diff options
Diffstat (limited to 'arch/blackfin/kernel/cplb-nompu/cplbmgr.S')
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbmgr.S | 646 |
1 files changed, 0 insertions, 646 deletions
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S b/arch/blackfin/kernel/cplb-nompu/cplbmgr.S deleted file mode 100644 index f5cf3accef37..000000000000 --- a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S +++ /dev/null | |||
@@ -1,646 +0,0 @@ | |||
1 | /* | ||
2 | * File: arch/blackfin/mach-common/cplbmgtr.S | ||
3 | * Based on: | ||
4 | * Author: LG Soft India | ||
5 | * | ||
6 | * Created: ? | ||
7 | * Description: CPLB replacement routine for CPLB mismatch | ||
8 | * | ||
9 | * Modified: | ||
10 | * Copyright 2004-2006 Analog Devices Inc. | ||
11 | * | ||
12 | * Bugs: Enter bugs at http://blackfin.uclinux.org/ | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or modify | ||
15 | * it under the terms of the GNU General Public License as published by | ||
16 | * the Free Software Foundation; either version 2 of the License, or | ||
17 | * (at your option) any later version. | ||
18 | * | ||
19 | * This program is distributed in the hope that it will be useful, | ||
20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
22 | * GNU General Public License for more details. | ||
23 | * | ||
24 | * You should have received a copy of the GNU General Public License | ||
25 | * along with this program; if not, see the file COPYING, or write | ||
26 | * to the Free Software Foundation, Inc., | ||
27 | * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
28 | */ | ||
29 | |||
30 | /* Usage: int _cplb_mgr(is_data_miss,int enable_cache) | ||
31 | * is_data_miss==2 => Mark as Dirty, write to the clean data page | ||
32 | * is_data_miss==1 => Replace a data CPLB. | ||
33 | * is_data_miss==0 => Replace an instruction CPLB. | ||
34 | * | ||
35 | * Returns: | ||
36 | * CPLB_RELOADED => Successfully updated CPLB table. | ||
37 | * CPLB_NO_UNLOCKED => All CPLBs are locked, so cannot be evicted. | ||
38 | * This indicates that the CPLBs in the configuration | ||
39 | * tablei are badly configured, as this should never | ||
40 | * occur. | ||
41 | * CPLB_NO_ADDR_MATCH => The address being accessed, that triggered the | ||
42 | * exception, is not covered by any of the CPLBs in | ||
43 | * the configuration table. The application is | ||
44 | * presumably misbehaving. | ||
45 | * CPLB_PROT_VIOL => The address being accessed, that triggered the | ||
46 | * exception, was not a first-write to a clean Write | ||
47 | * Back Data page, and so presumably is a genuine | ||
48 | * violation of the page's protection attributes. | ||
49 | * The application is misbehaving. | ||
50 | */ | ||
51 | |||
52 | #include <linux/linkage.h> | ||
53 | #include <asm/blackfin.h> | ||
54 | #include <asm/cplb.h> | ||
55 | |||
56 | #ifdef CONFIG_EXCPT_IRQ_SYSC_L1 | ||
57 | .section .l1.text | ||
58 | #else | ||
59 | .text | ||
60 | #endif | ||
61 | |||
62 | .align 2; | ||
63 | ENTRY(_cplb_mgr) | ||
64 | |||
65 | [--SP]=( R7:4,P5:3 ); | ||
66 | |||
67 | CC = R0 == 2; | ||
68 | IF CC JUMP .Ldcplb_write; | ||
69 | |||
70 | CC = R0 == 0; | ||
71 | IF !CC JUMP .Ldcplb_miss_compare; | ||
72 | |||
73 | /* ICPLB Miss Exception. We need to choose one of the | ||
74 | * currently-installed CPLBs, and replace it with one | ||
75 | * from the configuration table. | ||
76 | */ | ||
77 | |||
78 | /* A multi-word instruction can cross a page boundary. This means the | ||
79 | * first part of the instruction can be in a valid page, but the | ||
80 | * second part is not, and hence generates the instruction miss. | ||
81 | * However, the fault address is for the start of the instruction, | ||
82 | * not the part that's in the bad page. Therefore, we have to check | ||
83 | * whether the fault address applies to a page that is already present | ||
84 | * in the table. | ||
85 | */ | ||
86 | |||
87 | P4.L = LO(ICPLB_FAULT_ADDR); | ||
88 | P4.H = HI(ICPLB_FAULT_ADDR); | ||
89 | |||
90 | P1 = 16; | ||
91 | P5.L = _page_size_table; | ||
92 | P5.H = _page_size_table; | ||
93 | |||
94 | P0.L = LO(ICPLB_DATA0); | ||
95 | P0.H = HI(ICPLB_DATA0); | ||
96 | R4 = [P4]; /* Get faulting address*/ | ||
97 | R6 = 64; /* Advance past the fault address, which*/ | ||
98 | R6 = R6 + R4; /* we'll use if we find a match*/ | ||
99 | R3 = ((16 << 8) | 2); /* Extract mask, two bits at posn 16 */ | ||
100 | |||
101 | R5 = 0; | ||
102 | .Lisearch: | ||
103 | |||
104 | R1 = [P0-0x100]; /* Address for this CPLB */ | ||
105 | |||
106 | R0 = [P0++]; /* Info for this CPLB*/ | ||
107 | CC = BITTST(R0,0); /* Is the CPLB valid?*/ | ||
108 | IF !CC JUMP .Lnomatch; /* Skip it, if not.*/ | ||
109 | CC = R4 < R1(IU); /* If fault address less than page start*/ | ||
110 | IF CC JUMP .Lnomatch; /* then skip this one.*/ | ||
111 | R2 = EXTRACT(R0,R3.L) (Z); /* Get page size*/ | ||
112 | P1 = R2; | ||
113 | P1 = P5 + (P1<<2); /* index into page-size table*/ | ||
114 | R2 = [P1]; /* Get the page size*/ | ||
115 | R1 = R1 + R2; /* and add to page start, to get page end*/ | ||
116 | CC = R4 < R1(IU); /* and see whether fault addr is in page.*/ | ||
117 | IF !CC R4 = R6; /* If so, advance the address and finish loop.*/ | ||
118 | IF !CC JUMP .Lisearch_done; | ||
119 | .Lnomatch: | ||
120 | /* Go around again*/ | ||
121 | R5 += 1; | ||
122 | CC = BITTST(R5, 4); /* i.e CC = R5 >= 16*/ | ||
123 | IF !CC JUMP .Lisearch; | ||
124 | |||
125 | .Lisearch_done: | ||
126 | I0 = R4; /* Fault address we'll search for*/ | ||
127 | |||
128 | /* set up pointers */ | ||
129 | P0.L = LO(ICPLB_DATA0); | ||
130 | P0.H = HI(ICPLB_DATA0); | ||
131 | |||
132 | /* The replacement procedure for ICPLBs */ | ||
133 | |||
134 | P4.L = LO(IMEM_CONTROL); | ||
135 | P4.H = HI(IMEM_CONTROL); | ||
136 | |||
137 | /* Turn off CPLBs while we work, necessary according to HRM before | ||
138 | * modifying CPLB descriptors | ||
139 | */ | ||
140 | R5 = [P4]; /* Control Register*/ | ||
141 | BITCLR(R5,ENICPLB_P); | ||
142 | CLI R1; | ||
143 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
144 | .align 8; | ||
145 | [P4] = R5; | ||
146 | SSYNC; | ||
147 | STI R1; | ||
148 | |||
149 | R1 = -1; /* end point comparison */ | ||
150 | R3 = 16; /* counter */ | ||
151 | |||
152 | /* Search through CPLBs for first non-locked entry */ | ||
153 | /* Overwrite it by moving everyone else up by 1 */ | ||
154 | .Licheck_lock: | ||
155 | R0 = [P0++]; | ||
156 | R3 = R3 + R1; | ||
157 | CC = R3 == R1; | ||
158 | IF CC JUMP .Lall_locked; | ||
159 | CC = BITTST(R0, 0); /* an invalid entry is good */ | ||
160 | IF !CC JUMP .Lifound_victim; | ||
161 | CC = BITTST(R0,1); /* but a locked entry isn't */ | ||
162 | IF CC JUMP .Licheck_lock; | ||
163 | |||
164 | .Lifound_victim: | ||
165 | #ifdef CONFIG_CPLB_INFO | ||
166 | R7 = [P0 - 0x104]; | ||
167 | P2.L = _ipdt_table; | ||
168 | P2.H = _ipdt_table; | ||
169 | P3.L = _ipdt_swapcount_table; | ||
170 | P3.H = _ipdt_swapcount_table; | ||
171 | P3 += -4; | ||
172 | .Licount: | ||
173 | R2 = [P2]; /* address from config table */ | ||
174 | P2 += 8; | ||
175 | P3 += 8; | ||
176 | CC = R2==-1; | ||
177 | IF CC JUMP .Licount_done; | ||
178 | CC = R7==R2; | ||
179 | IF !CC JUMP .Licount; | ||
180 | R7 = [P3]; | ||
181 | R7 += 1; | ||
182 | [P3] = R7; | ||
183 | CSYNC; | ||
184 | .Licount_done: | ||
185 | #endif | ||
186 | LC0=R3; | ||
187 | LSETUP(.Lis_move,.Lie_move) LC0; | ||
188 | .Lis_move: | ||
189 | R0 = [P0]; | ||
190 | [P0 - 4] = R0; | ||
191 | R0 = [P0 - 0x100]; | ||
192 | [P0-0x104] = R0; | ||
193 | .Lie_move: | ||
194 | P0+=4; | ||
195 | |||
196 | /* Clear ICPLB_DATA15, in case we don't find a replacement | ||
197 | * otherwise, we would have a duplicate entry, and will crash | ||
198 | */ | ||
199 | R0 = 0; | ||
200 | [P0 - 4] = R0; | ||
201 | |||
202 | /* We've made space in the ICPLB table, so that ICPLB15 | ||
203 | * is now free to be overwritten. Next, we have to determine | ||
204 | * which CPLB we need to install, from the configuration | ||
205 | * table. This is a matter of getting the start-of-page | ||
206 | * addresses and page-lengths from the config table, and | ||
207 | * determining whether the fault address falls within that | ||
208 | * range. | ||
209 | */ | ||
210 | |||
211 | P2.L = _ipdt_table; | ||
212 | P2.H = _ipdt_table; | ||
213 | #ifdef CONFIG_CPLB_INFO | ||
214 | P3.L = _ipdt_swapcount_table; | ||
215 | P3.H = _ipdt_swapcount_table; | ||
216 | P3 += -8; | ||
217 | #endif | ||
218 | P0.L = _page_size_table; | ||
219 | P0.H = _page_size_table; | ||
220 | |||
221 | /* Retrieve our fault address (which may have been advanced | ||
222 | * because the faulting instruction crossed a page boundary). | ||
223 | */ | ||
224 | |||
225 | R0 = I0; | ||
226 | |||
227 | /* An extraction pattern, to get the page-size bits from | ||
228 | * the CPLB data entry. Bits 16-17, so two bits at posn 16. | ||
229 | */ | ||
230 | |||
231 | R1 = ((16<<8)|2); | ||
232 | .Linext: R4 = [P2++]; /* address from config table */ | ||
233 | R2 = [P2++]; /* data from config table */ | ||
234 | #ifdef CONFIG_CPLB_INFO | ||
235 | P3 += 8; | ||
236 | #endif | ||
237 | |||
238 | CC = R4 == -1; /* End of config table*/ | ||
239 | IF CC JUMP .Lno_page_in_table; | ||
240 | |||
241 | /* See if failed address > start address */ | ||
242 | CC = R4 <= R0(IU); | ||
243 | IF !CC JUMP .Linext; | ||
244 | |||
245 | /* extract page size (17:16)*/ | ||
246 | R3 = EXTRACT(R2, R1.L) (Z); | ||
247 | |||
248 | /* add page size to addr to get range */ | ||
249 | |||
250 | P5 = R3; | ||
251 | P5 = P0 + (P5 << 2); /* scaled, for int access*/ | ||
252 | R3 = [P5]; | ||
253 | R3 = R3 + R4; | ||
254 | |||
255 | /* See if failed address < (start address + page size) */ | ||
256 | CC = R0 < R3(IU); | ||
257 | IF !CC JUMP .Linext; | ||
258 | |||
259 | /* We've found a CPLB in the config table that covers | ||
260 | * the faulting address, so install this CPLB into the | ||
261 | * last entry of the table. | ||
262 | */ | ||
263 | |||
264 | P1.L = LO(ICPLB_DATA15); /* ICPLB_DATA15 */ | ||
265 | P1.H = HI(ICPLB_DATA15); | ||
266 | [P1] = R2; | ||
267 | [P1-0x100] = R4; | ||
268 | #ifdef CONFIG_CPLB_INFO | ||
269 | R3 = [P3]; | ||
270 | R3 += 1; | ||
271 | [P3] = R3; | ||
272 | #endif | ||
273 | |||
274 | /* P4 points to IMEM_CONTROL, and R5 contains its old | ||
275 | * value, after we disabled ICPLBS. Re-enable them. | ||
276 | */ | ||
277 | |||
278 | BITSET(R5,ENICPLB_P); | ||
279 | CLI R2; | ||
280 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
281 | .align 8; | ||
282 | [P4] = R5; | ||
283 | SSYNC; | ||
284 | STI R2; | ||
285 | |||
286 | ( R7:4,P5:3 ) = [SP++]; | ||
287 | R0 = CPLB_RELOADED; | ||
288 | RTS; | ||
289 | |||
290 | /* FAILED CASES*/ | ||
291 | .Lno_page_in_table: | ||
292 | R0 = CPLB_NO_ADDR_MATCH; | ||
293 | JUMP .Lfail_ret; | ||
294 | |||
295 | .Lall_locked: | ||
296 | R0 = CPLB_NO_UNLOCKED; | ||
297 | JUMP .Lfail_ret; | ||
298 | |||
299 | .Lprot_violation: | ||
300 | R0 = CPLB_PROT_VIOL; | ||
301 | |||
302 | .Lfail_ret: | ||
303 | /* Make sure we turn protection/cache back on, even in the failing case */ | ||
304 | BITSET(R5,ENICPLB_P); | ||
305 | CLI R2; | ||
306 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
307 | .align 8; | ||
308 | [P4] = R5; | ||
309 | SSYNC; | ||
310 | STI R2; | ||
311 | |||
312 | ( R7:4,P5:3 ) = [SP++]; | ||
313 | RTS; | ||
314 | |||
315 | .Ldcplb_write: | ||
316 | |||
317 | /* if a DCPLB is marked as write-back (CPLB_WT==0), and | ||
318 | * it is clean (CPLB_DIRTY==0), then a write to the | ||
319 | * CPLB's page triggers a protection violation. We have to | ||
320 | * mark the CPLB as dirty, to indicate that there are | ||
321 | * pending writes associated with the CPLB. | ||
322 | */ | ||
323 | |||
324 | P4.L = LO(DCPLB_STATUS); | ||
325 | P4.H = HI(DCPLB_STATUS); | ||
326 | P3.L = LO(DCPLB_DATA0); | ||
327 | P3.H = HI(DCPLB_DATA0); | ||
328 | R5 = [P4]; | ||
329 | |||
330 | /* A protection violation can be caused by more than just writes | ||
331 | * to a clean WB page, so we have to ensure that: | ||
332 | * - It's a write | ||
333 | * - to a clean WB page | ||
334 | * - and is allowed in the mode the access occurred. | ||
335 | */ | ||
336 | |||
337 | CC = BITTST(R5, 16); /* ensure it was a write*/ | ||
338 | IF !CC JUMP .Lprot_violation; | ||
339 | |||
340 | /* to check the rest, we have to retrieve the DCPLB.*/ | ||
341 | |||
342 | /* The low half of DCPLB_STATUS is a bit mask*/ | ||
343 | |||
344 | R2 = R5.L (Z); /* indicating which CPLB triggered the event.*/ | ||
345 | R3 = 30; /* so we can use this to determine the offset*/ | ||
346 | R2.L = SIGNBITS R2; | ||
347 | R2 = R2.L (Z); /* into the DCPLB table.*/ | ||
348 | R3 = R3 - R2; | ||
349 | P4 = R3; | ||
350 | P3 = P3 + (P4<<2); | ||
351 | R3 = [P3]; /* Retrieve the CPLB*/ | ||
352 | |||
353 | /* Now we can check whether it's a clean WB page*/ | ||
354 | |||
355 | CC = BITTST(R3, 14); /* 0==WB, 1==WT*/ | ||
356 | IF CC JUMP .Lprot_violation; | ||
357 | CC = BITTST(R3, 7); /* 0 == clean, 1 == dirty*/ | ||
358 | IF CC JUMP .Lprot_violation; | ||
359 | |||
360 | /* Check whether the write is allowed in the mode that was active.*/ | ||
361 | |||
362 | R2 = 1<<3; /* checking write in user mode*/ | ||
363 | CC = BITTST(R5, 17); /* 0==was user, 1==was super*/ | ||
364 | R5 = CC; | ||
365 | R2 <<= R5; /* if was super, check write in super mode*/ | ||
366 | R2 = R3 & R2; | ||
367 | CC = R2 == 0; | ||
368 | IF CC JUMP .Lprot_violation; | ||
369 | |||
370 | /* It's a genuine write-to-clean-page.*/ | ||
371 | |||
372 | BITSET(R3, 7); /* mark as dirty*/ | ||
373 | [P3] = R3; /* and write back.*/ | ||
374 | NOP; | ||
375 | CSYNC; | ||
376 | ( R7:4,P5:3 ) = [SP++]; | ||
377 | R0 = CPLB_RELOADED; | ||
378 | RTS; | ||
379 | |||
380 | .Ldcplb_miss_compare: | ||
381 | |||
382 | /* Data CPLB Miss event. We need to choose a CPLB to | ||
383 | * evict, and then locate a new CPLB to install from the | ||
384 | * config table, that covers the faulting address. | ||
385 | */ | ||
386 | |||
387 | P1.L = LO(DCPLB_DATA15); | ||
388 | P1.H = HI(DCPLB_DATA15); | ||
389 | |||
390 | P4.L = LO(DCPLB_FAULT_ADDR); | ||
391 | P4.H = HI(DCPLB_FAULT_ADDR); | ||
392 | R4 = [P4]; | ||
393 | I0 = R4; | ||
394 | |||
395 | /* The replacement procedure for DCPLBs*/ | ||
396 | |||
397 | R6 = R1; /* Save for later*/ | ||
398 | |||
399 | /* Turn off CPLBs while we work.*/ | ||
400 | P4.L = LO(DMEM_CONTROL); | ||
401 | P4.H = HI(DMEM_CONTROL); | ||
402 | R5 = [P4]; | ||
403 | BITCLR(R5,ENDCPLB_P); | ||
404 | CLI R0; | ||
405 | SSYNC; /* SSYNC required before writing to DMEM_CONTROL. */ | ||
406 | .align 8; | ||
407 | [P4] = R5; | ||
408 | SSYNC; | ||
409 | STI R0; | ||
410 | |||
411 | /* Start looking for a CPLB to evict. Our order of preference | ||
412 | * is: invalid CPLBs, clean CPLBs, dirty CPLBs. Locked CPLBs | ||
413 | * are no good. | ||
414 | */ | ||
415 | |||
416 | I1.L = LO(DCPLB_DATA0); | ||
417 | I1.H = HI(DCPLB_DATA0); | ||
418 | P1 = 2; | ||
419 | P2 = 16; | ||
420 | I2.L = _dcplb_preference; | ||
421 | I2.H = _dcplb_preference; | ||
422 | LSETUP(.Lsdsearch1, .Ledsearch1) LC0 = P1; | ||
423 | .Lsdsearch1: | ||
424 | R0 = [I2++]; /* Get the bits we're interested in*/ | ||
425 | P0 = I1; /* Go back to start of table*/ | ||
426 | LSETUP (.Lsdsearch2, .Ledsearch2) LC1 = P2; | ||
427 | .Lsdsearch2: | ||
428 | R1 = [P0++]; /* Fetch each installed CPLB in turn*/ | ||
429 | R2 = R1 & R0; /* and test for interesting bits.*/ | ||
430 | CC = R2 == 0; /* If none are set, it'll do.*/ | ||
431 | IF !CC JUMP .Lskip_stack_check; | ||
432 | |||
433 | R2 = [P0 - 0x104]; /* R2 - PageStart */ | ||
434 | P3.L = _page_size_table; /* retrieve end address */ | ||
435 | P3.H = _page_size_table; /* retrieve end address */ | ||
436 | R3 = 0x1002; /* 16th - position, 2 bits -length */ | ||
437 | #if ANOMALY_05000209 | ||
438 | nop; /* Anomaly 05000209 */ | ||
439 | #endif | ||
440 | R7 = EXTRACT(R1,R3.l); | ||
441 | R7 = R7 << 2; /* Page size index offset */ | ||
442 | P5 = R7; | ||
443 | P3 = P3 + P5; | ||
444 | R7 = [P3]; /* page size in bytes */ | ||
445 | |||
446 | R7 = R2 + R7; /* R7 - PageEnd */ | ||
447 | R4 = SP; /* Test SP is in range */ | ||
448 | |||
449 | CC = R7 < R4; /* if PageEnd < SP */ | ||
450 | IF CC JUMP .Ldfound_victim; | ||
451 | R3 = 0x284; /* stack length from start of trap till | ||
452 | * the point. | ||
453 | * 20 stack locations for future modifications | ||
454 | */ | ||
455 | R4 = R4 + R3; | ||
456 | CC = R4 < R2; /* if SP + stacklen < PageStart */ | ||
457 | IF CC JUMP .Ldfound_victim; | ||
458 | .Lskip_stack_check: | ||
459 | |||
460 | .Ledsearch2: NOP; | ||
461 | .Ledsearch1: NOP; | ||
462 | |||
463 | /* If we got here, we didn't find a DCPLB we considered | ||
464 | * replacable, which means all of them were locked. | ||
465 | */ | ||
466 | |||
467 | JUMP .Lall_locked; | ||
468 | .Ldfound_victim: | ||
469 | |||
470 | #ifdef CONFIG_CPLB_INFO | ||
471 | R7 = [P0 - 0x104]; | ||
472 | P2.L = _dpdt_table; | ||
473 | P2.H = _dpdt_table; | ||
474 | P3.L = _dpdt_swapcount_table; | ||
475 | P3.H = _dpdt_swapcount_table; | ||
476 | P3 += -4; | ||
477 | .Ldicount: | ||
478 | R2 = [P2]; | ||
479 | P2 += 8; | ||
480 | P3 += 8; | ||
481 | CC = R2==-1; | ||
482 | IF CC JUMP .Ldicount_done; | ||
483 | CC = R7==R2; | ||
484 | IF !CC JUMP .Ldicount; | ||
485 | R7 = [P3]; | ||
486 | R7 += 1; | ||
487 | [P3] = R7; | ||
488 | .Ldicount_done: | ||
489 | #endif | ||
490 | |||
491 | /* Clean down the hardware loops*/ | ||
492 | R2 = 0; | ||
493 | LC1 = R2; | ||
494 | LC0 = R2; | ||
495 | |||
496 | /* There's a suitable victim in [P0-4] (because we've | ||
497 | * advanced already). | ||
498 | */ | ||
499 | |||
500 | .LDdoverwrite: | ||
501 | |||
502 | /* [P0-4] is a suitable victim CPLB, so we want to | ||
503 | * overwrite it by moving all the following CPLBs | ||
504 | * one space closer to the start. | ||
505 | */ | ||
506 | |||
507 | R1.L = LO(DCPLB_DATA16); /* DCPLB_DATA15 + 4 */ | ||
508 | R1.H = HI(DCPLB_DATA16); | ||
509 | R0 = P0; | ||
510 | |||
511 | /* If the victim happens to be in DCPLB15, | ||
512 | * we don't need to move anything. | ||
513 | */ | ||
514 | |||
515 | CC = R1 == R0; | ||
516 | IF CC JUMP .Lde_moved; | ||
517 | R1 = R1 - R0; | ||
518 | R1 >>= 2; | ||
519 | P1 = R1; | ||
520 | LSETUP(.Lds_move, .Lde_move) LC0=P1; | ||
521 | .Lds_move: | ||
522 | R0 = [P0++]; /* move data */ | ||
523 | [P0 - 8] = R0; | ||
524 | R0 = [P0-0x104] /* move address */ | ||
525 | .Lde_move: | ||
526 | [P0-0x108] = R0; | ||
527 | |||
528 | .Lde_moved: | ||
529 | NOP; | ||
530 | |||
531 | /* Clear DCPLB_DATA15, in case we don't find a replacement | ||
532 | * otherwise, we would have a duplicate entry, and will crash | ||
533 | */ | ||
534 | R0 = 0; | ||
535 | [P0 - 0x4] = R0; | ||
536 | |||
537 | /* We've now made space in DCPLB15 for the new CPLB to be | ||
538 | * installed. The next stage is to locate a CPLB in the | ||
539 | * config table that covers the faulting address. | ||
540 | */ | ||
541 | |||
542 | R0 = I0; /* Our faulting address */ | ||
543 | |||
544 | P2.L = _dpdt_table; | ||
545 | P2.H = _dpdt_table; | ||
546 | #ifdef CONFIG_CPLB_INFO | ||
547 | P3.L = _dpdt_swapcount_table; | ||
548 | P3.H = _dpdt_swapcount_table; | ||
549 | P3 += -8; | ||
550 | #endif | ||
551 | |||
552 | P1.L = _page_size_table; | ||
553 | P1.H = _page_size_table; | ||
554 | |||
555 | /* An extraction pattern, to retrieve bits 17:16.*/ | ||
556 | |||
557 | R1 = (16<<8)|2; | ||
558 | .Ldnext: R4 = [P2++]; /* address */ | ||
559 | R2 = [P2++]; /* data */ | ||
560 | #ifdef CONFIG_CPLB_INFO | ||
561 | P3 += 8; | ||
562 | #endif | ||
563 | |||
564 | CC = R4 == -1; | ||
565 | IF CC JUMP .Lno_page_in_table; | ||
566 | |||
567 | /* See if failed address > start address */ | ||
568 | CC = R4 <= R0(IU); | ||
569 | IF !CC JUMP .Ldnext; | ||
570 | |||
571 | /* extract page size (17:16)*/ | ||
572 | R3 = EXTRACT(R2, R1.L) (Z); | ||
573 | |||
574 | /* add page size to addr to get range */ | ||
575 | |||
576 | P5 = R3; | ||
577 | P5 = P1 + (P5 << 2); | ||
578 | R3 = [P5]; | ||
579 | R3 = R3 + R4; | ||
580 | |||
581 | /* See if failed address < (start address + page size) */ | ||
582 | CC = R0 < R3(IU); | ||
583 | IF !CC JUMP .Ldnext; | ||
584 | |||
585 | /* We've found the CPLB that should be installed, so | ||
586 | * write it into CPLB15, masking off any caching bits | ||
587 | * if necessary. | ||
588 | */ | ||
589 | |||
590 | P1.L = LO(DCPLB_DATA15); | ||
591 | P1.H = HI(DCPLB_DATA15); | ||
592 | |||
593 | /* If the DCPLB has cache bits set, but caching hasn't | ||
594 | * been enabled, then we want to mask off the cache-in-L1 | ||
595 | * bit before installing. Moreover, if caching is off, we | ||
596 | * also want to ensure that the DCPLB has WT mode set, rather | ||
597 | * than WB, since WB pages still trigger first-write exceptions | ||
598 | * even when not caching is off, and the page isn't marked as | ||
599 | * cachable. Finally, we could mark the page as clean, not dirty, | ||
600 | * but we choose to leave that decision to the user; if the user | ||
601 | * chooses to have a CPLB pre-defined as dirty, then they always | ||
602 | * pay the cost of flushing during eviction, but don't pay the | ||
603 | * cost of first-write exceptions to mark the page as dirty. | ||
604 | */ | ||
605 | |||
606 | #ifdef CONFIG_BFIN_WT | ||
607 | BITSET(R6, 14); /* Set WT*/ | ||
608 | #endif | ||
609 | |||
610 | [P1] = R2; | ||
611 | [P1-0x100] = R4; | ||
612 | #ifdef CONFIG_CPLB_INFO | ||
613 | R3 = [P3]; | ||
614 | R3 += 1; | ||
615 | [P3] = R3; | ||
616 | #endif | ||
617 | |||
618 | /* We've installed the CPLB, so re-enable CPLBs. P4 | ||
619 | * points to DMEM_CONTROL, and R5 is the value we | ||
620 | * last wrote to it, when we were disabling CPLBs. | ||
621 | */ | ||
622 | |||
623 | BITSET(R5,ENDCPLB_P); | ||
624 | CLI R2; | ||
625 | .align 8; | ||
626 | [P4] = R5; | ||
627 | SSYNC; | ||
628 | STI R2; | ||
629 | |||
630 | ( R7:4,P5:3 ) = [SP++]; | ||
631 | R0 = CPLB_RELOADED; | ||
632 | RTS; | ||
633 | ENDPROC(_cplb_mgr) | ||
634 | |||
635 | .data | ||
636 | .align 4; | ||
637 | _page_size_table: | ||
638 | .byte4 0x00000400; /* 1K */ | ||
639 | .byte4 0x00001000; /* 4K */ | ||
640 | .byte4 0x00100000; /* 1M */ | ||
641 | .byte4 0x00400000; /* 4M */ | ||
642 | |||
643 | .align 4; | ||
644 | _dcplb_preference: | ||
645 | .byte4 0x00000001; /* valid bit */ | ||
646 | .byte4 0x00000002; /* lock bit */ | ||