aboutsummaryrefslogtreecommitdiffstats
path: root/arch/avr32/kernel/setup.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/avr32/kernel/setup.c')
-rw-r--r--arch/avr32/kernel/setup.c335
1 files changed, 335 insertions, 0 deletions
diff --git a/arch/avr32/kernel/setup.c b/arch/avr32/kernel/setup.c
new file mode 100644
index 000000000000..5d68f3c6990b
--- /dev/null
+++ b/arch/avr32/kernel/setup.c
@@ -0,0 +1,335 @@
1/*
2 * Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/clk.h>
10#include <linux/init.h>
11#include <linux/sched.h>
12#include <linux/console.h>
13#include <linux/ioport.h>
14#include <linux/bootmem.h>
15#include <linux/fs.h>
16#include <linux/module.h>
17#include <linux/root_dev.h>
18#include <linux/cpu.h>
19
20#include <asm/sections.h>
21#include <asm/processor.h>
22#include <asm/pgtable.h>
23#include <asm/setup.h>
24#include <asm/sysreg.h>
25
26#include <asm/arch/board.h>
27#include <asm/arch/init.h>
28
29extern int root_mountflags;
30
31/*
32 * Bootloader-provided information about physical memory
33 */
34struct tag_mem_range *mem_phys;
35struct tag_mem_range *mem_reserved;
36struct tag_mem_range *mem_ramdisk;
37
38/*
39 * Initialize loops_per_jiffy as 5000000 (500MIPS).
40 * Better make it too large than too small...
41 */
42struct avr32_cpuinfo boot_cpu_data = {
43 .loops_per_jiffy = 5000000
44};
45EXPORT_SYMBOL(boot_cpu_data);
46
47static char command_line[COMMAND_LINE_SIZE];
48
49/*
50 * Should be more than enough, but if you have a _really_ complex
51 * setup, you might need to increase the size of this...
52 */
53static struct tag_mem_range __initdata mem_range_cache[32];
54static unsigned mem_range_next_free;
55
56/*
57 * Standard memory resources
58 */
59static struct resource mem_res[] = {
60 {
61 .name = "Kernel code",
62 .start = 0,
63 .end = 0,
64 .flags = IORESOURCE_MEM
65 },
66 {
67 .name = "Kernel data",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_MEM,
71 },
72};
73
74#define kernel_code mem_res[0]
75#define kernel_data mem_res[1]
76
77/*
78 * Early framebuffer allocation. Works as follows:
79 * - If fbmem_size is zero, nothing will be allocated or reserved.
80 * - If fbmem_start is zero when setup_bootmem() is called,
81 * fbmem_size bytes will be allocated from the bootmem allocator.
82 * - If fbmem_start is nonzero, an area of size fbmem_size will be
83 * reserved at the physical address fbmem_start if necessary. If
84 * the area isn't in a memory region known to the kernel, it will
85 * be left alone.
86 *
87 * Board-specific code may use these variables to set up platform data
88 * for the framebuffer driver if fbmem_size is nonzero.
89 */
90static unsigned long __initdata fbmem_start;
91static unsigned long __initdata fbmem_size;
92
93/*
94 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
95 * use as framebuffer.
96 *
97 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
98 * starting at yyy to be reserved for use as framebuffer.
99 *
100 * The kernel won't verify that the memory region starting at yyy
101 * actually contains usable RAM.
102 */
103static int __init early_parse_fbmem(char *p)
104{
105 fbmem_size = memparse(p, &p);
106 if (*p == '@')
107 fbmem_start = memparse(p, &p);
108 return 0;
109}
110early_param("fbmem", early_parse_fbmem);
111
112static inline void __init resource_init(void)
113{
114 struct tag_mem_range *region;
115
116 kernel_code.start = __pa(init_mm.start_code);
117 kernel_code.end = __pa(init_mm.end_code - 1);
118 kernel_data.start = __pa(init_mm.end_code);
119 kernel_data.end = __pa(init_mm.brk - 1);
120
121 for (region = mem_phys; region; region = region->next) {
122 struct resource *res;
123 unsigned long phys_start, phys_end;
124
125 if (region->size == 0)
126 continue;
127
128 phys_start = region->addr;
129 phys_end = phys_start + region->size - 1;
130
131 res = alloc_bootmem_low(sizeof(*res));
132 res->name = "System RAM";
133 res->start = phys_start;
134 res->end = phys_end;
135 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
136
137 request_resource (&iomem_resource, res);
138
139 if (kernel_code.start >= res->start &&
140 kernel_code.end <= res->end)
141 request_resource (res, &kernel_code);
142 if (kernel_data.start >= res->start &&
143 kernel_data.end <= res->end)
144 request_resource (res, &kernel_data);
145 }
146}
147
148static int __init parse_tag_core(struct tag *tag)
149{
150 if (tag->hdr.size > 2) {
151 if ((tag->u.core.flags & 1) == 0)
152 root_mountflags &= ~MS_RDONLY;
153 ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
154 }
155 return 0;
156}
157__tagtable(ATAG_CORE, parse_tag_core);
158
159static int __init parse_tag_mem_range(struct tag *tag,
160 struct tag_mem_range **root)
161{
162 struct tag_mem_range *cur, **pprev;
163 struct tag_mem_range *new;
164
165 /*
166 * Ignore zero-sized entries. If we're running standalone, the
167 * SDRAM code may emit such entries if something goes
168 * wrong...
169 */
170 if (tag->u.mem_range.size == 0)
171 return 0;
172
173 /*
174 * Copy the data so the bootmem init code doesn't need to care
175 * about it.
176 */
177 if (mem_range_next_free >=
178 (sizeof(mem_range_cache) / sizeof(mem_range_cache[0])))
179 panic("Physical memory map too complex!\n");
180
181 new = &mem_range_cache[mem_range_next_free++];
182 *new = tag->u.mem_range;
183
184 pprev = root;
185 cur = *root;
186 while (cur) {
187 pprev = &cur->next;
188 cur = cur->next;
189 }
190
191 *pprev = new;
192 new->next = NULL;
193
194 return 0;
195}
196
197static int __init parse_tag_mem(struct tag *tag)
198{
199 return parse_tag_mem_range(tag, &mem_phys);
200}
201__tagtable(ATAG_MEM, parse_tag_mem);
202
203static int __init parse_tag_cmdline(struct tag *tag)
204{
205 strlcpy(saved_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
206 return 0;
207}
208__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
209
210static int __init parse_tag_rdimg(struct tag *tag)
211{
212 return parse_tag_mem_range(tag, &mem_ramdisk);
213}
214__tagtable(ATAG_RDIMG, parse_tag_rdimg);
215
216static int __init parse_tag_clock(struct tag *tag)
217{
218 /*
219 * We'll figure out the clocks by peeking at the system
220 * manager regs directly.
221 */
222 return 0;
223}
224__tagtable(ATAG_CLOCK, parse_tag_clock);
225
226static int __init parse_tag_rsvd_mem(struct tag *tag)
227{
228 return parse_tag_mem_range(tag, &mem_reserved);
229}
230__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
231
232static int __init parse_tag_ethernet(struct tag *tag)
233{
234#if 0
235 const struct platform_device *pdev;
236
237 /*
238 * We really need a bus type that supports "classes"...this
239 * will do for now (until we must handle other kinds of
240 * ethernet controllers)
241 */
242 pdev = platform_get_device("macb", tag->u.ethernet.mac_index);
243 if (pdev && pdev->dev.platform_data) {
244 struct eth_platform_data *data = pdev->dev.platform_data;
245
246 data->valid = 1;
247 data->mii_phy_addr = tag->u.ethernet.mii_phy_addr;
248 memcpy(data->hw_addr, tag->u.ethernet.hw_address,
249 sizeof(data->hw_addr));
250 }
251#endif
252 return 0;
253}
254__tagtable(ATAG_ETHERNET, parse_tag_ethernet);
255
256/*
257 * Scan the tag table for this tag, and call its parse function. The
258 * tag table is built by the linker from all the __tagtable
259 * declarations.
260 */
261static int __init parse_tag(struct tag *tag)
262{
263 extern struct tagtable __tagtable_begin, __tagtable_end;
264 struct tagtable *t;
265
266 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
267 if (tag->hdr.tag == t->tag) {
268 t->parse(tag);
269 break;
270 }
271
272 return t < &__tagtable_end;
273}
274
275/*
276 * Parse all tags in the list we got from the boot loader
277 */
278static void __init parse_tags(struct tag *t)
279{
280 for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
281 if (!parse_tag(t))
282 printk(KERN_WARNING
283 "Ignoring unrecognised tag 0x%08x\n",
284 t->hdr.tag);
285}
286
287void __init setup_arch (char **cmdline_p)
288{
289 struct clk *cpu_clk;
290
291 parse_tags(bootloader_tags);
292
293 setup_processor();
294 setup_platform();
295
296 cpu_clk = clk_get(NULL, "cpu");
297 if (IS_ERR(cpu_clk)) {
298 printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
299 } else {
300 unsigned long cpu_hz = clk_get_rate(cpu_clk);
301
302 /*
303 * Well, duh, but it's probably a good idea to
304 * increment the use count.
305 */
306 clk_enable(cpu_clk);
307
308 boot_cpu_data.clk = cpu_clk;
309 boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
310 printk("CPU: Running at %lu.%03lu MHz\n",
311 ((cpu_hz + 500) / 1000) / 1000,
312 ((cpu_hz + 500) / 1000) % 1000);
313 }
314
315 init_mm.start_code = (unsigned long) &_text;
316 init_mm.end_code = (unsigned long) &_etext;
317 init_mm.end_data = (unsigned long) &_edata;
318 init_mm.brk = (unsigned long) &_end;
319
320 strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
321 *cmdline_p = command_line;
322 parse_early_param();
323
324 setup_bootmem();
325
326 board_setup_fbmem(fbmem_start, fbmem_size);
327
328#ifdef CONFIG_VT
329 conswitchp = &dummy_con;
330#endif
331
332 paging_init();
333
334 resource_init();
335}