diff options
Diffstat (limited to 'arch/arm26/nwfpe')
-rw-r--r-- | arch/arm26/nwfpe/ARM-gcc.h | 120 | ||||
-rw-r--r-- | arch/arm26/nwfpe/ChangeLog | 83 | ||||
-rw-r--r-- | arch/arm26/nwfpe/Makefile | 15 | ||||
-rw-r--r-- | arch/arm26/nwfpe/double_cpdo.c | 288 | ||||
-rw-r--r-- | arch/arm26/nwfpe/entry.S | 114 | ||||
-rw-r--r-- | arch/arm26/nwfpe/extended_cpdo.c | 273 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11.c | 221 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11.h | 87 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11.inl | 51 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11_cpdo.c | 117 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11_cpdt.c | 368 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpa11_cprt.c | 289 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpmodule.c | 182 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpmodule.h | 47 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpmodule.inl | 84 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpopcode.c | 148 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpopcode.h | 390 | ||||
-rw-r--r-- | arch/arm26/nwfpe/fpsr.h | 108 | ||||
-rw-r--r-- | arch/arm26/nwfpe/milieu.h | 48 | ||||
-rw-r--r-- | arch/arm26/nwfpe/single_cpdo.c | 255 | ||||
-rw-r--r-- | arch/arm26/nwfpe/softfloat-macros | 740 | ||||
-rw-r--r-- | arch/arm26/nwfpe/softfloat-specialize | 366 | ||||
-rw-r--r-- | arch/arm26/nwfpe/softfloat.c | 3439 | ||||
-rw-r--r-- | arch/arm26/nwfpe/softfloat.h | 232 |
24 files changed, 8065 insertions, 0 deletions
diff --git a/arch/arm26/nwfpe/ARM-gcc.h b/arch/arm26/nwfpe/ARM-gcc.h new file mode 100644 index 000000000000..e6598470b076 --- /dev/null +++ b/arch/arm26/nwfpe/ARM-gcc.h | |||
@@ -0,0 +1,120 @@ | |||
1 | /* | ||
2 | ------------------------------------------------------------------------------- | ||
3 | The macro `BITS64' can be defined to indicate that 64-bit integer types are | ||
4 | supported by the compiler. | ||
5 | ------------------------------------------------------------------------------- | ||
6 | */ | ||
7 | #define BITS64 | ||
8 | |||
9 | /* | ||
10 | ------------------------------------------------------------------------------- | ||
11 | Each of the following `typedef's defines the most convenient type that holds | ||
12 | integers of at least as many bits as specified. For example, `uint8' should | ||
13 | be the most convenient type that can hold unsigned integers of as many as | ||
14 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most | ||
15 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed | ||
16 | to the same as `int'. | ||
17 | ------------------------------------------------------------------------------- | ||
18 | */ | ||
19 | typedef char flag; | ||
20 | typedef unsigned char uint8; | ||
21 | typedef signed char int8; | ||
22 | typedef int uint16; | ||
23 | typedef int int16; | ||
24 | typedef unsigned int uint32; | ||
25 | typedef signed int int32; | ||
26 | #ifdef BITS64 | ||
27 | typedef unsigned long long int bits64; | ||
28 | typedef signed long long int sbits64; | ||
29 | #endif | ||
30 | |||
31 | /* | ||
32 | ------------------------------------------------------------------------------- | ||
33 | Each of the following `typedef's defines a type that holds integers | ||
34 | of _exactly_ the number of bits specified. For instance, for most | ||
35 | implementation of C, `bits16' and `sbits16' should be `typedef'ed to | ||
36 | `unsigned short int' and `signed short int' (or `short int'), respectively. | ||
37 | ------------------------------------------------------------------------------- | ||
38 | */ | ||
39 | typedef unsigned char bits8; | ||
40 | typedef signed char sbits8; | ||
41 | typedef unsigned short int bits16; | ||
42 | typedef signed short int sbits16; | ||
43 | typedef unsigned int bits32; | ||
44 | typedef signed int sbits32; | ||
45 | #ifdef BITS64 | ||
46 | typedef unsigned long long int uint64; | ||
47 | typedef signed long long int int64; | ||
48 | #endif | ||
49 | |||
50 | #ifdef BITS64 | ||
51 | /* | ||
52 | ------------------------------------------------------------------------------- | ||
53 | The `LIT64' macro takes as its argument a textual integer literal and if | ||
54 | necessary ``marks'' the literal as having a 64-bit integer type. For | ||
55 | example, the Gnu C Compiler (`gcc') requires that 64-bit literals be | ||
56 | appended with the letters `LL' standing for `long long', which is `gcc's | ||
57 | name for the 64-bit integer type. Some compilers may allow `LIT64' to be | ||
58 | defined as the identity macro: `#define LIT64( a ) a'. | ||
59 | ------------------------------------------------------------------------------- | ||
60 | */ | ||
61 | #define LIT64( a ) a##LL | ||
62 | #endif | ||
63 | |||
64 | /* | ||
65 | ------------------------------------------------------------------------------- | ||
66 | The macro `INLINE' can be used before functions that should be inlined. If | ||
67 | a compiler does not support explicit inlining, this macro should be defined | ||
68 | to be `static'. | ||
69 | ------------------------------------------------------------------------------- | ||
70 | */ | ||
71 | #define INLINE extern __inline__ | ||
72 | |||
73 | |||
74 | /* For use as a GCC soft-float library we need some special function names. */ | ||
75 | |||
76 | #ifdef __LIBFLOAT__ | ||
77 | |||
78 | /* Some 32-bit ops can be mapped straight across by just changing the name. */ | ||
79 | #define float32_add __addsf3 | ||
80 | #define float32_sub __subsf3 | ||
81 | #define float32_mul __mulsf3 | ||
82 | #define float32_div __divsf3 | ||
83 | #define int32_to_float32 __floatsisf | ||
84 | #define float32_to_int32_round_to_zero __fixsfsi | ||
85 | #define float32_to_uint32_round_to_zero __fixunssfsi | ||
86 | |||
87 | /* These ones go through the glue code. To avoid namespace pollution | ||
88 | we rename the internal functions too. */ | ||
89 | #define float32_eq ___float32_eq | ||
90 | #define float32_le ___float32_le | ||
91 | #define float32_lt ___float32_lt | ||
92 | |||
93 | /* All the 64-bit ops have to go through the glue, so we pull the same | ||
94 | trick. */ | ||
95 | #define float64_add ___float64_add | ||
96 | #define float64_sub ___float64_sub | ||
97 | #define float64_mul ___float64_mul | ||
98 | #define float64_div ___float64_div | ||
99 | #define int32_to_float64 ___int32_to_float64 | ||
100 | #define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero | ||
101 | #define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero | ||
102 | #define float64_to_float32 ___float64_to_float32 | ||
103 | #define float32_to_float64 ___float32_to_float64 | ||
104 | #define float64_eq ___float64_eq | ||
105 | #define float64_le ___float64_le | ||
106 | #define float64_lt ___float64_lt | ||
107 | |||
108 | #if 0 | ||
109 | #define float64_add __adddf3 | ||
110 | #define float64_sub __subdf3 | ||
111 | #define float64_mul __muldf3 | ||
112 | #define float64_div __divdf3 | ||
113 | #define int32_to_float64 __floatsidf | ||
114 | #define float64_to_int32_round_to_zero __fixdfsi | ||
115 | #define float64_to_uint32_round_to_zero __fixunsdfsi | ||
116 | #define float64_to_float32 __truncdfsf2 | ||
117 | #define float32_to_float64 __extendsfdf2 | ||
118 | #endif | ||
119 | |||
120 | #endif | ||
diff --git a/arch/arm26/nwfpe/ChangeLog b/arch/arm26/nwfpe/ChangeLog new file mode 100644 index 000000000000..0c580f764baf --- /dev/null +++ b/arch/arm26/nwfpe/ChangeLog | |||
@@ -0,0 +1,83 @@ | |||
1 | 2002-01-19 Russell King <rmk@arm.linux.org.uk> | ||
2 | |||
3 | * fpa11.h - Add documentation | ||
4 | - remove userRegisters pointer from this structure. | ||
5 | - add new method to obtain integer register values. | ||
6 | * softfloat.c - Remove float128 | ||
7 | * softfloat.h - Remove float128 | ||
8 | * softfloat-specialize - Remove float128 | ||
9 | |||
10 | * The FPA11 structure is not a kernel-specific data structure. | ||
11 | It is used by users of ptrace to examine the values of the | ||
12 | floating point registers. Therefore, any changes to the | ||
13 | FPA11 structure (size or position of elements contained | ||
14 | within) have to be well thought out. | ||
15 | |||
16 | * Since 128-bit float requires the FPA11 structure to change | ||
17 | size, it has been removed. 128-bit float is currently unused, | ||
18 | and needs various things to be re-worked so that we won't | ||
19 | overflow the available space in the task structure. | ||
20 | |||
21 | * The changes are designed to break any patch that goes on top | ||
22 | of this code, so that the authors properly review their changes. | ||
23 | |||
24 | 1999-08-19 Scott Bambrough <scottb@netwinder.org> | ||
25 | |||
26 | * fpmodule.c - Changed version number to 0.95 | ||
27 | * fpa11.h - modified FPA11, FPREG structures | ||
28 | * fpa11.c - Changes due to FPA11, FPREG structure alterations. | ||
29 | * fpa11_cpdo.c - Changes due to FPA11, FPREG structure alterations. | ||
30 | * fpa11_cpdt.c - Changes due to FPA11, FPREG structure alterations. | ||
31 | * fpa11_cprt.c - Changes due to FPA11, FPREG structure alterations. | ||
32 | * single_cpdo.c - Changes due to FPA11, FPREG structure alterations. | ||
33 | * double_cpdo.c - Changes due to FPA11, FPREG structure alterations. | ||
34 | * extended_cpdo.c - Changes due to FPA11, FPREG structure alterations. | ||
35 | |||
36 | * I discovered several bugs. First and worst is that the kernel | ||
37 | passes in a pointer to the FPE's state area. This is defined | ||
38 | as a struct user_fp (see user.h). This pointer was cast to a | ||
39 | FPA11*. Unfortunately FPA11 and user_fp are of different sizes; | ||
40 | user_fp is smaller. This meant that the FPE scribbled on things | ||
41 | below its area, which is bad, as the area is in the thread_struct | ||
42 | embedded in the process task structure. Thus we were scribbling | ||
43 | over one of the most important structures in the entire OS. | ||
44 | |||
45 | * user_fp and FPA11 have now been harmonized. Most of the changes | ||
46 | in the above code were dereferencing problems due to moving the | ||
47 | register type out of FPREG, and getting rid of the union variable | ||
48 | fpvalue. | ||
49 | |||
50 | * Second I noticed resetFPA11 was not always being called for a | ||
51 | task. This should happen on the first floating point exception | ||
52 | that occurs. It is controlled by init_flag in FPA11. The | ||
53 | comment in the code beside init_flag state the kernel guarantees | ||
54 | this to be zero. Not so. I found that the kernel recycles task | ||
55 | structures, and that recycled ones may not have init_flag zeroed. | ||
56 | I couldn't even find anything that guarantees it is zeroed when | ||
57 | when the task structure is initially allocated. In any case | ||
58 | I now initialize the entire FPE state in the thread structure to | ||
59 | zero when allocated and recycled. See alloc_task_struct() and | ||
60 | flush_thread() in arch/arm/process.c. The change to | ||
61 | alloc_task_struct() may not be necessary, but I left it in for | ||
62 | completeness (better safe than sorry). | ||
63 | |||
64 | 1998-11-23 Scott Bambrough <scottb@netwinder.org> | ||
65 | |||
66 | * README.FPE - fix typo in description of lfm/sfm instructions | ||
67 | * NOTES - Added file to describe known bugs/problems | ||
68 | * fpmodule.c - Changed version number to 0.94 | ||
69 | |||
70 | 1998-11-20 Scott Bambrough <scottb@netwinder.org> | ||
71 | |||
72 | * README.FPE - fix description of URD, NRM instructions | ||
73 | * TODO - remove URD, NRM instructions from TODO list | ||
74 | * single_cpdo.c - implement URD, NRM | ||
75 | * double_cpdo.c - implement URD, NRM | ||
76 | * extended_cpdo.c - implement URD, NRM | ||
77 | |||
78 | 1998-11-19 Scott Bambrough <scottb@netwinder.org> | ||
79 | |||
80 | * ChangeLog - Added this file to track changes made. | ||
81 | * fpa11.c - added code to initialize register types to typeNone | ||
82 | * fpa11_cpdt.c - fixed bug in storeExtended (typeExtended changed to | ||
83 | typeDouble in switch statement) | ||
diff --git a/arch/arm26/nwfpe/Makefile b/arch/arm26/nwfpe/Makefile new file mode 100644 index 000000000000..b39d34dff054 --- /dev/null +++ b/arch/arm26/nwfpe/Makefile | |||
@@ -0,0 +1,15 @@ | |||
1 | # | ||
2 | # Copyright (C) 1998, 1999, 2001 Philip Blundell | ||
3 | # | ||
4 | |||
5 | obj-y := | ||
6 | obj-m := | ||
7 | obj-n := | ||
8 | |||
9 | obj-$(CONFIG_FPE_NWFPE) += nwfpe.o | ||
10 | |||
11 | nwfpe-objs := fpa11.o fpa11_cpdo.o fpa11_cpdt.o fpa11_cprt.o \ | ||
12 | fpmodule.o fpopcode.o softfloat.o \ | ||
13 | single_cpdo.o double_cpdo.o extended_cpdo.o \ | ||
14 | entry.o | ||
15 | |||
diff --git a/arch/arm26/nwfpe/double_cpdo.c b/arch/arm26/nwfpe/double_cpdo.c new file mode 100644 index 000000000000..7f4fef0216c7 --- /dev/null +++ b/arch/arm26/nwfpe/double_cpdo.c | |||
@@ -0,0 +1,288 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "softfloat.h" | ||
24 | #include "fpopcode.h" | ||
25 | |||
26 | float64 float64_exp(float64 Fm); | ||
27 | float64 float64_ln(float64 Fm); | ||
28 | float64 float64_sin(float64 rFm); | ||
29 | float64 float64_cos(float64 rFm); | ||
30 | float64 float64_arcsin(float64 rFm); | ||
31 | float64 float64_arctan(float64 rFm); | ||
32 | float64 float64_log(float64 rFm); | ||
33 | float64 float64_tan(float64 rFm); | ||
34 | float64 float64_arccos(float64 rFm); | ||
35 | float64 float64_pow(float64 rFn,float64 rFm); | ||
36 | float64 float64_pol(float64 rFn,float64 rFm); | ||
37 | |||
38 | unsigned int DoubleCPDO(const unsigned int opcode) | ||
39 | { | ||
40 | FPA11 *fpa11 = GET_FPA11(); | ||
41 | float64 rFm, rFn = 0; //FIXME - should be zero? | ||
42 | unsigned int Fd, Fm, Fn, nRc = 1; | ||
43 | |||
44 | //printk("DoubleCPDO(0x%08x)\n",opcode); | ||
45 | |||
46 | Fm = getFm(opcode); | ||
47 | if (CONSTANT_FM(opcode)) | ||
48 | { | ||
49 | rFm = getDoubleConstant(Fm); | ||
50 | } | ||
51 | else | ||
52 | { | ||
53 | switch (fpa11->fType[Fm]) | ||
54 | { | ||
55 | case typeSingle: | ||
56 | rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle); | ||
57 | break; | ||
58 | |||
59 | case typeDouble: | ||
60 | rFm = fpa11->fpreg[Fm].fDouble; | ||
61 | break; | ||
62 | |||
63 | case typeExtended: | ||
64 | // !! patb | ||
65 | //printk("not implemented! why not?\n"); | ||
66 | //!! ScottB | ||
67 | // should never get here, if extended involved | ||
68 | // then other operand should be promoted then | ||
69 | // ExtendedCPDO called. | ||
70 | break; | ||
71 | |||
72 | default: return 0; | ||
73 | } | ||
74 | } | ||
75 | |||
76 | if (!MONADIC_INSTRUCTION(opcode)) | ||
77 | { | ||
78 | Fn = getFn(opcode); | ||
79 | switch (fpa11->fType[Fn]) | ||
80 | { | ||
81 | case typeSingle: | ||
82 | rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle); | ||
83 | break; | ||
84 | |||
85 | case typeDouble: | ||
86 | rFn = fpa11->fpreg[Fn].fDouble; | ||
87 | break; | ||
88 | |||
89 | default: return 0; | ||
90 | } | ||
91 | } | ||
92 | |||
93 | Fd = getFd(opcode); | ||
94 | /* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */ | ||
95 | switch (opcode & MASK_ARITHMETIC_OPCODE) | ||
96 | { | ||
97 | /* dyadic opcodes */ | ||
98 | case ADF_CODE: | ||
99 | fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm); | ||
100 | break; | ||
101 | |||
102 | case MUF_CODE: | ||
103 | case FML_CODE: | ||
104 | fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm); | ||
105 | break; | ||
106 | |||
107 | case SUF_CODE: | ||
108 | fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm); | ||
109 | break; | ||
110 | |||
111 | case RSF_CODE: | ||
112 | fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn); | ||
113 | break; | ||
114 | |||
115 | case DVF_CODE: | ||
116 | case FDV_CODE: | ||
117 | fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm); | ||
118 | break; | ||
119 | |||
120 | case RDF_CODE: | ||
121 | case FRD_CODE: | ||
122 | fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn); | ||
123 | break; | ||
124 | |||
125 | #if 0 | ||
126 | case POW_CODE: | ||
127 | fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm); | ||
128 | break; | ||
129 | |||
130 | case RPW_CODE: | ||
131 | fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn); | ||
132 | break; | ||
133 | #endif | ||
134 | |||
135 | case RMF_CODE: | ||
136 | fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm); | ||
137 | break; | ||
138 | |||
139 | #if 0 | ||
140 | case POL_CODE: | ||
141 | fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm); | ||
142 | break; | ||
143 | #endif | ||
144 | |||
145 | /* monadic opcodes */ | ||
146 | case MVF_CODE: | ||
147 | fpa11->fpreg[Fd].fDouble = rFm; | ||
148 | break; | ||
149 | |||
150 | case MNF_CODE: | ||
151 | { | ||
152 | unsigned int *p = (unsigned int*)&rFm; | ||
153 | p[1] ^= 0x80000000; | ||
154 | fpa11->fpreg[Fd].fDouble = rFm; | ||
155 | } | ||
156 | break; | ||
157 | |||
158 | case ABS_CODE: | ||
159 | { | ||
160 | unsigned int *p = (unsigned int*)&rFm; | ||
161 | p[1] &= 0x7fffffff; | ||
162 | fpa11->fpreg[Fd].fDouble = rFm; | ||
163 | } | ||
164 | break; | ||
165 | |||
166 | case RND_CODE: | ||
167 | case URD_CODE: | ||
168 | fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm); | ||
169 | break; | ||
170 | |||
171 | case SQT_CODE: | ||
172 | fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm); | ||
173 | break; | ||
174 | |||
175 | #if 0 | ||
176 | case LOG_CODE: | ||
177 | fpa11->fpreg[Fd].fDouble = float64_log(rFm); | ||
178 | break; | ||
179 | |||
180 | case LGN_CODE: | ||
181 | fpa11->fpreg[Fd].fDouble = float64_ln(rFm); | ||
182 | break; | ||
183 | |||
184 | case EXP_CODE: | ||
185 | fpa11->fpreg[Fd].fDouble = float64_exp(rFm); | ||
186 | break; | ||
187 | |||
188 | case SIN_CODE: | ||
189 | fpa11->fpreg[Fd].fDouble = float64_sin(rFm); | ||
190 | break; | ||
191 | |||
192 | case COS_CODE: | ||
193 | fpa11->fpreg[Fd].fDouble = float64_cos(rFm); | ||
194 | break; | ||
195 | |||
196 | case TAN_CODE: | ||
197 | fpa11->fpreg[Fd].fDouble = float64_tan(rFm); | ||
198 | break; | ||
199 | |||
200 | case ASN_CODE: | ||
201 | fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm); | ||
202 | break; | ||
203 | |||
204 | case ACS_CODE: | ||
205 | fpa11->fpreg[Fd].fDouble = float64_arccos(rFm); | ||
206 | break; | ||
207 | |||
208 | case ATN_CODE: | ||
209 | fpa11->fpreg[Fd].fDouble = float64_arctan(rFm); | ||
210 | break; | ||
211 | #endif | ||
212 | |||
213 | case NRM_CODE: | ||
214 | break; | ||
215 | |||
216 | default: | ||
217 | { | ||
218 | nRc = 0; | ||
219 | } | ||
220 | } | ||
221 | |||
222 | if (0 != nRc) fpa11->fType[Fd] = typeDouble; | ||
223 | return nRc; | ||
224 | } | ||
225 | |||
226 | #if 0 | ||
227 | float64 float64_exp(float64 rFm) | ||
228 | { | ||
229 | return rFm; | ||
230 | //series | ||
231 | } | ||
232 | |||
233 | float64 float64_ln(float64 rFm) | ||
234 | { | ||
235 | return rFm; | ||
236 | //series | ||
237 | } | ||
238 | |||
239 | float64 float64_sin(float64 rFm) | ||
240 | { | ||
241 | return rFm; | ||
242 | //series | ||
243 | } | ||
244 | |||
245 | float64 float64_cos(float64 rFm) | ||
246 | { | ||
247 | return rFm; | ||
248 | //series | ||
249 | } | ||
250 | |||
251 | #if 0 | ||
252 | float64 float64_arcsin(float64 rFm) | ||
253 | { | ||
254 | //series | ||
255 | } | ||
256 | |||
257 | float64 float64_arctan(float64 rFm) | ||
258 | { | ||
259 | //series | ||
260 | } | ||
261 | #endif | ||
262 | |||
263 | float64 float64_log(float64 rFm) | ||
264 | { | ||
265 | return float64_div(float64_ln(rFm),getDoubleConstant(7)); | ||
266 | } | ||
267 | |||
268 | float64 float64_tan(float64 rFm) | ||
269 | { | ||
270 | return float64_div(float64_sin(rFm),float64_cos(rFm)); | ||
271 | } | ||
272 | |||
273 | float64 float64_arccos(float64 rFm) | ||
274 | { | ||
275 | return rFm; | ||
276 | //return float64_sub(halfPi,float64_arcsin(rFm)); | ||
277 | } | ||
278 | |||
279 | float64 float64_pow(float64 rFn,float64 rFm) | ||
280 | { | ||
281 | return float64_exp(float64_mul(rFm,float64_ln(rFn))); | ||
282 | } | ||
283 | |||
284 | float64 float64_pol(float64 rFn,float64 rFm) | ||
285 | { | ||
286 | return float64_arctan(float64_div(rFn,rFm)); | ||
287 | } | ||
288 | #endif | ||
diff --git a/arch/arm26/nwfpe/entry.S b/arch/arm26/nwfpe/entry.S new file mode 100644 index 000000000000..7d6dfaad80c2 --- /dev/null +++ b/arch/arm26/nwfpe/entry.S | |||
@@ -0,0 +1,114 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998 | ||
4 | (c) Philip Blundell 1998-1999 | ||
5 | |||
6 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
7 | |||
8 | This program is free software; you can redistribute it and/or modify | ||
9 | it under the terms of the GNU General Public License as published by | ||
10 | the Free Software Foundation; either version 2 of the License, or | ||
11 | (at your option) any later version. | ||
12 | |||
13 | This program is distributed in the hope that it will be useful, | ||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | GNU General Public License for more details. | ||
17 | |||
18 | You should have received a copy of the GNU General Public License | ||
19 | along with this program; if not, write to the Free Software | ||
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
21 | */ | ||
22 | |||
23 | #include <asm/asm_offsets.h> | ||
24 | |||
25 | /* This is the kernel's entry point into the floating point emulator. | ||
26 | It is called from the kernel with code similar to this: | ||
27 | |||
28 | mov fp, #0 | ||
29 | teqp pc, #PSR_I_BIT | MODE_SVC | ||
30 | ldr r4, .LC2 | ||
31 | ldr pc, [r4] @ Call FP module USR entry point | ||
32 | |||
33 | The kernel expects the emulator to return via one of two possible | ||
34 | points of return it passes to the emulator. The emulator, if | ||
35 | successful in its emulation, jumps to ret_from_exception and the | ||
36 | kernel takes care of returning control from the trap to the user code. | ||
37 | If the emulator is unable to emulate the instruction, it returns to | ||
38 | fpundefinstr and the kernel halts the user program with a core dump. | ||
39 | |||
40 | This routine does four things: | ||
41 | |||
42 | 1) It saves SP into a variable called userRegisters. The kernel has | ||
43 | created a struct pt_regs on the stack and saved the user registers | ||
44 | into it. See /usr/include/asm/proc/ptrace.h for details. The | ||
45 | emulator code uses userRegisters as the base of an array of words from | ||
46 | which the contents of the registers can be extracted. | ||
47 | |||
48 | 2) It locates the FP emulator work area within the TSS structure and | ||
49 | points `fpa11' to it. | ||
50 | |||
51 | 3) It calls EmulateAll to emulate a floating point instruction. | ||
52 | EmulateAll returns 1 if the emulation was successful, or 0 if not. | ||
53 | |||
54 | 4) If an instruction has been emulated successfully, it looks ahead at | ||
55 | the next instruction. If it is a floating point instruction, it | ||
56 | executes the instruction, without returning to user space. In this | ||
57 | way it repeatedly looks ahead and executes floating point instructions | ||
58 | until it encounters a non floating point instruction, at which time it | ||
59 | returns via _fpreturn. | ||
60 | |||
61 | This is done to reduce the effect of the trap overhead on each | ||
62 | floating point instructions. GCC attempts to group floating point | ||
63 | instructions to allow the emulator to spread the cost of the trap over | ||
64 | several floating point instructions. */ | ||
65 | |||
66 | .globl nwfpe_enter | ||
67 | nwfpe_enter: | ||
68 | mov sl, sp | ||
69 | bl FPA11_CheckInit @ check to see if we are initialised | ||
70 | |||
71 | ldr r5, [sp, #60] @ get contents of PC | ||
72 | bic r5, r5, #0xfc000003 | ||
73 | ldr r0, [r5, #-4] @ get actual instruction into r0 | ||
74 | bl EmulateAll @ emulate the instruction | ||
75 | 1: cmp r0, #0 @ was emulation successful | ||
76 | beq fpundefinstr @ no, return failure | ||
77 | |||
78 | next: | ||
79 | .Lx1: ldrt r6, [r5], #4 @ get the next instruction and | ||
80 | @ increment PC | ||
81 | |||
82 | and r2, r6, #0x0F000000 @ test for FP insns | ||
83 | teq r2, #0x0C000000 | ||
84 | teqne r2, #0x0D000000 | ||
85 | teqne r2, #0x0E000000 | ||
86 | bne ret_from_exception @ return ok if not a fp insn | ||
87 | |||
88 | ldr r9, [sp, #60] @ get new condition codes | ||
89 | and r9, r9, #0xfc000003 | ||
90 | orr r7, r5, r9 | ||
91 | str r7, [sp, #60] @ update PC copy in regs | ||
92 | |||
93 | mov r0, r6 @ save a copy | ||
94 | mov r1, r9 @ fetch the condition codes | ||
95 | bl checkCondition @ check the condition | ||
96 | cmp r0, #0 @ r0 = 0 ==> condition failed | ||
97 | |||
98 | @ if condition code failed to match, next insn | ||
99 | beq next @ get the next instruction; | ||
100 | |||
101 | mov r0, r6 @ prepare for EmulateAll() | ||
102 | adr lr, 1b | ||
103 | orr lr, lr, #3 | ||
104 | b EmulateAll @ if r0 != 0, goto EmulateAll | ||
105 | |||
106 | .Lret: b ret_from_exception @ let the user eat segfaults | ||
107 | |||
108 | @ We need to be prepared for the instruction at .Lx1 to fault. | ||
109 | @ Emit the appropriate exception gunk to fix things up. | ||
110 | .section __ex_table,"a" | ||
111 | .align 3 | ||
112 | .long .Lx1 | ||
113 | ldr lr, [lr, $(.Lret - .Lx1)/4] | ||
114 | .previous | ||
diff --git a/arch/arm26/nwfpe/extended_cpdo.c b/arch/arm26/nwfpe/extended_cpdo.c new file mode 100644 index 000000000000..331407596d91 --- /dev/null +++ b/arch/arm26/nwfpe/extended_cpdo.c | |||
@@ -0,0 +1,273 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "softfloat.h" | ||
24 | #include "fpopcode.h" | ||
25 | |||
26 | floatx80 floatx80_exp(floatx80 Fm); | ||
27 | floatx80 floatx80_ln(floatx80 Fm); | ||
28 | floatx80 floatx80_sin(floatx80 rFm); | ||
29 | floatx80 floatx80_cos(floatx80 rFm); | ||
30 | floatx80 floatx80_arcsin(floatx80 rFm); | ||
31 | floatx80 floatx80_arctan(floatx80 rFm); | ||
32 | floatx80 floatx80_log(floatx80 rFm); | ||
33 | floatx80 floatx80_tan(floatx80 rFm); | ||
34 | floatx80 floatx80_arccos(floatx80 rFm); | ||
35 | floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm); | ||
36 | floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm); | ||
37 | |||
38 | unsigned int ExtendedCPDO(const unsigned int opcode) | ||
39 | { | ||
40 | FPA11 *fpa11 = GET_FPA11(); | ||
41 | floatx80 rFm, rFn; | ||
42 | unsigned int Fd, Fm, Fn, nRc = 1; | ||
43 | |||
44 | //printk("ExtendedCPDO(0x%08x)\n",opcode); | ||
45 | |||
46 | Fm = getFm(opcode); | ||
47 | if (CONSTANT_FM(opcode)) | ||
48 | { | ||
49 | rFm = getExtendedConstant(Fm); | ||
50 | } | ||
51 | else | ||
52 | { | ||
53 | switch (fpa11->fType[Fm]) | ||
54 | { | ||
55 | case typeSingle: | ||
56 | rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); | ||
57 | break; | ||
58 | |||
59 | case typeDouble: | ||
60 | rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); | ||
61 | break; | ||
62 | |||
63 | case typeExtended: | ||
64 | rFm = fpa11->fpreg[Fm].fExtended; | ||
65 | break; | ||
66 | |||
67 | default: return 0; | ||
68 | } | ||
69 | } | ||
70 | |||
71 | if (!MONADIC_INSTRUCTION(opcode)) | ||
72 | { | ||
73 | Fn = getFn(opcode); | ||
74 | switch (fpa11->fType[Fn]) | ||
75 | { | ||
76 | case typeSingle: | ||
77 | rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | ||
78 | break; | ||
79 | |||
80 | case typeDouble: | ||
81 | rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | ||
82 | break; | ||
83 | |||
84 | case typeExtended: | ||
85 | rFn = fpa11->fpreg[Fn].fExtended; | ||
86 | break; | ||
87 | |||
88 | default: return 0; | ||
89 | } | ||
90 | } | ||
91 | |||
92 | Fd = getFd(opcode); | ||
93 | switch (opcode & MASK_ARITHMETIC_OPCODE) | ||
94 | { | ||
95 | /* dyadic opcodes */ | ||
96 | case ADF_CODE: | ||
97 | fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm); | ||
98 | break; | ||
99 | |||
100 | case MUF_CODE: | ||
101 | case FML_CODE: | ||
102 | fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm); | ||
103 | break; | ||
104 | |||
105 | case SUF_CODE: | ||
106 | fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm); | ||
107 | break; | ||
108 | |||
109 | case RSF_CODE: | ||
110 | fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn); | ||
111 | break; | ||
112 | |||
113 | case DVF_CODE: | ||
114 | case FDV_CODE: | ||
115 | fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm); | ||
116 | break; | ||
117 | |||
118 | case RDF_CODE: | ||
119 | case FRD_CODE: | ||
120 | fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn); | ||
121 | break; | ||
122 | |||
123 | #if 0 | ||
124 | case POW_CODE: | ||
125 | fpa11->fpreg[Fd].fExtended = floatx80_pow(rFn,rFm); | ||
126 | break; | ||
127 | |||
128 | case RPW_CODE: | ||
129 | fpa11->fpreg[Fd].fExtended = floatx80_pow(rFm,rFn); | ||
130 | break; | ||
131 | #endif | ||
132 | |||
133 | case RMF_CODE: | ||
134 | fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm); | ||
135 | break; | ||
136 | |||
137 | #if 0 | ||
138 | case POL_CODE: | ||
139 | fpa11->fpreg[Fd].fExtended = floatx80_pol(rFn,rFm); | ||
140 | break; | ||
141 | #endif | ||
142 | |||
143 | /* monadic opcodes */ | ||
144 | case MVF_CODE: | ||
145 | fpa11->fpreg[Fd].fExtended = rFm; | ||
146 | break; | ||
147 | |||
148 | case MNF_CODE: | ||
149 | rFm.high ^= 0x8000; | ||
150 | fpa11->fpreg[Fd].fExtended = rFm; | ||
151 | break; | ||
152 | |||
153 | case ABS_CODE: | ||
154 | rFm.high &= 0x7fff; | ||
155 | fpa11->fpreg[Fd].fExtended = rFm; | ||
156 | break; | ||
157 | |||
158 | case RND_CODE: | ||
159 | case URD_CODE: | ||
160 | fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm); | ||
161 | break; | ||
162 | |||
163 | case SQT_CODE: | ||
164 | fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm); | ||
165 | break; | ||
166 | |||
167 | #if 0 | ||
168 | case LOG_CODE: | ||
169 | fpa11->fpreg[Fd].fExtended = floatx80_log(rFm); | ||
170 | break; | ||
171 | |||
172 | case LGN_CODE: | ||
173 | fpa11->fpreg[Fd].fExtended = floatx80_ln(rFm); | ||
174 | break; | ||
175 | |||
176 | case EXP_CODE: | ||
177 | fpa11->fpreg[Fd].fExtended = floatx80_exp(rFm); | ||
178 | break; | ||
179 | |||
180 | case SIN_CODE: | ||
181 | fpa11->fpreg[Fd].fExtended = floatx80_sin(rFm); | ||
182 | break; | ||
183 | |||
184 | case COS_CODE: | ||
185 | fpa11->fpreg[Fd].fExtended = floatx80_cos(rFm); | ||
186 | break; | ||
187 | |||
188 | case TAN_CODE: | ||
189 | fpa11->fpreg[Fd].fExtended = floatx80_tan(rFm); | ||
190 | break; | ||
191 | |||
192 | case ASN_CODE: | ||
193 | fpa11->fpreg[Fd].fExtended = floatx80_arcsin(rFm); | ||
194 | break; | ||
195 | |||
196 | case ACS_CODE: | ||
197 | fpa11->fpreg[Fd].fExtended = floatx80_arccos(rFm); | ||
198 | break; | ||
199 | |||
200 | case ATN_CODE: | ||
201 | fpa11->fpreg[Fd].fExtended = floatx80_arctan(rFm); | ||
202 | break; | ||
203 | #endif | ||
204 | |||
205 | case NRM_CODE: | ||
206 | break; | ||
207 | |||
208 | default: | ||
209 | { | ||
210 | nRc = 0; | ||
211 | } | ||
212 | } | ||
213 | |||
214 | if (0 != nRc) fpa11->fType[Fd] = typeExtended; | ||
215 | return nRc; | ||
216 | } | ||
217 | |||
218 | #if 0 | ||
219 | floatx80 floatx80_exp(floatx80 Fm) | ||
220 | { | ||
221 | //series | ||
222 | } | ||
223 | |||
224 | floatx80 floatx80_ln(floatx80 Fm) | ||
225 | { | ||
226 | //series | ||
227 | } | ||
228 | |||
229 | floatx80 floatx80_sin(floatx80 rFm) | ||
230 | { | ||
231 | //series | ||
232 | } | ||
233 | |||
234 | floatx80 floatx80_cos(floatx80 rFm) | ||
235 | { | ||
236 | //series | ||
237 | } | ||
238 | |||
239 | floatx80 floatx80_arcsin(floatx80 rFm) | ||
240 | { | ||
241 | //series | ||
242 | } | ||
243 | |||
244 | floatx80 floatx80_arctan(floatx80 rFm) | ||
245 | { | ||
246 | //series | ||
247 | } | ||
248 | |||
249 | floatx80 floatx80_log(floatx80 rFm) | ||
250 | { | ||
251 | return floatx80_div(floatx80_ln(rFm),getExtendedConstant(7)); | ||
252 | } | ||
253 | |||
254 | floatx80 floatx80_tan(floatx80 rFm) | ||
255 | { | ||
256 | return floatx80_div(floatx80_sin(rFm),floatx80_cos(rFm)); | ||
257 | } | ||
258 | |||
259 | floatx80 floatx80_arccos(floatx80 rFm) | ||
260 | { | ||
261 | //return floatx80_sub(halfPi,floatx80_arcsin(rFm)); | ||
262 | } | ||
263 | |||
264 | floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm) | ||
265 | { | ||
266 | return floatx80_exp(floatx80_mul(rFm,floatx80_ln(rFn))); | ||
267 | } | ||
268 | |||
269 | floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm) | ||
270 | { | ||
271 | return floatx80_arctan(floatx80_div(rFn,rFm)); | ||
272 | } | ||
273 | #endif | ||
diff --git a/arch/arm26/nwfpe/fpa11.c b/arch/arm26/nwfpe/fpa11.c new file mode 100644 index 000000000000..e954540a9464 --- /dev/null +++ b/arch/arm26/nwfpe/fpa11.c | |||
@@ -0,0 +1,221 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "fpopcode.h" | ||
24 | |||
25 | #include "fpmodule.h" | ||
26 | #include "fpmodule.inl" | ||
27 | |||
28 | #include <linux/compiler.h> | ||
29 | #include <asm/system.h> | ||
30 | |||
31 | /* forward declarations */ | ||
32 | unsigned int EmulateCPDO(const unsigned int); | ||
33 | unsigned int EmulateCPDT(const unsigned int); | ||
34 | unsigned int EmulateCPRT(const unsigned int); | ||
35 | |||
36 | /* Reset the FPA11 chip. Called to initialize and reset the emulator. */ | ||
37 | void resetFPA11(void) | ||
38 | { | ||
39 | int i; | ||
40 | FPA11 *fpa11 = GET_FPA11(); | ||
41 | |||
42 | /* initialize the register type array */ | ||
43 | for (i=0;i<=7;i++) | ||
44 | { | ||
45 | fpa11->fType[i] = typeNone; | ||
46 | } | ||
47 | |||
48 | /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */ | ||
49 | fpa11->fpsr = FP_EMULATOR | BIT_AC; | ||
50 | |||
51 | /* FPCR: set SB, AB and DA bits, clear all others */ | ||
52 | #if MAINTAIN_FPCR | ||
53 | fpa11->fpcr = MASK_RESET; | ||
54 | #endif | ||
55 | } | ||
56 | |||
57 | void SetRoundingMode(const unsigned int opcode) | ||
58 | { | ||
59 | #if MAINTAIN_FPCR | ||
60 | FPA11 *fpa11 = GET_FPA11(); | ||
61 | fpa11->fpcr &= ~MASK_ROUNDING_MODE; | ||
62 | #endif | ||
63 | switch (opcode & MASK_ROUNDING_MODE) | ||
64 | { | ||
65 | default: | ||
66 | case ROUND_TO_NEAREST: | ||
67 | float_rounding_mode = float_round_nearest_even; | ||
68 | #if MAINTAIN_FPCR | ||
69 | fpa11->fpcr |= ROUND_TO_NEAREST; | ||
70 | #endif | ||
71 | break; | ||
72 | |||
73 | case ROUND_TO_PLUS_INFINITY: | ||
74 | float_rounding_mode = float_round_up; | ||
75 | #if MAINTAIN_FPCR | ||
76 | fpa11->fpcr |= ROUND_TO_PLUS_INFINITY; | ||
77 | #endif | ||
78 | break; | ||
79 | |||
80 | case ROUND_TO_MINUS_INFINITY: | ||
81 | float_rounding_mode = float_round_down; | ||
82 | #if MAINTAIN_FPCR | ||
83 | fpa11->fpcr |= ROUND_TO_MINUS_INFINITY; | ||
84 | #endif | ||
85 | break; | ||
86 | |||
87 | case ROUND_TO_ZERO: | ||
88 | float_rounding_mode = float_round_to_zero; | ||
89 | #if MAINTAIN_FPCR | ||
90 | fpa11->fpcr |= ROUND_TO_ZERO; | ||
91 | #endif | ||
92 | break; | ||
93 | } | ||
94 | } | ||
95 | |||
96 | void SetRoundingPrecision(const unsigned int opcode) | ||
97 | { | ||
98 | #if MAINTAIN_FPCR | ||
99 | FPA11 *fpa11 = GET_FPA11(); | ||
100 | fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; | ||
101 | #endif | ||
102 | switch (opcode & MASK_ROUNDING_PRECISION) | ||
103 | { | ||
104 | case ROUND_SINGLE: | ||
105 | floatx80_rounding_precision = 32; | ||
106 | #if MAINTAIN_FPCR | ||
107 | fpa11->fpcr |= ROUND_SINGLE; | ||
108 | #endif | ||
109 | break; | ||
110 | |||
111 | case ROUND_DOUBLE: | ||
112 | floatx80_rounding_precision = 64; | ||
113 | #if MAINTAIN_FPCR | ||
114 | fpa11->fpcr |= ROUND_DOUBLE; | ||
115 | #endif | ||
116 | break; | ||
117 | |||
118 | case ROUND_EXTENDED: | ||
119 | floatx80_rounding_precision = 80; | ||
120 | #if MAINTAIN_FPCR | ||
121 | fpa11->fpcr |= ROUND_EXTENDED; | ||
122 | #endif | ||
123 | break; | ||
124 | |||
125 | default: floatx80_rounding_precision = 80; | ||
126 | } | ||
127 | } | ||
128 | |||
129 | void FPA11_CheckInit(void) | ||
130 | { | ||
131 | FPA11 *fpa11 = GET_FPA11(); | ||
132 | if (unlikely(fpa11->initflag == 0)) | ||
133 | { | ||
134 | resetFPA11(); | ||
135 | SetRoundingMode(ROUND_TO_NEAREST); | ||
136 | SetRoundingPrecision(ROUND_EXTENDED); | ||
137 | fpa11->initflag = 1; | ||
138 | } | ||
139 | } | ||
140 | |||
141 | /* Emulate the instruction in the opcode. */ | ||
142 | unsigned int EmulateAll(unsigned int opcode) | ||
143 | { | ||
144 | unsigned int nRc = 1, code; | ||
145 | |||
146 | code = opcode & 0x00000f00; | ||
147 | if (code == 0x00000100 || code == 0x00000200) | ||
148 | { | ||
149 | /* For coprocessor 1 or 2 (FPA11) */ | ||
150 | code = opcode & 0x0e000000; | ||
151 | if (code == 0x0e000000) | ||
152 | { | ||
153 | if (opcode & 0x00000010) | ||
154 | { | ||
155 | /* Emulate conversion opcodes. */ | ||
156 | /* Emulate register transfer opcodes. */ | ||
157 | /* Emulate comparison opcodes. */ | ||
158 | nRc = EmulateCPRT(opcode); | ||
159 | } | ||
160 | else | ||
161 | { | ||
162 | /* Emulate monadic arithmetic opcodes. */ | ||
163 | /* Emulate dyadic arithmetic opcodes. */ | ||
164 | nRc = EmulateCPDO(opcode); | ||
165 | } | ||
166 | } | ||
167 | else if (code == 0x0c000000) | ||
168 | { | ||
169 | /* Emulate load/store opcodes. */ | ||
170 | /* Emulate load/store multiple opcodes. */ | ||
171 | nRc = EmulateCPDT(opcode); | ||
172 | } | ||
173 | else | ||
174 | { | ||
175 | /* Invalid instruction detected. Return FALSE. */ | ||
176 | nRc = 0; | ||
177 | } | ||
178 | } | ||
179 | |||
180 | return(nRc); | ||
181 | } | ||
182 | |||
183 | #if 0 | ||
184 | unsigned int EmulateAll1(unsigned int opcode) | ||
185 | { | ||
186 | switch ((opcode >> 24) & 0xf) | ||
187 | { | ||
188 | case 0xc: | ||
189 | case 0xd: | ||
190 | if ((opcode >> 20) & 0x1) | ||
191 | { | ||
192 | switch ((opcode >> 8) & 0xf) | ||
193 | { | ||
194 | case 0x1: return PerformLDF(opcode); break; | ||
195 | case 0x2: return PerformLFM(opcode); break; | ||
196 | default: return 0; | ||
197 | } | ||
198 | } | ||
199 | else | ||
200 | { | ||
201 | switch ((opcode >> 8) & 0xf) | ||
202 | { | ||
203 | case 0x1: return PerformSTF(opcode); break; | ||
204 | case 0x2: return PerformSFM(opcode); break; | ||
205 | default: return 0; | ||
206 | } | ||
207 | } | ||
208 | break; | ||
209 | |||
210 | case 0xe: | ||
211 | if (opcode & 0x10) | ||
212 | return EmulateCPDO(opcode); | ||
213 | else | ||
214 | return EmulateCPRT(opcode); | ||
215 | break; | ||
216 | |||
217 | default: return 0; | ||
218 | } | ||
219 | } | ||
220 | #endif | ||
221 | |||
diff --git a/arch/arm26/nwfpe/fpa11.h b/arch/arm26/nwfpe/fpa11.h new file mode 100644 index 000000000000..be09902a211d --- /dev/null +++ b/arch/arm26/nwfpe/fpa11.h | |||
@@ -0,0 +1,87 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.com, 1998-1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #ifndef __FPA11_H__ | ||
23 | #define __FPA11_H__ | ||
24 | |||
25 | #define GET_FPA11() ((FPA11 *)(¤t_thread_info()->fpstate)) | ||
26 | |||
27 | /* | ||
28 | * The processes registers are always at the very top of the 8K | ||
29 | * stack+task struct. Use the same method as 'current' uses to | ||
30 | * reach them. | ||
31 | */ | ||
32 | register unsigned int *user_registers asm("sl"); | ||
33 | |||
34 | #define GET_USERREG() (user_registers) | ||
35 | |||
36 | #include <linux/thread_info.h> | ||
37 | |||
38 | /* includes */ | ||
39 | #include "fpsr.h" /* FP control and status register definitions */ | ||
40 | #include "softfloat.h" | ||
41 | |||
42 | #define typeNone 0x00 | ||
43 | #define typeSingle 0x01 | ||
44 | #define typeDouble 0x02 | ||
45 | #define typeExtended 0x03 | ||
46 | |||
47 | /* | ||
48 | * This must be no more and no less than 12 bytes. | ||
49 | */ | ||
50 | typedef union tagFPREG { | ||
51 | floatx80 fExtended; | ||
52 | float64 fDouble; | ||
53 | float32 fSingle; | ||
54 | } FPREG; | ||
55 | |||
56 | /* | ||
57 | * FPA11 device model. | ||
58 | * | ||
59 | * This structure is exported to user space. Do not re-order. | ||
60 | * Only add new stuff to the end, and do not change the size of | ||
61 | * any element. Elements of this structure are used by user | ||
62 | * space, and must match struct user_fp in include/asm-arm/user.h. | ||
63 | * We include the byte offsets below for documentation purposes. | ||
64 | * | ||
65 | * The size of this structure and FPREG are checked by fpmodule.c | ||
66 | * on initialisation. If the rules have been broken, NWFPE will | ||
67 | * not initialise. | ||
68 | */ | ||
69 | typedef struct tagFPA11 { | ||
70 | /* 0 */ FPREG fpreg[8]; /* 8 floating point registers */ | ||
71 | /* 96 */ FPSR fpsr; /* floating point status register */ | ||
72 | /* 100 */ FPCR fpcr; /* floating point control register */ | ||
73 | /* 104 */ unsigned char fType[8]; /* type of floating point value held in | ||
74 | floating point registers. One of none | ||
75 | single, double or extended. */ | ||
76 | /* 112 */ int initflag; /* this is special. The kernel guarantees | ||
77 | to set it to 0 when a thread is launched, | ||
78 | so we can use it to detect whether this | ||
79 | instance of the emulator needs to be | ||
80 | initialised. */ | ||
81 | } FPA11; | ||
82 | |||
83 | extern void resetFPA11(void); | ||
84 | extern void SetRoundingMode(const unsigned int); | ||
85 | extern void SetRoundingPrecision(const unsigned int); | ||
86 | |||
87 | #endif | ||
diff --git a/arch/arm26/nwfpe/fpa11.inl b/arch/arm26/nwfpe/fpa11.inl new file mode 100644 index 000000000000..1c45cba2de66 --- /dev/null +++ b/arch/arm26/nwfpe/fpa11.inl | |||
@@ -0,0 +1,51 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | |||
24 | /* Read and write floating point status register */ | ||
25 | extern __inline__ unsigned int readFPSR(void) | ||
26 | { | ||
27 | FPA11 *fpa11 = GET_FPA11(); | ||
28 | return(fpa11->fpsr); | ||
29 | } | ||
30 | |||
31 | extern __inline__ void writeFPSR(FPSR reg) | ||
32 | { | ||
33 | FPA11 *fpa11 = GET_FPA11(); | ||
34 | /* the sysid byte in the status register is readonly */ | ||
35 | fpa11->fpsr = (fpa11->fpsr & MASK_SYSID) | (reg & ~MASK_SYSID); | ||
36 | } | ||
37 | |||
38 | /* Read and write floating point control register */ | ||
39 | extern __inline__ FPCR readFPCR(void) | ||
40 | { | ||
41 | FPA11 *fpa11 = GET_FPA11(); | ||
42 | /* clear SB, AB and DA bits before returning FPCR */ | ||
43 | return(fpa11->fpcr & ~MASK_RFC); | ||
44 | } | ||
45 | |||
46 | extern __inline__ void writeFPCR(FPCR reg) | ||
47 | { | ||
48 | FPA11 *fpa11 = GET_FPA11(); | ||
49 | fpa11->fpcr &= ~MASK_WFC; /* clear SB, AB and DA bits */ | ||
50 | fpa11->fpcr |= (reg & MASK_WFC); /* write SB, AB and DA bits */ | ||
51 | } | ||
diff --git a/arch/arm26/nwfpe/fpa11_cpdo.c b/arch/arm26/nwfpe/fpa11_cpdo.c new file mode 100644 index 000000000000..343a6b9fd520 --- /dev/null +++ b/arch/arm26/nwfpe/fpa11_cpdo.c | |||
@@ -0,0 +1,117 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "fpopcode.h" | ||
24 | |||
25 | unsigned int SingleCPDO(const unsigned int opcode); | ||
26 | unsigned int DoubleCPDO(const unsigned int opcode); | ||
27 | unsigned int ExtendedCPDO(const unsigned int opcode); | ||
28 | |||
29 | unsigned int EmulateCPDO(const unsigned int opcode) | ||
30 | { | ||
31 | FPA11 *fpa11 = GET_FPA11(); | ||
32 | unsigned int Fd, nType, nDest, nRc = 1; | ||
33 | |||
34 | //printk("EmulateCPDO(0x%08x)\n",opcode); | ||
35 | |||
36 | /* Get the destination size. If not valid let Linux perform | ||
37 | an invalid instruction trap. */ | ||
38 | nDest = getDestinationSize(opcode); | ||
39 | if (typeNone == nDest) return 0; | ||
40 | |||
41 | SetRoundingMode(opcode); | ||
42 | |||
43 | /* Compare the size of the operands in Fn and Fm. | ||
44 | Choose the largest size and perform operations in that size, | ||
45 | in order to make use of all the precision of the operands. | ||
46 | If Fm is a constant, we just grab a constant of a size | ||
47 | matching the size of the operand in Fn. */ | ||
48 | if (MONADIC_INSTRUCTION(opcode)) | ||
49 | nType = nDest; | ||
50 | else | ||
51 | nType = fpa11->fType[getFn(opcode)]; | ||
52 | |||
53 | if (!CONSTANT_FM(opcode)) | ||
54 | { | ||
55 | register unsigned int Fm = getFm(opcode); | ||
56 | if (nType < fpa11->fType[Fm]) | ||
57 | { | ||
58 | nType = fpa11->fType[Fm]; | ||
59 | } | ||
60 | } | ||
61 | |||
62 | switch (nType) | ||
63 | { | ||
64 | case typeSingle : nRc = SingleCPDO(opcode); break; | ||
65 | case typeDouble : nRc = DoubleCPDO(opcode); break; | ||
66 | case typeExtended : nRc = ExtendedCPDO(opcode); break; | ||
67 | default : nRc = 0; | ||
68 | } | ||
69 | |||
70 | /* If the operation succeeded, check to see if the result in the | ||
71 | destination register is the correct size. If not force it | ||
72 | to be. */ | ||
73 | Fd = getFd(opcode); | ||
74 | nType = fpa11->fType[Fd]; | ||
75 | if ((0 != nRc) && (nDest != nType)) | ||
76 | { | ||
77 | switch (nDest) | ||
78 | { | ||
79 | case typeSingle: | ||
80 | { | ||
81 | if (typeDouble == nType) | ||
82 | fpa11->fpreg[Fd].fSingle = | ||
83 | float64_to_float32(fpa11->fpreg[Fd].fDouble); | ||
84 | else | ||
85 | fpa11->fpreg[Fd].fSingle = | ||
86 | floatx80_to_float32(fpa11->fpreg[Fd].fExtended); | ||
87 | } | ||
88 | break; | ||
89 | |||
90 | case typeDouble: | ||
91 | { | ||
92 | if (typeSingle == nType) | ||
93 | fpa11->fpreg[Fd].fDouble = | ||
94 | float32_to_float64(fpa11->fpreg[Fd].fSingle); | ||
95 | else | ||
96 | fpa11->fpreg[Fd].fDouble = | ||
97 | floatx80_to_float64(fpa11->fpreg[Fd].fExtended); | ||
98 | } | ||
99 | break; | ||
100 | |||
101 | case typeExtended: | ||
102 | { | ||
103 | if (typeSingle == nType) | ||
104 | fpa11->fpreg[Fd].fExtended = | ||
105 | float32_to_floatx80(fpa11->fpreg[Fd].fSingle); | ||
106 | else | ||
107 | fpa11->fpreg[Fd].fExtended = | ||
108 | float64_to_floatx80(fpa11->fpreg[Fd].fDouble); | ||
109 | } | ||
110 | break; | ||
111 | } | ||
112 | |||
113 | fpa11->fType[Fd] = nDest; | ||
114 | } | ||
115 | |||
116 | return nRc; | ||
117 | } | ||
diff --git a/arch/arm26/nwfpe/fpa11_cpdt.c b/arch/arm26/nwfpe/fpa11_cpdt.c new file mode 100644 index 000000000000..e12db7c51a76 --- /dev/null +++ b/arch/arm26/nwfpe/fpa11_cpdt.c | |||
@@ -0,0 +1,368 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.com, 1998-1999 | ||
4 | (c) Philip Blundell, 1998 | ||
5 | |||
6 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
7 | |||
8 | This program is free software; you can redistribute it and/or modify | ||
9 | it under the terms of the GNU General Public License as published by | ||
10 | the Free Software Foundation; either version 2 of the License, or | ||
11 | (at your option) any later version. | ||
12 | |||
13 | This program is distributed in the hope that it will be useful, | ||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | GNU General Public License for more details. | ||
17 | |||
18 | You should have received a copy of the GNU General Public License | ||
19 | along with this program; if not, write to the Free Software | ||
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
21 | */ | ||
22 | |||
23 | #include "fpa11.h" | ||
24 | #include "softfloat.h" | ||
25 | #include "fpopcode.h" | ||
26 | #include "fpmodule.h" | ||
27 | #include "fpmodule.inl" | ||
28 | |||
29 | #include <asm/uaccess.h> | ||
30 | |||
31 | static inline | ||
32 | void loadSingle(const unsigned int Fn,const unsigned int *pMem) | ||
33 | { | ||
34 | FPA11 *fpa11 = GET_FPA11(); | ||
35 | fpa11->fType[Fn] = typeSingle; | ||
36 | get_user(fpa11->fpreg[Fn].fSingle, pMem); | ||
37 | } | ||
38 | |||
39 | static inline | ||
40 | void loadDouble(const unsigned int Fn,const unsigned int *pMem) | ||
41 | { | ||
42 | FPA11 *fpa11 = GET_FPA11(); | ||
43 | unsigned int *p; | ||
44 | p = (unsigned int*)&fpa11->fpreg[Fn].fDouble; | ||
45 | fpa11->fType[Fn] = typeDouble; | ||
46 | get_user(p[0], &pMem[1]); | ||
47 | get_user(p[1], &pMem[0]); /* sign & exponent */ | ||
48 | } | ||
49 | |||
50 | static inline | ||
51 | void loadExtended(const unsigned int Fn,const unsigned int *pMem) | ||
52 | { | ||
53 | FPA11 *fpa11 = GET_FPA11(); | ||
54 | unsigned int *p; | ||
55 | p = (unsigned int*)&fpa11->fpreg[Fn].fExtended; | ||
56 | fpa11->fType[Fn] = typeExtended; | ||
57 | get_user(p[0], &pMem[0]); /* sign & exponent */ | ||
58 | get_user(p[1], &pMem[2]); /* ls bits */ | ||
59 | get_user(p[2], &pMem[1]); /* ms bits */ | ||
60 | } | ||
61 | |||
62 | static inline | ||
63 | void loadMultiple(const unsigned int Fn,const unsigned int *pMem) | ||
64 | { | ||
65 | FPA11 *fpa11 = GET_FPA11(); | ||
66 | register unsigned int *p; | ||
67 | unsigned long x; | ||
68 | |||
69 | p = (unsigned int*)&(fpa11->fpreg[Fn]); | ||
70 | get_user(x, &pMem[0]); | ||
71 | fpa11->fType[Fn] = (x >> 14) & 0x00000003; | ||
72 | |||
73 | switch (fpa11->fType[Fn]) | ||
74 | { | ||
75 | case typeSingle: | ||
76 | case typeDouble: | ||
77 | { | ||
78 | get_user(p[0], &pMem[2]); /* Single */ | ||
79 | get_user(p[1], &pMem[1]); /* double msw */ | ||
80 | p[2] = 0; /* empty */ | ||
81 | } | ||
82 | break; | ||
83 | |||
84 | case typeExtended: | ||
85 | { | ||
86 | get_user(p[1], &pMem[2]); | ||
87 | get_user(p[2], &pMem[1]); /* msw */ | ||
88 | p[0] = (x & 0x80003fff); | ||
89 | } | ||
90 | break; | ||
91 | } | ||
92 | } | ||
93 | |||
94 | static inline | ||
95 | void storeSingle(const unsigned int Fn,unsigned int *pMem) | ||
96 | { | ||
97 | FPA11 *fpa11 = GET_FPA11(); | ||
98 | union | ||
99 | { | ||
100 | float32 f; | ||
101 | unsigned int i[1]; | ||
102 | } val; | ||
103 | |||
104 | switch (fpa11->fType[Fn]) | ||
105 | { | ||
106 | case typeDouble: | ||
107 | val.f = float64_to_float32(fpa11->fpreg[Fn].fDouble); | ||
108 | break; | ||
109 | |||
110 | case typeExtended: | ||
111 | val.f = floatx80_to_float32(fpa11->fpreg[Fn].fExtended); | ||
112 | break; | ||
113 | |||
114 | default: val.f = fpa11->fpreg[Fn].fSingle; | ||
115 | } | ||
116 | |||
117 | put_user(val.i[0], pMem); | ||
118 | } | ||
119 | |||
120 | static inline | ||
121 | void storeDouble(const unsigned int Fn,unsigned int *pMem) | ||
122 | { | ||
123 | FPA11 *fpa11 = GET_FPA11(); | ||
124 | union | ||
125 | { | ||
126 | float64 f; | ||
127 | unsigned int i[2]; | ||
128 | } val; | ||
129 | |||
130 | switch (fpa11->fType[Fn]) | ||
131 | { | ||
132 | case typeSingle: | ||
133 | val.f = float32_to_float64(fpa11->fpreg[Fn].fSingle); | ||
134 | break; | ||
135 | |||
136 | case typeExtended: | ||
137 | val.f = floatx80_to_float64(fpa11->fpreg[Fn].fExtended); | ||
138 | break; | ||
139 | |||
140 | default: val.f = fpa11->fpreg[Fn].fDouble; | ||
141 | } | ||
142 | |||
143 | put_user(val.i[1], &pMem[0]); /* msw */ | ||
144 | put_user(val.i[0], &pMem[1]); /* lsw */ | ||
145 | } | ||
146 | |||
147 | static inline | ||
148 | void storeExtended(const unsigned int Fn,unsigned int *pMem) | ||
149 | { | ||
150 | FPA11 *fpa11 = GET_FPA11(); | ||
151 | union | ||
152 | { | ||
153 | floatx80 f; | ||
154 | unsigned int i[3]; | ||
155 | } val; | ||
156 | |||
157 | switch (fpa11->fType[Fn]) | ||
158 | { | ||
159 | case typeSingle: | ||
160 | val.f = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | ||
161 | break; | ||
162 | |||
163 | case typeDouble: | ||
164 | val.f = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | ||
165 | break; | ||
166 | |||
167 | default: val.f = fpa11->fpreg[Fn].fExtended; | ||
168 | } | ||
169 | |||
170 | put_user(val.i[0], &pMem[0]); /* sign & exp */ | ||
171 | put_user(val.i[1], &pMem[2]); | ||
172 | put_user(val.i[2], &pMem[1]); /* msw */ | ||
173 | } | ||
174 | |||
175 | static inline | ||
176 | void storeMultiple(const unsigned int Fn,unsigned int *pMem) | ||
177 | { | ||
178 | FPA11 *fpa11 = GET_FPA11(); | ||
179 | register unsigned int nType, *p; | ||
180 | |||
181 | p = (unsigned int*)&(fpa11->fpreg[Fn]); | ||
182 | nType = fpa11->fType[Fn]; | ||
183 | |||
184 | switch (nType) | ||
185 | { | ||
186 | case typeSingle: | ||
187 | case typeDouble: | ||
188 | { | ||
189 | put_user(p[0], &pMem[2]); /* single */ | ||
190 | put_user(p[1], &pMem[1]); /* double msw */ | ||
191 | put_user(nType << 14, &pMem[0]); | ||
192 | } | ||
193 | break; | ||
194 | |||
195 | case typeExtended: | ||
196 | { | ||
197 | put_user(p[2], &pMem[1]); /* msw */ | ||
198 | put_user(p[1], &pMem[2]); | ||
199 | put_user((p[0] & 0x80003fff) | (nType << 14), &pMem[0]); | ||
200 | } | ||
201 | break; | ||
202 | } | ||
203 | } | ||
204 | |||
205 | unsigned int PerformLDF(const unsigned int opcode) | ||
206 | { | ||
207 | unsigned int *pBase, *pAddress, *pFinal, nRc = 1, | ||
208 | write_back = WRITE_BACK(opcode); | ||
209 | |||
210 | //printk("PerformLDF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode)); | ||
211 | |||
212 | pBase = (unsigned int*)readRegister(getRn(opcode)); | ||
213 | if (REG_PC == getRn(opcode)) | ||
214 | { | ||
215 | pBase += 2; | ||
216 | write_back = 0; | ||
217 | } | ||
218 | |||
219 | pFinal = pBase; | ||
220 | if (BIT_UP_SET(opcode)) | ||
221 | pFinal += getOffset(opcode); | ||
222 | else | ||
223 | pFinal -= getOffset(opcode); | ||
224 | |||
225 | if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; | ||
226 | |||
227 | switch (opcode & MASK_TRANSFER_LENGTH) | ||
228 | { | ||
229 | case TRANSFER_SINGLE : loadSingle(getFd(opcode),pAddress); break; | ||
230 | case TRANSFER_DOUBLE : loadDouble(getFd(opcode),pAddress); break; | ||
231 | case TRANSFER_EXTENDED: loadExtended(getFd(opcode),pAddress); break; | ||
232 | default: nRc = 0; | ||
233 | } | ||
234 | |||
235 | if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); | ||
236 | return nRc; | ||
237 | } | ||
238 | |||
239 | unsigned int PerformSTF(const unsigned int opcode) | ||
240 | { | ||
241 | unsigned int *pBase, *pAddress, *pFinal, nRc = 1, | ||
242 | write_back = WRITE_BACK(opcode); | ||
243 | |||
244 | //printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode)); | ||
245 | SetRoundingMode(ROUND_TO_NEAREST); | ||
246 | |||
247 | pBase = (unsigned int*)readRegister(getRn(opcode)); | ||
248 | if (REG_PC == getRn(opcode)) | ||
249 | { | ||
250 | pBase += 2; | ||
251 | write_back = 0; | ||
252 | } | ||
253 | |||
254 | pFinal = pBase; | ||
255 | if (BIT_UP_SET(opcode)) | ||
256 | pFinal += getOffset(opcode); | ||
257 | else | ||
258 | pFinal -= getOffset(opcode); | ||
259 | |||
260 | if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; | ||
261 | |||
262 | switch (opcode & MASK_TRANSFER_LENGTH) | ||
263 | { | ||
264 | case TRANSFER_SINGLE : storeSingle(getFd(opcode),pAddress); break; | ||
265 | case TRANSFER_DOUBLE : storeDouble(getFd(opcode),pAddress); break; | ||
266 | case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break; | ||
267 | default: nRc = 0; | ||
268 | } | ||
269 | |||
270 | if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); | ||
271 | return nRc; | ||
272 | } | ||
273 | |||
274 | unsigned int PerformLFM(const unsigned int opcode) | ||
275 | { | ||
276 | unsigned int i, Fd, *pBase, *pAddress, *pFinal, | ||
277 | write_back = WRITE_BACK(opcode); | ||
278 | |||
279 | pBase = (unsigned int*)readRegister(getRn(opcode)); | ||
280 | if (REG_PC == getRn(opcode)) | ||
281 | { | ||
282 | pBase += 2; | ||
283 | write_back = 0; | ||
284 | } | ||
285 | |||
286 | pFinal = pBase; | ||
287 | if (BIT_UP_SET(opcode)) | ||
288 | pFinal += getOffset(opcode); | ||
289 | else | ||
290 | pFinal -= getOffset(opcode); | ||
291 | |||
292 | if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; | ||
293 | |||
294 | Fd = getFd(opcode); | ||
295 | for (i=getRegisterCount(opcode);i>0;i--) | ||
296 | { | ||
297 | loadMultiple(Fd,pAddress); | ||
298 | pAddress += 3; Fd++; | ||
299 | if (Fd == 8) Fd = 0; | ||
300 | } | ||
301 | |||
302 | if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); | ||
303 | return 1; | ||
304 | } | ||
305 | |||
306 | unsigned int PerformSFM(const unsigned int opcode) | ||
307 | { | ||
308 | unsigned int i, Fd, *pBase, *pAddress, *pFinal, | ||
309 | write_back = WRITE_BACK(opcode); | ||
310 | |||
311 | pBase = (unsigned int*)readRegister(getRn(opcode)); | ||
312 | if (REG_PC == getRn(opcode)) | ||
313 | { | ||
314 | pBase += 2; | ||
315 | write_back = 0; | ||
316 | } | ||
317 | |||
318 | pFinal = pBase; | ||
319 | if (BIT_UP_SET(opcode)) | ||
320 | pFinal += getOffset(opcode); | ||
321 | else | ||
322 | pFinal -= getOffset(opcode); | ||
323 | |||
324 | if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; | ||
325 | |||
326 | Fd = getFd(opcode); | ||
327 | for (i=getRegisterCount(opcode);i>0;i--) | ||
328 | { | ||
329 | storeMultiple(Fd,pAddress); | ||
330 | pAddress += 3; Fd++; | ||
331 | if (Fd == 8) Fd = 0; | ||
332 | } | ||
333 | |||
334 | if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); | ||
335 | return 1; | ||
336 | } | ||
337 | |||
338 | #if 1 | ||
339 | unsigned int EmulateCPDT(const unsigned int opcode) | ||
340 | { | ||
341 | unsigned int nRc = 0; | ||
342 | |||
343 | //printk("EmulateCPDT(0x%08x)\n",opcode); | ||
344 | |||
345 | if (LDF_OP(opcode)) | ||
346 | { | ||
347 | nRc = PerformLDF(opcode); | ||
348 | } | ||
349 | else if (LFM_OP(opcode)) | ||
350 | { | ||
351 | nRc = PerformLFM(opcode); | ||
352 | } | ||
353 | else if (STF_OP(opcode)) | ||
354 | { | ||
355 | nRc = PerformSTF(opcode); | ||
356 | } | ||
357 | else if (SFM_OP(opcode)) | ||
358 | { | ||
359 | nRc = PerformSFM(opcode); | ||
360 | } | ||
361 | else | ||
362 | { | ||
363 | nRc = 0; | ||
364 | } | ||
365 | |||
366 | return nRc; | ||
367 | } | ||
368 | #endif | ||
diff --git a/arch/arm26/nwfpe/fpa11_cprt.c b/arch/arm26/nwfpe/fpa11_cprt.c new file mode 100644 index 000000000000..a201076c1f14 --- /dev/null +++ b/arch/arm26/nwfpe/fpa11_cprt.c | |||
@@ -0,0 +1,289 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | (c) Philip Blundell, 1999 | ||
5 | |||
6 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
7 | |||
8 | This program is free software; you can redistribute it and/or modify | ||
9 | it under the terms of the GNU General Public License as published by | ||
10 | the Free Software Foundation; either version 2 of the License, or | ||
11 | (at your option) any later version. | ||
12 | |||
13 | This program is distributed in the hope that it will be useful, | ||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | GNU General Public License for more details. | ||
17 | |||
18 | You should have received a copy of the GNU General Public License | ||
19 | along with this program; if not, write to the Free Software | ||
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
21 | */ | ||
22 | |||
23 | #include "fpa11.h" | ||
24 | #include "milieu.h" | ||
25 | #include "softfloat.h" | ||
26 | #include "fpopcode.h" | ||
27 | #include "fpa11.inl" | ||
28 | #include "fpmodule.h" | ||
29 | #include "fpmodule.inl" | ||
30 | |||
31 | extern flag floatx80_is_nan(floatx80); | ||
32 | extern flag float64_is_nan( float64); | ||
33 | extern flag float32_is_nan( float32); | ||
34 | |||
35 | void SetRoundingMode(const unsigned int opcode); | ||
36 | |||
37 | unsigned int PerformFLT(const unsigned int opcode); | ||
38 | unsigned int PerformFIX(const unsigned int opcode); | ||
39 | |||
40 | static unsigned int | ||
41 | PerformComparison(const unsigned int opcode); | ||
42 | |||
43 | unsigned int EmulateCPRT(const unsigned int opcode) | ||
44 | { | ||
45 | unsigned int nRc = 1; | ||
46 | |||
47 | //printk("EmulateCPRT(0x%08x)\n",opcode); | ||
48 | |||
49 | if (opcode & 0x800000) | ||
50 | { | ||
51 | /* This is some variant of a comparison (PerformComparison will | ||
52 | sort out which one). Since most of the other CPRT | ||
53 | instructions are oddball cases of some sort or other it makes | ||
54 | sense to pull this out into a fast path. */ | ||
55 | return PerformComparison(opcode); | ||
56 | } | ||
57 | |||
58 | /* Hint to GCC that we'd like a jump table rather than a load of CMPs */ | ||
59 | switch ((opcode & 0x700000) >> 20) | ||
60 | { | ||
61 | case FLT_CODE >> 20: nRc = PerformFLT(opcode); break; | ||
62 | case FIX_CODE >> 20: nRc = PerformFIX(opcode); break; | ||
63 | |||
64 | case WFS_CODE >> 20: writeFPSR(readRegister(getRd(opcode))); break; | ||
65 | case RFS_CODE >> 20: writeRegister(getRd(opcode),readFPSR()); break; | ||
66 | |||
67 | #if 0 /* We currently have no use for the FPCR, so there's no point | ||
68 | in emulating it. */ | ||
69 | case WFC_CODE >> 20: writeFPCR(readRegister(getRd(opcode))); | ||
70 | case RFC_CODE >> 20: writeRegister(getRd(opcode),readFPCR()); break; | ||
71 | #endif | ||
72 | |||
73 | default: nRc = 0; | ||
74 | } | ||
75 | |||
76 | return nRc; | ||
77 | } | ||
78 | |||
79 | unsigned int PerformFLT(const unsigned int opcode) | ||
80 | { | ||
81 | FPA11 *fpa11 = GET_FPA11(); | ||
82 | |||
83 | unsigned int nRc = 1; | ||
84 | SetRoundingMode(opcode); | ||
85 | |||
86 | switch (opcode & MASK_ROUNDING_PRECISION) | ||
87 | { | ||
88 | case ROUND_SINGLE: | ||
89 | { | ||
90 | fpa11->fType[getFn(opcode)] = typeSingle; | ||
91 | fpa11->fpreg[getFn(opcode)].fSingle = | ||
92 | int32_to_float32(readRegister(getRd(opcode))); | ||
93 | } | ||
94 | break; | ||
95 | |||
96 | case ROUND_DOUBLE: | ||
97 | { | ||
98 | fpa11->fType[getFn(opcode)] = typeDouble; | ||
99 | fpa11->fpreg[getFn(opcode)].fDouble = | ||
100 | int32_to_float64(readRegister(getRd(opcode))); | ||
101 | } | ||
102 | break; | ||
103 | |||
104 | case ROUND_EXTENDED: | ||
105 | { | ||
106 | fpa11->fType[getFn(opcode)] = typeExtended; | ||
107 | fpa11->fpreg[getFn(opcode)].fExtended = | ||
108 | int32_to_floatx80(readRegister(getRd(opcode))); | ||
109 | } | ||
110 | break; | ||
111 | |||
112 | default: nRc = 0; | ||
113 | } | ||
114 | |||
115 | return nRc; | ||
116 | } | ||
117 | |||
118 | unsigned int PerformFIX(const unsigned int opcode) | ||
119 | { | ||
120 | FPA11 *fpa11 = GET_FPA11(); | ||
121 | unsigned int nRc = 1; | ||
122 | unsigned int Fn = getFm(opcode); | ||
123 | |||
124 | SetRoundingMode(opcode); | ||
125 | |||
126 | switch (fpa11->fType[Fn]) | ||
127 | { | ||
128 | case typeSingle: | ||
129 | { | ||
130 | writeRegister(getRd(opcode), | ||
131 | float32_to_int32(fpa11->fpreg[Fn].fSingle)); | ||
132 | } | ||
133 | break; | ||
134 | |||
135 | case typeDouble: | ||
136 | { | ||
137 | writeRegister(getRd(opcode), | ||
138 | float64_to_int32(fpa11->fpreg[Fn].fDouble)); | ||
139 | } | ||
140 | break; | ||
141 | |||
142 | case typeExtended: | ||
143 | { | ||
144 | writeRegister(getRd(opcode), | ||
145 | floatx80_to_int32(fpa11->fpreg[Fn].fExtended)); | ||
146 | } | ||
147 | break; | ||
148 | |||
149 | default: nRc = 0; | ||
150 | } | ||
151 | |||
152 | return nRc; | ||
153 | } | ||
154 | |||
155 | |||
156 | static unsigned int __inline__ | ||
157 | PerformComparisonOperation(floatx80 Fn, floatx80 Fm) | ||
158 | { | ||
159 | unsigned int flags = 0; | ||
160 | |||
161 | /* test for less than condition */ | ||
162 | if (floatx80_lt(Fn,Fm)) | ||
163 | { | ||
164 | flags |= CC_NEGATIVE; | ||
165 | } | ||
166 | |||
167 | /* test for equal condition */ | ||
168 | if (floatx80_eq(Fn,Fm)) | ||
169 | { | ||
170 | flags |= CC_ZERO; | ||
171 | } | ||
172 | |||
173 | /* test for greater than or equal condition */ | ||
174 | if (floatx80_lt(Fm,Fn)) | ||
175 | { | ||
176 | flags |= CC_CARRY; | ||
177 | } | ||
178 | |||
179 | writeConditionCodes(flags); | ||
180 | return 1; | ||
181 | } | ||
182 | |||
183 | /* This instruction sets the flags N, Z, C, V in the FPSR. */ | ||
184 | |||
185 | static unsigned int PerformComparison(const unsigned int opcode) | ||
186 | { | ||
187 | FPA11 *fpa11 = GET_FPA11(); | ||
188 | unsigned int Fn, Fm; | ||
189 | floatx80 rFn, rFm; | ||
190 | int e_flag = opcode & 0x400000; /* 1 if CxFE */ | ||
191 | int n_flag = opcode & 0x200000; /* 1 if CNxx */ | ||
192 | unsigned int flags = 0; | ||
193 | |||
194 | //printk("PerformComparison(0x%08x)\n",opcode); | ||
195 | |||
196 | Fn = getFn(opcode); | ||
197 | Fm = getFm(opcode); | ||
198 | |||
199 | /* Check for unordered condition and convert all operands to 80-bit | ||
200 | format. | ||
201 | ?? Might be some mileage in avoiding this conversion if possible. | ||
202 | Eg, if both operands are 32-bit, detect this and do a 32-bit | ||
203 | comparison (cheaper than an 80-bit one). */ | ||
204 | switch (fpa11->fType[Fn]) | ||
205 | { | ||
206 | case typeSingle: | ||
207 | //printk("single.\n"); | ||
208 | if (float32_is_nan(fpa11->fpreg[Fn].fSingle)) | ||
209 | goto unordered; | ||
210 | rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | ||
211 | break; | ||
212 | |||
213 | case typeDouble: | ||
214 | //printk("double.\n"); | ||
215 | if (float64_is_nan(fpa11->fpreg[Fn].fDouble)) | ||
216 | goto unordered; | ||
217 | rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | ||
218 | break; | ||
219 | |||
220 | case typeExtended: | ||
221 | //printk("extended.\n"); | ||
222 | if (floatx80_is_nan(fpa11->fpreg[Fn].fExtended)) | ||
223 | goto unordered; | ||
224 | rFn = fpa11->fpreg[Fn].fExtended; | ||
225 | break; | ||
226 | |||
227 | default: return 0; | ||
228 | } | ||
229 | |||
230 | if (CONSTANT_FM(opcode)) | ||
231 | { | ||
232 | //printk("Fm is a constant: #%d.\n",Fm); | ||
233 | rFm = getExtendedConstant(Fm); | ||
234 | if (floatx80_is_nan(rFm)) | ||
235 | goto unordered; | ||
236 | } | ||
237 | else | ||
238 | { | ||
239 | //printk("Fm = r%d which contains a ",Fm); | ||
240 | switch (fpa11->fType[Fm]) | ||
241 | { | ||
242 | case typeSingle: | ||
243 | //printk("single.\n"); | ||
244 | if (float32_is_nan(fpa11->fpreg[Fm].fSingle)) | ||
245 | goto unordered; | ||
246 | rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); | ||
247 | break; | ||
248 | |||
249 | case typeDouble: | ||
250 | //printk("double.\n"); | ||
251 | if (float64_is_nan(fpa11->fpreg[Fm].fDouble)) | ||
252 | goto unordered; | ||
253 | rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); | ||
254 | break; | ||
255 | |||
256 | case typeExtended: | ||
257 | //printk("extended.\n"); | ||
258 | if (floatx80_is_nan(fpa11->fpreg[Fm].fExtended)) | ||
259 | goto unordered; | ||
260 | rFm = fpa11->fpreg[Fm].fExtended; | ||
261 | break; | ||
262 | |||
263 | default: return 0; | ||
264 | } | ||
265 | } | ||
266 | |||
267 | if (n_flag) | ||
268 | { | ||
269 | rFm.high ^= 0x8000; | ||
270 | } | ||
271 | |||
272 | return PerformComparisonOperation(rFn,rFm); | ||
273 | |||
274 | unordered: | ||
275 | /* ?? The FPA data sheet is pretty vague about this, in particular | ||
276 | about whether the non-E comparisons can ever raise exceptions. | ||
277 | This implementation is based on a combination of what it says in | ||
278 | the data sheet, observation of how the Acorn emulator actually | ||
279 | behaves (and how programs expect it to) and guesswork. */ | ||
280 | flags |= CC_OVERFLOW; | ||
281 | flags &= ~(CC_ZERO | CC_NEGATIVE); | ||
282 | |||
283 | if (BIT_AC & readFPSR()) flags |= CC_CARRY; | ||
284 | |||
285 | if (e_flag) float_raise(float_flag_invalid); | ||
286 | |||
287 | writeConditionCodes(flags); | ||
288 | return 1; | ||
289 | } | ||
diff --git a/arch/arm26/nwfpe/fpmodule.c b/arch/arm26/nwfpe/fpmodule.c new file mode 100644 index 000000000000..528fa710aa34 --- /dev/null +++ b/arch/arm26/nwfpe/fpmodule.c | |||
@@ -0,0 +1,182 @@ | |||
1 | |||
2 | /* | ||
3 | NetWinder Floating Point Emulator | ||
4 | (c) Rebel.com, 1998-1999 | ||
5 | (c) Philip Blundell, 1998-1999 | ||
6 | |||
7 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
8 | |||
9 | This program is free software; you can redistribute it and/or modify | ||
10 | it under the terms of the GNU General Public License as published by | ||
11 | the Free Software Foundation; either version 2 of the License, or | ||
12 | (at your option) any later version. | ||
13 | |||
14 | This program is distributed in the hope that it will be useful, | ||
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | GNU General Public License for more details. | ||
18 | |||
19 | You should have received a copy of the GNU General Public License | ||
20 | along with this program; if not, write to the Free Software | ||
21 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
22 | */ | ||
23 | |||
24 | #include "fpa11.h" | ||
25 | |||
26 | #include <linux/module.h> | ||
27 | #include <linux/version.h> | ||
28 | #include <linux/config.h> | ||
29 | |||
30 | /* XXX */ | ||
31 | #include <linux/errno.h> | ||
32 | #include <linux/types.h> | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/signal.h> | ||
35 | #include <linux/sched.h> | ||
36 | #include <linux/init.h> | ||
37 | /* XXX */ | ||
38 | |||
39 | #include "softfloat.h" | ||
40 | #include "fpopcode.h" | ||
41 | #include "fpmodule.h" | ||
42 | #include "fpa11.inl" | ||
43 | |||
44 | /* kernel symbols required for signal handling */ | ||
45 | typedef struct task_struct* PTASK; | ||
46 | |||
47 | #ifdef MODULE | ||
48 | void fp_send_sig(unsigned long sig, PTASK p, int priv); | ||
49 | #if LINUX_VERSION_CODE > 0x20115 | ||
50 | MODULE_AUTHOR("Scott Bambrough <scottb@rebel.com>"); | ||
51 | MODULE_DESCRIPTION("NWFPE floating point emulator"); | ||
52 | #endif | ||
53 | |||
54 | #else | ||
55 | #define fp_send_sig send_sig | ||
56 | #define kern_fp_enter fp_enter | ||
57 | |||
58 | extern char fpe_type[]; | ||
59 | #endif | ||
60 | |||
61 | /* kernel function prototypes required */ | ||
62 | void fp_setup(void); | ||
63 | |||
64 | /* external declarations for saved kernel symbols */ | ||
65 | extern void (*kern_fp_enter)(void); | ||
66 | |||
67 | /* Original value of fp_enter from kernel before patched by fpe_init. */ | ||
68 | static void (*orig_fp_enter)(void); | ||
69 | |||
70 | /* forward declarations */ | ||
71 | extern void nwfpe_enter(void); | ||
72 | |||
73 | #ifdef MODULE | ||
74 | /* | ||
75 | * Return 0 if we can be unloaded. This can only happen if | ||
76 | * kern_fp_enter is still pointing at nwfpe_enter | ||
77 | */ | ||
78 | static int fpe_unload(void) | ||
79 | { | ||
80 | return (kern_fp_enter == nwfpe_enter) ? 0 : 1; | ||
81 | } | ||
82 | #endif | ||
83 | |||
84 | static int __init fpe_init(void) | ||
85 | { | ||
86 | if (sizeof(FPA11) > sizeof(union fp_state)) { | ||
87 | printk(KERN_ERR "nwfpe: bad structure size\n"); | ||
88 | return -EINVAL; | ||
89 | } | ||
90 | |||
91 | if (sizeof(FPREG) != 12) { | ||
92 | printk(KERN_ERR "nwfpe: bad register size\n"); | ||
93 | return -EINVAL; | ||
94 | } | ||
95 | |||
96 | #ifdef MODULE | ||
97 | if (!mod_member_present(&__this_module, can_unload)) | ||
98 | return -EINVAL; | ||
99 | __this_module.can_unload = fpe_unload; | ||
100 | #else | ||
101 | if (fpe_type[0] && strcmp(fpe_type, "nwfpe")) | ||
102 | return 0; | ||
103 | #endif | ||
104 | |||
105 | /* Display title, version and copyright information. */ | ||
106 | printk(KERN_WARNING "NetWinder Floating Point Emulator V0.95 " | ||
107 | "(c) 1998-1999 Rebel.com\n"); | ||
108 | |||
109 | /* Save pointer to the old FP handler and then patch ourselves in */ | ||
110 | orig_fp_enter = kern_fp_enter; | ||
111 | kern_fp_enter = nwfpe_enter; | ||
112 | |||
113 | return 0; | ||
114 | } | ||
115 | |||
116 | static void __exit fpe_exit(void) | ||
117 | { | ||
118 | /* Restore the values we saved earlier. */ | ||
119 | kern_fp_enter = orig_fp_enter; | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | ScottB: November 4, 1998 | ||
124 | |||
125 | Moved this function out of softfloat-specialize into fpmodule.c. | ||
126 | This effectively isolates all the changes required for integrating with the | ||
127 | Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying | ||
128 | fpmodule.c to integrate with the NetBSD kernel (I hope!). | ||
129 | |||
130 | [1/1/99: Not quite true any more unfortunately. There is Linux-specific | ||
131 | code to access data in user space in some other source files at the | ||
132 | moment (grep for get_user / put_user calls). --philb] | ||
133 | |||
134 | float_exception_flags is a global variable in SoftFloat. | ||
135 | |||
136 | This function is called by the SoftFloat routines to raise a floating | ||
137 | point exception. We check the trap enable byte in the FPSR, and raise | ||
138 | a SIGFPE exception if necessary. If not the relevant bits in the | ||
139 | cumulative exceptions flag byte are set and we return. | ||
140 | */ | ||
141 | |||
142 | void float_raise(signed char flags) | ||
143 | { | ||
144 | register unsigned int fpsr, cumulativeTraps; | ||
145 | |||
146 | #ifdef CONFIG_DEBUG_USER | ||
147 | printk(KERN_DEBUG "NWFPE: %s[%d] takes exception %08x at %p from %08x\n", | ||
148 | current->comm, current->pid, flags, | ||
149 | __builtin_return_address(0), GET_USERREG()[15]); | ||
150 | #endif | ||
151 | |||
152 | /* Keep SoftFloat exception flags up to date. */ | ||
153 | float_exception_flags |= flags; | ||
154 | |||
155 | /* Read fpsr and initialize the cumulativeTraps. */ | ||
156 | fpsr = readFPSR(); | ||
157 | cumulativeTraps = 0; | ||
158 | |||
159 | /* For each type of exception, the cumulative trap exception bit is only | ||
160 | set if the corresponding trap enable bit is not set. */ | ||
161 | if ((!(fpsr & BIT_IXE)) && (flags & BIT_IXC)) | ||
162 | cumulativeTraps |= BIT_IXC; | ||
163 | if ((!(fpsr & BIT_UFE)) && (flags & BIT_UFC)) | ||
164 | cumulativeTraps |= BIT_UFC; | ||
165 | if ((!(fpsr & BIT_OFE)) && (flags & BIT_OFC)) | ||
166 | cumulativeTraps |= BIT_OFC; | ||
167 | if ((!(fpsr & BIT_DZE)) && (flags & BIT_DZC)) | ||
168 | cumulativeTraps |= BIT_DZC; | ||
169 | if ((!(fpsr & BIT_IOE)) && (flags & BIT_IOC)) | ||
170 | cumulativeTraps |= BIT_IOC; | ||
171 | |||
172 | /* Set the cumulative exceptions flags. */ | ||
173 | if (cumulativeTraps) | ||
174 | writeFPSR(fpsr | cumulativeTraps); | ||
175 | |||
176 | /* Raise an exception if necessary. */ | ||
177 | if (fpsr & (flags << 16)) | ||
178 | fp_send_sig(SIGFPE, current, 1); | ||
179 | } | ||
180 | |||
181 | module_init(fpe_init); | ||
182 | module_exit(fpe_exit); | ||
diff --git a/arch/arm26/nwfpe/fpmodule.h b/arch/arm26/nwfpe/fpmodule.h new file mode 100644 index 000000000000..ef71aab46a32 --- /dev/null +++ b/arch/arm26/nwfpe/fpmodule.h | |||
@@ -0,0 +1,47 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.com, 1998-1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #ifndef __FPMODULE_H__ | ||
23 | #define __FPMODULE_H__ | ||
24 | |||
25 | #include <linux/config.h> | ||
26 | |||
27 | #define REG_ORIG_R0 16 | ||
28 | #define REG_CPSR 15 | ||
29 | #define REG_PC 15 | ||
30 | #define REG_LR 14 | ||
31 | #define REG_SP 13 | ||
32 | #define REG_IP 12 | ||
33 | #define REG_FP 11 | ||
34 | #define REG_R10 10 | ||
35 | #define REG_R9 9 | ||
36 | #define REG_R9 9 | ||
37 | #define REG_R8 8 | ||
38 | #define REG_R7 7 | ||
39 | #define REG_R6 6 | ||
40 | #define REG_R5 5 | ||
41 | #define REG_R4 4 | ||
42 | #define REG_R3 3 | ||
43 | #define REG_R2 2 | ||
44 | #define REG_R1 1 | ||
45 | #define REG_R0 0 | ||
46 | |||
47 | #endif | ||
diff --git a/arch/arm26/nwfpe/fpmodule.inl b/arch/arm26/nwfpe/fpmodule.inl new file mode 100644 index 000000000000..ef228378ffaf --- /dev/null +++ b/arch/arm26/nwfpe/fpmodule.inl | |||
@@ -0,0 +1,84 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | extern __inline__ | ||
23 | unsigned int readRegister(const unsigned int nReg) | ||
24 | { | ||
25 | /* Note: The CPU thinks it has dealt with the current instruction. As | ||
26 | a result the program counter has been advanced to the next | ||
27 | instruction, and points 4 bytes beyond the actual instruction | ||
28 | that caused the invalid instruction trap to occur. We adjust | ||
29 | for this in this routine. LDF/STF instructions with Rn = PC | ||
30 | depend on the PC being correct, as they use PC+8 in their | ||
31 | address calculations. */ | ||
32 | unsigned int *userRegisters = GET_USERREG(); | ||
33 | unsigned int val = userRegisters[nReg]; | ||
34 | if (REG_PC == nReg) val -= 4; | ||
35 | return val; | ||
36 | } | ||
37 | |||
38 | extern __inline__ | ||
39 | void writeRegister(const unsigned int nReg, const unsigned int val) | ||
40 | { | ||
41 | unsigned int *userRegisters = GET_USERREG(); | ||
42 | userRegisters[nReg] = val; | ||
43 | } | ||
44 | |||
45 | extern __inline__ | ||
46 | unsigned int readCPSR(void) | ||
47 | { | ||
48 | return(readRegister(REG_CPSR)); | ||
49 | } | ||
50 | |||
51 | extern __inline__ | ||
52 | void writeCPSR(const unsigned int val) | ||
53 | { | ||
54 | writeRegister(REG_CPSR,val); | ||
55 | } | ||
56 | |||
57 | extern __inline__ | ||
58 | unsigned int readConditionCodes(void) | ||
59 | { | ||
60 | #ifdef __FPEM_TEST__ | ||
61 | return(0); | ||
62 | #else | ||
63 | return(readCPSR() & CC_MASK); | ||
64 | #endif | ||
65 | } | ||
66 | |||
67 | extern __inline__ | ||
68 | void writeConditionCodes(const unsigned int val) | ||
69 | { | ||
70 | unsigned int *userRegisters = GET_USERREG(); | ||
71 | unsigned int rval; | ||
72 | /* | ||
73 | * Operate directly on userRegisters since | ||
74 | * the CPSR may be the PC register itself. | ||
75 | */ | ||
76 | rval = userRegisters[REG_CPSR] & ~CC_MASK; | ||
77 | userRegisters[REG_CPSR] = rval | (val & CC_MASK); | ||
78 | } | ||
79 | |||
80 | extern __inline__ | ||
81 | unsigned int readMemoryInt(unsigned int *pMem) | ||
82 | { | ||
83 | return *pMem; | ||
84 | } | ||
diff --git a/arch/arm26/nwfpe/fpopcode.c b/arch/arm26/nwfpe/fpopcode.c new file mode 100644 index 000000000000..d81ddd188322 --- /dev/null +++ b/arch/arm26/nwfpe/fpopcode.c | |||
@@ -0,0 +1,148 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "softfloat.h" | ||
24 | #include "fpopcode.h" | ||
25 | #include "fpsr.h" | ||
26 | #include "fpmodule.h" | ||
27 | #include "fpmodule.inl" | ||
28 | |||
29 | const floatx80 floatx80Constant[] = { | ||
30 | { 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */ | ||
31 | { 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */ | ||
32 | { 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */ | ||
33 | { 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */ | ||
34 | { 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */ | ||
35 | { 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */ | ||
36 | { 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */ | ||
37 | { 0x4002, 0xa000000000000000ULL} /* extended 10.0 */ | ||
38 | }; | ||
39 | |||
40 | const float64 float64Constant[] = { | ||
41 | 0x0000000000000000ULL, /* double 0.0 */ | ||
42 | 0x3ff0000000000000ULL, /* double 1.0 */ | ||
43 | 0x4000000000000000ULL, /* double 2.0 */ | ||
44 | 0x4008000000000000ULL, /* double 3.0 */ | ||
45 | 0x4010000000000000ULL, /* double 4.0 */ | ||
46 | 0x4014000000000000ULL, /* double 5.0 */ | ||
47 | 0x3fe0000000000000ULL, /* double 0.5 */ | ||
48 | 0x4024000000000000ULL /* double 10.0 */ | ||
49 | }; | ||
50 | |||
51 | const float32 float32Constant[] = { | ||
52 | 0x00000000, /* single 0.0 */ | ||
53 | 0x3f800000, /* single 1.0 */ | ||
54 | 0x40000000, /* single 2.0 */ | ||
55 | 0x40400000, /* single 3.0 */ | ||
56 | 0x40800000, /* single 4.0 */ | ||
57 | 0x40a00000, /* single 5.0 */ | ||
58 | 0x3f000000, /* single 0.5 */ | ||
59 | 0x41200000 /* single 10.0 */ | ||
60 | }; | ||
61 | |||
62 | unsigned int getTransferLength(const unsigned int opcode) | ||
63 | { | ||
64 | unsigned int nRc; | ||
65 | |||
66 | switch (opcode & MASK_TRANSFER_LENGTH) | ||
67 | { | ||
68 | case 0x00000000: nRc = 1; break; /* single precision */ | ||
69 | case 0x00008000: nRc = 2; break; /* double precision */ | ||
70 | case 0x00400000: nRc = 3; break; /* extended precision */ | ||
71 | default: nRc = 0; | ||
72 | } | ||
73 | |||
74 | return(nRc); | ||
75 | } | ||
76 | |||
77 | unsigned int getRegisterCount(const unsigned int opcode) | ||
78 | { | ||
79 | unsigned int nRc; | ||
80 | |||
81 | switch (opcode & MASK_REGISTER_COUNT) | ||
82 | { | ||
83 | case 0x00000000: nRc = 4; break; | ||
84 | case 0x00008000: nRc = 1; break; | ||
85 | case 0x00400000: nRc = 2; break; | ||
86 | case 0x00408000: nRc = 3; break; | ||
87 | default: nRc = 0; | ||
88 | } | ||
89 | |||
90 | return(nRc); | ||
91 | } | ||
92 | |||
93 | unsigned int getRoundingPrecision(const unsigned int opcode) | ||
94 | { | ||
95 | unsigned int nRc; | ||
96 | |||
97 | switch (opcode & MASK_ROUNDING_PRECISION) | ||
98 | { | ||
99 | case 0x00000000: nRc = 1; break; | ||
100 | case 0x00000080: nRc = 2; break; | ||
101 | case 0x00080000: nRc = 3; break; | ||
102 | default: nRc = 0; | ||
103 | } | ||
104 | |||
105 | return(nRc); | ||
106 | } | ||
107 | |||
108 | unsigned int getDestinationSize(const unsigned int opcode) | ||
109 | { | ||
110 | unsigned int nRc; | ||
111 | |||
112 | switch (opcode & MASK_DESTINATION_SIZE) | ||
113 | { | ||
114 | case 0x00000000: nRc = typeSingle; break; | ||
115 | case 0x00000080: nRc = typeDouble; break; | ||
116 | case 0x00080000: nRc = typeExtended; break; | ||
117 | default: nRc = typeNone; | ||
118 | } | ||
119 | |||
120 | return(nRc); | ||
121 | } | ||
122 | |||
123 | /* condition code lookup table | ||
124 | index into the table is test code: EQ, NE, ... LT, GT, AL, NV | ||
125 | bit position in short is condition code: NZCV */ | ||
126 | static const unsigned short aCC[16] = { | ||
127 | 0xF0F0, // EQ == Z set | ||
128 | 0x0F0F, // NE | ||
129 | 0xCCCC, // CS == C set | ||
130 | 0x3333, // CC | ||
131 | 0xFF00, // MI == N set | ||
132 | 0x00FF, // PL | ||
133 | 0xAAAA, // VS == V set | ||
134 | 0x5555, // VC | ||
135 | 0x0C0C, // HI == C set && Z clear | ||
136 | 0xF3F3, // LS == C clear || Z set | ||
137 | 0xAA55, // GE == (N==V) | ||
138 | 0x55AA, // LT == (N!=V) | ||
139 | 0x0A05, // GT == (!Z && (N==V)) | ||
140 | 0xF5FA, // LE == (Z || (N!=V)) | ||
141 | 0xFFFF, // AL always | ||
142 | 0 // NV | ||
143 | }; | ||
144 | |||
145 | unsigned int checkCondition(const unsigned int opcode, const unsigned int ccodes) | ||
146 | { | ||
147 | return (aCC[opcode>>28] >> (ccodes>>28)) & 1; | ||
148 | } | ||
diff --git a/arch/arm26/nwfpe/fpopcode.h b/arch/arm26/nwfpe/fpopcode.h new file mode 100644 index 000000000000..13c7419262ab --- /dev/null +++ b/arch/arm26/nwfpe/fpopcode.h | |||
@@ -0,0 +1,390 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #ifndef __FPOPCODE_H__ | ||
23 | #define __FPOPCODE_H__ | ||
24 | |||
25 | /* | ||
26 | ARM Floating Point Instruction Classes | ||
27 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
28 | |c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT | ||
29 | |c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT | ||
30 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
31 | |c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO | ||
32 | |c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT | ||
33 | |c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons | ||
34 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||
35 | |||
36 | CPDT data transfer instructions | ||
37 | LDF, STF, LFM, SFM | ||
38 | |||
39 | CPDO dyadic arithmetic instructions | ||
40 | ADF, MUF, SUF, RSF, DVF, RDF, | ||
41 | POW, RPW, RMF, FML, FDV, FRD, POL | ||
42 | |||
43 | CPDO monadic arithmetic instructions | ||
44 | MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP, | ||
45 | SIN, COS, TAN, ASN, ACS, ATN, URD, NRM | ||
46 | |||
47 | CPRT joint arithmetic/data transfer instructions | ||
48 | FIX (arithmetic followed by load/store) | ||
49 | FLT (load/store followed by arithmetic) | ||
50 | CMF, CNF CMFE, CNFE (comparisons) | ||
51 | WFS, RFS (write/read floating point status register) | ||
52 | WFC, RFC (write/read floating point control register) | ||
53 | |||
54 | cond condition codes | ||
55 | P pre/post index bit: 0 = postindex, 1 = preindex | ||
56 | U up/down bit: 0 = stack grows down, 1 = stack grows up | ||
57 | W write back bit: 1 = update base register (Rn) | ||
58 | L load/store bit: 0 = store, 1 = load | ||
59 | Rn base register | ||
60 | Rd destination/source register | ||
61 | Fd floating point destination register | ||
62 | Fn floating point source register | ||
63 | Fm floating point source register or floating point constant | ||
64 | |||
65 | uv transfer length (TABLE 1) | ||
66 | wx register count (TABLE 2) | ||
67 | abcd arithmetic opcode (TABLES 3 & 4) | ||
68 | ef destination size (rounding precision) (TABLE 5) | ||
69 | gh rounding mode (TABLE 6) | ||
70 | j dyadic/monadic bit: 0 = dyadic, 1 = monadic | ||
71 | i constant bit: 1 = constant (TABLE 6) | ||
72 | */ | ||
73 | |||
74 | /* | ||
75 | TABLE 1 | ||
76 | +-------------------------+---+---+---------+---------+ | ||
77 | | Precision | u | v | FPSR.EP | length | | ||
78 | +-------------------------+---+---+---------+---------+ | ||
79 | | Single | 0 ü 0 | x | 1 words | | ||
80 | | Double | 1 ü 1 | x | 2 words | | ||
81 | | Extended | 1 ü 1 | x | 3 words | | ||
82 | | Packed decimal | 1 ü 1 | 0 | 3 words | | ||
83 | | Expanded packed decimal | 1 ü 1 | 1 | 4 words | | ||
84 | +-------------------------+---+---+---------+---------+ | ||
85 | Note: x = don't care | ||
86 | */ | ||
87 | |||
88 | /* | ||
89 | TABLE 2 | ||
90 | +---+---+---------------------------------+ | ||
91 | | w | x | Number of registers to transfer | | ||
92 | +---+---+---------------------------------+ | ||
93 | | 0 ü 1 | 1 | | ||
94 | | 1 ü 0 | 2 | | ||
95 | | 1 ü 1 | 3 | | ||
96 | | 0 ü 0 | 4 | | ||
97 | +---+---+---------------------------------+ | ||
98 | */ | ||
99 | |||
100 | /* | ||
101 | TABLE 3: Dyadic Floating Point Opcodes | ||
102 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
103 | | a | b | c | d | Mnemonic | Description | Operation | | ||
104 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
105 | | 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm | | ||
106 | | 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm | | ||
107 | | 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm | | ||
108 | | 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn | | ||
109 | | 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm | | ||
110 | | 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn | | ||
111 | | 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm | | ||
112 | | 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn | | ||
113 | | 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) | | ||
114 | | 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm | | ||
115 | | 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm | | ||
116 | | 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn | | ||
117 | | 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) | | ||
118 | | 1 | 1 | 0 | 1 | | undefined instruction | trap | | ||
119 | | 1 | 1 | 1 | 0 | | undefined instruction | trap | | ||
120 | | 1 | 1 | 1 | 1 | | undefined instruction | trap | | ||
121 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
122 | Note: POW, RPW, POL are deprecated, and are available for backwards | ||
123 | compatibility only. | ||
124 | */ | ||
125 | |||
126 | /* | ||
127 | TABLE 4: Monadic Floating Point Opcodes | ||
128 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
129 | | a | b | c | d | Mnemonic | Description | Operation | | ||
130 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
131 | | 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm | | ||
132 | | 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm | | ||
133 | | 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) | | ||
134 | | 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) | | ||
135 | | 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) | | ||
136 | | 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) | | ||
137 | | 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) | | ||
138 | | 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm | | ||
139 | | 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) | | ||
140 | | 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) | | ||
141 | | 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) | | ||
142 | | 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) | | ||
143 | | 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) | | ||
144 | | 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) | | ||
145 | | 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) | | ||
146 | | 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) | | ||
147 | +---+---+---+---+----------+-----------------------+-----------------------+ | ||
148 | Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are | ||
149 | available for backwards compatibility only. | ||
150 | */ | ||
151 | |||
152 | /* | ||
153 | TABLE 5 | ||
154 | +-------------------------+---+---+ | ||
155 | | Rounding Precision | e | f | | ||
156 | +-------------------------+---+---+ | ||
157 | | IEEE Single precision | 0 ü 0 | | ||
158 | | IEEE Double precision | 0 ü 1 | | ||
159 | | IEEE Extended precision | 1 ü 0 | | ||
160 | | undefined (trap) | 1 ü 1 | | ||
161 | +-------------------------+---+---+ | ||
162 | */ | ||
163 | |||
164 | /* | ||
165 | TABLE 5 | ||
166 | +---------------------------------+---+---+ | ||
167 | | Rounding Mode | g | h | | ||
168 | +---------------------------------+---+---+ | ||
169 | | Round to nearest (default) | 0 ü 0 | | ||
170 | | Round toward plus infinity | 0 ü 1 | | ||
171 | | Round toward negative infinity | 1 ü 0 | | ||
172 | | Round toward zero | 1 ü 1 | | ||
173 | +---------------------------------+---+---+ | ||
174 | */ | ||
175 | |||
176 | /* | ||
177 | === | ||
178 | === Definitions for load and store instructions | ||
179 | === | ||
180 | */ | ||
181 | |||
182 | /* bit masks */ | ||
183 | #define BIT_PREINDEX 0x01000000 | ||
184 | #define BIT_UP 0x00800000 | ||
185 | #define BIT_WRITE_BACK 0x00200000 | ||
186 | #define BIT_LOAD 0x00100000 | ||
187 | |||
188 | /* masks for load/store */ | ||
189 | #define MASK_CPDT 0x0c000000 /* data processing opcode */ | ||
190 | #define MASK_OFFSET 0x000000ff | ||
191 | #define MASK_TRANSFER_LENGTH 0x00408000 | ||
192 | #define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH | ||
193 | #define MASK_COPROCESSOR 0x00000f00 | ||
194 | |||
195 | /* Tests for transfer length */ | ||
196 | #define TRANSFER_SINGLE 0x00000000 | ||
197 | #define TRANSFER_DOUBLE 0x00008000 | ||
198 | #define TRANSFER_EXTENDED 0x00400000 | ||
199 | #define TRANSFER_PACKED MASK_TRANSFER_LENGTH | ||
200 | |||
201 | /* Get the coprocessor number from the opcode. */ | ||
202 | #define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8) | ||
203 | |||
204 | /* Get the offset from the opcode. */ | ||
205 | #define getOffset(opcode) (opcode & MASK_OFFSET) | ||
206 | |||
207 | /* Tests for specific data transfer load/store opcodes. */ | ||
208 | #define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask)) | ||
209 | |||
210 | #define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD) | ||
211 | #define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT) | ||
212 | |||
213 | #define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) | ||
214 | #define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) | ||
215 | #define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) | ||
216 | #define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) | ||
217 | |||
218 | #define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0) | ||
219 | #define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0) | ||
220 | #define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0) | ||
221 | #define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0) | ||
222 | #define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0) | ||
223 | #define LOAD(opcode) ((opcode & BIT_LOAD) != 0) | ||
224 | #define STORE(opcode) ((opcode & BIT_LOAD) == 0) | ||
225 | |||
226 | /* | ||
227 | === | ||
228 | === Definitions for arithmetic instructions | ||
229 | === | ||
230 | */ | ||
231 | /* bit masks */ | ||
232 | #define BIT_MONADIC 0x00008000 | ||
233 | #define BIT_CONSTANT 0x00000008 | ||
234 | |||
235 | #define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0) | ||
236 | #define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0) | ||
237 | |||
238 | /* instruction identification masks */ | ||
239 | #define MASK_CPDO 0x0e000000 /* arithmetic opcode */ | ||
240 | #define MASK_ARITHMETIC_OPCODE 0x00f08000 | ||
241 | #define MASK_DESTINATION_SIZE 0x00080080 | ||
242 | |||
243 | /* dyadic arithmetic opcodes. */ | ||
244 | #define ADF_CODE 0x00000000 | ||
245 | #define MUF_CODE 0x00100000 | ||
246 | #define SUF_CODE 0x00200000 | ||
247 | #define RSF_CODE 0x00300000 | ||
248 | #define DVF_CODE 0x00400000 | ||
249 | #define RDF_CODE 0x00500000 | ||
250 | #define POW_CODE 0x00600000 | ||
251 | #define RPW_CODE 0x00700000 | ||
252 | #define RMF_CODE 0x00800000 | ||
253 | #define FML_CODE 0x00900000 | ||
254 | #define FDV_CODE 0x00a00000 | ||
255 | #define FRD_CODE 0x00b00000 | ||
256 | #define POL_CODE 0x00c00000 | ||
257 | /* 0x00d00000 is an invalid dyadic arithmetic opcode */ | ||
258 | /* 0x00e00000 is an invalid dyadic arithmetic opcode */ | ||
259 | /* 0x00f00000 is an invalid dyadic arithmetic opcode */ | ||
260 | |||
261 | /* monadic arithmetic opcodes. */ | ||
262 | #define MVF_CODE 0x00008000 | ||
263 | #define MNF_CODE 0x00108000 | ||
264 | #define ABS_CODE 0x00208000 | ||
265 | #define RND_CODE 0x00308000 | ||
266 | #define SQT_CODE 0x00408000 | ||
267 | #define LOG_CODE 0x00508000 | ||
268 | #define LGN_CODE 0x00608000 | ||
269 | #define EXP_CODE 0x00708000 | ||
270 | #define SIN_CODE 0x00808000 | ||
271 | #define COS_CODE 0x00908000 | ||
272 | #define TAN_CODE 0x00a08000 | ||
273 | #define ASN_CODE 0x00b08000 | ||
274 | #define ACS_CODE 0x00c08000 | ||
275 | #define ATN_CODE 0x00d08000 | ||
276 | #define URD_CODE 0x00e08000 | ||
277 | #define NRM_CODE 0x00f08000 | ||
278 | |||
279 | /* | ||
280 | === | ||
281 | === Definitions for register transfer and comparison instructions | ||
282 | === | ||
283 | */ | ||
284 | |||
285 | #define MASK_CPRT 0x0e000010 /* register transfer opcode */ | ||
286 | #define MASK_CPRT_CODE 0x00f00000 | ||
287 | #define FLT_CODE 0x00000000 | ||
288 | #define FIX_CODE 0x00100000 | ||
289 | #define WFS_CODE 0x00200000 | ||
290 | #define RFS_CODE 0x00300000 | ||
291 | #define WFC_CODE 0x00400000 | ||
292 | #define RFC_CODE 0x00500000 | ||
293 | #define CMF_CODE 0x00900000 | ||
294 | #define CNF_CODE 0x00b00000 | ||
295 | #define CMFE_CODE 0x00d00000 | ||
296 | #define CNFE_CODE 0x00f00000 | ||
297 | |||
298 | /* | ||
299 | === | ||
300 | === Common definitions | ||
301 | === | ||
302 | */ | ||
303 | |||
304 | /* register masks */ | ||
305 | #define MASK_Rd 0x0000f000 | ||
306 | #define MASK_Rn 0x000f0000 | ||
307 | #define MASK_Fd 0x00007000 | ||
308 | #define MASK_Fm 0x00000007 | ||
309 | #define MASK_Fn 0x00070000 | ||
310 | |||
311 | /* condition code masks */ | ||
312 | #define CC_MASK 0xf0000000 | ||
313 | #define CC_NEGATIVE 0x80000000 | ||
314 | #define CC_ZERO 0x40000000 | ||
315 | #define CC_CARRY 0x20000000 | ||
316 | #define CC_OVERFLOW 0x10000000 | ||
317 | #define CC_EQ 0x00000000 | ||
318 | #define CC_NE 0x10000000 | ||
319 | #define CC_CS 0x20000000 | ||
320 | #define CC_HS CC_CS | ||
321 | #define CC_CC 0x30000000 | ||
322 | #define CC_LO CC_CC | ||
323 | #define CC_MI 0x40000000 | ||
324 | #define CC_PL 0x50000000 | ||
325 | #define CC_VS 0x60000000 | ||
326 | #define CC_VC 0x70000000 | ||
327 | #define CC_HI 0x80000000 | ||
328 | #define CC_LS 0x90000000 | ||
329 | #define CC_GE 0xa0000000 | ||
330 | #define CC_LT 0xb0000000 | ||
331 | #define CC_GT 0xc0000000 | ||
332 | #define CC_LE 0xd0000000 | ||
333 | #define CC_AL 0xe0000000 | ||
334 | #define CC_NV 0xf0000000 | ||
335 | |||
336 | /* rounding masks/values */ | ||
337 | #define MASK_ROUNDING_MODE 0x00000060 | ||
338 | #define ROUND_TO_NEAREST 0x00000000 | ||
339 | #define ROUND_TO_PLUS_INFINITY 0x00000020 | ||
340 | #define ROUND_TO_MINUS_INFINITY 0x00000040 | ||
341 | #define ROUND_TO_ZERO 0x00000060 | ||
342 | |||
343 | #define MASK_ROUNDING_PRECISION 0x00080080 | ||
344 | #define ROUND_SINGLE 0x00000000 | ||
345 | #define ROUND_DOUBLE 0x00000080 | ||
346 | #define ROUND_EXTENDED 0x00080000 | ||
347 | |||
348 | /* Get the condition code from the opcode. */ | ||
349 | #define getCondition(opcode) (opcode >> 28) | ||
350 | |||
351 | /* Get the source register from the opcode. */ | ||
352 | #define getRn(opcode) ((opcode & MASK_Rn) >> 16) | ||
353 | |||
354 | /* Get the destination floating point register from the opcode. */ | ||
355 | #define getFd(opcode) ((opcode & MASK_Fd) >> 12) | ||
356 | |||
357 | /* Get the first source floating point register from the opcode. */ | ||
358 | #define getFn(opcode) ((opcode & MASK_Fn) >> 16) | ||
359 | |||
360 | /* Get the second source floating point register from the opcode. */ | ||
361 | #define getFm(opcode) (opcode & MASK_Fm) | ||
362 | |||
363 | /* Get the destination register from the opcode. */ | ||
364 | #define getRd(opcode) ((opcode & MASK_Rd) >> 12) | ||
365 | |||
366 | /* Get the rounding mode from the opcode. */ | ||
367 | #define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5) | ||
368 | |||
369 | static inline const floatx80 getExtendedConstant(const unsigned int nIndex) | ||
370 | { | ||
371 | extern const floatx80 floatx80Constant[]; | ||
372 | return floatx80Constant[nIndex]; | ||
373 | } | ||
374 | |||
375 | static inline const float64 getDoubleConstant(const unsigned int nIndex) | ||
376 | { | ||
377 | extern const float64 float64Constant[]; | ||
378 | return float64Constant[nIndex]; | ||
379 | } | ||
380 | |||
381 | static inline const float32 getSingleConstant(const unsigned int nIndex) | ||
382 | { | ||
383 | extern const float32 float32Constant[]; | ||
384 | return float32Constant[nIndex]; | ||
385 | } | ||
386 | |||
387 | extern unsigned int getRegisterCount(const unsigned int opcode); | ||
388 | extern unsigned int getDestinationSize(const unsigned int opcode); | ||
389 | |||
390 | #endif | ||
diff --git a/arch/arm26/nwfpe/fpsr.h b/arch/arm26/nwfpe/fpsr.h new file mode 100644 index 000000000000..6dafb0f5243c --- /dev/null +++ b/arch/arm26/nwfpe/fpsr.h | |||
@@ -0,0 +1,108 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.com, 1998-1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #ifndef __FPSR_H__ | ||
23 | #define __FPSR_H__ | ||
24 | |||
25 | /* | ||
26 | The FPSR is a 32 bit register consisting of 4 parts, each exactly | ||
27 | one byte. | ||
28 | |||
29 | SYSTEM ID | ||
30 | EXCEPTION TRAP ENABLE BYTE | ||
31 | SYSTEM CONTROL BYTE | ||
32 | CUMULATIVE EXCEPTION FLAGS BYTE | ||
33 | |||
34 | The FPCR is a 32 bit register consisting of bit flags. | ||
35 | */ | ||
36 | |||
37 | /* SYSTEM ID | ||
38 | ------------ | ||
39 | Note: the system id byte is read only */ | ||
40 | |||
41 | typedef unsigned int FPSR; /* type for floating point status register */ | ||
42 | typedef unsigned int FPCR; /* type for floating point control register */ | ||
43 | |||
44 | #define MASK_SYSID 0xff000000 | ||
45 | #define BIT_HARDWARE 0x80000000 | ||
46 | #define FP_EMULATOR 0x01000000 /* System ID for emulator */ | ||
47 | #define FP_ACCELERATOR 0x81000000 /* System ID for FPA11 */ | ||
48 | |||
49 | /* EXCEPTION TRAP ENABLE BYTE | ||
50 | ----------------------------- */ | ||
51 | |||
52 | #define MASK_TRAP_ENABLE 0x00ff0000 | ||
53 | #define MASK_TRAP_ENABLE_STRICT 0x001f0000 | ||
54 | #define BIT_IXE 0x00100000 /* inexact exception enable */ | ||
55 | #define BIT_UFE 0x00080000 /* underflow exception enable */ | ||
56 | #define BIT_OFE 0x00040000 /* overflow exception enable */ | ||
57 | #define BIT_DZE 0x00020000 /* divide by zero exception enable */ | ||
58 | #define BIT_IOE 0x00010000 /* invalid operation exception enable */ | ||
59 | |||
60 | /* SYSTEM CONTROL BYTE | ||
61 | ---------------------- */ | ||
62 | |||
63 | #define MASK_SYSTEM_CONTROL 0x0000ff00 | ||
64 | #define MASK_TRAP_STRICT 0x00001f00 | ||
65 | |||
66 | #define BIT_AC 0x00001000 /* use alternative C-flag definition | ||
67 | for compares */ | ||
68 | #define BIT_EP 0x00000800 /* use expanded packed decimal format */ | ||
69 | #define BIT_SO 0x00000400 /* select synchronous operation of FPA */ | ||
70 | #define BIT_NE 0x00000200 /* NaN exception bit */ | ||
71 | #define BIT_ND 0x00000100 /* no denormalized numbers bit */ | ||
72 | |||
73 | /* CUMULATIVE EXCEPTION FLAGS BYTE | ||
74 | ---------------------------------- */ | ||
75 | |||
76 | #define MASK_EXCEPTION_FLAGS 0x000000ff | ||
77 | #define MASK_EXCEPTION_FLAGS_STRICT 0x0000001f | ||
78 | |||
79 | #define BIT_IXC 0x00000010 /* inexact exception flag */ | ||
80 | #define BIT_UFC 0x00000008 /* underflow exception flag */ | ||
81 | #define BIT_OFC 0x00000004 /* overfloat exception flag */ | ||
82 | #define BIT_DZC 0x00000002 /* divide by zero exception flag */ | ||
83 | #define BIT_IOC 0x00000001 /* invalid operation exception flag */ | ||
84 | |||
85 | /* Floating Point Control Register | ||
86 | ----------------------------------*/ | ||
87 | |||
88 | #define BIT_RU 0x80000000 /* rounded up bit */ | ||
89 | #define BIT_IE 0x10000000 /* inexact bit */ | ||
90 | #define BIT_MO 0x08000000 /* mantissa overflow bit */ | ||
91 | #define BIT_EO 0x04000000 /* exponent overflow bit */ | ||
92 | #define BIT_SB 0x00000800 /* store bounce */ | ||
93 | #define BIT_AB 0x00000400 /* arithmetic bounce */ | ||
94 | #define BIT_RE 0x00000200 /* rounding exception */ | ||
95 | #define BIT_DA 0x00000100 /* disable FPA */ | ||
96 | |||
97 | #define MASK_OP 0x00f08010 /* AU operation code */ | ||
98 | #define MASK_PR 0x00080080 /* AU precision */ | ||
99 | #define MASK_S1 0x00070000 /* AU source register 1 */ | ||
100 | #define MASK_S2 0x00000007 /* AU source register 2 */ | ||
101 | #define MASK_DS 0x00007000 /* AU destination register */ | ||
102 | #define MASK_RM 0x00000060 /* AU rounding mode */ | ||
103 | #define MASK_ALU 0x9cfff2ff /* only ALU can write these bits */ | ||
104 | #define MASK_RESET 0x00000d00 /* bits set on reset, all others cleared */ | ||
105 | #define MASK_WFC MASK_RESET | ||
106 | #define MASK_RFC ~MASK_RESET | ||
107 | |||
108 | #endif | ||
diff --git a/arch/arm26/nwfpe/milieu.h b/arch/arm26/nwfpe/milieu.h new file mode 100644 index 000000000000..a3892ab2dca4 --- /dev/null +++ b/arch/arm26/nwfpe/milieu.h | |||
@@ -0,0 +1,48 @@ | |||
1 | |||
2 | /* | ||
3 | =============================================================================== | ||
4 | |||
5 | This C header file is part of the SoftFloat IEC/IEEE Floating-point | ||
6 | Arithmetic Package, Release 2. | ||
7 | |||
8 | Written by John R. Hauser. This work was made possible in part by the | ||
9 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
10 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
11 | National Science Foundation under grant MIP-9311980. The original version | ||
12 | of this code was written as part of a project to build a fixed-point vector | ||
13 | processor in collaboration with the University of California at Berkeley, | ||
14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
15 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
16 | arithmetic/softfloat.html'. | ||
17 | |||
18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
23 | |||
24 | Derivative works are acceptable, even for commercial purposes, so long as | ||
25 | (1) they include prominent notice that the work is derivative, and (2) they | ||
26 | include prominent notice akin to these three paragraphs for those parts of | ||
27 | this code that are retained. | ||
28 | |||
29 | =============================================================================== | ||
30 | */ | ||
31 | |||
32 | /* | ||
33 | ------------------------------------------------------------------------------- | ||
34 | Include common integer types and flags. | ||
35 | ------------------------------------------------------------------------------- | ||
36 | */ | ||
37 | #include "ARM-gcc.h" | ||
38 | |||
39 | /* | ||
40 | ------------------------------------------------------------------------------- | ||
41 | Symbolic Boolean literals. | ||
42 | ------------------------------------------------------------------------------- | ||
43 | */ | ||
44 | enum { | ||
45 | FALSE = 0, | ||
46 | TRUE = 1 | ||
47 | }; | ||
48 | |||
diff --git a/arch/arm26/nwfpe/single_cpdo.c b/arch/arm26/nwfpe/single_cpdo.c new file mode 100644 index 000000000000..5cdcddbb8999 --- /dev/null +++ b/arch/arm26/nwfpe/single_cpdo.c | |||
@@ -0,0 +1,255 @@ | |||
1 | /* | ||
2 | NetWinder Floating Point Emulator | ||
3 | (c) Rebel.COM, 1998,1999 | ||
4 | |||
5 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2 of the License, or | ||
10 | (at your option) any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software | ||
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #include "fpa11.h" | ||
23 | #include "softfloat.h" | ||
24 | #include "fpopcode.h" | ||
25 | |||
26 | float32 float32_exp(float32 Fm); | ||
27 | float32 float32_ln(float32 Fm); | ||
28 | float32 float32_sin(float32 rFm); | ||
29 | float32 float32_cos(float32 rFm); | ||
30 | float32 float32_arcsin(float32 rFm); | ||
31 | float32 float32_arctan(float32 rFm); | ||
32 | float32 float32_log(float32 rFm); | ||
33 | float32 float32_tan(float32 rFm); | ||
34 | float32 float32_arccos(float32 rFm); | ||
35 | float32 float32_pow(float32 rFn,float32 rFm); | ||
36 | float32 float32_pol(float32 rFn,float32 rFm); | ||
37 | |||
38 | unsigned int SingleCPDO(const unsigned int opcode) | ||
39 | { | ||
40 | FPA11 *fpa11 = GET_FPA11(); | ||
41 | float32 rFm, rFn = 0; //FIXME - should be zero? | ||
42 | unsigned int Fd, Fm, Fn, nRc = 1; | ||
43 | |||
44 | Fm = getFm(opcode); | ||
45 | if (CONSTANT_FM(opcode)) | ||
46 | { | ||
47 | rFm = getSingleConstant(Fm); | ||
48 | } | ||
49 | else | ||
50 | { | ||
51 | switch (fpa11->fType[Fm]) | ||
52 | { | ||
53 | case typeSingle: | ||
54 | rFm = fpa11->fpreg[Fm].fSingle; | ||
55 | break; | ||
56 | |||
57 | default: return 0; | ||
58 | } | ||
59 | } | ||
60 | |||
61 | if (!MONADIC_INSTRUCTION(opcode)) | ||
62 | { | ||
63 | Fn = getFn(opcode); | ||
64 | switch (fpa11->fType[Fn]) | ||
65 | { | ||
66 | case typeSingle: | ||
67 | rFn = fpa11->fpreg[Fn].fSingle; | ||
68 | break; | ||
69 | |||
70 | default: return 0; | ||
71 | } | ||
72 | } | ||
73 | |||
74 | Fd = getFd(opcode); | ||
75 | switch (opcode & MASK_ARITHMETIC_OPCODE) | ||
76 | { | ||
77 | /* dyadic opcodes */ | ||
78 | case ADF_CODE: | ||
79 | fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm); | ||
80 | break; | ||
81 | |||
82 | case MUF_CODE: | ||
83 | case FML_CODE: | ||
84 | fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm); | ||
85 | break; | ||
86 | |||
87 | case SUF_CODE: | ||
88 | fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm); | ||
89 | break; | ||
90 | |||
91 | case RSF_CODE: | ||
92 | fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn); | ||
93 | break; | ||
94 | |||
95 | case DVF_CODE: | ||
96 | case FDV_CODE: | ||
97 | fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm); | ||
98 | break; | ||
99 | |||
100 | case RDF_CODE: | ||
101 | case FRD_CODE: | ||
102 | fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn); | ||
103 | break; | ||
104 | |||
105 | #if 0 | ||
106 | case POW_CODE: | ||
107 | fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm); | ||
108 | break; | ||
109 | |||
110 | case RPW_CODE: | ||
111 | fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn); | ||
112 | break; | ||
113 | #endif | ||
114 | |||
115 | case RMF_CODE: | ||
116 | fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm); | ||
117 | break; | ||
118 | |||
119 | #if 0 | ||
120 | case POL_CODE: | ||
121 | fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm); | ||
122 | break; | ||
123 | #endif | ||
124 | |||
125 | /* monadic opcodes */ | ||
126 | case MVF_CODE: | ||
127 | fpa11->fpreg[Fd].fSingle = rFm; | ||
128 | break; | ||
129 | |||
130 | case MNF_CODE: | ||
131 | rFm ^= 0x80000000; | ||
132 | fpa11->fpreg[Fd].fSingle = rFm; | ||
133 | break; | ||
134 | |||
135 | case ABS_CODE: | ||
136 | rFm &= 0x7fffffff; | ||
137 | fpa11->fpreg[Fd].fSingle = rFm; | ||
138 | break; | ||
139 | |||
140 | case RND_CODE: | ||
141 | case URD_CODE: | ||
142 | fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm); | ||
143 | break; | ||
144 | |||
145 | case SQT_CODE: | ||
146 | fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm); | ||
147 | break; | ||
148 | |||
149 | #if 0 | ||
150 | case LOG_CODE: | ||
151 | fpa11->fpreg[Fd].fSingle = float32_log(rFm); | ||
152 | break; | ||
153 | |||
154 | case LGN_CODE: | ||
155 | fpa11->fpreg[Fd].fSingle = float32_ln(rFm); | ||
156 | break; | ||
157 | |||
158 | case EXP_CODE: | ||
159 | fpa11->fpreg[Fd].fSingle = float32_exp(rFm); | ||
160 | break; | ||
161 | |||
162 | case SIN_CODE: | ||
163 | fpa11->fpreg[Fd].fSingle = float32_sin(rFm); | ||
164 | break; | ||
165 | |||
166 | case COS_CODE: | ||
167 | fpa11->fpreg[Fd].fSingle = float32_cos(rFm); | ||
168 | break; | ||
169 | |||
170 | case TAN_CODE: | ||
171 | fpa11->fpreg[Fd].fSingle = float32_tan(rFm); | ||
172 | break; | ||
173 | |||
174 | case ASN_CODE: | ||
175 | fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm); | ||
176 | break; | ||
177 | |||
178 | case ACS_CODE: | ||
179 | fpa11->fpreg[Fd].fSingle = float32_arccos(rFm); | ||
180 | break; | ||
181 | |||
182 | case ATN_CODE: | ||
183 | fpa11->fpreg[Fd].fSingle = float32_arctan(rFm); | ||
184 | break; | ||
185 | #endif | ||
186 | |||
187 | case NRM_CODE: | ||
188 | break; | ||
189 | |||
190 | default: | ||
191 | { | ||
192 | nRc = 0; | ||
193 | } | ||
194 | } | ||
195 | |||
196 | if (0 != nRc) fpa11->fType[Fd] = typeSingle; | ||
197 | return nRc; | ||
198 | } | ||
199 | |||
200 | #if 0 | ||
201 | float32 float32_exp(float32 Fm) | ||
202 | { | ||
203 | //series | ||
204 | } | ||
205 | |||
206 | float32 float32_ln(float32 Fm) | ||
207 | { | ||
208 | //series | ||
209 | } | ||
210 | |||
211 | float32 float32_sin(float32 rFm) | ||
212 | { | ||
213 | //series | ||
214 | } | ||
215 | |||
216 | float32 float32_cos(float32 rFm) | ||
217 | { | ||
218 | //series | ||
219 | } | ||
220 | |||
221 | float32 float32_arcsin(float32 rFm) | ||
222 | { | ||
223 | //series | ||
224 | } | ||
225 | |||
226 | float32 float32_arctan(float32 rFm) | ||
227 | { | ||
228 | //series | ||
229 | } | ||
230 | |||
231 | float32 float32_arccos(float32 rFm) | ||
232 | { | ||
233 | //return float32_sub(halfPi,float32_arcsin(rFm)); | ||
234 | } | ||
235 | |||
236 | float32 float32_log(float32 rFm) | ||
237 | { | ||
238 | return float32_div(float32_ln(rFm),getSingleConstant(7)); | ||
239 | } | ||
240 | |||
241 | float32 float32_tan(float32 rFm) | ||
242 | { | ||
243 | return float32_div(float32_sin(rFm),float32_cos(rFm)); | ||
244 | } | ||
245 | |||
246 | float32 float32_pow(float32 rFn,float32 rFm) | ||
247 | { | ||
248 | return float32_exp(float32_mul(rFm,float32_ln(rFn))); | ||
249 | } | ||
250 | |||
251 | float32 float32_pol(float32 rFn,float32 rFm) | ||
252 | { | ||
253 | return float32_arctan(float32_div(rFn,rFm)); | ||
254 | } | ||
255 | #endif | ||
diff --git a/arch/arm26/nwfpe/softfloat-macros b/arch/arm26/nwfpe/softfloat-macros new file mode 100644 index 000000000000..5469989f2c5e --- /dev/null +++ b/arch/arm26/nwfpe/softfloat-macros | |||
@@ -0,0 +1,740 @@ | |||
1 | |||
2 | /* | ||
3 | =============================================================================== | ||
4 | |||
5 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | ||
6 | Arithmetic Package, Release 2. | ||
7 | |||
8 | Written by John R. Hauser. This work was made possible in part by the | ||
9 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
10 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
11 | National Science Foundation under grant MIP-9311980. The original version | ||
12 | of this code was written as part of a project to build a fixed-point vector | ||
13 | processor in collaboration with the University of California at Berkeley, | ||
14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
15 | is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
16 | arithmetic/softfloat.html'. | ||
17 | |||
18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
23 | |||
24 | Derivative works are acceptable, even for commercial purposes, so long as | ||
25 | (1) they include prominent notice that the work is derivative, and (2) they | ||
26 | include prominent notice akin to these three paragraphs for those parts of | ||
27 | this code that are retained. | ||
28 | |||
29 | =============================================================================== | ||
30 | */ | ||
31 | |||
32 | /* | ||
33 | ------------------------------------------------------------------------------- | ||
34 | Shifts `a' right by the number of bits given in `count'. If any nonzero | ||
35 | bits are shifted off, they are ``jammed'' into the least significant bit of | ||
36 | the result by setting the least significant bit to 1. The value of `count' | ||
37 | can be arbitrarily large; in particular, if `count' is greater than 32, the | ||
38 | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | ||
39 | The result is stored in the location pointed to by `zPtr'. | ||
40 | ------------------------------------------------------------------------------- | ||
41 | */ | ||
42 | INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | ||
43 | { | ||
44 | bits32 z; | ||
45 | if ( count == 0 ) { | ||
46 | z = a; | ||
47 | } | ||
48 | else if ( count < 32 ) { | ||
49 | z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | ||
50 | } | ||
51 | else { | ||
52 | z = ( a != 0 ); | ||
53 | } | ||
54 | *zPtr = z; | ||
55 | } | ||
56 | |||
57 | /* | ||
58 | ------------------------------------------------------------------------------- | ||
59 | Shifts `a' right by the number of bits given in `count'. If any nonzero | ||
60 | bits are shifted off, they are ``jammed'' into the least significant bit of | ||
61 | the result by setting the least significant bit to 1. The value of `count' | ||
62 | can be arbitrarily large; in particular, if `count' is greater than 64, the | ||
63 | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | ||
64 | The result is stored in the location pointed to by `zPtr'. | ||
65 | ------------------------------------------------------------------------------- | ||
66 | */ | ||
67 | INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) | ||
68 | { | ||
69 | bits64 z; | ||
70 | |||
71 | __asm__("@shift64RightJamming -- start"); | ||
72 | if ( count == 0 ) { | ||
73 | z = a; | ||
74 | } | ||
75 | else if ( count < 64 ) { | ||
76 | z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); | ||
77 | } | ||
78 | else { | ||
79 | z = ( a != 0 ); | ||
80 | } | ||
81 | __asm__("@shift64RightJamming -- end"); | ||
82 | *zPtr = z; | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | ------------------------------------------------------------------------------- | ||
87 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 | ||
88 | _plus_ the number of bits given in `count'. The shifted result is at most | ||
89 | 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The | ||
90 | bits shifted off form a second 64-bit result as follows: The _last_ bit | ||
91 | shifted off is the most-significant bit of the extra result, and the other | ||
92 | 63 bits of the extra result are all zero if and only if _all_but_the_last_ | ||
93 | bits shifted off were all zero. This extra result is stored in the location | ||
94 | pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. | ||
95 | (This routine makes more sense if `a0' and `a1' are considered to form a | ||
96 | fixed-point value with binary point between `a0' and `a1'. This fixed-point | ||
97 | value is shifted right by the number of bits given in `count', and the | ||
98 | integer part of the result is returned at the location pointed to by | ||
99 | `z0Ptr'. The fractional part of the result may be slightly corrupted as | ||
100 | described above, and is returned at the location pointed to by `z1Ptr'.) | ||
101 | ------------------------------------------------------------------------------- | ||
102 | */ | ||
103 | INLINE void | ||
104 | shift64ExtraRightJamming( | ||
105 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
106 | { | ||
107 | bits64 z0, z1; | ||
108 | int8 negCount = ( - count ) & 63; | ||
109 | |||
110 | if ( count == 0 ) { | ||
111 | z1 = a1; | ||
112 | z0 = a0; | ||
113 | } | ||
114 | else if ( count < 64 ) { | ||
115 | z1 = ( a0<<negCount ) | ( a1 != 0 ); | ||
116 | z0 = a0>>count; | ||
117 | } | ||
118 | else { | ||
119 | if ( count == 64 ) { | ||
120 | z1 = a0 | ( a1 != 0 ); | ||
121 | } | ||
122 | else { | ||
123 | z1 = ( ( a0 | a1 ) != 0 ); | ||
124 | } | ||
125 | z0 = 0; | ||
126 | } | ||
127 | *z1Ptr = z1; | ||
128 | *z0Ptr = z0; | ||
129 | |||
130 | } | ||
131 | |||
132 | /* | ||
133 | ------------------------------------------------------------------------------- | ||
134 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | ||
135 | number of bits given in `count'. Any bits shifted off are lost. The value | ||
136 | of `count' can be arbitrarily large; in particular, if `count' is greater | ||
137 | than 128, the result will be 0. The result is broken into two 64-bit pieces | ||
138 | which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
139 | ------------------------------------------------------------------------------- | ||
140 | */ | ||
141 | INLINE void | ||
142 | shift128Right( | ||
143 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
144 | { | ||
145 | bits64 z0, z1; | ||
146 | int8 negCount = ( - count ) & 63; | ||
147 | |||
148 | if ( count == 0 ) { | ||
149 | z1 = a1; | ||
150 | z0 = a0; | ||
151 | } | ||
152 | else if ( count < 64 ) { | ||
153 | z1 = ( a0<<negCount ) | ( a1>>count ); | ||
154 | z0 = a0>>count; | ||
155 | } | ||
156 | else { | ||
157 | z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; | ||
158 | z0 = 0; | ||
159 | } | ||
160 | *z1Ptr = z1; | ||
161 | *z0Ptr = z0; | ||
162 | |||
163 | } | ||
164 | |||
165 | /* | ||
166 | ------------------------------------------------------------------------------- | ||
167 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | ||
168 | number of bits given in `count'. If any nonzero bits are shifted off, they | ||
169 | are ``jammed'' into the least significant bit of the result by setting the | ||
170 | least significant bit to 1. The value of `count' can be arbitrarily large; | ||
171 | in particular, if `count' is greater than 128, the result will be either 0 | ||
172 | or 1, depending on whether the concatenation of `a0' and `a1' is zero or | ||
173 | nonzero. The result is broken into two 64-bit pieces which are stored at | ||
174 | the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
175 | ------------------------------------------------------------------------------- | ||
176 | */ | ||
177 | INLINE void | ||
178 | shift128RightJamming( | ||
179 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
180 | { | ||
181 | bits64 z0, z1; | ||
182 | int8 negCount = ( - count ) & 63; | ||
183 | |||
184 | if ( count == 0 ) { | ||
185 | z1 = a1; | ||
186 | z0 = a0; | ||
187 | } | ||
188 | else if ( count < 64 ) { | ||
189 | z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | ||
190 | z0 = a0>>count; | ||
191 | } | ||
192 | else { | ||
193 | if ( count == 64 ) { | ||
194 | z1 = a0 | ( a1 != 0 ); | ||
195 | } | ||
196 | else if ( count < 128 ) { | ||
197 | z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | ||
198 | } | ||
199 | else { | ||
200 | z1 = ( ( a0 | a1 ) != 0 ); | ||
201 | } | ||
202 | z0 = 0; | ||
203 | } | ||
204 | *z1Ptr = z1; | ||
205 | *z0Ptr = z0; | ||
206 | |||
207 | } | ||
208 | |||
209 | /* | ||
210 | ------------------------------------------------------------------------------- | ||
211 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right | ||
212 | by 64 _plus_ the number of bits given in `count'. The shifted result is | ||
213 | at most 128 nonzero bits; these are broken into two 64-bit pieces which are | ||
214 | stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | ||
215 | off form a third 64-bit result as follows: The _last_ bit shifted off is | ||
216 | the most-significant bit of the extra result, and the other 63 bits of the | ||
217 | extra result are all zero if and only if _all_but_the_last_ bits shifted off | ||
218 | were all zero. This extra result is stored in the location pointed to by | ||
219 | `z2Ptr'. The value of `count' can be arbitrarily large. | ||
220 | (This routine makes more sense if `a0', `a1', and `a2' are considered | ||
221 | to form a fixed-point value with binary point between `a1' and `a2'. This | ||
222 | fixed-point value is shifted right by the number of bits given in `count', | ||
223 | and the integer part of the result is returned at the locations pointed to | ||
224 | by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | ||
225 | corrupted as described above, and is returned at the location pointed to by | ||
226 | `z2Ptr'.) | ||
227 | ------------------------------------------------------------------------------- | ||
228 | */ | ||
229 | INLINE void | ||
230 | shift128ExtraRightJamming( | ||
231 | bits64 a0, | ||
232 | bits64 a1, | ||
233 | bits64 a2, | ||
234 | int16 count, | ||
235 | bits64 *z0Ptr, | ||
236 | bits64 *z1Ptr, | ||
237 | bits64 *z2Ptr | ||
238 | ) | ||
239 | { | ||
240 | bits64 z0, z1, z2; | ||
241 | int8 negCount = ( - count ) & 63; | ||
242 | |||
243 | if ( count == 0 ) { | ||
244 | z2 = a2; | ||
245 | z1 = a1; | ||
246 | z0 = a0; | ||
247 | } | ||
248 | else { | ||
249 | if ( count < 64 ) { | ||
250 | z2 = a1<<negCount; | ||
251 | z1 = ( a0<<negCount ) | ( a1>>count ); | ||
252 | z0 = a0>>count; | ||
253 | } | ||
254 | else { | ||
255 | if ( count == 64 ) { | ||
256 | z2 = a1; | ||
257 | z1 = a0; | ||
258 | } | ||
259 | else { | ||
260 | a2 |= a1; | ||
261 | if ( count < 128 ) { | ||
262 | z2 = a0<<negCount; | ||
263 | z1 = a0>>( count & 63 ); | ||
264 | } | ||
265 | else { | ||
266 | z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); | ||
267 | z1 = 0; | ||
268 | } | ||
269 | } | ||
270 | z0 = 0; | ||
271 | } | ||
272 | z2 |= ( a2 != 0 ); | ||
273 | } | ||
274 | *z2Ptr = z2; | ||
275 | *z1Ptr = z1; | ||
276 | *z0Ptr = z0; | ||
277 | |||
278 | } | ||
279 | |||
280 | /* | ||
281 | ------------------------------------------------------------------------------- | ||
282 | Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the | ||
283 | number of bits given in `count'. Any bits shifted off are lost. The value | ||
284 | of `count' must be less than 64. The result is broken into two 64-bit | ||
285 | pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
286 | ------------------------------------------------------------------------------- | ||
287 | */ | ||
288 | INLINE void | ||
289 | shortShift128Left( | ||
290 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
291 | { | ||
292 | |||
293 | *z1Ptr = a1<<count; | ||
294 | *z0Ptr = | ||
295 | ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); | ||
296 | |||
297 | } | ||
298 | |||
299 | /* | ||
300 | ------------------------------------------------------------------------------- | ||
301 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left | ||
302 | by the number of bits given in `count'. Any bits shifted off are lost. | ||
303 | The value of `count' must be less than 64. The result is broken into three | ||
304 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | ||
305 | `z1Ptr', and `z2Ptr'. | ||
306 | ------------------------------------------------------------------------------- | ||
307 | */ | ||
308 | INLINE void | ||
309 | shortShift192Left( | ||
310 | bits64 a0, | ||
311 | bits64 a1, | ||
312 | bits64 a2, | ||
313 | int16 count, | ||
314 | bits64 *z0Ptr, | ||
315 | bits64 *z1Ptr, | ||
316 | bits64 *z2Ptr | ||
317 | ) | ||
318 | { | ||
319 | bits64 z0, z1, z2; | ||
320 | int8 negCount; | ||
321 | |||
322 | z2 = a2<<count; | ||
323 | z1 = a1<<count; | ||
324 | z0 = a0<<count; | ||
325 | if ( 0 < count ) { | ||
326 | negCount = ( ( - count ) & 63 ); | ||
327 | z1 |= a2>>negCount; | ||
328 | z0 |= a1>>negCount; | ||
329 | } | ||
330 | *z2Ptr = z2; | ||
331 | *z1Ptr = z1; | ||
332 | *z0Ptr = z0; | ||
333 | |||
334 | } | ||
335 | |||
336 | /* | ||
337 | ------------------------------------------------------------------------------- | ||
338 | Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit | ||
339 | value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so | ||
340 | any carry out is lost. The result is broken into two 64-bit pieces which | ||
341 | are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
342 | ------------------------------------------------------------------------------- | ||
343 | */ | ||
344 | INLINE void | ||
345 | add128( | ||
346 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
347 | { | ||
348 | bits64 z1; | ||
349 | |||
350 | z1 = a1 + b1; | ||
351 | *z1Ptr = z1; | ||
352 | *z0Ptr = a0 + b0 + ( z1 < a1 ); | ||
353 | |||
354 | } | ||
355 | |||
356 | /* | ||
357 | ------------------------------------------------------------------------------- | ||
358 | Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the | ||
359 | 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | ||
360 | modulo 2^192, so any carry out is lost. The result is broken into three | ||
361 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | ||
362 | `z1Ptr', and `z2Ptr'. | ||
363 | ------------------------------------------------------------------------------- | ||
364 | */ | ||
365 | INLINE void | ||
366 | add192( | ||
367 | bits64 a0, | ||
368 | bits64 a1, | ||
369 | bits64 a2, | ||
370 | bits64 b0, | ||
371 | bits64 b1, | ||
372 | bits64 b2, | ||
373 | bits64 *z0Ptr, | ||
374 | bits64 *z1Ptr, | ||
375 | bits64 *z2Ptr | ||
376 | ) | ||
377 | { | ||
378 | bits64 z0, z1, z2; | ||
379 | int8 carry0, carry1; | ||
380 | |||
381 | z2 = a2 + b2; | ||
382 | carry1 = ( z2 < a2 ); | ||
383 | z1 = a1 + b1; | ||
384 | carry0 = ( z1 < a1 ); | ||
385 | z0 = a0 + b0; | ||
386 | z1 += carry1; | ||
387 | z0 += ( z1 < carry1 ); | ||
388 | z0 += carry0; | ||
389 | *z2Ptr = z2; | ||
390 | *z1Ptr = z1; | ||
391 | *z0Ptr = z0; | ||
392 | |||
393 | } | ||
394 | |||
395 | /* | ||
396 | ------------------------------------------------------------------------------- | ||
397 | Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the | ||
398 | 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | ||
399 | 2^128, so any borrow out (carry out) is lost. The result is broken into two | ||
400 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and | ||
401 | `z1Ptr'. | ||
402 | ------------------------------------------------------------------------------- | ||
403 | */ | ||
404 | INLINE void | ||
405 | sub128( | ||
406 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
407 | { | ||
408 | |||
409 | *z1Ptr = a1 - b1; | ||
410 | *z0Ptr = a0 - b0 - ( a1 < b1 ); | ||
411 | |||
412 | } | ||
413 | |||
414 | /* | ||
415 | ------------------------------------------------------------------------------- | ||
416 | Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' | ||
417 | from the 192-bit value formed by concatenating `a0', `a1', and `a2'. | ||
418 | Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The | ||
419 | result is broken into three 64-bit pieces which are stored at the locations | ||
420 | pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. | ||
421 | ------------------------------------------------------------------------------- | ||
422 | */ | ||
423 | INLINE void | ||
424 | sub192( | ||
425 | bits64 a0, | ||
426 | bits64 a1, | ||
427 | bits64 a2, | ||
428 | bits64 b0, | ||
429 | bits64 b1, | ||
430 | bits64 b2, | ||
431 | bits64 *z0Ptr, | ||
432 | bits64 *z1Ptr, | ||
433 | bits64 *z2Ptr | ||
434 | ) | ||
435 | { | ||
436 | bits64 z0, z1, z2; | ||
437 | int8 borrow0, borrow1; | ||
438 | |||
439 | z2 = a2 - b2; | ||
440 | borrow1 = ( a2 < b2 ); | ||
441 | z1 = a1 - b1; | ||
442 | borrow0 = ( a1 < b1 ); | ||
443 | z0 = a0 - b0; | ||
444 | z0 -= ( z1 < borrow1 ); | ||
445 | z1 -= borrow1; | ||
446 | z0 -= borrow0; | ||
447 | *z2Ptr = z2; | ||
448 | *z1Ptr = z1; | ||
449 | *z0Ptr = z0; | ||
450 | |||
451 | } | ||
452 | |||
453 | /* | ||
454 | ------------------------------------------------------------------------------- | ||
455 | Multiplies `a' by `b' to obtain a 128-bit product. The product is broken | ||
456 | into two 64-bit pieces which are stored at the locations pointed to by | ||
457 | `z0Ptr' and `z1Ptr'. | ||
458 | ------------------------------------------------------------------------------- | ||
459 | */ | ||
460 | INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
461 | { | ||
462 | bits32 aHigh, aLow, bHigh, bLow; | ||
463 | bits64 z0, zMiddleA, zMiddleB, z1; | ||
464 | |||
465 | aLow = a; | ||
466 | aHigh = a>>32; | ||
467 | bLow = b; | ||
468 | bHigh = b>>32; | ||
469 | z1 = ( (bits64) aLow ) * bLow; | ||
470 | zMiddleA = ( (bits64) aLow ) * bHigh; | ||
471 | zMiddleB = ( (bits64) aHigh ) * bLow; | ||
472 | z0 = ( (bits64) aHigh ) * bHigh; | ||
473 | zMiddleA += zMiddleB; | ||
474 | z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); | ||
475 | zMiddleA <<= 32; | ||
476 | z1 += zMiddleA; | ||
477 | z0 += ( z1 < zMiddleA ); | ||
478 | *z1Ptr = z1; | ||
479 | *z0Ptr = z0; | ||
480 | |||
481 | } | ||
482 | |||
483 | /* | ||
484 | ------------------------------------------------------------------------------- | ||
485 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to | ||
486 | obtain a 192-bit product. The product is broken into three 64-bit pieces | ||
487 | which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | ||
488 | `z2Ptr'. | ||
489 | ------------------------------------------------------------------------------- | ||
490 | */ | ||
491 | INLINE void | ||
492 | mul128By64To192( | ||
493 | bits64 a0, | ||
494 | bits64 a1, | ||
495 | bits64 b, | ||
496 | bits64 *z0Ptr, | ||
497 | bits64 *z1Ptr, | ||
498 | bits64 *z2Ptr | ||
499 | ) | ||
500 | { | ||
501 | bits64 z0, z1, z2, more1; | ||
502 | |||
503 | mul64To128( a1, b, &z1, &z2 ); | ||
504 | mul64To128( a0, b, &z0, &more1 ); | ||
505 | add128( z0, more1, 0, z1, &z0, &z1 ); | ||
506 | *z2Ptr = z2; | ||
507 | *z1Ptr = z1; | ||
508 | *z0Ptr = z0; | ||
509 | |||
510 | } | ||
511 | |||
512 | /* | ||
513 | ------------------------------------------------------------------------------- | ||
514 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the | ||
515 | 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit | ||
516 | product. The product is broken into four 64-bit pieces which are stored at | ||
517 | the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | ||
518 | ------------------------------------------------------------------------------- | ||
519 | */ | ||
520 | INLINE void | ||
521 | mul128To256( | ||
522 | bits64 a0, | ||
523 | bits64 a1, | ||
524 | bits64 b0, | ||
525 | bits64 b1, | ||
526 | bits64 *z0Ptr, | ||
527 | bits64 *z1Ptr, | ||
528 | bits64 *z2Ptr, | ||
529 | bits64 *z3Ptr | ||
530 | ) | ||
531 | { | ||
532 | bits64 z0, z1, z2, z3; | ||
533 | bits64 more1, more2; | ||
534 | |||
535 | mul64To128( a1, b1, &z2, &z3 ); | ||
536 | mul64To128( a1, b0, &z1, &more2 ); | ||
537 | add128( z1, more2, 0, z2, &z1, &z2 ); | ||
538 | mul64To128( a0, b0, &z0, &more1 ); | ||
539 | add128( z0, more1, 0, z1, &z0, &z1 ); | ||
540 | mul64To128( a0, b1, &more1, &more2 ); | ||
541 | add128( more1, more2, 0, z2, &more1, &z2 ); | ||
542 | add128( z0, z1, 0, more1, &z0, &z1 ); | ||
543 | *z3Ptr = z3; | ||
544 | *z2Ptr = z2; | ||
545 | *z1Ptr = z1; | ||
546 | *z0Ptr = z0; | ||
547 | |||
548 | } | ||
549 | |||
550 | /* | ||
551 | ------------------------------------------------------------------------------- | ||
552 | Returns an approximation to the 64-bit integer quotient obtained by dividing | ||
553 | `b' into the 128-bit value formed by concatenating `a0' and `a1'. The | ||
554 | divisor `b' must be at least 2^63. If q is the exact quotient truncated | ||
555 | toward zero, the approximation returned lies between q and q + 2 inclusive. | ||
556 | If the exact quotient q is larger than 64 bits, the maximum positive 64-bit | ||
557 | unsigned integer is returned. | ||
558 | ------------------------------------------------------------------------------- | ||
559 | */ | ||
560 | static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) | ||
561 | { | ||
562 | bits64 b0, b1; | ||
563 | bits64 rem0, rem1, term0, term1; | ||
564 | bits64 z; | ||
565 | if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
566 | b0 = b>>32; | ||
567 | z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; | ||
568 | mul64To128( b, z, &term0, &term1 ); | ||
569 | sub128( a0, a1, term0, term1, &rem0, &rem1 ); | ||
570 | while ( ( (sbits64) rem0 ) < 0 ) { | ||
571 | z -= LIT64( 0x100000000 ); | ||
572 | b1 = b<<32; | ||
573 | add128( rem0, rem1, b0, b1, &rem0, &rem1 ); | ||
574 | } | ||
575 | rem0 = ( rem0<<32 ) | ( rem1>>32 ); | ||
576 | z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; | ||
577 | return z; | ||
578 | |||
579 | } | ||
580 | |||
581 | /* | ||
582 | ------------------------------------------------------------------------------- | ||
583 | Returns an approximation to the square root of the 32-bit significand given | ||
584 | by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | ||
585 | `aExp' (the least significant bit) is 1, the integer returned approximates | ||
586 | 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | ||
587 | is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | ||
588 | case, the approximation returned lies strictly within +/-2 of the exact | ||
589 | value. | ||
590 | ------------------------------------------------------------------------------- | ||
591 | */ | ||
592 | static bits32 estimateSqrt32( int16 aExp, bits32 a ) | ||
593 | { | ||
594 | static const bits16 sqrtOddAdjustments[] = { | ||
595 | 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | ||
596 | 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | ||
597 | }; | ||
598 | static const bits16 sqrtEvenAdjustments[] = { | ||
599 | 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | ||
600 | 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | ||
601 | }; | ||
602 | int8 index; | ||
603 | bits32 z; | ||
604 | |||
605 | index = ( a>>27 ) & 15; | ||
606 | if ( aExp & 1 ) { | ||
607 | z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | ||
608 | z = ( ( a / z )<<14 ) + ( z<<15 ); | ||
609 | a >>= 1; | ||
610 | } | ||
611 | else { | ||
612 | z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | ||
613 | z = a / z + z; | ||
614 | z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | ||
615 | if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | ||
616 | } | ||
617 | return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); | ||
618 | |||
619 | } | ||
620 | |||
621 | /* | ||
622 | ------------------------------------------------------------------------------- | ||
623 | Returns the number of leading 0 bits before the most-significant 1 bit | ||
624 | of `a'. If `a' is zero, 32 is returned. | ||
625 | ------------------------------------------------------------------------------- | ||
626 | */ | ||
627 | static int8 countLeadingZeros32( bits32 a ) | ||
628 | { | ||
629 | static const int8 countLeadingZerosHigh[] = { | ||
630 | 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | ||
631 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
632 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
633 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
634 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
635 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
636 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
637 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
638 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
639 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
640 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
641 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
642 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
643 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
644 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
645 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | ||
646 | }; | ||
647 | int8 shiftCount; | ||
648 | |||
649 | shiftCount = 0; | ||
650 | if ( a < 0x10000 ) { | ||
651 | shiftCount += 16; | ||
652 | a <<= 16; | ||
653 | } | ||
654 | if ( a < 0x1000000 ) { | ||
655 | shiftCount += 8; | ||
656 | a <<= 8; | ||
657 | } | ||
658 | shiftCount += countLeadingZerosHigh[ a>>24 ]; | ||
659 | return shiftCount; | ||
660 | |||
661 | } | ||
662 | |||
663 | /* | ||
664 | ------------------------------------------------------------------------------- | ||
665 | Returns the number of leading 0 bits before the most-significant 1 bit | ||
666 | of `a'. If `a' is zero, 64 is returned. | ||
667 | ------------------------------------------------------------------------------- | ||
668 | */ | ||
669 | static int8 countLeadingZeros64( bits64 a ) | ||
670 | { | ||
671 | int8 shiftCount; | ||
672 | |||
673 | shiftCount = 0; | ||
674 | if ( a < ( (bits64) 1 )<<32 ) { | ||
675 | shiftCount += 32; | ||
676 | } | ||
677 | else { | ||
678 | a >>= 32; | ||
679 | } | ||
680 | shiftCount += countLeadingZeros32( a ); | ||
681 | return shiftCount; | ||
682 | |||
683 | } | ||
684 | |||
685 | /* | ||
686 | ------------------------------------------------------------------------------- | ||
687 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' | ||
688 | is equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
689 | Otherwise, returns 0. | ||
690 | ------------------------------------------------------------------------------- | ||
691 | */ | ||
692 | INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
693 | { | ||
694 | |||
695 | return ( a0 == b0 ) && ( a1 == b1 ); | ||
696 | |||
697 | } | ||
698 | |||
699 | /* | ||
700 | ------------------------------------------------------------------------------- | ||
701 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | ||
702 | than or equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
703 | Otherwise, returns 0. | ||
704 | ------------------------------------------------------------------------------- | ||
705 | */ | ||
706 | INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
707 | { | ||
708 | |||
709 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | ||
710 | |||
711 | } | ||
712 | |||
713 | /* | ||
714 | ------------------------------------------------------------------------------- | ||
715 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | ||
716 | than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, | ||
717 | returns 0. | ||
718 | ------------------------------------------------------------------------------- | ||
719 | */ | ||
720 | INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
721 | { | ||
722 | |||
723 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | ||
724 | |||
725 | } | ||
726 | |||
727 | /* | ||
728 | ------------------------------------------------------------------------------- | ||
729 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is | ||
730 | not equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
731 | Otherwise, returns 0. | ||
732 | ------------------------------------------------------------------------------- | ||
733 | */ | ||
734 | INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
735 | { | ||
736 | |||
737 | return ( a0 != b0 ) || ( a1 != b1 ); | ||
738 | |||
739 | } | ||
740 | |||
diff --git a/arch/arm26/nwfpe/softfloat-specialize b/arch/arm26/nwfpe/softfloat-specialize new file mode 100644 index 000000000000..acf409144763 --- /dev/null +++ b/arch/arm26/nwfpe/softfloat-specialize | |||
@@ -0,0 +1,366 @@ | |||
1 | |||
2 | /* | ||
3 | =============================================================================== | ||
4 | |||
5 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | ||
6 | Arithmetic Package, Release 2. | ||
7 | |||
8 | Written by John R. Hauser. This work was made possible in part by the | ||
9 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
10 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
11 | National Science Foundation under grant MIP-9311980. The original version | ||
12 | of this code was written as part of a project to build a fixed-point vector | ||
13 | processor in collaboration with the University of California at Berkeley, | ||
14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
15 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
16 | arithmetic/softfloat.html'. | ||
17 | |||
18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
23 | |||
24 | Derivative works are acceptable, even for commercial purposes, so long as | ||
25 | (1) they include prominent notice that the work is derivative, and (2) they | ||
26 | include prominent notice akin to these three paragraphs for those parts of | ||
27 | this code that are retained. | ||
28 | |||
29 | =============================================================================== | ||
30 | */ | ||
31 | |||
32 | /* | ||
33 | ------------------------------------------------------------------------------- | ||
34 | Underflow tininess-detection mode, statically initialized to default value. | ||
35 | (The declaration in `softfloat.h' must match the `int8' type here.) | ||
36 | ------------------------------------------------------------------------------- | ||
37 | */ | ||
38 | int8 float_detect_tininess = float_tininess_after_rounding; | ||
39 | |||
40 | /* | ||
41 | ------------------------------------------------------------------------------- | ||
42 | Raises the exceptions specified by `flags'. Floating-point traps can be | ||
43 | defined here if desired. It is currently not possible for such a trap to | ||
44 | substitute a result value. If traps are not implemented, this routine | ||
45 | should be simply `float_exception_flags |= flags;'. | ||
46 | |||
47 | ScottB: November 4, 1998 | ||
48 | Moved this function out of softfloat-specialize into fpmodule.c. | ||
49 | This effectively isolates all the changes required for integrating with the | ||
50 | Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying | ||
51 | fpmodule.c to integrate with the NetBSD kernel (I hope!). | ||
52 | ------------------------------------------------------------------------------- | ||
53 | void float_raise( int8 flags ) | ||
54 | { | ||
55 | float_exception_flags |= flags; | ||
56 | } | ||
57 | */ | ||
58 | |||
59 | /* | ||
60 | ------------------------------------------------------------------------------- | ||
61 | Internal canonical NaN format. | ||
62 | ------------------------------------------------------------------------------- | ||
63 | */ | ||
64 | typedef struct { | ||
65 | flag sign; | ||
66 | bits64 high, low; | ||
67 | } commonNaNT; | ||
68 | |||
69 | /* | ||
70 | ------------------------------------------------------------------------------- | ||
71 | The pattern for a default generated single-precision NaN. | ||
72 | ------------------------------------------------------------------------------- | ||
73 | */ | ||
74 | #define float32_default_nan 0xFFFFFFFF | ||
75 | |||
76 | /* | ||
77 | ------------------------------------------------------------------------------- | ||
78 | Returns 1 if the single-precision floating-point value `a' is a NaN; | ||
79 | otherwise returns 0. | ||
80 | ------------------------------------------------------------------------------- | ||
81 | */ | ||
82 | flag float32_is_nan( float32 a ) | ||
83 | { | ||
84 | |||
85 | return ( 0xFF000000 < (bits32) ( a<<1 ) ); | ||
86 | |||
87 | } | ||
88 | |||
89 | /* | ||
90 | ------------------------------------------------------------------------------- | ||
91 | Returns 1 if the single-precision floating-point value `a' is a signaling | ||
92 | NaN; otherwise returns 0. | ||
93 | ------------------------------------------------------------------------------- | ||
94 | */ | ||
95 | flag float32_is_signaling_nan( float32 a ) | ||
96 | { | ||
97 | |||
98 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | ||
99 | |||
100 | } | ||
101 | |||
102 | /* | ||
103 | ------------------------------------------------------------------------------- | ||
104 | Returns the result of converting the single-precision floating-point NaN | ||
105 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | ||
106 | exception is raised. | ||
107 | ------------------------------------------------------------------------------- | ||
108 | */ | ||
109 | static commonNaNT float32ToCommonNaN( float32 a ) | ||
110 | { | ||
111 | commonNaNT z; | ||
112 | |||
113 | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | ||
114 | z.sign = a>>31; | ||
115 | z.low = 0; | ||
116 | z.high = ( (bits64) a )<<41; | ||
117 | return z; | ||
118 | |||
119 | } | ||
120 | |||
121 | /* | ||
122 | ------------------------------------------------------------------------------- | ||
123 | Returns the result of converting the canonical NaN `a' to the single- | ||
124 | precision floating-point format. | ||
125 | ------------------------------------------------------------------------------- | ||
126 | */ | ||
127 | static float32 commonNaNToFloat32( commonNaNT a ) | ||
128 | { | ||
129 | |||
130 | return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); | ||
131 | |||
132 | } | ||
133 | |||
134 | /* | ||
135 | ------------------------------------------------------------------------------- | ||
136 | Takes two single-precision floating-point values `a' and `b', one of which | ||
137 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | ||
138 | signaling NaN, the invalid exception is raised. | ||
139 | ------------------------------------------------------------------------------- | ||
140 | */ | ||
141 | static float32 propagateFloat32NaN( float32 a, float32 b ) | ||
142 | { | ||
143 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | ||
144 | |||
145 | aIsNaN = float32_is_nan( a ); | ||
146 | aIsSignalingNaN = float32_is_signaling_nan( a ); | ||
147 | bIsNaN = float32_is_nan( b ); | ||
148 | bIsSignalingNaN = float32_is_signaling_nan( b ); | ||
149 | a |= 0x00400000; | ||
150 | b |= 0x00400000; | ||
151 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | ||
152 | if ( aIsNaN ) { | ||
153 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; | ||
154 | } | ||
155 | else { | ||
156 | return b; | ||
157 | } | ||
158 | |||
159 | } | ||
160 | |||
161 | /* | ||
162 | ------------------------------------------------------------------------------- | ||
163 | The pattern for a default generated double-precision NaN. | ||
164 | ------------------------------------------------------------------------------- | ||
165 | */ | ||
166 | #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) | ||
167 | |||
168 | /* | ||
169 | ------------------------------------------------------------------------------- | ||
170 | Returns 1 if the double-precision floating-point value `a' is a NaN; | ||
171 | otherwise returns 0. | ||
172 | ------------------------------------------------------------------------------- | ||
173 | */ | ||
174 | flag float64_is_nan( float64 a ) | ||
175 | { | ||
176 | |||
177 | return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); | ||
178 | |||
179 | } | ||
180 | |||
181 | /* | ||
182 | ------------------------------------------------------------------------------- | ||
183 | Returns 1 if the double-precision floating-point value `a' is a signaling | ||
184 | NaN; otherwise returns 0. | ||
185 | ------------------------------------------------------------------------------- | ||
186 | */ | ||
187 | flag float64_is_signaling_nan( float64 a ) | ||
188 | { | ||
189 | |||
190 | return | ||
191 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | ||
192 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | ||
193 | |||
194 | } | ||
195 | |||
196 | /* | ||
197 | ------------------------------------------------------------------------------- | ||
198 | Returns the result of converting the double-precision floating-point NaN | ||
199 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | ||
200 | exception is raised. | ||
201 | ------------------------------------------------------------------------------- | ||
202 | */ | ||
203 | static commonNaNT float64ToCommonNaN( float64 a ) | ||
204 | { | ||
205 | commonNaNT z; | ||
206 | |||
207 | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | ||
208 | z.sign = a>>63; | ||
209 | z.low = 0; | ||
210 | z.high = a<<12; | ||
211 | return z; | ||
212 | |||
213 | } | ||
214 | |||
215 | /* | ||
216 | ------------------------------------------------------------------------------- | ||
217 | Returns the result of converting the canonical NaN `a' to the double- | ||
218 | precision floating-point format. | ||
219 | ------------------------------------------------------------------------------- | ||
220 | */ | ||
221 | static float64 commonNaNToFloat64( commonNaNT a ) | ||
222 | { | ||
223 | |||
224 | return | ||
225 | ( ( (bits64) a.sign )<<63 ) | ||
226 | | LIT64( 0x7FF8000000000000 ) | ||
227 | | ( a.high>>12 ); | ||
228 | |||
229 | } | ||
230 | |||
231 | /* | ||
232 | ------------------------------------------------------------------------------- | ||
233 | Takes two double-precision floating-point values `a' and `b', one of which | ||
234 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | ||
235 | signaling NaN, the invalid exception is raised. | ||
236 | ------------------------------------------------------------------------------- | ||
237 | */ | ||
238 | static float64 propagateFloat64NaN( float64 a, float64 b ) | ||
239 | { | ||
240 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | ||
241 | |||
242 | aIsNaN = float64_is_nan( a ); | ||
243 | aIsSignalingNaN = float64_is_signaling_nan( a ); | ||
244 | bIsNaN = float64_is_nan( b ); | ||
245 | bIsSignalingNaN = float64_is_signaling_nan( b ); | ||
246 | a |= LIT64( 0x0008000000000000 ); | ||
247 | b |= LIT64( 0x0008000000000000 ); | ||
248 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | ||
249 | if ( aIsNaN ) { | ||
250 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; | ||
251 | } | ||
252 | else { | ||
253 | return b; | ||
254 | } | ||
255 | |||
256 | } | ||
257 | |||
258 | #ifdef FLOATX80 | ||
259 | |||
260 | /* | ||
261 | ------------------------------------------------------------------------------- | ||
262 | The pattern for a default generated extended double-precision NaN. The | ||
263 | `high' and `low' values hold the most- and least-significant bits, | ||
264 | respectively. | ||
265 | ------------------------------------------------------------------------------- | ||
266 | */ | ||
267 | #define floatx80_default_nan_high 0xFFFF | ||
268 | #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) | ||
269 | |||
270 | /* | ||
271 | ------------------------------------------------------------------------------- | ||
272 | Returns 1 if the extended double-precision floating-point value `a' is a | ||
273 | NaN; otherwise returns 0. | ||
274 | ------------------------------------------------------------------------------- | ||
275 | */ | ||
276 | flag floatx80_is_nan( floatx80 a ) | ||
277 | { | ||
278 | |||
279 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); | ||
280 | |||
281 | } | ||
282 | |||
283 | /* | ||
284 | ------------------------------------------------------------------------------- | ||
285 | Returns 1 if the extended double-precision floating-point value `a' is a | ||
286 | signaling NaN; otherwise returns 0. | ||
287 | ------------------------------------------------------------------------------- | ||
288 | */ | ||
289 | flag floatx80_is_signaling_nan( floatx80 a ) | ||
290 | { | ||
291 | //register int lr; | ||
292 | bits64 aLow; | ||
293 | |||
294 | //__asm__("mov %0, lr" : : "g" (lr)); | ||
295 | //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr); | ||
296 | aLow = a.low & ~ LIT64( 0x4000000000000000 ); | ||
297 | return | ||
298 | ( ( a.high & 0x7FFF ) == 0x7FFF ) | ||
299 | && (bits64) ( aLow<<1 ) | ||
300 | && ( a.low == aLow ); | ||
301 | |||
302 | } | ||
303 | |||
304 | /* | ||
305 | ------------------------------------------------------------------------------- | ||
306 | Returns the result of converting the extended double-precision floating- | ||
307 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | ||
308 | invalid exception is raised. | ||
309 | ------------------------------------------------------------------------------- | ||
310 | */ | ||
311 | static commonNaNT floatx80ToCommonNaN( floatx80 a ) | ||
312 | { | ||
313 | commonNaNT z; | ||
314 | |||
315 | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | ||
316 | z.sign = a.high>>15; | ||
317 | z.low = 0; | ||
318 | z.high = a.low<<1; | ||
319 | return z; | ||
320 | |||
321 | } | ||
322 | |||
323 | /* | ||
324 | ------------------------------------------------------------------------------- | ||
325 | Returns the result of converting the canonical NaN `a' to the extended | ||
326 | double-precision floating-point format. | ||
327 | ------------------------------------------------------------------------------- | ||
328 | */ | ||
329 | static floatx80 commonNaNToFloatx80( commonNaNT a ) | ||
330 | { | ||
331 | floatx80 z; | ||
332 | |||
333 | z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); | ||
334 | z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; | ||
335 | return z; | ||
336 | |||
337 | } | ||
338 | |||
339 | /* | ||
340 | ------------------------------------------------------------------------------- | ||
341 | Takes two extended double-precision floating-point values `a' and `b', one | ||
342 | of which is a NaN, and returns the appropriate NaN result. If either `a' or | ||
343 | `b' is a signaling NaN, the invalid exception is raised. | ||
344 | ------------------------------------------------------------------------------- | ||
345 | */ | ||
346 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) | ||
347 | { | ||
348 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | ||
349 | |||
350 | aIsNaN = floatx80_is_nan( a ); | ||
351 | aIsSignalingNaN = floatx80_is_signaling_nan( a ); | ||
352 | bIsNaN = floatx80_is_nan( b ); | ||
353 | bIsSignalingNaN = floatx80_is_signaling_nan( b ); | ||
354 | a.low |= LIT64( 0xC000000000000000 ); | ||
355 | b.low |= LIT64( 0xC000000000000000 ); | ||
356 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | ||
357 | if ( aIsNaN ) { | ||
358 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; | ||
359 | } | ||
360 | else { | ||
361 | return b; | ||
362 | } | ||
363 | |||
364 | } | ||
365 | |||
366 | #endif | ||
diff --git a/arch/arm26/nwfpe/softfloat.c b/arch/arm26/nwfpe/softfloat.c new file mode 100644 index 000000000000..26c1b916e527 --- /dev/null +++ b/arch/arm26/nwfpe/softfloat.c | |||
@@ -0,0 +1,3439 @@ | |||
1 | /* | ||
2 | =============================================================================== | ||
3 | |||
4 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | ||
5 | Arithmetic Package, Release 2. | ||
6 | |||
7 | Written by John R. Hauser. This work was made possible in part by the | ||
8 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
9 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
10 | National Science Foundation under grant MIP-9311980. The original version | ||
11 | of this code was written as part of a project to build a fixed-point vector | ||
12 | processor in collaboration with the University of California at Berkeley, | ||
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
14 | is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
15 | arithmetic/softfloat.html'. | ||
16 | |||
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
18 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
19 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
20 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
21 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
22 | |||
23 | Derivative works are acceptable, even for commercial purposes, so long as | ||
24 | (1) they include prominent notice that the work is derivative, and (2) they | ||
25 | include prominent notice akin to these three paragraphs for those parts of | ||
26 | this code that are retained. | ||
27 | |||
28 | =============================================================================== | ||
29 | */ | ||
30 | |||
31 | #include "fpa11.h" | ||
32 | #include "milieu.h" | ||
33 | #include "softfloat.h" | ||
34 | |||
35 | /* | ||
36 | ------------------------------------------------------------------------------- | ||
37 | Floating-point rounding mode, extended double-precision rounding precision, | ||
38 | and exception flags. | ||
39 | ------------------------------------------------------------------------------- | ||
40 | */ | ||
41 | int8 float_rounding_mode = float_round_nearest_even; | ||
42 | int8 floatx80_rounding_precision = 80; | ||
43 | int8 float_exception_flags; | ||
44 | |||
45 | /* | ||
46 | ------------------------------------------------------------------------------- | ||
47 | Primitive arithmetic functions, including multi-word arithmetic, and | ||
48 | division and square root approximations. (Can be specialized to target if | ||
49 | desired.) | ||
50 | ------------------------------------------------------------------------------- | ||
51 | */ | ||
52 | #include "softfloat-macros" | ||
53 | |||
54 | /* | ||
55 | ------------------------------------------------------------------------------- | ||
56 | Functions and definitions to determine: (1) whether tininess for underflow | ||
57 | is detected before or after rounding by default, (2) what (if anything) | ||
58 | happens when exceptions are raised, (3) how signaling NaNs are distinguished | ||
59 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | ||
60 | are propagated from function inputs to output. These details are target- | ||
61 | specific. | ||
62 | ------------------------------------------------------------------------------- | ||
63 | */ | ||
64 | #include "softfloat-specialize" | ||
65 | |||
66 | /* | ||
67 | ------------------------------------------------------------------------------- | ||
68 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | ||
69 | and 7, and returns the properly rounded 32-bit integer corresponding to the | ||
70 | input. If `zSign' is nonzero, the input is negated before being converted | ||
71 | to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point | ||
72 | input is simply rounded to an integer, with the inexact exception raised if | ||
73 | the input cannot be represented exactly as an integer. If the fixed-point | ||
74 | input is too large, however, the invalid exception is raised and the largest | ||
75 | positive or negative integer is returned. | ||
76 | ------------------------------------------------------------------------------- | ||
77 | */ | ||
78 | static int32 roundAndPackInt32( flag zSign, bits64 absZ ) | ||
79 | { | ||
80 | int8 roundingMode; | ||
81 | flag roundNearestEven; | ||
82 | int8 roundIncrement, roundBits; | ||
83 | int32 z; | ||
84 | |||
85 | roundingMode = float_rounding_mode; | ||
86 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
87 | roundIncrement = 0x40; | ||
88 | if ( ! roundNearestEven ) { | ||
89 | if ( roundingMode == float_round_to_zero ) { | ||
90 | roundIncrement = 0; | ||
91 | } | ||
92 | else { | ||
93 | roundIncrement = 0x7F; | ||
94 | if ( zSign ) { | ||
95 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
96 | } | ||
97 | else { | ||
98 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
99 | } | ||
100 | } | ||
101 | } | ||
102 | roundBits = absZ & 0x7F; | ||
103 | absZ = ( absZ + roundIncrement )>>7; | ||
104 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | ||
105 | z = absZ; | ||
106 | if ( zSign ) z = - z; | ||
107 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | ||
108 | float_exception_flags |= float_flag_invalid; | ||
109 | return zSign ? 0x80000000 : 0x7FFFFFFF; | ||
110 | } | ||
111 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
112 | return z; | ||
113 | |||
114 | } | ||
115 | |||
116 | /* | ||
117 | ------------------------------------------------------------------------------- | ||
118 | Returns the fraction bits of the single-precision floating-point value `a'. | ||
119 | ------------------------------------------------------------------------------- | ||
120 | */ | ||
121 | INLINE bits32 extractFloat32Frac( float32 a ) | ||
122 | { | ||
123 | |||
124 | return a & 0x007FFFFF; | ||
125 | |||
126 | } | ||
127 | |||
128 | /* | ||
129 | ------------------------------------------------------------------------------- | ||
130 | Returns the exponent bits of the single-precision floating-point value `a'. | ||
131 | ------------------------------------------------------------------------------- | ||
132 | */ | ||
133 | INLINE int16 extractFloat32Exp( float32 a ) | ||
134 | { | ||
135 | |||
136 | return ( a>>23 ) & 0xFF; | ||
137 | |||
138 | } | ||
139 | |||
140 | /* | ||
141 | ------------------------------------------------------------------------------- | ||
142 | Returns the sign bit of the single-precision floating-point value `a'. | ||
143 | ------------------------------------------------------------------------------- | ||
144 | */ | ||
145 | INLINE flag extractFloat32Sign( float32 a ) | ||
146 | { | ||
147 | |||
148 | return a>>31; | ||
149 | |||
150 | } | ||
151 | |||
152 | /* | ||
153 | ------------------------------------------------------------------------------- | ||
154 | Normalizes the subnormal single-precision floating-point value represented | ||
155 | by the denormalized significand `aSig'. The normalized exponent and | ||
156 | significand are stored at the locations pointed to by `zExpPtr' and | ||
157 | `zSigPtr', respectively. | ||
158 | ------------------------------------------------------------------------------- | ||
159 | */ | ||
160 | static void | ||
161 | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | ||
162 | { | ||
163 | int8 shiftCount; | ||
164 | |||
165 | shiftCount = countLeadingZeros32( aSig ) - 8; | ||
166 | *zSigPtr = aSig<<shiftCount; | ||
167 | *zExpPtr = 1 - shiftCount; | ||
168 | |||
169 | } | ||
170 | |||
171 | /* | ||
172 | ------------------------------------------------------------------------------- | ||
173 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | ||
174 | single-precision floating-point value, returning the result. After being | ||
175 | shifted into the proper positions, the three fields are simply added | ||
176 | together to form the result. This means that any integer portion of `zSig' | ||
177 | will be added into the exponent. Since a properly normalized significand | ||
178 | will have an integer portion equal to 1, the `zExp' input should be 1 less | ||
179 | than the desired result exponent whenever `zSig' is a complete, normalized | ||
180 | significand. | ||
181 | ------------------------------------------------------------------------------- | ||
182 | */ | ||
183 | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
184 | { | ||
185 | #if 0 | ||
186 | float32 f; | ||
187 | __asm__("@ packFloat32; \n\ | ||
188 | mov %0, %1, asl #31; \n\ | ||
189 | orr %0, %2, asl #23; \n\ | ||
190 | orr %0, %3" | ||
191 | : /* no outputs */ | ||
192 | : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig) | ||
193 | : "cc"); | ||
194 | return f; | ||
195 | #else | ||
196 | return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; | ||
197 | #endif | ||
198 | } | ||
199 | |||
200 | /* | ||
201 | ------------------------------------------------------------------------------- | ||
202 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
203 | and significand `zSig', and returns the proper single-precision floating- | ||
204 | point value corresponding to the abstract input. Ordinarily, the abstract | ||
205 | value is simply rounded and packed into the single-precision format, with | ||
206 | the inexact exception raised if the abstract input cannot be represented | ||
207 | exactly. If the abstract value is too large, however, the overflow and | ||
208 | inexact exceptions are raised and an infinity or maximal finite value is | ||
209 | returned. If the abstract value is too small, the input value is rounded to | ||
210 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
211 | the abstract input cannot be represented exactly as a subnormal single- | ||
212 | precision floating-point number. | ||
213 | The input significand `zSig' has its binary point between bits 30 | ||
214 | and 29, which is 7 bits to the left of the usual location. This shifted | ||
215 | significand must be normalized or smaller. If `zSig' is not normalized, | ||
216 | `zExp' must be 0; in that case, the result returned is a subnormal number, | ||
217 | and it must not require rounding. In the usual case that `zSig' is | ||
218 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | ||
219 | The handling of underflow and overflow follows the IEC/IEEE Standard for | ||
220 | Binary Floating-point Arithmetic. | ||
221 | ------------------------------------------------------------------------------- | ||
222 | */ | ||
223 | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
224 | { | ||
225 | int8 roundingMode; | ||
226 | flag roundNearestEven; | ||
227 | int8 roundIncrement, roundBits; | ||
228 | flag isTiny; | ||
229 | |||
230 | roundingMode = float_rounding_mode; | ||
231 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
232 | roundIncrement = 0x40; | ||
233 | if ( ! roundNearestEven ) { | ||
234 | if ( roundingMode == float_round_to_zero ) { | ||
235 | roundIncrement = 0; | ||
236 | } | ||
237 | else { | ||
238 | roundIncrement = 0x7F; | ||
239 | if ( zSign ) { | ||
240 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
241 | } | ||
242 | else { | ||
243 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
244 | } | ||
245 | } | ||
246 | } | ||
247 | roundBits = zSig & 0x7F; | ||
248 | if ( 0xFD <= (bits16) zExp ) { | ||
249 | if ( ( 0xFD < zExp ) | ||
250 | || ( ( zExp == 0xFD ) | ||
251 | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | ||
252 | ) { | ||
253 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
254 | return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); | ||
255 | } | ||
256 | if ( zExp < 0 ) { | ||
257 | isTiny = | ||
258 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
259 | || ( zExp < -1 ) | ||
260 | || ( zSig + roundIncrement < 0x80000000 ); | ||
261 | shift32RightJamming( zSig, - zExp, &zSig ); | ||
262 | zExp = 0; | ||
263 | roundBits = zSig & 0x7F; | ||
264 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
265 | } | ||
266 | } | ||
267 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
268 | zSig = ( zSig + roundIncrement )>>7; | ||
269 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | ||
270 | if ( zSig == 0 ) zExp = 0; | ||
271 | return packFloat32( zSign, zExp, zSig ); | ||
272 | |||
273 | } | ||
274 | |||
275 | /* | ||
276 | ------------------------------------------------------------------------------- | ||
277 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
278 | and significand `zSig', and returns the proper single-precision floating- | ||
279 | point value corresponding to the abstract input. This routine is just like | ||
280 | `roundAndPackFloat32' except that `zSig' does not have to be normalized in | ||
281 | any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | ||
282 | point exponent. | ||
283 | ------------------------------------------------------------------------------- | ||
284 | */ | ||
285 | static float32 | ||
286 | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
287 | { | ||
288 | int8 shiftCount; | ||
289 | |||
290 | shiftCount = countLeadingZeros32( zSig ) - 1; | ||
291 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); | ||
292 | |||
293 | } | ||
294 | |||
295 | /* | ||
296 | ------------------------------------------------------------------------------- | ||
297 | Returns the fraction bits of the double-precision floating-point value `a'. | ||
298 | ------------------------------------------------------------------------------- | ||
299 | */ | ||
300 | INLINE bits64 extractFloat64Frac( float64 a ) | ||
301 | { | ||
302 | |||
303 | return a & LIT64( 0x000FFFFFFFFFFFFF ); | ||
304 | |||
305 | } | ||
306 | |||
307 | /* | ||
308 | ------------------------------------------------------------------------------- | ||
309 | Returns the exponent bits of the double-precision floating-point value `a'. | ||
310 | ------------------------------------------------------------------------------- | ||
311 | */ | ||
312 | INLINE int16 extractFloat64Exp( float64 a ) | ||
313 | { | ||
314 | |||
315 | return ( a>>52 ) & 0x7FF; | ||
316 | |||
317 | } | ||
318 | |||
319 | /* | ||
320 | ------------------------------------------------------------------------------- | ||
321 | Returns the sign bit of the double-precision floating-point value `a'. | ||
322 | ------------------------------------------------------------------------------- | ||
323 | */ | ||
324 | INLINE flag extractFloat64Sign( float64 a ) | ||
325 | { | ||
326 | |||
327 | return a>>63; | ||
328 | |||
329 | } | ||
330 | |||
331 | /* | ||
332 | ------------------------------------------------------------------------------- | ||
333 | Normalizes the subnormal double-precision floating-point value represented | ||
334 | by the denormalized significand `aSig'. The normalized exponent and | ||
335 | significand are stored at the locations pointed to by `zExpPtr' and | ||
336 | `zSigPtr', respectively. | ||
337 | ------------------------------------------------------------------------------- | ||
338 | */ | ||
339 | static void | ||
340 | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | ||
341 | { | ||
342 | int8 shiftCount; | ||
343 | |||
344 | shiftCount = countLeadingZeros64( aSig ) - 11; | ||
345 | *zSigPtr = aSig<<shiftCount; | ||
346 | *zExpPtr = 1 - shiftCount; | ||
347 | |||
348 | } | ||
349 | |||
350 | /* | ||
351 | ------------------------------------------------------------------------------- | ||
352 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | ||
353 | double-precision floating-point value, returning the result. After being | ||
354 | shifted into the proper positions, the three fields are simply added | ||
355 | together to form the result. This means that any integer portion of `zSig' | ||
356 | will be added into the exponent. Since a properly normalized significand | ||
357 | will have an integer portion equal to 1, the `zExp' input should be 1 less | ||
358 | than the desired result exponent whenever `zSig' is a complete, normalized | ||
359 | significand. | ||
360 | ------------------------------------------------------------------------------- | ||
361 | */ | ||
362 | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
363 | { | ||
364 | |||
365 | return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; | ||
366 | |||
367 | } | ||
368 | |||
369 | /* | ||
370 | ------------------------------------------------------------------------------- | ||
371 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
372 | and significand `zSig', and returns the proper double-precision floating- | ||
373 | point value corresponding to the abstract input. Ordinarily, the abstract | ||
374 | value is simply rounded and packed into the double-precision format, with | ||
375 | the inexact exception raised if the abstract input cannot be represented | ||
376 | exactly. If the abstract value is too large, however, the overflow and | ||
377 | inexact exceptions are raised and an infinity or maximal finite value is | ||
378 | returned. If the abstract value is too small, the input value is rounded to | ||
379 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
380 | the abstract input cannot be represented exactly as a subnormal double- | ||
381 | precision floating-point number. | ||
382 | The input significand `zSig' has its binary point between bits 62 | ||
383 | and 61, which is 10 bits to the left of the usual location. This shifted | ||
384 | significand must be normalized or smaller. If `zSig' is not normalized, | ||
385 | `zExp' must be 0; in that case, the result returned is a subnormal number, | ||
386 | and it must not require rounding. In the usual case that `zSig' is | ||
387 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | ||
388 | The handling of underflow and overflow follows the IEC/IEEE Standard for | ||
389 | Binary Floating-point Arithmetic. | ||
390 | ------------------------------------------------------------------------------- | ||
391 | */ | ||
392 | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
393 | { | ||
394 | int8 roundingMode; | ||
395 | flag roundNearestEven; | ||
396 | int16 roundIncrement, roundBits; | ||
397 | flag isTiny; | ||
398 | |||
399 | roundingMode = float_rounding_mode; | ||
400 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
401 | roundIncrement = 0x200; | ||
402 | if ( ! roundNearestEven ) { | ||
403 | if ( roundingMode == float_round_to_zero ) { | ||
404 | roundIncrement = 0; | ||
405 | } | ||
406 | else { | ||
407 | roundIncrement = 0x3FF; | ||
408 | if ( zSign ) { | ||
409 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
410 | } | ||
411 | else { | ||
412 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
413 | } | ||
414 | } | ||
415 | } | ||
416 | roundBits = zSig & 0x3FF; | ||
417 | if ( 0x7FD <= (bits16) zExp ) { | ||
418 | if ( ( 0x7FD < zExp ) | ||
419 | || ( ( zExp == 0x7FD ) | ||
420 | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | ||
421 | ) { | ||
422 | //register int lr = __builtin_return_address(0); | ||
423 | //printk("roundAndPackFloat64 called from 0x%08x\n",lr); | ||
424 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
425 | return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); | ||
426 | } | ||
427 | if ( zExp < 0 ) { | ||
428 | isTiny = | ||
429 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
430 | || ( zExp < -1 ) | ||
431 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | ||
432 | shift64RightJamming( zSig, - zExp, &zSig ); | ||
433 | zExp = 0; | ||
434 | roundBits = zSig & 0x3FF; | ||
435 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
436 | } | ||
437 | } | ||
438 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
439 | zSig = ( zSig + roundIncrement )>>10; | ||
440 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | ||
441 | if ( zSig == 0 ) zExp = 0; | ||
442 | return packFloat64( zSign, zExp, zSig ); | ||
443 | |||
444 | } | ||
445 | |||
446 | /* | ||
447 | ------------------------------------------------------------------------------- | ||
448 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
449 | and significand `zSig', and returns the proper double-precision floating- | ||
450 | point value corresponding to the abstract input. This routine is just like | ||
451 | `roundAndPackFloat64' except that `zSig' does not have to be normalized in | ||
452 | any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | ||
453 | point exponent. | ||
454 | ------------------------------------------------------------------------------- | ||
455 | */ | ||
456 | static float64 | ||
457 | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
458 | { | ||
459 | int8 shiftCount; | ||
460 | |||
461 | shiftCount = countLeadingZeros64( zSig ) - 1; | ||
462 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); | ||
463 | |||
464 | } | ||
465 | |||
466 | #ifdef FLOATX80 | ||
467 | |||
468 | /* | ||
469 | ------------------------------------------------------------------------------- | ||
470 | Returns the fraction bits of the extended double-precision floating-point | ||
471 | value `a'. | ||
472 | ------------------------------------------------------------------------------- | ||
473 | */ | ||
474 | INLINE bits64 extractFloatx80Frac( floatx80 a ) | ||
475 | { | ||
476 | |||
477 | return a.low; | ||
478 | |||
479 | } | ||
480 | |||
481 | /* | ||
482 | ------------------------------------------------------------------------------- | ||
483 | Returns the exponent bits of the extended double-precision floating-point | ||
484 | value `a'. | ||
485 | ------------------------------------------------------------------------------- | ||
486 | */ | ||
487 | INLINE int32 extractFloatx80Exp( floatx80 a ) | ||
488 | { | ||
489 | |||
490 | return a.high & 0x7FFF; | ||
491 | |||
492 | } | ||
493 | |||
494 | /* | ||
495 | ------------------------------------------------------------------------------- | ||
496 | Returns the sign bit of the extended double-precision floating-point value | ||
497 | `a'. | ||
498 | ------------------------------------------------------------------------------- | ||
499 | */ | ||
500 | INLINE flag extractFloatx80Sign( floatx80 a ) | ||
501 | { | ||
502 | |||
503 | return a.high>>15; | ||
504 | |||
505 | } | ||
506 | |||
507 | /* | ||
508 | ------------------------------------------------------------------------------- | ||
509 | Normalizes the subnormal extended double-precision floating-point value | ||
510 | represented by the denormalized significand `aSig'. The normalized exponent | ||
511 | and significand are stored at the locations pointed to by `zExpPtr' and | ||
512 | `zSigPtr', respectively. | ||
513 | ------------------------------------------------------------------------------- | ||
514 | */ | ||
515 | static void | ||
516 | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | ||
517 | { | ||
518 | int8 shiftCount; | ||
519 | |||
520 | shiftCount = countLeadingZeros64( aSig ); | ||
521 | *zSigPtr = aSig<<shiftCount; | ||
522 | *zExpPtr = 1 - shiftCount; | ||
523 | |||
524 | } | ||
525 | |||
526 | /* | ||
527 | ------------------------------------------------------------------------------- | ||
528 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | ||
529 | extended double-precision floating-point value, returning the result. | ||
530 | ------------------------------------------------------------------------------- | ||
531 | */ | ||
532 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | ||
533 | { | ||
534 | floatx80 z; | ||
535 | |||
536 | z.low = zSig; | ||
537 | z.high = ( ( (bits16) zSign )<<15 ) + zExp; | ||
538 | return z; | ||
539 | |||
540 | } | ||
541 | |||
542 | /* | ||
543 | ------------------------------------------------------------------------------- | ||
544 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
545 | and extended significand formed by the concatenation of `zSig0' and `zSig1', | ||
546 | and returns the proper extended double-precision floating-point value | ||
547 | corresponding to the abstract input. Ordinarily, the abstract value is | ||
548 | rounded and packed into the extended double-precision format, with the | ||
549 | inexact exception raised if the abstract input cannot be represented | ||
550 | exactly. If the abstract value is too large, however, the overflow and | ||
551 | inexact exceptions are raised and an infinity or maximal finite value is | ||
552 | returned. If the abstract value is too small, the input value is rounded to | ||
553 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
554 | the abstract input cannot be represented exactly as a subnormal extended | ||
555 | double-precision floating-point number. | ||
556 | If `roundingPrecision' is 32 or 64, the result is rounded to the same | ||
557 | number of bits as single or double precision, respectively. Otherwise, the | ||
558 | result is rounded to the full precision of the extended double-precision | ||
559 | format. | ||
560 | The input significand must be normalized or smaller. If the input | ||
561 | significand is not normalized, `zExp' must be 0; in that case, the result | ||
562 | returned is a subnormal number, and it must not require rounding. The | ||
563 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | ||
564 | Floating-point Arithmetic. | ||
565 | ------------------------------------------------------------------------------- | ||
566 | */ | ||
567 | static floatx80 | ||
568 | roundAndPackFloatx80( | ||
569 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | ||
570 | ) | ||
571 | { | ||
572 | int8 roundingMode; | ||
573 | flag roundNearestEven, increment, isTiny; | ||
574 | int64 roundIncrement, roundMask, roundBits; | ||
575 | |||
576 | roundingMode = float_rounding_mode; | ||
577 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
578 | if ( roundingPrecision == 80 ) goto precision80; | ||
579 | if ( roundingPrecision == 64 ) { | ||
580 | roundIncrement = LIT64( 0x0000000000000400 ); | ||
581 | roundMask = LIT64( 0x00000000000007FF ); | ||
582 | } | ||
583 | else if ( roundingPrecision == 32 ) { | ||
584 | roundIncrement = LIT64( 0x0000008000000000 ); | ||
585 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | ||
586 | } | ||
587 | else { | ||
588 | goto precision80; | ||
589 | } | ||
590 | zSig0 |= ( zSig1 != 0 ); | ||
591 | if ( ! roundNearestEven ) { | ||
592 | if ( roundingMode == float_round_to_zero ) { | ||
593 | roundIncrement = 0; | ||
594 | } | ||
595 | else { | ||
596 | roundIncrement = roundMask; | ||
597 | if ( zSign ) { | ||
598 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
599 | } | ||
600 | else { | ||
601 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
602 | } | ||
603 | } | ||
604 | } | ||
605 | roundBits = zSig0 & roundMask; | ||
606 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | ||
607 | if ( ( 0x7FFE < zExp ) | ||
608 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | ||
609 | ) { | ||
610 | goto overflow; | ||
611 | } | ||
612 | if ( zExp <= 0 ) { | ||
613 | isTiny = | ||
614 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
615 | || ( zExp < 0 ) | ||
616 | || ( zSig0 <= zSig0 + roundIncrement ); | ||
617 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | ||
618 | zExp = 0; | ||
619 | roundBits = zSig0 & roundMask; | ||
620 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
621 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
622 | zSig0 += roundIncrement; | ||
623 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | ||
624 | roundIncrement = roundMask + 1; | ||
625 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | ||
626 | roundMask |= roundIncrement; | ||
627 | } | ||
628 | zSig0 &= ~ roundMask; | ||
629 | return packFloatx80( zSign, zExp, zSig0 ); | ||
630 | } | ||
631 | } | ||
632 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
633 | zSig0 += roundIncrement; | ||
634 | if ( zSig0 < roundIncrement ) { | ||
635 | ++zExp; | ||
636 | zSig0 = LIT64( 0x8000000000000000 ); | ||
637 | } | ||
638 | roundIncrement = roundMask + 1; | ||
639 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | ||
640 | roundMask |= roundIncrement; | ||
641 | } | ||
642 | zSig0 &= ~ roundMask; | ||
643 | if ( zSig0 == 0 ) zExp = 0; | ||
644 | return packFloatx80( zSign, zExp, zSig0 ); | ||
645 | precision80: | ||
646 | increment = ( (sbits64) zSig1 < 0 ); | ||
647 | if ( ! roundNearestEven ) { | ||
648 | if ( roundingMode == float_round_to_zero ) { | ||
649 | increment = 0; | ||
650 | } | ||
651 | else { | ||
652 | if ( zSign ) { | ||
653 | increment = ( roundingMode == float_round_down ) && zSig1; | ||
654 | } | ||
655 | else { | ||
656 | increment = ( roundingMode == float_round_up ) && zSig1; | ||
657 | } | ||
658 | } | ||
659 | } | ||
660 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | ||
661 | if ( ( 0x7FFE < zExp ) | ||
662 | || ( ( zExp == 0x7FFE ) | ||
663 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | ||
664 | && increment | ||
665 | ) | ||
666 | ) { | ||
667 | roundMask = 0; | ||
668 | overflow: | ||
669 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
670 | if ( ( roundingMode == float_round_to_zero ) | ||
671 | || ( zSign && ( roundingMode == float_round_up ) ) | ||
672 | || ( ! zSign && ( roundingMode == float_round_down ) ) | ||
673 | ) { | ||
674 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | ||
675 | } | ||
676 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
677 | } | ||
678 | if ( zExp <= 0 ) { | ||
679 | isTiny = | ||
680 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
681 | || ( zExp < 0 ) | ||
682 | || ! increment | ||
683 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | ||
684 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | ||
685 | zExp = 0; | ||
686 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); | ||
687 | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | ||
688 | if ( roundNearestEven ) { | ||
689 | increment = ( (sbits64) zSig1 < 0 ); | ||
690 | } | ||
691 | else { | ||
692 | if ( zSign ) { | ||
693 | increment = ( roundingMode == float_round_down ) && zSig1; | ||
694 | } | ||
695 | else { | ||
696 | increment = ( roundingMode == float_round_up ) && zSig1; | ||
697 | } | ||
698 | } | ||
699 | if ( increment ) { | ||
700 | ++zSig0; | ||
701 | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | ||
702 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | ||
703 | } | ||
704 | return packFloatx80( zSign, zExp, zSig0 ); | ||
705 | } | ||
706 | } | ||
707 | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | ||
708 | if ( increment ) { | ||
709 | ++zSig0; | ||
710 | if ( zSig0 == 0 ) { | ||
711 | ++zExp; | ||
712 | zSig0 = LIT64( 0x8000000000000000 ); | ||
713 | } | ||
714 | else { | ||
715 | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | ||
716 | } | ||
717 | } | ||
718 | else { | ||
719 | if ( zSig0 == 0 ) zExp = 0; | ||
720 | } | ||
721 | |||
722 | return packFloatx80( zSign, zExp, zSig0 ); | ||
723 | } | ||
724 | |||
725 | /* | ||
726 | ------------------------------------------------------------------------------- | ||
727 | Takes an abstract floating-point value having sign `zSign', exponent | ||
728 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | ||
729 | and returns the proper extended double-precision floating-point value | ||
730 | corresponding to the abstract input. This routine is just like | ||
731 | `roundAndPackFloatx80' except that the input significand does not have to be | ||
732 | normalized. | ||
733 | ------------------------------------------------------------------------------- | ||
734 | */ | ||
735 | static floatx80 | ||
736 | normalizeRoundAndPackFloatx80( | ||
737 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | ||
738 | ) | ||
739 | { | ||
740 | int8 shiftCount; | ||
741 | |||
742 | if ( zSig0 == 0 ) { | ||
743 | zSig0 = zSig1; | ||
744 | zSig1 = 0; | ||
745 | zExp -= 64; | ||
746 | } | ||
747 | shiftCount = countLeadingZeros64( zSig0 ); | ||
748 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | ||
749 | zExp -= shiftCount; | ||
750 | return | ||
751 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); | ||
752 | |||
753 | } | ||
754 | |||
755 | #endif | ||
756 | |||
757 | /* | ||
758 | ------------------------------------------------------------------------------- | ||
759 | Returns the result of converting the 32-bit two's complement integer `a' to | ||
760 | the single-precision floating-point format. The conversion is performed | ||
761 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
762 | ------------------------------------------------------------------------------- | ||
763 | */ | ||
764 | float32 int32_to_float32( int32 a ) | ||
765 | { | ||
766 | flag zSign; | ||
767 | |||
768 | if ( a == 0 ) return 0; | ||
769 | if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | ||
770 | zSign = ( a < 0 ); | ||
771 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); | ||
772 | |||
773 | } | ||
774 | |||
775 | /* | ||
776 | ------------------------------------------------------------------------------- | ||
777 | Returns the result of converting the 32-bit two's complement integer `a' to | ||
778 | the double-precision floating-point format. The conversion is performed | ||
779 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
780 | ------------------------------------------------------------------------------- | ||
781 | */ | ||
782 | float64 int32_to_float64( int32 a ) | ||
783 | { | ||
784 | flag aSign; | ||
785 | uint32 absA; | ||
786 | int8 shiftCount; | ||
787 | bits64 zSig; | ||
788 | |||
789 | if ( a == 0 ) return 0; | ||
790 | aSign = ( a < 0 ); | ||
791 | absA = aSign ? - a : a; | ||
792 | shiftCount = countLeadingZeros32( absA ) + 21; | ||
793 | zSig = absA; | ||
794 | return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); | ||
795 | |||
796 | } | ||
797 | |||
798 | #ifdef FLOATX80 | ||
799 | |||
800 | /* | ||
801 | ------------------------------------------------------------------------------- | ||
802 | Returns the result of converting the 32-bit two's complement integer `a' | ||
803 | to the extended double-precision floating-point format. The conversion | ||
804 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
805 | Arithmetic. | ||
806 | ------------------------------------------------------------------------------- | ||
807 | */ | ||
808 | floatx80 int32_to_floatx80( int32 a ) | ||
809 | { | ||
810 | flag zSign; | ||
811 | uint32 absA; | ||
812 | int8 shiftCount; | ||
813 | bits64 zSig; | ||
814 | |||
815 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | ||
816 | zSign = ( a < 0 ); | ||
817 | absA = zSign ? - a : a; | ||
818 | shiftCount = countLeadingZeros32( absA ) + 32; | ||
819 | zSig = absA; | ||
820 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | ||
821 | |||
822 | } | ||
823 | |||
824 | #endif | ||
825 | |||
826 | /* | ||
827 | ------------------------------------------------------------------------------- | ||
828 | Returns the result of converting the single-precision floating-point value | ||
829 | `a' to the 32-bit two's complement integer format. The conversion is | ||
830 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
831 | Arithmetic---which means in particular that the conversion is rounded | ||
832 | according to the current rounding mode. If `a' is a NaN, the largest | ||
833 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
834 | largest integer with the same sign as `a' is returned. | ||
835 | ------------------------------------------------------------------------------- | ||
836 | */ | ||
837 | int32 float32_to_int32( float32 a ) | ||
838 | { | ||
839 | flag aSign; | ||
840 | int16 aExp, shiftCount; | ||
841 | bits32 aSig; | ||
842 | bits64 zSig; | ||
843 | |||
844 | aSig = extractFloat32Frac( a ); | ||
845 | aExp = extractFloat32Exp( a ); | ||
846 | aSign = extractFloat32Sign( a ); | ||
847 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
848 | if ( aExp ) aSig |= 0x00800000; | ||
849 | shiftCount = 0xAF - aExp; | ||
850 | zSig = aSig; | ||
851 | zSig <<= 32; | ||
852 | if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); | ||
853 | return roundAndPackInt32( aSign, zSig ); | ||
854 | |||
855 | } | ||
856 | |||
857 | /* | ||
858 | ------------------------------------------------------------------------------- | ||
859 | Returns the result of converting the single-precision floating-point value | ||
860 | `a' to the 32-bit two's complement integer format. The conversion is | ||
861 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
862 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
863 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
864 | conversion overflows, the largest integer with the same sign as `a' is | ||
865 | returned. | ||
866 | ------------------------------------------------------------------------------- | ||
867 | */ | ||
868 | int32 float32_to_int32_round_to_zero( float32 a ) | ||
869 | { | ||
870 | flag aSign; | ||
871 | int16 aExp, shiftCount; | ||
872 | bits32 aSig; | ||
873 | int32 z; | ||
874 | |||
875 | aSig = extractFloat32Frac( a ); | ||
876 | aExp = extractFloat32Exp( a ); | ||
877 | aSign = extractFloat32Sign( a ); | ||
878 | shiftCount = aExp - 0x9E; | ||
879 | if ( 0 <= shiftCount ) { | ||
880 | if ( a == 0xCF000000 ) return 0x80000000; | ||
881 | float_raise( float_flag_invalid ); | ||
882 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | ||
883 | return 0x80000000; | ||
884 | } | ||
885 | else if ( aExp <= 0x7E ) { | ||
886 | if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; | ||
887 | return 0; | ||
888 | } | ||
889 | aSig = ( aSig | 0x00800000 )<<8; | ||
890 | z = aSig>>( - shiftCount ); | ||
891 | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | ||
892 | float_exception_flags |= float_flag_inexact; | ||
893 | } | ||
894 | return aSign ? - z : z; | ||
895 | |||
896 | } | ||
897 | |||
898 | /* | ||
899 | ------------------------------------------------------------------------------- | ||
900 | Returns the result of converting the single-precision floating-point value | ||
901 | `a' to the double-precision floating-point format. The conversion is | ||
902 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
903 | Arithmetic. | ||
904 | ------------------------------------------------------------------------------- | ||
905 | */ | ||
906 | float64 float32_to_float64( float32 a ) | ||
907 | { | ||
908 | flag aSign; | ||
909 | int16 aExp; | ||
910 | bits32 aSig; | ||
911 | |||
912 | aSig = extractFloat32Frac( a ); | ||
913 | aExp = extractFloat32Exp( a ); | ||
914 | aSign = extractFloat32Sign( a ); | ||
915 | if ( aExp == 0xFF ) { | ||
916 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); | ||
917 | return packFloat64( aSign, 0x7FF, 0 ); | ||
918 | } | ||
919 | if ( aExp == 0 ) { | ||
920 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | ||
921 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
922 | --aExp; | ||
923 | } | ||
924 | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | ||
925 | |||
926 | } | ||
927 | |||
928 | #ifdef FLOATX80 | ||
929 | |||
930 | /* | ||
931 | ------------------------------------------------------------------------------- | ||
932 | Returns the result of converting the single-precision floating-point value | ||
933 | `a' to the extended double-precision floating-point format. The conversion | ||
934 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
935 | Arithmetic. | ||
936 | ------------------------------------------------------------------------------- | ||
937 | */ | ||
938 | floatx80 float32_to_floatx80( float32 a ) | ||
939 | { | ||
940 | flag aSign; | ||
941 | int16 aExp; | ||
942 | bits32 aSig; | ||
943 | |||
944 | aSig = extractFloat32Frac( a ); | ||
945 | aExp = extractFloat32Exp( a ); | ||
946 | aSign = extractFloat32Sign( a ); | ||
947 | if ( aExp == 0xFF ) { | ||
948 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); | ||
949 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
950 | } | ||
951 | if ( aExp == 0 ) { | ||
952 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | ||
953 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
954 | } | ||
955 | aSig |= 0x00800000; | ||
956 | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | ||
957 | |||
958 | } | ||
959 | |||
960 | #endif | ||
961 | |||
962 | /* | ||
963 | ------------------------------------------------------------------------------- | ||
964 | Rounds the single-precision floating-point value `a' to an integer, and | ||
965 | returns the result as a single-precision floating-point value. The | ||
966 | operation is performed according to the IEC/IEEE Standard for Binary | ||
967 | Floating-point Arithmetic. | ||
968 | ------------------------------------------------------------------------------- | ||
969 | */ | ||
970 | float32 float32_round_to_int( float32 a ) | ||
971 | { | ||
972 | flag aSign; | ||
973 | int16 aExp; | ||
974 | bits32 lastBitMask, roundBitsMask; | ||
975 | int8 roundingMode; | ||
976 | float32 z; | ||
977 | |||
978 | aExp = extractFloat32Exp( a ); | ||
979 | if ( 0x96 <= aExp ) { | ||
980 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | ||
981 | return propagateFloat32NaN( a, a ); | ||
982 | } | ||
983 | return a; | ||
984 | } | ||
985 | if ( aExp <= 0x7E ) { | ||
986 | if ( (bits32) ( a<<1 ) == 0 ) return a; | ||
987 | float_exception_flags |= float_flag_inexact; | ||
988 | aSign = extractFloat32Sign( a ); | ||
989 | switch ( float_rounding_mode ) { | ||
990 | case float_round_nearest_even: | ||
991 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | ||
992 | return packFloat32( aSign, 0x7F, 0 ); | ||
993 | } | ||
994 | break; | ||
995 | case float_round_down: | ||
996 | return aSign ? 0xBF800000 : 0; | ||
997 | case float_round_up: | ||
998 | return aSign ? 0x80000000 : 0x3F800000; | ||
999 | } | ||
1000 | return packFloat32( aSign, 0, 0 ); | ||
1001 | } | ||
1002 | lastBitMask = 1; | ||
1003 | lastBitMask <<= 0x96 - aExp; | ||
1004 | roundBitsMask = lastBitMask - 1; | ||
1005 | z = a; | ||
1006 | roundingMode = float_rounding_mode; | ||
1007 | if ( roundingMode == float_round_nearest_even ) { | ||
1008 | z += lastBitMask>>1; | ||
1009 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | ||
1010 | } | ||
1011 | else if ( roundingMode != float_round_to_zero ) { | ||
1012 | if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
1013 | z += roundBitsMask; | ||
1014 | } | ||
1015 | } | ||
1016 | z &= ~ roundBitsMask; | ||
1017 | if ( z != a ) float_exception_flags |= float_flag_inexact; | ||
1018 | return z; | ||
1019 | |||
1020 | } | ||
1021 | |||
1022 | /* | ||
1023 | ------------------------------------------------------------------------------- | ||
1024 | Returns the result of adding the absolute values of the single-precision | ||
1025 | floating-point values `a' and `b'. If `zSign' is true, the sum is negated | ||
1026 | before being returned. `zSign' is ignored if the result is a NaN. The | ||
1027 | addition is performed according to the IEC/IEEE Standard for Binary | ||
1028 | Floating-point Arithmetic. | ||
1029 | ------------------------------------------------------------------------------- | ||
1030 | */ | ||
1031 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) | ||
1032 | { | ||
1033 | int16 aExp, bExp, zExp; | ||
1034 | bits32 aSig, bSig, zSig; | ||
1035 | int16 expDiff; | ||
1036 | |||
1037 | aSig = extractFloat32Frac( a ); | ||
1038 | aExp = extractFloat32Exp( a ); | ||
1039 | bSig = extractFloat32Frac( b ); | ||
1040 | bExp = extractFloat32Exp( b ); | ||
1041 | expDiff = aExp - bExp; | ||
1042 | aSig <<= 6; | ||
1043 | bSig <<= 6; | ||
1044 | if ( 0 < expDiff ) { | ||
1045 | if ( aExp == 0xFF ) { | ||
1046 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1047 | return a; | ||
1048 | } | ||
1049 | if ( bExp == 0 ) { | ||
1050 | --expDiff; | ||
1051 | } | ||
1052 | else { | ||
1053 | bSig |= 0x20000000; | ||
1054 | } | ||
1055 | shift32RightJamming( bSig, expDiff, &bSig ); | ||
1056 | zExp = aExp; | ||
1057 | } | ||
1058 | else if ( expDiff < 0 ) { | ||
1059 | if ( bExp == 0xFF ) { | ||
1060 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1061 | return packFloat32( zSign, 0xFF, 0 ); | ||
1062 | } | ||
1063 | if ( aExp == 0 ) { | ||
1064 | ++expDiff; | ||
1065 | } | ||
1066 | else { | ||
1067 | aSig |= 0x20000000; | ||
1068 | } | ||
1069 | shift32RightJamming( aSig, - expDiff, &aSig ); | ||
1070 | zExp = bExp; | ||
1071 | } | ||
1072 | else { | ||
1073 | if ( aExp == 0xFF ) { | ||
1074 | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | ||
1075 | return a; | ||
1076 | } | ||
1077 | if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | ||
1078 | zSig = 0x40000000 + aSig + bSig; | ||
1079 | zExp = aExp; | ||
1080 | goto roundAndPack; | ||
1081 | } | ||
1082 | aSig |= 0x20000000; | ||
1083 | zSig = ( aSig + bSig )<<1; | ||
1084 | --zExp; | ||
1085 | if ( (sbits32) zSig < 0 ) { | ||
1086 | zSig = aSig + bSig; | ||
1087 | ++zExp; | ||
1088 | } | ||
1089 | roundAndPack: | ||
1090 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1091 | |||
1092 | } | ||
1093 | |||
1094 | /* | ||
1095 | ------------------------------------------------------------------------------- | ||
1096 | Returns the result of subtracting the absolute values of the single- | ||
1097 | precision floating-point values `a' and `b'. If `zSign' is true, the | ||
1098 | difference is negated before being returned. `zSign' is ignored if the | ||
1099 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
1100 | Standard for Binary Floating-point Arithmetic. | ||
1101 | ------------------------------------------------------------------------------- | ||
1102 | */ | ||
1103 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) | ||
1104 | { | ||
1105 | int16 aExp, bExp, zExp; | ||
1106 | bits32 aSig, bSig, zSig; | ||
1107 | int16 expDiff; | ||
1108 | |||
1109 | aSig = extractFloat32Frac( a ); | ||
1110 | aExp = extractFloat32Exp( a ); | ||
1111 | bSig = extractFloat32Frac( b ); | ||
1112 | bExp = extractFloat32Exp( b ); | ||
1113 | expDiff = aExp - bExp; | ||
1114 | aSig <<= 7; | ||
1115 | bSig <<= 7; | ||
1116 | if ( 0 < expDiff ) goto aExpBigger; | ||
1117 | if ( expDiff < 0 ) goto bExpBigger; | ||
1118 | if ( aExp == 0xFF ) { | ||
1119 | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | ||
1120 | float_raise( float_flag_invalid ); | ||
1121 | return float32_default_nan; | ||
1122 | } | ||
1123 | if ( aExp == 0 ) { | ||
1124 | aExp = 1; | ||
1125 | bExp = 1; | ||
1126 | } | ||
1127 | if ( bSig < aSig ) goto aBigger; | ||
1128 | if ( aSig < bSig ) goto bBigger; | ||
1129 | return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); | ||
1130 | bExpBigger: | ||
1131 | if ( bExp == 0xFF ) { | ||
1132 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1133 | return packFloat32( zSign ^ 1, 0xFF, 0 ); | ||
1134 | } | ||
1135 | if ( aExp == 0 ) { | ||
1136 | ++expDiff; | ||
1137 | } | ||
1138 | else { | ||
1139 | aSig |= 0x40000000; | ||
1140 | } | ||
1141 | shift32RightJamming( aSig, - expDiff, &aSig ); | ||
1142 | bSig |= 0x40000000; | ||
1143 | bBigger: | ||
1144 | zSig = bSig - aSig; | ||
1145 | zExp = bExp; | ||
1146 | zSign ^= 1; | ||
1147 | goto normalizeRoundAndPack; | ||
1148 | aExpBigger: | ||
1149 | if ( aExp == 0xFF ) { | ||
1150 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1151 | return a; | ||
1152 | } | ||
1153 | if ( bExp == 0 ) { | ||
1154 | --expDiff; | ||
1155 | } | ||
1156 | else { | ||
1157 | bSig |= 0x40000000; | ||
1158 | } | ||
1159 | shift32RightJamming( bSig, expDiff, &bSig ); | ||
1160 | aSig |= 0x40000000; | ||
1161 | aBigger: | ||
1162 | zSig = aSig - bSig; | ||
1163 | zExp = aExp; | ||
1164 | normalizeRoundAndPack: | ||
1165 | --zExp; | ||
1166 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); | ||
1167 | |||
1168 | } | ||
1169 | |||
1170 | /* | ||
1171 | ------------------------------------------------------------------------------- | ||
1172 | Returns the result of adding the single-precision floating-point values `a' | ||
1173 | and `b'. The operation is performed according to the IEC/IEEE Standard for | ||
1174 | Binary Floating-point Arithmetic. | ||
1175 | ------------------------------------------------------------------------------- | ||
1176 | */ | ||
1177 | float32 float32_add( float32 a, float32 b ) | ||
1178 | { | ||
1179 | flag aSign, bSign; | ||
1180 | |||
1181 | aSign = extractFloat32Sign( a ); | ||
1182 | bSign = extractFloat32Sign( b ); | ||
1183 | if ( aSign == bSign ) { | ||
1184 | return addFloat32Sigs( a, b, aSign ); | ||
1185 | } | ||
1186 | else { | ||
1187 | return subFloat32Sigs( a, b, aSign ); | ||
1188 | } | ||
1189 | |||
1190 | } | ||
1191 | |||
1192 | /* | ||
1193 | ------------------------------------------------------------------------------- | ||
1194 | Returns the result of subtracting the single-precision floating-point values | ||
1195 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
1196 | for Binary Floating-point Arithmetic. | ||
1197 | ------------------------------------------------------------------------------- | ||
1198 | */ | ||
1199 | float32 float32_sub( float32 a, float32 b ) | ||
1200 | { | ||
1201 | flag aSign, bSign; | ||
1202 | |||
1203 | aSign = extractFloat32Sign( a ); | ||
1204 | bSign = extractFloat32Sign( b ); | ||
1205 | if ( aSign == bSign ) { | ||
1206 | return subFloat32Sigs( a, b, aSign ); | ||
1207 | } | ||
1208 | else { | ||
1209 | return addFloat32Sigs( a, b, aSign ); | ||
1210 | } | ||
1211 | |||
1212 | } | ||
1213 | |||
1214 | /* | ||
1215 | ------------------------------------------------------------------------------- | ||
1216 | Returns the result of multiplying the single-precision floating-point values | ||
1217 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
1218 | for Binary Floating-point Arithmetic. | ||
1219 | ------------------------------------------------------------------------------- | ||
1220 | */ | ||
1221 | float32 float32_mul( float32 a, float32 b ) | ||
1222 | { | ||
1223 | flag aSign, bSign, zSign; | ||
1224 | int16 aExp, bExp, zExp; | ||
1225 | bits32 aSig, bSig; | ||
1226 | bits64 zSig64; | ||
1227 | bits32 zSig; | ||
1228 | |||
1229 | aSig = extractFloat32Frac( a ); | ||
1230 | aExp = extractFloat32Exp( a ); | ||
1231 | aSign = extractFloat32Sign( a ); | ||
1232 | bSig = extractFloat32Frac( b ); | ||
1233 | bExp = extractFloat32Exp( b ); | ||
1234 | bSign = extractFloat32Sign( b ); | ||
1235 | zSign = aSign ^ bSign; | ||
1236 | if ( aExp == 0xFF ) { | ||
1237 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | ||
1238 | return propagateFloat32NaN( a, b ); | ||
1239 | } | ||
1240 | if ( ( bExp | bSig ) == 0 ) { | ||
1241 | float_raise( float_flag_invalid ); | ||
1242 | return float32_default_nan; | ||
1243 | } | ||
1244 | return packFloat32( zSign, 0xFF, 0 ); | ||
1245 | } | ||
1246 | if ( bExp == 0xFF ) { | ||
1247 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1248 | if ( ( aExp | aSig ) == 0 ) { | ||
1249 | float_raise( float_flag_invalid ); | ||
1250 | return float32_default_nan; | ||
1251 | } | ||
1252 | return packFloat32( zSign, 0xFF, 0 ); | ||
1253 | } | ||
1254 | if ( aExp == 0 ) { | ||
1255 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1256 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1257 | } | ||
1258 | if ( bExp == 0 ) { | ||
1259 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1260 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1261 | } | ||
1262 | zExp = aExp + bExp - 0x7F; | ||
1263 | aSig = ( aSig | 0x00800000 )<<7; | ||
1264 | bSig = ( bSig | 0x00800000 )<<8; | ||
1265 | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | ||
1266 | zSig = zSig64; | ||
1267 | if ( 0 <= (sbits32) ( zSig<<1 ) ) { | ||
1268 | zSig <<= 1; | ||
1269 | --zExp; | ||
1270 | } | ||
1271 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1272 | |||
1273 | } | ||
1274 | |||
1275 | /* | ||
1276 | ------------------------------------------------------------------------------- | ||
1277 | Returns the result of dividing the single-precision floating-point value `a' | ||
1278 | by the corresponding value `b'. The operation is performed according to the | ||
1279 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1280 | ------------------------------------------------------------------------------- | ||
1281 | */ | ||
1282 | float32 float32_div( float32 a, float32 b ) | ||
1283 | { | ||
1284 | flag aSign, bSign, zSign; | ||
1285 | int16 aExp, bExp, zExp; | ||
1286 | bits32 aSig, bSig, zSig; | ||
1287 | |||
1288 | aSig = extractFloat32Frac( a ); | ||
1289 | aExp = extractFloat32Exp( a ); | ||
1290 | aSign = extractFloat32Sign( a ); | ||
1291 | bSig = extractFloat32Frac( b ); | ||
1292 | bExp = extractFloat32Exp( b ); | ||
1293 | bSign = extractFloat32Sign( b ); | ||
1294 | zSign = aSign ^ bSign; | ||
1295 | if ( aExp == 0xFF ) { | ||
1296 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1297 | if ( bExp == 0xFF ) { | ||
1298 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1299 | float_raise( float_flag_invalid ); | ||
1300 | return float32_default_nan; | ||
1301 | } | ||
1302 | return packFloat32( zSign, 0xFF, 0 ); | ||
1303 | } | ||
1304 | if ( bExp == 0xFF ) { | ||
1305 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1306 | return packFloat32( zSign, 0, 0 ); | ||
1307 | } | ||
1308 | if ( bExp == 0 ) { | ||
1309 | if ( bSig == 0 ) { | ||
1310 | if ( ( aExp | aSig ) == 0 ) { | ||
1311 | float_raise( float_flag_invalid ); | ||
1312 | return float32_default_nan; | ||
1313 | } | ||
1314 | float_raise( float_flag_divbyzero ); | ||
1315 | return packFloat32( zSign, 0xFF, 0 ); | ||
1316 | } | ||
1317 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1318 | } | ||
1319 | if ( aExp == 0 ) { | ||
1320 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1321 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1322 | } | ||
1323 | zExp = aExp - bExp + 0x7D; | ||
1324 | aSig = ( aSig | 0x00800000 )<<7; | ||
1325 | bSig = ( bSig | 0x00800000 )<<8; | ||
1326 | if ( bSig <= ( aSig + aSig ) ) { | ||
1327 | aSig >>= 1; | ||
1328 | ++zExp; | ||
1329 | } | ||
1330 | zSig = ( ( (bits64) aSig )<<32 ) / bSig; | ||
1331 | if ( ( zSig & 0x3F ) == 0 ) { | ||
1332 | zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); | ||
1333 | } | ||
1334 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1335 | |||
1336 | } | ||
1337 | |||
1338 | /* | ||
1339 | ------------------------------------------------------------------------------- | ||
1340 | Returns the remainder of the single-precision floating-point value `a' | ||
1341 | with respect to the corresponding value `b'. The operation is performed | ||
1342 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1343 | ------------------------------------------------------------------------------- | ||
1344 | */ | ||
1345 | float32 float32_rem( float32 a, float32 b ) | ||
1346 | { | ||
1347 | flag aSign, bSign, zSign; | ||
1348 | int16 aExp, bExp, expDiff; | ||
1349 | bits32 aSig, bSig; | ||
1350 | bits32 q; | ||
1351 | bits64 aSig64, bSig64, q64; | ||
1352 | bits32 alternateASig; | ||
1353 | sbits32 sigMean; | ||
1354 | |||
1355 | aSig = extractFloat32Frac( a ); | ||
1356 | aExp = extractFloat32Exp( a ); | ||
1357 | aSign = extractFloat32Sign( a ); | ||
1358 | bSig = extractFloat32Frac( b ); | ||
1359 | bExp = extractFloat32Exp( b ); | ||
1360 | bSign = extractFloat32Sign( b ); | ||
1361 | if ( aExp == 0xFF ) { | ||
1362 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | ||
1363 | return propagateFloat32NaN( a, b ); | ||
1364 | } | ||
1365 | float_raise( float_flag_invalid ); | ||
1366 | return float32_default_nan; | ||
1367 | } | ||
1368 | if ( bExp == 0xFF ) { | ||
1369 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1370 | return a; | ||
1371 | } | ||
1372 | if ( bExp == 0 ) { | ||
1373 | if ( bSig == 0 ) { | ||
1374 | float_raise( float_flag_invalid ); | ||
1375 | return float32_default_nan; | ||
1376 | } | ||
1377 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1378 | } | ||
1379 | if ( aExp == 0 ) { | ||
1380 | if ( aSig == 0 ) return a; | ||
1381 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1382 | } | ||
1383 | expDiff = aExp - bExp; | ||
1384 | aSig |= 0x00800000; | ||
1385 | bSig |= 0x00800000; | ||
1386 | if ( expDiff < 32 ) { | ||
1387 | aSig <<= 8; | ||
1388 | bSig <<= 8; | ||
1389 | if ( expDiff < 0 ) { | ||
1390 | if ( expDiff < -1 ) return a; | ||
1391 | aSig >>= 1; | ||
1392 | } | ||
1393 | q = ( bSig <= aSig ); | ||
1394 | if ( q ) aSig -= bSig; | ||
1395 | if ( 0 < expDiff ) { | ||
1396 | q = ( ( (bits64) aSig )<<32 ) / bSig; | ||
1397 | q >>= 32 - expDiff; | ||
1398 | bSig >>= 2; | ||
1399 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | ||
1400 | } | ||
1401 | else { | ||
1402 | aSig >>= 2; | ||
1403 | bSig >>= 2; | ||
1404 | } | ||
1405 | } | ||
1406 | else { | ||
1407 | if ( bSig <= aSig ) aSig -= bSig; | ||
1408 | aSig64 = ( (bits64) aSig )<<40; | ||
1409 | bSig64 = ( (bits64) bSig )<<40; | ||
1410 | expDiff -= 64; | ||
1411 | while ( 0 < expDiff ) { | ||
1412 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | ||
1413 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | ||
1414 | aSig64 = - ( ( bSig * q64 )<<38 ); | ||
1415 | expDiff -= 62; | ||
1416 | } | ||
1417 | expDiff += 64; | ||
1418 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | ||
1419 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | ||
1420 | q = q64>>( 64 - expDiff ); | ||
1421 | bSig <<= 6; | ||
1422 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | ||
1423 | } | ||
1424 | do { | ||
1425 | alternateASig = aSig; | ||
1426 | ++q; | ||
1427 | aSig -= bSig; | ||
1428 | } while ( 0 <= (sbits32) aSig ); | ||
1429 | sigMean = aSig + alternateASig; | ||
1430 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | ||
1431 | aSig = alternateASig; | ||
1432 | } | ||
1433 | zSign = ( (sbits32) aSig < 0 ); | ||
1434 | if ( zSign ) aSig = - aSig; | ||
1435 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); | ||
1436 | |||
1437 | } | ||
1438 | |||
1439 | /* | ||
1440 | ------------------------------------------------------------------------------- | ||
1441 | Returns the square root of the single-precision floating-point value `a'. | ||
1442 | The operation is performed according to the IEC/IEEE Standard for Binary | ||
1443 | Floating-point Arithmetic. | ||
1444 | ------------------------------------------------------------------------------- | ||
1445 | */ | ||
1446 | float32 float32_sqrt( float32 a ) | ||
1447 | { | ||
1448 | flag aSign; | ||
1449 | int16 aExp, zExp; | ||
1450 | bits32 aSig, zSig; | ||
1451 | bits64 rem, term; | ||
1452 | |||
1453 | aSig = extractFloat32Frac( a ); | ||
1454 | aExp = extractFloat32Exp( a ); | ||
1455 | aSign = extractFloat32Sign( a ); | ||
1456 | if ( aExp == 0xFF ) { | ||
1457 | if ( aSig ) return propagateFloat32NaN( a, 0 ); | ||
1458 | if ( ! aSign ) return a; | ||
1459 | float_raise( float_flag_invalid ); | ||
1460 | return float32_default_nan; | ||
1461 | } | ||
1462 | if ( aSign ) { | ||
1463 | if ( ( aExp | aSig ) == 0 ) return a; | ||
1464 | float_raise( float_flag_invalid ); | ||
1465 | return float32_default_nan; | ||
1466 | } | ||
1467 | if ( aExp == 0 ) { | ||
1468 | if ( aSig == 0 ) return 0; | ||
1469 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1470 | } | ||
1471 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | ||
1472 | aSig = ( aSig | 0x00800000 )<<8; | ||
1473 | zSig = estimateSqrt32( aExp, aSig ) + 2; | ||
1474 | if ( ( zSig & 0x7F ) <= 5 ) { | ||
1475 | if ( zSig < 2 ) { | ||
1476 | zSig = 0xFFFFFFFF; | ||
1477 | } | ||
1478 | else { | ||
1479 | aSig >>= aExp & 1; | ||
1480 | term = ( (bits64) zSig ) * zSig; | ||
1481 | rem = ( ( (bits64) aSig )<<32 ) - term; | ||
1482 | while ( (sbits64) rem < 0 ) { | ||
1483 | --zSig; | ||
1484 | rem += ( ( (bits64) zSig )<<1 ) | 1; | ||
1485 | } | ||
1486 | zSig |= ( rem != 0 ); | ||
1487 | } | ||
1488 | } | ||
1489 | shift32RightJamming( zSig, 1, &zSig ); | ||
1490 | return roundAndPackFloat32( 0, zExp, zSig ); | ||
1491 | |||
1492 | } | ||
1493 | |||
1494 | /* | ||
1495 | ------------------------------------------------------------------------------- | ||
1496 | Returns 1 if the single-precision floating-point value `a' is equal to the | ||
1497 | corresponding value `b', and 0 otherwise. The comparison is performed | ||
1498 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1499 | ------------------------------------------------------------------------------- | ||
1500 | */ | ||
1501 | flag float32_eq( float32 a, float32 b ) | ||
1502 | { | ||
1503 | |||
1504 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1505 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1506 | ) { | ||
1507 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1508 | float_raise( float_flag_invalid ); | ||
1509 | } | ||
1510 | return 0; | ||
1511 | } | ||
1512 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1513 | |||
1514 | } | ||
1515 | |||
1516 | /* | ||
1517 | ------------------------------------------------------------------------------- | ||
1518 | Returns 1 if the single-precision floating-point value `a' is less than or | ||
1519 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
1520 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1521 | Arithmetic. | ||
1522 | ------------------------------------------------------------------------------- | ||
1523 | */ | ||
1524 | flag float32_le( float32 a, float32 b ) | ||
1525 | { | ||
1526 | flag aSign, bSign; | ||
1527 | |||
1528 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1529 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1530 | ) { | ||
1531 | float_raise( float_flag_invalid ); | ||
1532 | return 0; | ||
1533 | } | ||
1534 | aSign = extractFloat32Sign( a ); | ||
1535 | bSign = extractFloat32Sign( b ); | ||
1536 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1537 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
1538 | |||
1539 | } | ||
1540 | |||
1541 | /* | ||
1542 | ------------------------------------------------------------------------------- | ||
1543 | Returns 1 if the single-precision floating-point value `a' is less than | ||
1544 | the corresponding value `b', and 0 otherwise. The comparison is performed | ||
1545 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1546 | ------------------------------------------------------------------------------- | ||
1547 | */ | ||
1548 | flag float32_lt( float32 a, float32 b ) | ||
1549 | { | ||
1550 | flag aSign, bSign; | ||
1551 | |||
1552 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1553 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1554 | ) { | ||
1555 | float_raise( float_flag_invalid ); | ||
1556 | return 0; | ||
1557 | } | ||
1558 | aSign = extractFloat32Sign( a ); | ||
1559 | bSign = extractFloat32Sign( b ); | ||
1560 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | ||
1561 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
1562 | |||
1563 | } | ||
1564 | |||
1565 | /* | ||
1566 | ------------------------------------------------------------------------------- | ||
1567 | Returns 1 if the single-precision floating-point value `a' is equal to the | ||
1568 | corresponding value `b', and 0 otherwise. The invalid exception is raised | ||
1569 | if either operand is a NaN. Otherwise, the comparison is performed | ||
1570 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1571 | ------------------------------------------------------------------------------- | ||
1572 | */ | ||
1573 | flag float32_eq_signaling( float32 a, float32 b ) | ||
1574 | { | ||
1575 | |||
1576 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1577 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1578 | ) { | ||
1579 | float_raise( float_flag_invalid ); | ||
1580 | return 0; | ||
1581 | } | ||
1582 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1583 | |||
1584 | } | ||
1585 | |||
1586 | /* | ||
1587 | ------------------------------------------------------------------------------- | ||
1588 | Returns 1 if the single-precision floating-point value `a' is less than or | ||
1589 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | ||
1590 | cause an exception. Otherwise, the comparison is performed according to the | ||
1591 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1592 | ------------------------------------------------------------------------------- | ||
1593 | */ | ||
1594 | flag float32_le_quiet( float32 a, float32 b ) | ||
1595 | { | ||
1596 | flag aSign, bSign; | ||
1597 | //int16 aExp, bExp; | ||
1598 | |||
1599 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1600 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1601 | ) { | ||
1602 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1603 | float_raise( float_flag_invalid ); | ||
1604 | } | ||
1605 | return 0; | ||
1606 | } | ||
1607 | aSign = extractFloat32Sign( a ); | ||
1608 | bSign = extractFloat32Sign( b ); | ||
1609 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1610 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
1611 | |||
1612 | } | ||
1613 | |||
1614 | /* | ||
1615 | ------------------------------------------------------------------------------- | ||
1616 | Returns 1 if the single-precision floating-point value `a' is less than | ||
1617 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | ||
1618 | exception. Otherwise, the comparison is performed according to the IEC/IEEE | ||
1619 | Standard for Binary Floating-point Arithmetic. | ||
1620 | ------------------------------------------------------------------------------- | ||
1621 | */ | ||
1622 | flag float32_lt_quiet( float32 a, float32 b ) | ||
1623 | { | ||
1624 | flag aSign, bSign; | ||
1625 | |||
1626 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1627 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1628 | ) { | ||
1629 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1630 | float_raise( float_flag_invalid ); | ||
1631 | } | ||
1632 | return 0; | ||
1633 | } | ||
1634 | aSign = extractFloat32Sign( a ); | ||
1635 | bSign = extractFloat32Sign( b ); | ||
1636 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | ||
1637 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
1638 | |||
1639 | } | ||
1640 | |||
1641 | /* | ||
1642 | ------------------------------------------------------------------------------- | ||
1643 | Returns the result of converting the double-precision floating-point value | ||
1644 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1645 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1646 | Arithmetic---which means in particular that the conversion is rounded | ||
1647 | according to the current rounding mode. If `a' is a NaN, the largest | ||
1648 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
1649 | largest integer with the same sign as `a' is returned. | ||
1650 | ------------------------------------------------------------------------------- | ||
1651 | */ | ||
1652 | int32 float64_to_int32( float64 a ) | ||
1653 | { | ||
1654 | flag aSign; | ||
1655 | int16 aExp, shiftCount; | ||
1656 | bits64 aSig; | ||
1657 | |||
1658 | aSig = extractFloat64Frac( a ); | ||
1659 | aExp = extractFloat64Exp( a ); | ||
1660 | aSign = extractFloat64Sign( a ); | ||
1661 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1662 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | ||
1663 | shiftCount = 0x42C - aExp; | ||
1664 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | ||
1665 | return roundAndPackInt32( aSign, aSig ); | ||
1666 | |||
1667 | } | ||
1668 | |||
1669 | /* | ||
1670 | ------------------------------------------------------------------------------- | ||
1671 | Returns the result of converting the double-precision floating-point value | ||
1672 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1673 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1674 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
1675 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
1676 | conversion overflows, the largest integer with the same sign as `a' is | ||
1677 | returned. | ||
1678 | ------------------------------------------------------------------------------- | ||
1679 | */ | ||
1680 | int32 float64_to_int32_round_to_zero( float64 a ) | ||
1681 | { | ||
1682 | flag aSign; | ||
1683 | int16 aExp, shiftCount; | ||
1684 | bits64 aSig, savedASig; | ||
1685 | int32 z; | ||
1686 | |||
1687 | aSig = extractFloat64Frac( a ); | ||
1688 | aExp = extractFloat64Exp( a ); | ||
1689 | aSign = extractFloat64Sign( a ); | ||
1690 | shiftCount = 0x433 - aExp; | ||
1691 | if ( shiftCount < 21 ) { | ||
1692 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1693 | goto invalid; | ||
1694 | } | ||
1695 | else if ( 52 < shiftCount ) { | ||
1696 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
1697 | return 0; | ||
1698 | } | ||
1699 | aSig |= LIT64( 0x0010000000000000 ); | ||
1700 | savedASig = aSig; | ||
1701 | aSig >>= shiftCount; | ||
1702 | z = aSig; | ||
1703 | if ( aSign ) z = - z; | ||
1704 | if ( ( z < 0 ) ^ aSign ) { | ||
1705 | invalid: | ||
1706 | float_exception_flags |= float_flag_invalid; | ||
1707 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
1708 | } | ||
1709 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
1710 | float_exception_flags |= float_flag_inexact; | ||
1711 | } | ||
1712 | return z; | ||
1713 | |||
1714 | } | ||
1715 | |||
1716 | /* | ||
1717 | ------------------------------------------------------------------------------- | ||
1718 | Returns the result of converting the double-precision floating-point value | ||
1719 | `a' to the 32-bit two's complement unsigned integer format. The conversion | ||
1720 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1721 | Arithmetic---which means in particular that the conversion is rounded | ||
1722 | according to the current rounding mode. If `a' is a NaN, the largest | ||
1723 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
1724 | largest positive integer is returned. | ||
1725 | ------------------------------------------------------------------------------- | ||
1726 | */ | ||
1727 | int32 float64_to_uint32( float64 a ) | ||
1728 | { | ||
1729 | flag aSign; | ||
1730 | int16 aExp, shiftCount; | ||
1731 | bits64 aSig; | ||
1732 | |||
1733 | aSig = extractFloat64Frac( a ); | ||
1734 | aExp = extractFloat64Exp( a ); | ||
1735 | aSign = 0; //extractFloat64Sign( a ); | ||
1736 | //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1737 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | ||
1738 | shiftCount = 0x42C - aExp; | ||
1739 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | ||
1740 | return roundAndPackInt32( aSign, aSig ); | ||
1741 | } | ||
1742 | |||
1743 | /* | ||
1744 | ------------------------------------------------------------------------------- | ||
1745 | Returns the result of converting the double-precision floating-point value | ||
1746 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1747 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1748 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
1749 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
1750 | conversion overflows, the largest positive integer is returned. | ||
1751 | ------------------------------------------------------------------------------- | ||
1752 | */ | ||
1753 | int32 float64_to_uint32_round_to_zero( float64 a ) | ||
1754 | { | ||
1755 | flag aSign; | ||
1756 | int16 aExp, shiftCount; | ||
1757 | bits64 aSig, savedASig; | ||
1758 | int32 z; | ||
1759 | |||
1760 | aSig = extractFloat64Frac( a ); | ||
1761 | aExp = extractFloat64Exp( a ); | ||
1762 | aSign = extractFloat64Sign( a ); | ||
1763 | shiftCount = 0x433 - aExp; | ||
1764 | if ( shiftCount < 21 ) { | ||
1765 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1766 | goto invalid; | ||
1767 | } | ||
1768 | else if ( 52 < shiftCount ) { | ||
1769 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
1770 | return 0; | ||
1771 | } | ||
1772 | aSig |= LIT64( 0x0010000000000000 ); | ||
1773 | savedASig = aSig; | ||
1774 | aSig >>= shiftCount; | ||
1775 | z = aSig; | ||
1776 | if ( aSign ) z = - z; | ||
1777 | if ( ( z < 0 ) ^ aSign ) { | ||
1778 | invalid: | ||
1779 | float_exception_flags |= float_flag_invalid; | ||
1780 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
1781 | } | ||
1782 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
1783 | float_exception_flags |= float_flag_inexact; | ||
1784 | } | ||
1785 | return z; | ||
1786 | } | ||
1787 | |||
1788 | /* | ||
1789 | ------------------------------------------------------------------------------- | ||
1790 | Returns the result of converting the double-precision floating-point value | ||
1791 | `a' to the single-precision floating-point format. The conversion is | ||
1792 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1793 | Arithmetic. | ||
1794 | ------------------------------------------------------------------------------- | ||
1795 | */ | ||
1796 | float32 float64_to_float32( float64 a ) | ||
1797 | { | ||
1798 | flag aSign; | ||
1799 | int16 aExp; | ||
1800 | bits64 aSig; | ||
1801 | bits32 zSig; | ||
1802 | |||
1803 | aSig = extractFloat64Frac( a ); | ||
1804 | aExp = extractFloat64Exp( a ); | ||
1805 | aSign = extractFloat64Sign( a ); | ||
1806 | if ( aExp == 0x7FF ) { | ||
1807 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); | ||
1808 | return packFloat32( aSign, 0xFF, 0 ); | ||
1809 | } | ||
1810 | shift64RightJamming( aSig, 22, &aSig ); | ||
1811 | zSig = aSig; | ||
1812 | if ( aExp || zSig ) { | ||
1813 | zSig |= 0x40000000; | ||
1814 | aExp -= 0x381; | ||
1815 | } | ||
1816 | return roundAndPackFloat32( aSign, aExp, zSig ); | ||
1817 | |||
1818 | } | ||
1819 | |||
1820 | #ifdef FLOATX80 | ||
1821 | |||
1822 | /* | ||
1823 | ------------------------------------------------------------------------------- | ||
1824 | Returns the result of converting the double-precision floating-point value | ||
1825 | `a' to the extended double-precision floating-point format. The conversion | ||
1826 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1827 | Arithmetic. | ||
1828 | ------------------------------------------------------------------------------- | ||
1829 | */ | ||
1830 | floatx80 float64_to_floatx80( float64 a ) | ||
1831 | { | ||
1832 | flag aSign; | ||
1833 | int16 aExp; | ||
1834 | bits64 aSig; | ||
1835 | |||
1836 | aSig = extractFloat64Frac( a ); | ||
1837 | aExp = extractFloat64Exp( a ); | ||
1838 | aSign = extractFloat64Sign( a ); | ||
1839 | if ( aExp == 0x7FF ) { | ||
1840 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); | ||
1841 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
1842 | } | ||
1843 | if ( aExp == 0 ) { | ||
1844 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | ||
1845 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
1846 | } | ||
1847 | return | ||
1848 | packFloatx80( | ||
1849 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | ||
1850 | |||
1851 | } | ||
1852 | |||
1853 | #endif | ||
1854 | |||
1855 | /* | ||
1856 | ------------------------------------------------------------------------------- | ||
1857 | Rounds the double-precision floating-point value `a' to an integer, and | ||
1858 | returns the result as a double-precision floating-point value. The | ||
1859 | operation is performed according to the IEC/IEEE Standard for Binary | ||
1860 | Floating-point Arithmetic. | ||
1861 | ------------------------------------------------------------------------------- | ||
1862 | */ | ||
1863 | float64 float64_round_to_int( float64 a ) | ||
1864 | { | ||
1865 | flag aSign; | ||
1866 | int16 aExp; | ||
1867 | bits64 lastBitMask, roundBitsMask; | ||
1868 | int8 roundingMode; | ||
1869 | float64 z; | ||
1870 | |||
1871 | aExp = extractFloat64Exp( a ); | ||
1872 | if ( 0x433 <= aExp ) { | ||
1873 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | ||
1874 | return propagateFloat64NaN( a, a ); | ||
1875 | } | ||
1876 | return a; | ||
1877 | } | ||
1878 | if ( aExp <= 0x3FE ) { | ||
1879 | if ( (bits64) ( a<<1 ) == 0 ) return a; | ||
1880 | float_exception_flags |= float_flag_inexact; | ||
1881 | aSign = extractFloat64Sign( a ); | ||
1882 | switch ( float_rounding_mode ) { | ||
1883 | case float_round_nearest_even: | ||
1884 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | ||
1885 | return packFloat64( aSign, 0x3FF, 0 ); | ||
1886 | } | ||
1887 | break; | ||
1888 | case float_round_down: | ||
1889 | return aSign ? LIT64( 0xBFF0000000000000 ) : 0; | ||
1890 | case float_round_up: | ||
1891 | return | ||
1892 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); | ||
1893 | } | ||
1894 | return packFloat64( aSign, 0, 0 ); | ||
1895 | } | ||
1896 | lastBitMask = 1; | ||
1897 | lastBitMask <<= 0x433 - aExp; | ||
1898 | roundBitsMask = lastBitMask - 1; | ||
1899 | z = a; | ||
1900 | roundingMode = float_rounding_mode; | ||
1901 | if ( roundingMode == float_round_nearest_even ) { | ||
1902 | z += lastBitMask>>1; | ||
1903 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | ||
1904 | } | ||
1905 | else if ( roundingMode != float_round_to_zero ) { | ||
1906 | if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
1907 | z += roundBitsMask; | ||
1908 | } | ||
1909 | } | ||
1910 | z &= ~ roundBitsMask; | ||
1911 | if ( z != a ) float_exception_flags |= float_flag_inexact; | ||
1912 | return z; | ||
1913 | |||
1914 | } | ||
1915 | |||
1916 | /* | ||
1917 | ------------------------------------------------------------------------------- | ||
1918 | Returns the result of adding the absolute values of the double-precision | ||
1919 | floating-point values `a' and `b'. If `zSign' is true, the sum is negated | ||
1920 | before being returned. `zSign' is ignored if the result is a NaN. The | ||
1921 | addition is performed according to the IEC/IEEE Standard for Binary | ||
1922 | Floating-point Arithmetic. | ||
1923 | ------------------------------------------------------------------------------- | ||
1924 | */ | ||
1925 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) | ||
1926 | { | ||
1927 | int16 aExp, bExp, zExp; | ||
1928 | bits64 aSig, bSig, zSig; | ||
1929 | int16 expDiff; | ||
1930 | |||
1931 | aSig = extractFloat64Frac( a ); | ||
1932 | aExp = extractFloat64Exp( a ); | ||
1933 | bSig = extractFloat64Frac( b ); | ||
1934 | bExp = extractFloat64Exp( b ); | ||
1935 | expDiff = aExp - bExp; | ||
1936 | aSig <<= 9; | ||
1937 | bSig <<= 9; | ||
1938 | if ( 0 < expDiff ) { | ||
1939 | if ( aExp == 0x7FF ) { | ||
1940 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
1941 | return a; | ||
1942 | } | ||
1943 | if ( bExp == 0 ) { | ||
1944 | --expDiff; | ||
1945 | } | ||
1946 | else { | ||
1947 | bSig |= LIT64( 0x2000000000000000 ); | ||
1948 | } | ||
1949 | shift64RightJamming( bSig, expDiff, &bSig ); | ||
1950 | zExp = aExp; | ||
1951 | } | ||
1952 | else if ( expDiff < 0 ) { | ||
1953 | if ( bExp == 0x7FF ) { | ||
1954 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
1955 | return packFloat64( zSign, 0x7FF, 0 ); | ||
1956 | } | ||
1957 | if ( aExp == 0 ) { | ||
1958 | ++expDiff; | ||
1959 | } | ||
1960 | else { | ||
1961 | aSig |= LIT64( 0x2000000000000000 ); | ||
1962 | } | ||
1963 | shift64RightJamming( aSig, - expDiff, &aSig ); | ||
1964 | zExp = bExp; | ||
1965 | } | ||
1966 | else { | ||
1967 | if ( aExp == 0x7FF ) { | ||
1968 | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | ||
1969 | return a; | ||
1970 | } | ||
1971 | if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | ||
1972 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | ||
1973 | zExp = aExp; | ||
1974 | goto roundAndPack; | ||
1975 | } | ||
1976 | aSig |= LIT64( 0x2000000000000000 ); | ||
1977 | zSig = ( aSig + bSig )<<1; | ||
1978 | --zExp; | ||
1979 | if ( (sbits64) zSig < 0 ) { | ||
1980 | zSig = aSig + bSig; | ||
1981 | ++zExp; | ||
1982 | } | ||
1983 | roundAndPack: | ||
1984 | return roundAndPackFloat64( zSign, zExp, zSig ); | ||
1985 | |||
1986 | } | ||
1987 | |||
1988 | /* | ||
1989 | ------------------------------------------------------------------------------- | ||
1990 | Returns the result of subtracting the absolute values of the double- | ||
1991 | precision floating-point values `a' and `b'. If `zSign' is true, the | ||
1992 | difference is negated before being returned. `zSign' is ignored if the | ||
1993 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
1994 | Standard for Binary Floating-point Arithmetic. | ||
1995 | ------------------------------------------------------------------------------- | ||
1996 | */ | ||
1997 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) | ||
1998 | { | ||
1999 | int16 aExp, bExp, zExp; | ||
2000 | bits64 aSig, bSig, zSig; | ||
2001 | int16 expDiff; | ||
2002 | |||
2003 | aSig = extractFloat64Frac( a ); | ||
2004 | aExp = extractFloat64Exp( a ); | ||
2005 | bSig = extractFloat64Frac( b ); | ||
2006 | bExp = extractFloat64Exp( b ); | ||
2007 | expDiff = aExp - bExp; | ||
2008 | aSig <<= 10; | ||
2009 | bSig <<= 10; | ||
2010 | if ( 0 < expDiff ) goto aExpBigger; | ||
2011 | if ( expDiff < 0 ) goto bExpBigger; | ||
2012 | if ( aExp == 0x7FF ) { | ||
2013 | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | ||
2014 | float_raise( float_flag_invalid ); | ||
2015 | return float64_default_nan; | ||
2016 | } | ||
2017 | if ( aExp == 0 ) { | ||
2018 | aExp = 1; | ||
2019 | bExp = 1; | ||
2020 | } | ||
2021 | if ( bSig < aSig ) goto aBigger; | ||
2022 | if ( aSig < bSig ) goto bBigger; | ||
2023 | return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); | ||
2024 | bExpBigger: | ||
2025 | if ( bExp == 0x7FF ) { | ||
2026 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2027 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | ||
2028 | } | ||
2029 | if ( aExp == 0 ) { | ||
2030 | ++expDiff; | ||
2031 | } | ||
2032 | else { | ||
2033 | aSig |= LIT64( 0x4000000000000000 ); | ||
2034 | } | ||
2035 | shift64RightJamming( aSig, - expDiff, &aSig ); | ||
2036 | bSig |= LIT64( 0x4000000000000000 ); | ||
2037 | bBigger: | ||
2038 | zSig = bSig - aSig; | ||
2039 | zExp = bExp; | ||
2040 | zSign ^= 1; | ||
2041 | goto normalizeRoundAndPack; | ||
2042 | aExpBigger: | ||
2043 | if ( aExp == 0x7FF ) { | ||
2044 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
2045 | return a; | ||
2046 | } | ||
2047 | if ( bExp == 0 ) { | ||
2048 | --expDiff; | ||
2049 | } | ||
2050 | else { | ||
2051 | bSig |= LIT64( 0x4000000000000000 ); | ||
2052 | } | ||
2053 | shift64RightJamming( bSig, expDiff, &bSig ); | ||
2054 | aSig |= LIT64( 0x4000000000000000 ); | ||
2055 | aBigger: | ||
2056 | zSig = aSig - bSig; | ||
2057 | zExp = aExp; | ||
2058 | normalizeRoundAndPack: | ||
2059 | --zExp; | ||
2060 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); | ||
2061 | |||
2062 | } | ||
2063 | |||
2064 | /* | ||
2065 | ------------------------------------------------------------------------------- | ||
2066 | Returns the result of adding the double-precision floating-point values `a' | ||
2067 | and `b'. The operation is performed according to the IEC/IEEE Standard for | ||
2068 | Binary Floating-point Arithmetic. | ||
2069 | ------------------------------------------------------------------------------- | ||
2070 | */ | ||
2071 | float64 float64_add( float64 a, float64 b ) | ||
2072 | { | ||
2073 | flag aSign, bSign; | ||
2074 | |||
2075 | aSign = extractFloat64Sign( a ); | ||
2076 | bSign = extractFloat64Sign( b ); | ||
2077 | if ( aSign == bSign ) { | ||
2078 | return addFloat64Sigs( a, b, aSign ); | ||
2079 | } | ||
2080 | else { | ||
2081 | return subFloat64Sigs( a, b, aSign ); | ||
2082 | } | ||
2083 | |||
2084 | } | ||
2085 | |||
2086 | /* | ||
2087 | ------------------------------------------------------------------------------- | ||
2088 | Returns the result of subtracting the double-precision floating-point values | ||
2089 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
2090 | for Binary Floating-point Arithmetic. | ||
2091 | ------------------------------------------------------------------------------- | ||
2092 | */ | ||
2093 | float64 float64_sub( float64 a, float64 b ) | ||
2094 | { | ||
2095 | flag aSign, bSign; | ||
2096 | |||
2097 | aSign = extractFloat64Sign( a ); | ||
2098 | bSign = extractFloat64Sign( b ); | ||
2099 | if ( aSign == bSign ) { | ||
2100 | return subFloat64Sigs( a, b, aSign ); | ||
2101 | } | ||
2102 | else { | ||
2103 | return addFloat64Sigs( a, b, aSign ); | ||
2104 | } | ||
2105 | |||
2106 | } | ||
2107 | |||
2108 | /* | ||
2109 | ------------------------------------------------------------------------------- | ||
2110 | Returns the result of multiplying the double-precision floating-point values | ||
2111 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
2112 | for Binary Floating-point Arithmetic. | ||
2113 | ------------------------------------------------------------------------------- | ||
2114 | */ | ||
2115 | float64 float64_mul( float64 a, float64 b ) | ||
2116 | { | ||
2117 | flag aSign, bSign, zSign; | ||
2118 | int16 aExp, bExp, zExp; | ||
2119 | bits64 aSig, bSig, zSig0, zSig1; | ||
2120 | |||
2121 | aSig = extractFloat64Frac( a ); | ||
2122 | aExp = extractFloat64Exp( a ); | ||
2123 | aSign = extractFloat64Sign( a ); | ||
2124 | bSig = extractFloat64Frac( b ); | ||
2125 | bExp = extractFloat64Exp( b ); | ||
2126 | bSign = extractFloat64Sign( b ); | ||
2127 | zSign = aSign ^ bSign; | ||
2128 | if ( aExp == 0x7FF ) { | ||
2129 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | ||
2130 | return propagateFloat64NaN( a, b ); | ||
2131 | } | ||
2132 | if ( ( bExp | bSig ) == 0 ) { | ||
2133 | float_raise( float_flag_invalid ); | ||
2134 | return float64_default_nan; | ||
2135 | } | ||
2136 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2137 | } | ||
2138 | if ( bExp == 0x7FF ) { | ||
2139 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2140 | if ( ( aExp | aSig ) == 0 ) { | ||
2141 | float_raise( float_flag_invalid ); | ||
2142 | return float64_default_nan; | ||
2143 | } | ||
2144 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2145 | } | ||
2146 | if ( aExp == 0 ) { | ||
2147 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2148 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2149 | } | ||
2150 | if ( bExp == 0 ) { | ||
2151 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2152 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2153 | } | ||
2154 | zExp = aExp + bExp - 0x3FF; | ||
2155 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | ||
2156 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2157 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | ||
2158 | zSig0 |= ( zSig1 != 0 ); | ||
2159 | if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | ||
2160 | zSig0 <<= 1; | ||
2161 | --zExp; | ||
2162 | } | ||
2163 | return roundAndPackFloat64( zSign, zExp, zSig0 ); | ||
2164 | |||
2165 | } | ||
2166 | |||
2167 | /* | ||
2168 | ------------------------------------------------------------------------------- | ||
2169 | Returns the result of dividing the double-precision floating-point value `a' | ||
2170 | by the corresponding value `b'. The operation is performed according to | ||
2171 | the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2172 | ------------------------------------------------------------------------------- | ||
2173 | */ | ||
2174 | float64 float64_div( float64 a, float64 b ) | ||
2175 | { | ||
2176 | flag aSign, bSign, zSign; | ||
2177 | int16 aExp, bExp, zExp; | ||
2178 | bits64 aSig, bSig, zSig; | ||
2179 | bits64 rem0, rem1; | ||
2180 | bits64 term0, term1; | ||
2181 | |||
2182 | aSig = extractFloat64Frac( a ); | ||
2183 | aExp = extractFloat64Exp( a ); | ||
2184 | aSign = extractFloat64Sign( a ); | ||
2185 | bSig = extractFloat64Frac( b ); | ||
2186 | bExp = extractFloat64Exp( b ); | ||
2187 | bSign = extractFloat64Sign( b ); | ||
2188 | zSign = aSign ^ bSign; | ||
2189 | if ( aExp == 0x7FF ) { | ||
2190 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
2191 | if ( bExp == 0x7FF ) { | ||
2192 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2193 | float_raise( float_flag_invalid ); | ||
2194 | return float64_default_nan; | ||
2195 | } | ||
2196 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2197 | } | ||
2198 | if ( bExp == 0x7FF ) { | ||
2199 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2200 | return packFloat64( zSign, 0, 0 ); | ||
2201 | } | ||
2202 | if ( bExp == 0 ) { | ||
2203 | if ( bSig == 0 ) { | ||
2204 | if ( ( aExp | aSig ) == 0 ) { | ||
2205 | float_raise( float_flag_invalid ); | ||
2206 | return float64_default_nan; | ||
2207 | } | ||
2208 | float_raise( float_flag_divbyzero ); | ||
2209 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2210 | } | ||
2211 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2212 | } | ||
2213 | if ( aExp == 0 ) { | ||
2214 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2215 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2216 | } | ||
2217 | zExp = aExp - bExp + 0x3FD; | ||
2218 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | ||
2219 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2220 | if ( bSig <= ( aSig + aSig ) ) { | ||
2221 | aSig >>= 1; | ||
2222 | ++zExp; | ||
2223 | } | ||
2224 | zSig = estimateDiv128To64( aSig, 0, bSig ); | ||
2225 | if ( ( zSig & 0x1FF ) <= 2 ) { | ||
2226 | mul64To128( bSig, zSig, &term0, &term1 ); | ||
2227 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | ||
2228 | while ( (sbits64) rem0 < 0 ) { | ||
2229 | --zSig; | ||
2230 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | ||
2231 | } | ||
2232 | zSig |= ( rem1 != 0 ); | ||
2233 | } | ||
2234 | return roundAndPackFloat64( zSign, zExp, zSig ); | ||
2235 | |||
2236 | } | ||
2237 | |||
2238 | /* | ||
2239 | ------------------------------------------------------------------------------- | ||
2240 | Returns the remainder of the double-precision floating-point value `a' | ||
2241 | with respect to the corresponding value `b'. The operation is performed | ||
2242 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2243 | ------------------------------------------------------------------------------- | ||
2244 | */ | ||
2245 | float64 float64_rem( float64 a, float64 b ) | ||
2246 | { | ||
2247 | flag aSign, bSign, zSign; | ||
2248 | int16 aExp, bExp, expDiff; | ||
2249 | bits64 aSig, bSig; | ||
2250 | bits64 q, alternateASig; | ||
2251 | sbits64 sigMean; | ||
2252 | |||
2253 | aSig = extractFloat64Frac( a ); | ||
2254 | aExp = extractFloat64Exp( a ); | ||
2255 | aSign = extractFloat64Sign( a ); | ||
2256 | bSig = extractFloat64Frac( b ); | ||
2257 | bExp = extractFloat64Exp( b ); | ||
2258 | bSign = extractFloat64Sign( b ); | ||
2259 | if ( aExp == 0x7FF ) { | ||
2260 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | ||
2261 | return propagateFloat64NaN( a, b ); | ||
2262 | } | ||
2263 | float_raise( float_flag_invalid ); | ||
2264 | return float64_default_nan; | ||
2265 | } | ||
2266 | if ( bExp == 0x7FF ) { | ||
2267 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2268 | return a; | ||
2269 | } | ||
2270 | if ( bExp == 0 ) { | ||
2271 | if ( bSig == 0 ) { | ||
2272 | float_raise( float_flag_invalid ); | ||
2273 | return float64_default_nan; | ||
2274 | } | ||
2275 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2276 | } | ||
2277 | if ( aExp == 0 ) { | ||
2278 | if ( aSig == 0 ) return a; | ||
2279 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2280 | } | ||
2281 | expDiff = aExp - bExp; | ||
2282 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2283 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2284 | if ( expDiff < 0 ) { | ||
2285 | if ( expDiff < -1 ) return a; | ||
2286 | aSig >>= 1; | ||
2287 | } | ||
2288 | q = ( bSig <= aSig ); | ||
2289 | if ( q ) aSig -= bSig; | ||
2290 | expDiff -= 64; | ||
2291 | while ( 0 < expDiff ) { | ||
2292 | q = estimateDiv128To64( aSig, 0, bSig ); | ||
2293 | q = ( 2 < q ) ? q - 2 : 0; | ||
2294 | aSig = - ( ( bSig>>2 ) * q ); | ||
2295 | expDiff -= 62; | ||
2296 | } | ||
2297 | expDiff += 64; | ||
2298 | if ( 0 < expDiff ) { | ||
2299 | q = estimateDiv128To64( aSig, 0, bSig ); | ||
2300 | q = ( 2 < q ) ? q - 2 : 0; | ||
2301 | q >>= 64 - expDiff; | ||
2302 | bSig >>= 2; | ||
2303 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | ||
2304 | } | ||
2305 | else { | ||
2306 | aSig >>= 2; | ||
2307 | bSig >>= 2; | ||
2308 | } | ||
2309 | do { | ||
2310 | alternateASig = aSig; | ||
2311 | ++q; | ||
2312 | aSig -= bSig; | ||
2313 | } while ( 0 <= (sbits64) aSig ); | ||
2314 | sigMean = aSig + alternateASig; | ||
2315 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | ||
2316 | aSig = alternateASig; | ||
2317 | } | ||
2318 | zSign = ( (sbits64) aSig < 0 ); | ||
2319 | if ( zSign ) aSig = - aSig; | ||
2320 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); | ||
2321 | |||
2322 | } | ||
2323 | |||
2324 | /* | ||
2325 | ------------------------------------------------------------------------------- | ||
2326 | Returns the square root of the double-precision floating-point value `a'. | ||
2327 | The operation is performed according to the IEC/IEEE Standard for Binary | ||
2328 | Floating-point Arithmetic. | ||
2329 | ------------------------------------------------------------------------------- | ||
2330 | */ | ||
2331 | float64 float64_sqrt( float64 a ) | ||
2332 | { | ||
2333 | flag aSign; | ||
2334 | int16 aExp, zExp; | ||
2335 | bits64 aSig, zSig; | ||
2336 | bits64 rem0, rem1, term0, term1; //, shiftedRem; | ||
2337 | //float64 z; | ||
2338 | |||
2339 | aSig = extractFloat64Frac( a ); | ||
2340 | aExp = extractFloat64Exp( a ); | ||
2341 | aSign = extractFloat64Sign( a ); | ||
2342 | if ( aExp == 0x7FF ) { | ||
2343 | if ( aSig ) return propagateFloat64NaN( a, a ); | ||
2344 | if ( ! aSign ) return a; | ||
2345 | float_raise( float_flag_invalid ); | ||
2346 | return float64_default_nan; | ||
2347 | } | ||
2348 | if ( aSign ) { | ||
2349 | if ( ( aExp | aSig ) == 0 ) return a; | ||
2350 | float_raise( float_flag_invalid ); | ||
2351 | return float64_default_nan; | ||
2352 | } | ||
2353 | if ( aExp == 0 ) { | ||
2354 | if ( aSig == 0 ) return 0; | ||
2355 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2356 | } | ||
2357 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | ||
2358 | aSig |= LIT64( 0x0010000000000000 ); | ||
2359 | zSig = estimateSqrt32( aExp, aSig>>21 ); | ||
2360 | zSig <<= 31; | ||
2361 | aSig <<= 9 - ( aExp & 1 ); | ||
2362 | zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; | ||
2363 | if ( ( zSig & 0x3FF ) <= 5 ) { | ||
2364 | if ( zSig < 2 ) { | ||
2365 | zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
2366 | } | ||
2367 | else { | ||
2368 | aSig <<= 2; | ||
2369 | mul64To128( zSig, zSig, &term0, &term1 ); | ||
2370 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | ||
2371 | while ( (sbits64) rem0 < 0 ) { | ||
2372 | --zSig; | ||
2373 | shortShift128Left( 0, zSig, 1, &term0, &term1 ); | ||
2374 | term1 |= 1; | ||
2375 | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | ||
2376 | } | ||
2377 | zSig |= ( ( rem0 | rem1 ) != 0 ); | ||
2378 | } | ||
2379 | } | ||
2380 | shift64RightJamming( zSig, 1, &zSig ); | ||
2381 | return roundAndPackFloat64( 0, zExp, zSig ); | ||
2382 | |||
2383 | } | ||
2384 | |||
2385 | /* | ||
2386 | ------------------------------------------------------------------------------- | ||
2387 | Returns 1 if the double-precision floating-point value `a' is equal to the | ||
2388 | corresponding value `b', and 0 otherwise. The comparison is performed | ||
2389 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2390 | ------------------------------------------------------------------------------- | ||
2391 | */ | ||
2392 | flag float64_eq( float64 a, float64 b ) | ||
2393 | { | ||
2394 | |||
2395 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2396 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2397 | ) { | ||
2398 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2399 | float_raise( float_flag_invalid ); | ||
2400 | } | ||
2401 | return 0; | ||
2402 | } | ||
2403 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2404 | |||
2405 | } | ||
2406 | |||
2407 | /* | ||
2408 | ------------------------------------------------------------------------------- | ||
2409 | Returns 1 if the double-precision floating-point value `a' is less than or | ||
2410 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
2411 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
2412 | Arithmetic. | ||
2413 | ------------------------------------------------------------------------------- | ||
2414 | */ | ||
2415 | flag float64_le( float64 a, float64 b ) | ||
2416 | { | ||
2417 | flag aSign, bSign; | ||
2418 | |||
2419 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2420 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2421 | ) { | ||
2422 | float_raise( float_flag_invalid ); | ||
2423 | return 0; | ||
2424 | } | ||
2425 | aSign = extractFloat64Sign( a ); | ||
2426 | bSign = extractFloat64Sign( b ); | ||
2427 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2428 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
2429 | |||
2430 | } | ||
2431 | |||
2432 | /* | ||
2433 | ------------------------------------------------------------------------------- | ||
2434 | Returns 1 if the double-precision floating-point value `a' is less than | ||
2435 | the corresponding value `b', and 0 otherwise. The comparison is performed | ||
2436 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2437 | ------------------------------------------------------------------------------- | ||
2438 | */ | ||
2439 | flag float64_lt( float64 a, float64 b ) | ||
2440 | { | ||
2441 | flag aSign, bSign; | ||
2442 | |||
2443 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2444 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2445 | ) { | ||
2446 | float_raise( float_flag_invalid ); | ||
2447 | return 0; | ||
2448 | } | ||
2449 | aSign = extractFloat64Sign( a ); | ||
2450 | bSign = extractFloat64Sign( b ); | ||
2451 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | ||
2452 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
2453 | |||
2454 | } | ||
2455 | |||
2456 | /* | ||
2457 | ------------------------------------------------------------------------------- | ||
2458 | Returns 1 if the double-precision floating-point value `a' is equal to the | ||
2459 | corresponding value `b', and 0 otherwise. The invalid exception is raised | ||
2460 | if either operand is a NaN. Otherwise, the comparison is performed | ||
2461 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2462 | ------------------------------------------------------------------------------- | ||
2463 | */ | ||
2464 | flag float64_eq_signaling( float64 a, float64 b ) | ||
2465 | { | ||
2466 | |||
2467 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2468 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2469 | ) { | ||
2470 | float_raise( float_flag_invalid ); | ||
2471 | return 0; | ||
2472 | } | ||
2473 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2474 | |||
2475 | } | ||
2476 | |||
2477 | /* | ||
2478 | ------------------------------------------------------------------------------- | ||
2479 | Returns 1 if the double-precision floating-point value `a' is less than or | ||
2480 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | ||
2481 | cause an exception. Otherwise, the comparison is performed according to the | ||
2482 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2483 | ------------------------------------------------------------------------------- | ||
2484 | */ | ||
2485 | flag float64_le_quiet( float64 a, float64 b ) | ||
2486 | { | ||
2487 | flag aSign, bSign; | ||
2488 | //int16 aExp, bExp; | ||
2489 | |||
2490 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2491 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2492 | ) { | ||
2493 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2494 | float_raise( float_flag_invalid ); | ||
2495 | } | ||
2496 | return 0; | ||
2497 | } | ||
2498 | aSign = extractFloat64Sign( a ); | ||
2499 | bSign = extractFloat64Sign( b ); | ||
2500 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2501 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
2502 | |||
2503 | } | ||
2504 | |||
2505 | /* | ||
2506 | ------------------------------------------------------------------------------- | ||
2507 | Returns 1 if the double-precision floating-point value `a' is less than | ||
2508 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | ||
2509 | exception. Otherwise, the comparison is performed according to the IEC/IEEE | ||
2510 | Standard for Binary Floating-point Arithmetic. | ||
2511 | ------------------------------------------------------------------------------- | ||
2512 | */ | ||
2513 | flag float64_lt_quiet( float64 a, float64 b ) | ||
2514 | { | ||
2515 | flag aSign, bSign; | ||
2516 | |||
2517 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2518 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2519 | ) { | ||
2520 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2521 | float_raise( float_flag_invalid ); | ||
2522 | } | ||
2523 | return 0; | ||
2524 | } | ||
2525 | aSign = extractFloat64Sign( a ); | ||
2526 | bSign = extractFloat64Sign( b ); | ||
2527 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | ||
2528 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
2529 | |||
2530 | } | ||
2531 | |||
2532 | #ifdef FLOATX80 | ||
2533 | |||
2534 | /* | ||
2535 | ------------------------------------------------------------------------------- | ||
2536 | Returns the result of converting the extended double-precision floating- | ||
2537 | point value `a' to the 32-bit two's complement integer format. The | ||
2538 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2539 | Floating-point Arithmetic---which means in particular that the conversion | ||
2540 | is rounded according to the current rounding mode. If `a' is a NaN, the | ||
2541 | largest positive integer is returned. Otherwise, if the conversion | ||
2542 | overflows, the largest integer with the same sign as `a' is returned. | ||
2543 | ------------------------------------------------------------------------------- | ||
2544 | */ | ||
2545 | int32 floatx80_to_int32( floatx80 a ) | ||
2546 | { | ||
2547 | flag aSign; | ||
2548 | int32 aExp, shiftCount; | ||
2549 | bits64 aSig; | ||
2550 | |||
2551 | aSig = extractFloatx80Frac( a ); | ||
2552 | aExp = extractFloatx80Exp( a ); | ||
2553 | aSign = extractFloatx80Sign( a ); | ||
2554 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | ||
2555 | shiftCount = 0x4037 - aExp; | ||
2556 | if ( shiftCount <= 0 ) shiftCount = 1; | ||
2557 | shift64RightJamming( aSig, shiftCount, &aSig ); | ||
2558 | return roundAndPackInt32( aSign, aSig ); | ||
2559 | |||
2560 | } | ||
2561 | |||
2562 | /* | ||
2563 | ------------------------------------------------------------------------------- | ||
2564 | Returns the result of converting the extended double-precision floating- | ||
2565 | point value `a' to the 32-bit two's complement integer format. The | ||
2566 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2567 | Floating-point Arithmetic, except that the conversion is always rounded | ||
2568 | toward zero. If `a' is a NaN, the largest positive integer is returned. | ||
2569 | Otherwise, if the conversion overflows, the largest integer with the same | ||
2570 | sign as `a' is returned. | ||
2571 | ------------------------------------------------------------------------------- | ||
2572 | */ | ||
2573 | int32 floatx80_to_int32_round_to_zero( floatx80 a ) | ||
2574 | { | ||
2575 | flag aSign; | ||
2576 | int32 aExp, shiftCount; | ||
2577 | bits64 aSig, savedASig; | ||
2578 | int32 z; | ||
2579 | |||
2580 | aSig = extractFloatx80Frac( a ); | ||
2581 | aExp = extractFloatx80Exp( a ); | ||
2582 | aSign = extractFloatx80Sign( a ); | ||
2583 | shiftCount = 0x403E - aExp; | ||
2584 | if ( shiftCount < 32 ) { | ||
2585 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | ||
2586 | goto invalid; | ||
2587 | } | ||
2588 | else if ( 63 < shiftCount ) { | ||
2589 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
2590 | return 0; | ||
2591 | } | ||
2592 | savedASig = aSig; | ||
2593 | aSig >>= shiftCount; | ||
2594 | z = aSig; | ||
2595 | if ( aSign ) z = - z; | ||
2596 | if ( ( z < 0 ) ^ aSign ) { | ||
2597 | invalid: | ||
2598 | float_exception_flags |= float_flag_invalid; | ||
2599 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
2600 | } | ||
2601 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
2602 | float_exception_flags |= float_flag_inexact; | ||
2603 | } | ||
2604 | return z; | ||
2605 | |||
2606 | } | ||
2607 | |||
2608 | /* | ||
2609 | ------------------------------------------------------------------------------- | ||
2610 | Returns the result of converting the extended double-precision floating- | ||
2611 | point value `a' to the single-precision floating-point format. The | ||
2612 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2613 | Floating-point Arithmetic. | ||
2614 | ------------------------------------------------------------------------------- | ||
2615 | */ | ||
2616 | float32 floatx80_to_float32( floatx80 a ) | ||
2617 | { | ||
2618 | flag aSign; | ||
2619 | int32 aExp; | ||
2620 | bits64 aSig; | ||
2621 | |||
2622 | aSig = extractFloatx80Frac( a ); | ||
2623 | aExp = extractFloatx80Exp( a ); | ||
2624 | aSign = extractFloatx80Sign( a ); | ||
2625 | if ( aExp == 0x7FFF ) { | ||
2626 | if ( (bits64) ( aSig<<1 ) ) { | ||
2627 | return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); | ||
2628 | } | ||
2629 | return packFloat32( aSign, 0xFF, 0 ); | ||
2630 | } | ||
2631 | shift64RightJamming( aSig, 33, &aSig ); | ||
2632 | if ( aExp || aSig ) aExp -= 0x3F81; | ||
2633 | return roundAndPackFloat32( aSign, aExp, aSig ); | ||
2634 | |||
2635 | } | ||
2636 | |||
2637 | /* | ||
2638 | ------------------------------------------------------------------------------- | ||
2639 | Returns the result of converting the extended double-precision floating- | ||
2640 | point value `a' to the double-precision floating-point format. The | ||
2641 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2642 | Floating-point Arithmetic. | ||
2643 | ------------------------------------------------------------------------------- | ||
2644 | */ | ||
2645 | float64 floatx80_to_float64( floatx80 a ) | ||
2646 | { | ||
2647 | flag aSign; | ||
2648 | int32 aExp; | ||
2649 | bits64 aSig, zSig; | ||
2650 | |||
2651 | aSig = extractFloatx80Frac( a ); | ||
2652 | aExp = extractFloatx80Exp( a ); | ||
2653 | aSign = extractFloatx80Sign( a ); | ||
2654 | if ( aExp == 0x7FFF ) { | ||
2655 | if ( (bits64) ( aSig<<1 ) ) { | ||
2656 | return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); | ||
2657 | } | ||
2658 | return packFloat64( aSign, 0x7FF, 0 ); | ||
2659 | } | ||
2660 | shift64RightJamming( aSig, 1, &zSig ); | ||
2661 | if ( aExp || aSig ) aExp -= 0x3C01; | ||
2662 | return roundAndPackFloat64( aSign, aExp, zSig ); | ||
2663 | |||
2664 | } | ||
2665 | |||
2666 | /* | ||
2667 | ------------------------------------------------------------------------------- | ||
2668 | Rounds the extended double-precision floating-point value `a' to an integer, | ||
2669 | and returns the result as an extended quadruple-precision floating-point | ||
2670 | value. The operation is performed according to the IEC/IEEE Standard for | ||
2671 | Binary Floating-point Arithmetic. | ||
2672 | ------------------------------------------------------------------------------- | ||
2673 | */ | ||
2674 | floatx80 floatx80_round_to_int( floatx80 a ) | ||
2675 | { | ||
2676 | flag aSign; | ||
2677 | int32 aExp; | ||
2678 | bits64 lastBitMask, roundBitsMask; | ||
2679 | int8 roundingMode; | ||
2680 | floatx80 z; | ||
2681 | |||
2682 | aExp = extractFloatx80Exp( a ); | ||
2683 | if ( 0x403E <= aExp ) { | ||
2684 | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | ||
2685 | return propagateFloatx80NaN( a, a ); | ||
2686 | } | ||
2687 | return a; | ||
2688 | } | ||
2689 | if ( aExp <= 0x3FFE ) { | ||
2690 | if ( ( aExp == 0 ) | ||
2691 | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | ||
2692 | return a; | ||
2693 | } | ||
2694 | float_exception_flags |= float_flag_inexact; | ||
2695 | aSign = extractFloatx80Sign( a ); | ||
2696 | switch ( float_rounding_mode ) { | ||
2697 | case float_round_nearest_even: | ||
2698 | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | ||
2699 | ) { | ||
2700 | return | ||
2701 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | ||
2702 | } | ||
2703 | break; | ||
2704 | case float_round_down: | ||
2705 | return | ||
2706 | aSign ? | ||
2707 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | ||
2708 | : packFloatx80( 0, 0, 0 ); | ||
2709 | case float_round_up: | ||
2710 | return | ||
2711 | aSign ? packFloatx80( 1, 0, 0 ) | ||
2712 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | ||
2713 | } | ||
2714 | return packFloatx80( aSign, 0, 0 ); | ||
2715 | } | ||
2716 | lastBitMask = 1; | ||
2717 | lastBitMask <<= 0x403E - aExp; | ||
2718 | roundBitsMask = lastBitMask - 1; | ||
2719 | z = a; | ||
2720 | roundingMode = float_rounding_mode; | ||
2721 | if ( roundingMode == float_round_nearest_even ) { | ||
2722 | z.low += lastBitMask>>1; | ||
2723 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | ||
2724 | } | ||
2725 | else if ( roundingMode != float_round_to_zero ) { | ||
2726 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
2727 | z.low += roundBitsMask; | ||
2728 | } | ||
2729 | } | ||
2730 | z.low &= ~ roundBitsMask; | ||
2731 | if ( z.low == 0 ) { | ||
2732 | ++z.high; | ||
2733 | z.low = LIT64( 0x8000000000000000 ); | ||
2734 | } | ||
2735 | if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; | ||
2736 | return z; | ||
2737 | |||
2738 | } | ||
2739 | |||
2740 | /* | ||
2741 | ------------------------------------------------------------------------------- | ||
2742 | Returns the result of adding the absolute values of the extended double- | ||
2743 | precision floating-point values `a' and `b'. If `zSign' is true, the sum is | ||
2744 | negated before being returned. `zSign' is ignored if the result is a NaN. | ||
2745 | The addition is performed according to the IEC/IEEE Standard for Binary | ||
2746 | Floating-point Arithmetic. | ||
2747 | ------------------------------------------------------------------------------- | ||
2748 | */ | ||
2749 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | ||
2750 | { | ||
2751 | int32 aExp, bExp, zExp; | ||
2752 | bits64 aSig, bSig, zSig0, zSig1; | ||
2753 | int32 expDiff; | ||
2754 | |||
2755 | aSig = extractFloatx80Frac( a ); | ||
2756 | aExp = extractFloatx80Exp( a ); | ||
2757 | bSig = extractFloatx80Frac( b ); | ||
2758 | bExp = extractFloatx80Exp( b ); | ||
2759 | expDiff = aExp - bExp; | ||
2760 | if ( 0 < expDiff ) { | ||
2761 | if ( aExp == 0x7FFF ) { | ||
2762 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2763 | return a; | ||
2764 | } | ||
2765 | if ( bExp == 0 ) --expDiff; | ||
2766 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | ||
2767 | zExp = aExp; | ||
2768 | } | ||
2769 | else if ( expDiff < 0 ) { | ||
2770 | if ( bExp == 0x7FFF ) { | ||
2771 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2772 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2773 | } | ||
2774 | if ( aExp == 0 ) ++expDiff; | ||
2775 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | ||
2776 | zExp = bExp; | ||
2777 | } | ||
2778 | else { | ||
2779 | if ( aExp == 0x7FFF ) { | ||
2780 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | ||
2781 | return propagateFloatx80NaN( a, b ); | ||
2782 | } | ||
2783 | return a; | ||
2784 | } | ||
2785 | zSig1 = 0; | ||
2786 | zSig0 = aSig + bSig; | ||
2787 | if ( aExp == 0 ) { | ||
2788 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | ||
2789 | goto roundAndPack; | ||
2790 | } | ||
2791 | zExp = aExp; | ||
2792 | goto shiftRight1; | ||
2793 | } | ||
2794 | |||
2795 | zSig0 = aSig + bSig; | ||
2796 | |||
2797 | if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | ||
2798 | shiftRight1: | ||
2799 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | ||
2800 | zSig0 |= LIT64( 0x8000000000000000 ); | ||
2801 | ++zExp; | ||
2802 | roundAndPack: | ||
2803 | return | ||
2804 | roundAndPackFloatx80( | ||
2805 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2806 | |||
2807 | } | ||
2808 | |||
2809 | /* | ||
2810 | ------------------------------------------------------------------------------- | ||
2811 | Returns the result of subtracting the absolute values of the extended | ||
2812 | double-precision floating-point values `a' and `b'. If `zSign' is true, | ||
2813 | the difference is negated before being returned. `zSign' is ignored if the | ||
2814 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
2815 | Standard for Binary Floating-point Arithmetic. | ||
2816 | ------------------------------------------------------------------------------- | ||
2817 | */ | ||
2818 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | ||
2819 | { | ||
2820 | int32 aExp, bExp, zExp; | ||
2821 | bits64 aSig, bSig, zSig0, zSig1; | ||
2822 | int32 expDiff; | ||
2823 | floatx80 z; | ||
2824 | |||
2825 | aSig = extractFloatx80Frac( a ); | ||
2826 | aExp = extractFloatx80Exp( a ); | ||
2827 | bSig = extractFloatx80Frac( b ); | ||
2828 | bExp = extractFloatx80Exp( b ); | ||
2829 | expDiff = aExp - bExp; | ||
2830 | if ( 0 < expDiff ) goto aExpBigger; | ||
2831 | if ( expDiff < 0 ) goto bExpBigger; | ||
2832 | if ( aExp == 0x7FFF ) { | ||
2833 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | ||
2834 | return propagateFloatx80NaN( a, b ); | ||
2835 | } | ||
2836 | float_raise( float_flag_invalid ); | ||
2837 | z.low = floatx80_default_nan_low; | ||
2838 | z.high = floatx80_default_nan_high; | ||
2839 | return z; | ||
2840 | } | ||
2841 | if ( aExp == 0 ) { | ||
2842 | aExp = 1; | ||
2843 | bExp = 1; | ||
2844 | } | ||
2845 | zSig1 = 0; | ||
2846 | if ( bSig < aSig ) goto aBigger; | ||
2847 | if ( aSig < bSig ) goto bBigger; | ||
2848 | return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); | ||
2849 | bExpBigger: | ||
2850 | if ( bExp == 0x7FFF ) { | ||
2851 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2852 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2853 | } | ||
2854 | if ( aExp == 0 ) ++expDiff; | ||
2855 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | ||
2856 | bBigger: | ||
2857 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | ||
2858 | zExp = bExp; | ||
2859 | zSign ^= 1; | ||
2860 | goto normalizeRoundAndPack; | ||
2861 | aExpBigger: | ||
2862 | if ( aExp == 0x7FFF ) { | ||
2863 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2864 | return a; | ||
2865 | } | ||
2866 | if ( bExp == 0 ) --expDiff; | ||
2867 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | ||
2868 | aBigger: | ||
2869 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | ||
2870 | zExp = aExp; | ||
2871 | normalizeRoundAndPack: | ||
2872 | return | ||
2873 | normalizeRoundAndPackFloatx80( | ||
2874 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2875 | |||
2876 | } | ||
2877 | |||
2878 | /* | ||
2879 | ------------------------------------------------------------------------------- | ||
2880 | Returns the result of adding the extended double-precision floating-point | ||
2881 | values `a' and `b'. The operation is performed according to the IEC/IEEE | ||
2882 | Standard for Binary Floating-point Arithmetic. | ||
2883 | ------------------------------------------------------------------------------- | ||
2884 | */ | ||
2885 | floatx80 floatx80_add( floatx80 a, floatx80 b ) | ||
2886 | { | ||
2887 | flag aSign, bSign; | ||
2888 | |||
2889 | aSign = extractFloatx80Sign( a ); | ||
2890 | bSign = extractFloatx80Sign( b ); | ||
2891 | if ( aSign == bSign ) { | ||
2892 | return addFloatx80Sigs( a, b, aSign ); | ||
2893 | } | ||
2894 | else { | ||
2895 | return subFloatx80Sigs( a, b, aSign ); | ||
2896 | } | ||
2897 | |||
2898 | } | ||
2899 | |||
2900 | /* | ||
2901 | ------------------------------------------------------------------------------- | ||
2902 | Returns the result of subtracting the extended double-precision floating- | ||
2903 | point values `a' and `b'. The operation is performed according to the | ||
2904 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2905 | ------------------------------------------------------------------------------- | ||
2906 | */ | ||
2907 | floatx80 floatx80_sub( floatx80 a, floatx80 b ) | ||
2908 | { | ||
2909 | flag aSign, bSign; | ||
2910 | |||
2911 | aSign = extractFloatx80Sign( a ); | ||
2912 | bSign = extractFloatx80Sign( b ); | ||
2913 | if ( aSign == bSign ) { | ||
2914 | return subFloatx80Sigs( a, b, aSign ); | ||
2915 | } | ||
2916 | else { | ||
2917 | return addFloatx80Sigs( a, b, aSign ); | ||
2918 | } | ||
2919 | |||
2920 | } | ||
2921 | |||
2922 | /* | ||
2923 | ------------------------------------------------------------------------------- | ||
2924 | Returns the result of multiplying the extended double-precision floating- | ||
2925 | point values `a' and `b'. The operation is performed according to the | ||
2926 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2927 | ------------------------------------------------------------------------------- | ||
2928 | */ | ||
2929 | floatx80 floatx80_mul( floatx80 a, floatx80 b ) | ||
2930 | { | ||
2931 | flag aSign, bSign, zSign; | ||
2932 | int32 aExp, bExp, zExp; | ||
2933 | bits64 aSig, bSig, zSig0, zSig1; | ||
2934 | floatx80 z; | ||
2935 | |||
2936 | aSig = extractFloatx80Frac( a ); | ||
2937 | aExp = extractFloatx80Exp( a ); | ||
2938 | aSign = extractFloatx80Sign( a ); | ||
2939 | bSig = extractFloatx80Frac( b ); | ||
2940 | bExp = extractFloatx80Exp( b ); | ||
2941 | bSign = extractFloatx80Sign( b ); | ||
2942 | zSign = aSign ^ bSign; | ||
2943 | if ( aExp == 0x7FFF ) { | ||
2944 | if ( (bits64) ( aSig<<1 ) | ||
2945 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | ||
2946 | return propagateFloatx80NaN( a, b ); | ||
2947 | } | ||
2948 | if ( ( bExp | bSig ) == 0 ) goto invalid; | ||
2949 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2950 | } | ||
2951 | if ( bExp == 0x7FFF ) { | ||
2952 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2953 | if ( ( aExp | aSig ) == 0 ) { | ||
2954 | invalid: | ||
2955 | float_raise( float_flag_invalid ); | ||
2956 | z.low = floatx80_default_nan_low; | ||
2957 | z.high = floatx80_default_nan_high; | ||
2958 | return z; | ||
2959 | } | ||
2960 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2961 | } | ||
2962 | if ( aExp == 0 ) { | ||
2963 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
2964 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | ||
2965 | } | ||
2966 | if ( bExp == 0 ) { | ||
2967 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
2968 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
2969 | } | ||
2970 | zExp = aExp + bExp - 0x3FFE; | ||
2971 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | ||
2972 | if ( 0 < (sbits64) zSig0 ) { | ||
2973 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | ||
2974 | --zExp; | ||
2975 | } | ||
2976 | return | ||
2977 | roundAndPackFloatx80( | ||
2978 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2979 | |||
2980 | } | ||
2981 | |||
2982 | /* | ||
2983 | ------------------------------------------------------------------------------- | ||
2984 | Returns the result of dividing the extended double-precision floating-point | ||
2985 | value `a' by the corresponding value `b'. The operation is performed | ||
2986 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2987 | ------------------------------------------------------------------------------- | ||
2988 | */ | ||
2989 | floatx80 floatx80_div( floatx80 a, floatx80 b ) | ||
2990 | { | ||
2991 | flag aSign, bSign, zSign; | ||
2992 | int32 aExp, bExp, zExp; | ||
2993 | bits64 aSig, bSig, zSig0, zSig1; | ||
2994 | bits64 rem0, rem1, rem2, term0, term1, term2; | ||
2995 | floatx80 z; | ||
2996 | |||
2997 | aSig = extractFloatx80Frac( a ); | ||
2998 | aExp = extractFloatx80Exp( a ); | ||
2999 | aSign = extractFloatx80Sign( a ); | ||
3000 | bSig = extractFloatx80Frac( b ); | ||
3001 | bExp = extractFloatx80Exp( b ); | ||
3002 | bSign = extractFloatx80Sign( b ); | ||
3003 | zSign = aSign ^ bSign; | ||
3004 | if ( aExp == 0x7FFF ) { | ||
3005 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3006 | if ( bExp == 0x7FFF ) { | ||
3007 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3008 | goto invalid; | ||
3009 | } | ||
3010 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
3011 | } | ||
3012 | if ( bExp == 0x7FFF ) { | ||
3013 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3014 | return packFloatx80( zSign, 0, 0 ); | ||
3015 | } | ||
3016 | if ( bExp == 0 ) { | ||
3017 | if ( bSig == 0 ) { | ||
3018 | if ( ( aExp | aSig ) == 0 ) { | ||
3019 | invalid: | ||
3020 | float_raise( float_flag_invalid ); | ||
3021 | z.low = floatx80_default_nan_low; | ||
3022 | z.high = floatx80_default_nan_high; | ||
3023 | return z; | ||
3024 | } | ||
3025 | float_raise( float_flag_divbyzero ); | ||
3026 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
3027 | } | ||
3028 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
3029 | } | ||
3030 | if ( aExp == 0 ) { | ||
3031 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
3032 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | ||
3033 | } | ||
3034 | zExp = aExp - bExp + 0x3FFE; | ||
3035 | rem1 = 0; | ||
3036 | if ( bSig <= aSig ) { | ||
3037 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | ||
3038 | ++zExp; | ||
3039 | } | ||
3040 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | ||
3041 | mul64To128( bSig, zSig0, &term0, &term1 ); | ||
3042 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | ||
3043 | while ( (sbits64) rem0 < 0 ) { | ||
3044 | --zSig0; | ||
3045 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | ||
3046 | } | ||
3047 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | ||
3048 | if ( (bits64) ( zSig1<<1 ) <= 8 ) { | ||
3049 | mul64To128( bSig, zSig1, &term1, &term2 ); | ||
3050 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | ||
3051 | while ( (sbits64) rem1 < 0 ) { | ||
3052 | --zSig1; | ||
3053 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | ||
3054 | } | ||
3055 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | ||
3056 | } | ||
3057 | return | ||
3058 | roundAndPackFloatx80( | ||
3059 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
3060 | |||
3061 | } | ||
3062 | |||
3063 | /* | ||
3064 | ------------------------------------------------------------------------------- | ||
3065 | Returns the remainder of the extended double-precision floating-point value | ||
3066 | `a' with respect to the corresponding value `b'. The operation is performed | ||
3067 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3068 | ------------------------------------------------------------------------------- | ||
3069 | */ | ||
3070 | floatx80 floatx80_rem( floatx80 a, floatx80 b ) | ||
3071 | { | ||
3072 | flag aSign, bSign, zSign; | ||
3073 | int32 aExp, bExp, expDiff; | ||
3074 | bits64 aSig0, aSig1, bSig; | ||
3075 | bits64 q, term0, term1, alternateASig0, alternateASig1; | ||
3076 | floatx80 z; | ||
3077 | |||
3078 | aSig0 = extractFloatx80Frac( a ); | ||
3079 | aExp = extractFloatx80Exp( a ); | ||
3080 | aSign = extractFloatx80Sign( a ); | ||
3081 | bSig = extractFloatx80Frac( b ); | ||
3082 | bExp = extractFloatx80Exp( b ); | ||
3083 | bSign = extractFloatx80Sign( b ); | ||
3084 | if ( aExp == 0x7FFF ) { | ||
3085 | if ( (bits64) ( aSig0<<1 ) | ||
3086 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | ||
3087 | return propagateFloatx80NaN( a, b ); | ||
3088 | } | ||
3089 | goto invalid; | ||
3090 | } | ||
3091 | if ( bExp == 0x7FFF ) { | ||
3092 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3093 | return a; | ||
3094 | } | ||
3095 | if ( bExp == 0 ) { | ||
3096 | if ( bSig == 0 ) { | ||
3097 | invalid: | ||
3098 | float_raise( float_flag_invalid ); | ||
3099 | z.low = floatx80_default_nan_low; | ||
3100 | z.high = floatx80_default_nan_high; | ||
3101 | return z; | ||
3102 | } | ||
3103 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
3104 | } | ||
3105 | if ( aExp == 0 ) { | ||
3106 | if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | ||
3107 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | ||
3108 | } | ||
3109 | bSig |= LIT64( 0x8000000000000000 ); | ||
3110 | zSign = aSign; | ||
3111 | expDiff = aExp - bExp; | ||
3112 | aSig1 = 0; | ||
3113 | if ( expDiff < 0 ) { | ||
3114 | if ( expDiff < -1 ) return a; | ||
3115 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | ||
3116 | expDiff = 0; | ||
3117 | } | ||
3118 | q = ( bSig <= aSig0 ); | ||
3119 | if ( q ) aSig0 -= bSig; | ||
3120 | expDiff -= 64; | ||
3121 | while ( 0 < expDiff ) { | ||
3122 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | ||
3123 | q = ( 2 < q ) ? q - 2 : 0; | ||
3124 | mul64To128( bSig, q, &term0, &term1 ); | ||
3125 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3126 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | ||
3127 | expDiff -= 62; | ||
3128 | } | ||
3129 | expDiff += 64; | ||
3130 | if ( 0 < expDiff ) { | ||
3131 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | ||
3132 | q = ( 2 < q ) ? q - 2 : 0; | ||
3133 | q >>= 64 - expDiff; | ||
3134 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | ||
3135 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3136 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | ||
3137 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | ||
3138 | ++q; | ||
3139 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3140 | } | ||
3141 | } | ||
3142 | else { | ||
3143 | term1 = 0; | ||
3144 | term0 = bSig; | ||
3145 | } | ||
3146 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | ||
3147 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | ||
3148 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | ||
3149 | && ( q & 1 ) ) | ||
3150 | ) { | ||
3151 | aSig0 = alternateASig0; | ||
3152 | aSig1 = alternateASig1; | ||
3153 | zSign = ! zSign; | ||
3154 | } | ||
3155 | return | ||
3156 | normalizeRoundAndPackFloatx80( | ||
3157 | 80, zSign, bExp + expDiff, aSig0, aSig1 ); | ||
3158 | |||
3159 | } | ||
3160 | |||
3161 | /* | ||
3162 | ------------------------------------------------------------------------------- | ||
3163 | Returns the square root of the extended double-precision floating-point | ||
3164 | value `a'. The operation is performed according to the IEC/IEEE Standard | ||
3165 | for Binary Floating-point Arithmetic. | ||
3166 | ------------------------------------------------------------------------------- | ||
3167 | */ | ||
3168 | floatx80 floatx80_sqrt( floatx80 a ) | ||
3169 | { | ||
3170 | flag aSign; | ||
3171 | int32 aExp, zExp; | ||
3172 | bits64 aSig0, aSig1, zSig0, zSig1; | ||
3173 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | ||
3174 | bits64 shiftedRem0, shiftedRem1; | ||
3175 | floatx80 z; | ||
3176 | |||
3177 | aSig0 = extractFloatx80Frac( a ); | ||
3178 | aExp = extractFloatx80Exp( a ); | ||
3179 | aSign = extractFloatx80Sign( a ); | ||
3180 | if ( aExp == 0x7FFF ) { | ||
3181 | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); | ||
3182 | if ( ! aSign ) return a; | ||
3183 | goto invalid; | ||
3184 | } | ||
3185 | if ( aSign ) { | ||
3186 | if ( ( aExp | aSig0 ) == 0 ) return a; | ||
3187 | invalid: | ||
3188 | float_raise( float_flag_invalid ); | ||
3189 | z.low = floatx80_default_nan_low; | ||
3190 | z.high = floatx80_default_nan_high; | ||
3191 | return z; | ||
3192 | } | ||
3193 | if ( aExp == 0 ) { | ||
3194 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | ||
3195 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | ||
3196 | } | ||
3197 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | ||
3198 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | ||
3199 | zSig0 <<= 31; | ||
3200 | aSig1 = 0; | ||
3201 | shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); | ||
3202 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; | ||
3203 | if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
3204 | shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); | ||
3205 | mul64To128( zSig0, zSig0, &term0, &term1 ); | ||
3206 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | ||
3207 | while ( (sbits64) rem0 < 0 ) { | ||
3208 | --zSig0; | ||
3209 | shortShift128Left( 0, zSig0, 1, &term0, &term1 ); | ||
3210 | term1 |= 1; | ||
3211 | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | ||
3212 | } | ||
3213 | shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); | ||
3214 | zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); | ||
3215 | if ( (bits64) ( zSig1<<1 ) <= 10 ) { | ||
3216 | if ( zSig1 == 0 ) zSig1 = 1; | ||
3217 | mul64To128( zSig0, zSig1, &term1, &term2 ); | ||
3218 | shortShift128Left( term1, term2, 1, &term1, &term2 ); | ||
3219 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | ||
3220 | mul64To128( zSig1, zSig1, &term2, &term3 ); | ||
3221 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | ||
3222 | while ( (sbits64) rem1 < 0 ) { | ||
3223 | --zSig1; | ||
3224 | shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); | ||
3225 | term3 |= 1; | ||
3226 | add192( | ||
3227 | rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); | ||
3228 | } | ||
3229 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | ||
3230 | } | ||
3231 | return | ||
3232 | roundAndPackFloatx80( | ||
3233 | floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); | ||
3234 | |||
3235 | } | ||
3236 | |||
3237 | /* | ||
3238 | ------------------------------------------------------------------------------- | ||
3239 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3240 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
3241 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
3242 | Arithmetic. | ||
3243 | ------------------------------------------------------------------------------- | ||
3244 | */ | ||
3245 | flag floatx80_eq( floatx80 a, floatx80 b ) | ||
3246 | { | ||
3247 | |||
3248 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3249 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3250 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3251 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3252 | ) { | ||
3253 | if ( floatx80_is_signaling_nan( a ) | ||
3254 | || floatx80_is_signaling_nan( b ) ) { | ||
3255 | float_raise( float_flag_invalid ); | ||
3256 | } | ||
3257 | return 0; | ||
3258 | } | ||
3259 | return | ||
3260 | ( a.low == b.low ) | ||
3261 | && ( ( a.high == b.high ) | ||
3262 | || ( ( a.low == 0 ) | ||
3263 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | ||
3264 | ); | ||
3265 | |||
3266 | } | ||
3267 | |||
3268 | /* | ||
3269 | ------------------------------------------------------------------------------- | ||
3270 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3271 | less than or equal to the corresponding value `b', and 0 otherwise. The | ||
3272 | comparison is performed according to the IEC/IEEE Standard for Binary | ||
3273 | Floating-point Arithmetic. | ||
3274 | ------------------------------------------------------------------------------- | ||
3275 | */ | ||
3276 | flag floatx80_le( floatx80 a, floatx80 b ) | ||
3277 | { | ||
3278 | flag aSign, bSign; | ||
3279 | |||
3280 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3281 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3282 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3283 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3284 | ) { | ||
3285 | float_raise( float_flag_invalid ); | ||
3286 | return 0; | ||
3287 | } | ||
3288 | aSign = extractFloatx80Sign( a ); | ||
3289 | bSign = extractFloatx80Sign( b ); | ||
3290 | if ( aSign != bSign ) { | ||
3291 | return | ||
3292 | aSign | ||
3293 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3294 | == 0 ); | ||
3295 | } | ||
3296 | return | ||
3297 | aSign ? le128( b.high, b.low, a.high, a.low ) | ||
3298 | : le128( a.high, a.low, b.high, b.low ); | ||
3299 | |||
3300 | } | ||
3301 | |||
3302 | /* | ||
3303 | ------------------------------------------------------------------------------- | ||
3304 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3305 | less than the corresponding value `b', and 0 otherwise. The comparison | ||
3306 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
3307 | Arithmetic. | ||
3308 | ------------------------------------------------------------------------------- | ||
3309 | */ | ||
3310 | flag floatx80_lt( floatx80 a, floatx80 b ) | ||
3311 | { | ||
3312 | flag aSign, bSign; | ||
3313 | |||
3314 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3315 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3316 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3317 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3318 | ) { | ||
3319 | float_raise( float_flag_invalid ); | ||
3320 | return 0; | ||
3321 | } | ||
3322 | aSign = extractFloatx80Sign( a ); | ||
3323 | bSign = extractFloatx80Sign( b ); | ||
3324 | if ( aSign != bSign ) { | ||
3325 | return | ||
3326 | aSign | ||
3327 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3328 | != 0 ); | ||
3329 | } | ||
3330 | return | ||
3331 | aSign ? lt128( b.high, b.low, a.high, a.low ) | ||
3332 | : lt128( a.high, a.low, b.high, b.low ); | ||
3333 | |||
3334 | } | ||
3335 | |||
3336 | /* | ||
3337 | ------------------------------------------------------------------------------- | ||
3338 | Returns 1 if the extended double-precision floating-point value `a' is equal | ||
3339 | to the corresponding value `b', and 0 otherwise. The invalid exception is | ||
3340 | raised if either operand is a NaN. Otherwise, the comparison is performed | ||
3341 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3342 | ------------------------------------------------------------------------------- | ||
3343 | */ | ||
3344 | flag floatx80_eq_signaling( floatx80 a, floatx80 b ) | ||
3345 | { | ||
3346 | |||
3347 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3348 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3349 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3350 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3351 | ) { | ||
3352 | float_raise( float_flag_invalid ); | ||
3353 | return 0; | ||
3354 | } | ||
3355 | return | ||
3356 | ( a.low == b.low ) | ||
3357 | && ( ( a.high == b.high ) | ||
3358 | || ( ( a.low == 0 ) | ||
3359 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | ||
3360 | ); | ||
3361 | |||
3362 | } | ||
3363 | |||
3364 | /* | ||
3365 | ------------------------------------------------------------------------------- | ||
3366 | Returns 1 if the extended double-precision floating-point value `a' is less | ||
3367 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | ||
3368 | do not cause an exception. Otherwise, the comparison is performed according | ||
3369 | to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3370 | ------------------------------------------------------------------------------- | ||
3371 | */ | ||
3372 | flag floatx80_le_quiet( floatx80 a, floatx80 b ) | ||
3373 | { | ||
3374 | flag aSign, bSign; | ||
3375 | |||
3376 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3377 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3378 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3379 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3380 | ) { | ||
3381 | if ( floatx80_is_signaling_nan( a ) | ||
3382 | || floatx80_is_signaling_nan( b ) ) { | ||
3383 | float_raise( float_flag_invalid ); | ||
3384 | } | ||
3385 | return 0; | ||
3386 | } | ||
3387 | aSign = extractFloatx80Sign( a ); | ||
3388 | bSign = extractFloatx80Sign( b ); | ||
3389 | if ( aSign != bSign ) { | ||
3390 | return | ||
3391 | aSign | ||
3392 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3393 | == 0 ); | ||
3394 | } | ||
3395 | return | ||
3396 | aSign ? le128( b.high, b.low, a.high, a.low ) | ||
3397 | : le128( a.high, a.low, b.high, b.low ); | ||
3398 | |||
3399 | } | ||
3400 | |||
3401 | /* | ||
3402 | ------------------------------------------------------------------------------- | ||
3403 | Returns 1 if the extended double-precision floating-point value `a' is less | ||
3404 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | ||
3405 | an exception. Otherwise, the comparison is performed according to the | ||
3406 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3407 | ------------------------------------------------------------------------------- | ||
3408 | */ | ||
3409 | flag floatx80_lt_quiet( floatx80 a, floatx80 b ) | ||
3410 | { | ||
3411 | flag aSign, bSign; | ||
3412 | |||
3413 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3414 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3415 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3416 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3417 | ) { | ||
3418 | if ( floatx80_is_signaling_nan( a ) | ||
3419 | || floatx80_is_signaling_nan( b ) ) { | ||
3420 | float_raise( float_flag_invalid ); | ||
3421 | } | ||
3422 | return 0; | ||
3423 | } | ||
3424 | aSign = extractFloatx80Sign( a ); | ||
3425 | bSign = extractFloatx80Sign( b ); | ||
3426 | if ( aSign != bSign ) { | ||
3427 | return | ||
3428 | aSign | ||
3429 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3430 | != 0 ); | ||
3431 | } | ||
3432 | return | ||
3433 | aSign ? lt128( b.high, b.low, a.high, a.low ) | ||
3434 | : lt128( a.high, a.low, b.high, b.low ); | ||
3435 | |||
3436 | } | ||
3437 | |||
3438 | #endif | ||
3439 | |||
diff --git a/arch/arm26/nwfpe/softfloat.h b/arch/arm26/nwfpe/softfloat.h new file mode 100644 index 000000000000..22c2193a4997 --- /dev/null +++ b/arch/arm26/nwfpe/softfloat.h | |||
@@ -0,0 +1,232 @@ | |||
1 | |||
2 | /* | ||
3 | =============================================================================== | ||
4 | |||
5 | This C header file is part of the SoftFloat IEC/IEEE Floating-point | ||
6 | Arithmetic Package, Release 2. | ||
7 | |||
8 | Written by John R. Hauser. This work was made possible in part by the | ||
9 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
10 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
11 | National Science Foundation under grant MIP-9311980. The original version | ||
12 | of this code was written as part of a project to build a fixed-point vector | ||
13 | processor in collaboration with the University of California at Berkeley, | ||
14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
15 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
16 | arithmetic/softfloat.html'. | ||
17 | |||
18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
23 | |||
24 | Derivative works are acceptable, even for commercial purposes, so long as | ||
25 | (1) they include prominent notice that the work is derivative, and (2) they | ||
26 | include prominent notice akin to these three paragraphs for those parts of | ||
27 | this code that are retained. | ||
28 | |||
29 | =============================================================================== | ||
30 | */ | ||
31 | |||
32 | #ifndef __SOFTFLOAT_H__ | ||
33 | #define __SOFTFLOAT_H__ | ||
34 | |||
35 | /* | ||
36 | ------------------------------------------------------------------------------- | ||
37 | The macro `FLOATX80' must be defined to enable the extended double-precision | ||
38 | floating-point format `floatx80'. If this macro is not defined, the | ||
39 | `floatx80' type will not be defined, and none of the functions that either | ||
40 | input or output the `floatx80' type will be defined. | ||
41 | ------------------------------------------------------------------------------- | ||
42 | */ | ||
43 | #define FLOATX80 | ||
44 | |||
45 | /* | ||
46 | ------------------------------------------------------------------------------- | ||
47 | Software IEC/IEEE floating-point types. | ||
48 | ------------------------------------------------------------------------------- | ||
49 | */ | ||
50 | typedef unsigned long int float32; | ||
51 | typedef unsigned long long float64; | ||
52 | typedef struct { | ||
53 | unsigned short high; | ||
54 | unsigned long long low; | ||
55 | } floatx80; | ||
56 | |||
57 | /* | ||
58 | ------------------------------------------------------------------------------- | ||
59 | Software IEC/IEEE floating-point underflow tininess-detection mode. | ||
60 | ------------------------------------------------------------------------------- | ||
61 | */ | ||
62 | extern signed char float_detect_tininess; | ||
63 | enum { | ||
64 | float_tininess_after_rounding = 0, | ||
65 | float_tininess_before_rounding = 1 | ||
66 | }; | ||
67 | |||
68 | /* | ||
69 | ------------------------------------------------------------------------------- | ||
70 | Software IEC/IEEE floating-point rounding mode. | ||
71 | ------------------------------------------------------------------------------- | ||
72 | */ | ||
73 | extern signed char float_rounding_mode; | ||
74 | enum { | ||
75 | float_round_nearest_even = 0, | ||
76 | float_round_to_zero = 1, | ||
77 | float_round_down = 2, | ||
78 | float_round_up = 3 | ||
79 | }; | ||
80 | |||
81 | /* | ||
82 | ------------------------------------------------------------------------------- | ||
83 | Software IEC/IEEE floating-point exception flags. | ||
84 | ------------------------------------------------------------------------------- | ||
85 | extern signed char float_exception_flags; | ||
86 | enum { | ||
87 | float_flag_inexact = 1, | ||
88 | float_flag_underflow = 2, | ||
89 | float_flag_overflow = 4, | ||
90 | float_flag_divbyzero = 8, | ||
91 | float_flag_invalid = 16 | ||
92 | }; | ||
93 | |||
94 | ScottB: November 4, 1998 | ||
95 | Changed the enumeration to match the bit order in the FPA11. | ||
96 | */ | ||
97 | |||
98 | extern signed char float_exception_flags; | ||
99 | enum { | ||
100 | float_flag_invalid = 1, | ||
101 | float_flag_divbyzero = 2, | ||
102 | float_flag_overflow = 4, | ||
103 | float_flag_underflow = 8, | ||
104 | float_flag_inexact = 16 | ||
105 | }; | ||
106 | |||
107 | /* | ||
108 | ------------------------------------------------------------------------------- | ||
109 | Routine to raise any or all of the software IEC/IEEE floating-point | ||
110 | exception flags. | ||
111 | ------------------------------------------------------------------------------- | ||
112 | */ | ||
113 | void float_raise( signed char ); | ||
114 | |||
115 | /* | ||
116 | ------------------------------------------------------------------------------- | ||
117 | Software IEC/IEEE integer-to-floating-point conversion routines. | ||
118 | ------------------------------------------------------------------------------- | ||
119 | */ | ||
120 | float32 int32_to_float32( signed int ); | ||
121 | float64 int32_to_float64( signed int ); | ||
122 | #ifdef FLOATX80 | ||
123 | floatx80 int32_to_floatx80( signed int ); | ||
124 | #endif | ||
125 | |||
126 | /* | ||
127 | ------------------------------------------------------------------------------- | ||
128 | Software IEC/IEEE single-precision conversion routines. | ||
129 | ------------------------------------------------------------------------------- | ||
130 | */ | ||
131 | signed int float32_to_int32( float32 ); | ||
132 | signed int float32_to_int32_round_to_zero( float32 ); | ||
133 | float64 float32_to_float64( float32 ); | ||
134 | #ifdef FLOATX80 | ||
135 | floatx80 float32_to_floatx80( float32 ); | ||
136 | #endif | ||
137 | |||
138 | /* | ||
139 | ------------------------------------------------------------------------------- | ||
140 | Software IEC/IEEE single-precision operations. | ||
141 | ------------------------------------------------------------------------------- | ||
142 | */ | ||
143 | float32 float32_round_to_int( float32 ); | ||
144 | float32 float32_add( float32, float32 ); | ||
145 | float32 float32_sub( float32, float32 ); | ||
146 | float32 float32_mul( float32, float32 ); | ||
147 | float32 float32_div( float32, float32 ); | ||
148 | float32 float32_rem( float32, float32 ); | ||
149 | float32 float32_sqrt( float32 ); | ||
150 | char float32_eq( float32, float32 ); | ||
151 | char float32_le( float32, float32 ); | ||
152 | char float32_lt( float32, float32 ); | ||
153 | char float32_eq_signaling( float32, float32 ); | ||
154 | char float32_le_quiet( float32, float32 ); | ||
155 | char float32_lt_quiet( float32, float32 ); | ||
156 | char float32_is_signaling_nan( float32 ); | ||
157 | |||
158 | /* | ||
159 | ------------------------------------------------------------------------------- | ||
160 | Software IEC/IEEE double-precision conversion routines. | ||
161 | ------------------------------------------------------------------------------- | ||
162 | */ | ||
163 | signed int float64_to_int32( float64 ); | ||
164 | signed int float64_to_int32_round_to_zero( float64 ); | ||
165 | float32 float64_to_float32( float64 ); | ||
166 | #ifdef FLOATX80 | ||
167 | floatx80 float64_to_floatx80( float64 ); | ||
168 | #endif | ||
169 | |||
170 | /* | ||
171 | ------------------------------------------------------------------------------- | ||
172 | Software IEC/IEEE double-precision operations. | ||
173 | ------------------------------------------------------------------------------- | ||
174 | */ | ||
175 | float64 float64_round_to_int( float64 ); | ||
176 | float64 float64_add( float64, float64 ); | ||
177 | float64 float64_sub( float64, float64 ); | ||
178 | float64 float64_mul( float64, float64 ); | ||
179 | float64 float64_div( float64, float64 ); | ||
180 | float64 float64_rem( float64, float64 ); | ||
181 | float64 float64_sqrt( float64 ); | ||
182 | char float64_eq( float64, float64 ); | ||
183 | char float64_le( float64, float64 ); | ||
184 | char float64_lt( float64, float64 ); | ||
185 | char float64_eq_signaling( float64, float64 ); | ||
186 | char float64_le_quiet( float64, float64 ); | ||
187 | char float64_lt_quiet( float64, float64 ); | ||
188 | char float64_is_signaling_nan( float64 ); | ||
189 | |||
190 | #ifdef FLOATX80 | ||
191 | |||
192 | /* | ||
193 | ------------------------------------------------------------------------------- | ||
194 | Software IEC/IEEE extended double-precision conversion routines. | ||
195 | ------------------------------------------------------------------------------- | ||
196 | */ | ||
197 | signed int floatx80_to_int32( floatx80 ); | ||
198 | signed int floatx80_to_int32_round_to_zero( floatx80 ); | ||
199 | float32 floatx80_to_float32( floatx80 ); | ||
200 | float64 floatx80_to_float64( floatx80 ); | ||
201 | |||
202 | /* | ||
203 | ------------------------------------------------------------------------------- | ||
204 | Software IEC/IEEE extended double-precision rounding precision. Valid | ||
205 | values are 32, 64, and 80. | ||
206 | ------------------------------------------------------------------------------- | ||
207 | */ | ||
208 | extern signed char floatx80_rounding_precision; | ||
209 | |||
210 | /* | ||
211 | ------------------------------------------------------------------------------- | ||
212 | Software IEC/IEEE extended double-precision operations. | ||
213 | ------------------------------------------------------------------------------- | ||
214 | */ | ||
215 | floatx80 floatx80_round_to_int( floatx80 ); | ||
216 | floatx80 floatx80_add( floatx80, floatx80 ); | ||
217 | floatx80 floatx80_sub( floatx80, floatx80 ); | ||
218 | floatx80 floatx80_mul( floatx80, floatx80 ); | ||
219 | floatx80 floatx80_div( floatx80, floatx80 ); | ||
220 | floatx80 floatx80_rem( floatx80, floatx80 ); | ||
221 | floatx80 floatx80_sqrt( floatx80 ); | ||
222 | char floatx80_eq( floatx80, floatx80 ); | ||
223 | char floatx80_le( floatx80, floatx80 ); | ||
224 | char floatx80_lt( floatx80, floatx80 ); | ||
225 | char floatx80_eq_signaling( floatx80, floatx80 ); | ||
226 | char floatx80_le_quiet( floatx80, floatx80 ); | ||
227 | char floatx80_lt_quiet( floatx80, floatx80 ); | ||
228 | char floatx80_is_signaling_nan( floatx80 ); | ||
229 | |||
230 | #endif | ||
231 | |||
232 | #endif | ||