplb_prot[NR_CPUS]; | ||
43 | |||
44 | #ifdef CONFIG_EXCPT_IRQ_SYSC_L1 | ||
45 | #define MGR_ATTR __attribute__((l1_text)) | ||
46 | #else | ||
47 | #define MGR_ATTR | ||
48 | #endif | ||
49 | |||
50 | /* | ||
51 | * We're in an exception handler. The normal cli nop nop workaround | ||
52 | * isn't going to do very much, as the only thing that can interrupt | ||
53 | * us is an NMI, and the cli isn't going to stop that. | ||
54 | */ | ||
55 | #define NOWA_SSYNC __asm__ __volatile__ ("ssync;") | ||
56 | |||
57 | /* Anomaly handlers provide SSYNCs, so avoid extra if anomaly is present */ | ||
58 | #if ANOMALY_05000125 | ||
59 | |||
60 | #define bfin_write_DMEM_CONTROL_SSYNC(v) bfin_write_DMEM_CONTROL(v) | ||
61 | #define bfin_write_IMEM_CONTROL_SSYNC(v) bfin_write_IMEM_CONTROL(v) | ||
62 | |||
63 | #else | ||
64 | |||
65 | #define bfin_write_DMEM_CONTROL_SSYNC(v) \ | ||
66 | do { NOWA_SSYNC; bfin_write_DMEM_CONTROL(v); NOWA_SSYNC; } while (0) | ||
67 | #define bfin_write_IMEM_CONTROL_SSYNC(v) \ | ||
68 | do { NOWA_SSYNC; bfin_write_IMEM_CONTROL(v); NOWA_SSYNC; } while (0) | ||
69 | |||
70 | #endif | ||
71 | |||
72 | static inline void write_dcplb_data(int cpu, int idx, unsigned long data, | ||
73 | unsigned long addr) | ||
74 | { | ||
75 | unsigned long ctrl = bfin_read_DMEM_CONTROL(); | ||
76 | bfin_write_DMEM_CONTROL_SSYNC(ctrl & ~ENDCPLB); | ||
77 | bfin_write32(DCPLB_DATA0 + idx * 4, data); | ||
78 | bfin_write32(DCPLB_ADDR0 + idx * 4, addr); | ||
79 | bfin_write_DMEM_CONTROL_SSYNC(ctrl); | ||
80 | |||
81 | #ifdef CONFIG_CPLB_INFO | ||
82 | dcplb_tbl[cpu][idx].addr = addr; | ||
83 | dcplb_tbl[cpu][idx].data = data; | ||
84 | #endif | ||
85 | } | ||
86 | |||
87 | static inline void write_icplb_data(int cpu, int idx, unsigned long data, | ||
88 | unsigned long addr) | ||
89 | { | ||
90 | unsigned long ctrl = bfin_read_IMEM_CONTROL(); | ||
91 | |||
92 | bfin_write_IMEM_CONTROL_SSYNC(ctrl & ~ENICPLB); | ||
93 | bfin_write32(ICPLB_DATA0 + idx * 4, data); | ||
94 | bfin_write32(ICPLB_ADDR0 + idx * 4, addr); | ||
95 | bfin_write_IMEM_CONTROL_SSYNC(ctrl); | ||
96 | |||
97 | #ifdef CONFIG_CPLB_INFO | ||
98 | icplb_tbl[cpu][idx].addr = addr; | ||
99 | icplb_tbl[cpu][idx].data = data; | ||
100 | #endif | ||
101 | } | ||
102 | |||
103 | /* | ||
104 | * Given the contents of the status register, return the index of the | ||
105 | * CPLB that caused the fault. | ||
106 | */ | ||
107 | static inline int faulting_cplb_index(int status) | ||
108 | { | ||
109 | int signbits = __builtin_bfin_norm_fr1x32(status & 0xFFFF); | ||
110 | return 30 - signbits; | ||
111 | } | ||
112 | |||
113 | /* | ||
114 | * Given the contents of the status register and the DCPLB_DATA contents, | ||
115 | * return true if a write access should be permitted. | ||
116 | */ | ||
117 | static inline int write_permitted(int status, unsigned long data) | ||
118 | { | ||
119 | if (status & FAULT_USERSUPV) | ||
120 | return !!(data & CPLB_SUPV_WR); | ||
121 | else | ||
122 | return !!(data & CPLB_USER_WR); | ||
123 | } | ||
124 | |||
125 | /* Counters to implement round-robin replacement. */ | ||
126 | static int icplb_rr_index[NR_CPUS] PDT_ATTR; | ||
127 | static int dcplb_rr_index[NR_CPUS] PDT_ATTR; | ||
128 | |||
129 | /* | ||
130 | * Find an ICPLB entry to be evicted and return its index. | ||
131 | */ | ||
132 | static int evict_one_icplb(int cpu) | ||
133 | { | ||
134 | int i = first_switched_icplb + icplb_rr_index[cpu]; | ||
135 | if (i >= MAX_CPLBS) { | ||
136 | i -= MAX_CPLBS - first_switched_icplb; | ||
137 | icplb_rr_index[cpu] -= MAX_CPLBS - first_switched_icplb; | ||
138 | } | ||
139 | icplb_rr_index[cpu]++; | ||
140 | return i; | ||
141 | } | ||
142 | |||
143 | static int evict_one_dcplb(int cpu) | ||
144 | { | ||
145 | int i = first_switched_dcplb + dcplb_rr_index[cpu]; | ||
146 | if (i >= MAX_CPLBS) { | ||
147 | i -= MAX_CPLBS - first_switched_dcplb; | ||
148 | dcplb_rr_index[cpu] -= MAX_CPLBS - first_switched_dcplb; | ||
149 | } | ||
150 | dcplb_rr_index[cpu]++; | ||
151 | return i; | ||
152 | } | ||
153 | |||
154 | MGR_ATTR static int icplb_miss(int cpu) | ||
155 | { | ||
156 | unsigned long addr = bfin_read_ICPLB_FAULT_ADDR(); | ||
157 | int status = bfin_read_ICPLB_STATUS(); | ||
158 | int idx; | ||
159 | unsigned long i_data, base, addr1, eaddr; | ||
160 | |||
161 | nr_icplb_miss[cpu]++; | ||
162 | if (unlikely(status & FAULT_USERSUPV)) | ||
163 | nr_icplb_supv_miss[cpu]++; | ||
164 | |||
165 | base = 0; | ||
166 | for (idx = 0; idx < icplb_nr_bounds; idx++) { | ||
167 | eaddr = icplb_bounds[idx].eaddr; | ||
168 | if (addr < eaddr) | ||
169 | break; | ||
170 | base = eaddr; | ||
171 | } | ||
172 | if (unlikely(idx == icplb_nr_bounds)) | ||
173 | return CPLB_NO_ADDR_MATCH; | ||
174 | |||
175 | i_data = icplb_bounds[idx].data; | ||
176 | if (unlikely(i_data == 0)) | ||
177 | return CPLB_NO_ADDR_MATCH; | ||
178 | |||
179 | addr1 = addr & ~(SIZE_4M - 1); | ||
180 | addr &= ~(SIZE_1M - 1); | ||
181 | i_data |= PAGE_SIZE_1MB; | ||
182 | if (addr1 >= base && (addr1 + SIZE_4M) <= eaddr) { | ||
183 | /* | ||
184 | * This works because | ||
185 | * (PAGE_SIZE_4MB & PAGE_SIZE_1MB) == PAGE_SIZE_1MB. | ||
186 | */ | ||
187 | i_data |= PAGE_SIZE_4MB; | ||
188 | addr = addr1; | ||
189 | } | ||
190 | |||
191 | /* Pick entry to evict */ | ||
192 | idx = evict_one_icplb(cpu); | ||
193 | |||
194 | write_icplb_data(cpu, idx, i_data, addr); | ||
195 | |||
196 | return CPLB_RELOADED; | ||
197 | } | ||
198 | |||
199 | MGR_ATTR static int dcplb_miss(int cpu) | ||
200 | { | ||
201 | unsigned long addr = bfin_read_DCPLB_FAULT_ADDR(); | ||
202 | int status = bfin_read_DCPLB_STATUS(); | ||
203 | int idx; | ||
204 | unsigned long d_data, base, addr1, eaddr; | ||
205 | |||
206 | nr_dcplb_miss[cpu]++; | ||
207 | if (unlikely(status & FAULT_USERSUPV)) | ||
208 | nr_dcplb_supv_miss[cpu]++; | ||
209 | |||
210 | base = 0; | ||
211 | for (idx = 0; idx < dcplb_nr_bounds; idx++) { | ||
212 | eaddr = dcplb_bounds[idx].eaddr; | ||
213 | if (addr < eaddr) | ||
214 | break; | ||
215 | base = eaddr; | ||
216 | } | ||
217 | if (unlikely(idx == dcplb_nr_bounds)) | ||
218 | return CPLB_NO_ADDR_MATCH; | ||
219 | |||
220 | d_data = dcplb_bounds[idx].data; | ||
221 | if (unlikely(d_data == 0)) | ||
222 | return CPLB_NO_ADDR_MATCH; | ||
223 | |||
224 | addr1 = addr & ~(SIZE_4M - 1); | ||
225 | addr &= ~(SIZE_1M - 1); | ||
226 | d_data |= PAGE_SIZE_1MB; | ||
227 | if (addr1 >= base && (addr1 + SIZE_4M) <= eaddr) { | ||
228 | /* | ||
229 | * This works because | ||
230 | * (PAGE_SIZE_4MB & PAGE_SIZE_1MB) == PAGE_SIZE_1MB. | ||
231 | */ | ||
232 | d_data |= PAGE_SIZE_4MB; | ||
233 | addr = addr1; | ||
234 | } | ||
235 | |||
236 | /* Pick entry to evict */ | ||
237 | idx = evict_one_dcplb(cpu); | ||
238 | |||
239 | write_dcplb_data(cpu, idx, d_data, addr); | ||
240 | |||
241 | return CPLB_RELOADED; | ||
242 | } | ||
243 | |||
244 | MGR_ATTR static noinline int dcplb_protection_fault(int cpu) | ||
245 | { | ||
246 | int status = bfin_read_DCPLB_STATUS(); | ||
247 | |||
248 | nr_dcplb_prot[cpu]++; | ||
249 | |||
250 | if (likely(status & FAULT_RW)) { | ||
251 | int idx = faulting_cplb_index(status); | ||
252 | unsigned long regaddr = DCPLB_DATA0 + idx * 4; | ||
253 | unsigned long data = bfin_read32(regaddr); | ||
254 | |||
255 | /* Check if fault is to dirty a clean page */ | ||
256 | if (!(data & CPLB_WT) && !(data & CPLB_DIRTY) && | ||
257 | write_permitted(status, data)) { | ||
258 | |||
259 | dcplb_tbl[cpu][idx].data = data; | ||
260 | bfin_write32(regaddr, data); | ||
261 | return CPLB_RELOADED; | ||
262 | } | ||
263 | } | ||
264 | |||
265 | return CPLB_PROT_VIOL; | ||
266 | } | ||
267 | |||
268 | MGR_ATTR int cplb_hdr(int seqstat, struct pt_regs *regs) | ||
269 | { | ||
270 | int cause = seqstat & 0x3f; | ||
271 | unsigned int cpu = smp_processor_id(); | ||
272 | switch (cause) { | ||
273 | case 0x2C: | ||
274 | return icplb_miss(cpu); | ||
275 | case 0x26: | ||
276 | return dcplb_miss(cpu); | ||
277 | default: | ||
278 | if (unlikely(cause == 0x23)) | ||
279 | return dcplb_protection_fault(cpu); | ||
280 | |||
281 | return CPLB_UNKNOWN_ERR; | ||
282 | } | ||
283 | } | ||