aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm26/nwfpe/entry.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm26/nwfpe/entry.S')
-rw-r--r--arch/arm26/nwfpe/entry.S114
1 files changed, 114 insertions, 0 deletions
diff --git a/arch/arm26/nwfpe/entry.S b/arch/arm26/nwfpe/entry.S
new file mode 100644
index 000000000000..7d6dfaad80c2
--- /dev/null
+++ b/arch/arm26/nwfpe/entry.S
@@ -0,0 +1,114 @@
1/*
2 NetWinder Floating Point Emulator
3 (c) Rebel.COM, 1998
4 (c) Philip Blundell 1998-1999
5
6 Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <asm/asm_offsets.h>
24
25/* This is the kernel's entry point into the floating point emulator.
26It is called from the kernel with code similar to this:
27
28 mov fp, #0
29 teqp pc, #PSR_I_BIT | MODE_SVC
30 ldr r4, .LC2
31 ldr pc, [r4] @ Call FP module USR entry point
32
33The kernel expects the emulator to return via one of two possible
34points of return it passes to the emulator. The emulator, if
35successful in its emulation, jumps to ret_from_exception and the
36kernel takes care of returning control from the trap to the user code.
37If the emulator is unable to emulate the instruction, it returns to
38fpundefinstr and the kernel halts the user program with a core dump.
39
40This routine does four things:
41
421) It saves SP into a variable called userRegisters. The kernel has
43created a struct pt_regs on the stack and saved the user registers
44into it. See /usr/include/asm/proc/ptrace.h for details. The
45emulator code uses userRegisters as the base of an array of words from
46which the contents of the registers can be extracted.
47
482) It locates the FP emulator work area within the TSS structure and
49points `fpa11' to it.
50
513) It calls EmulateAll to emulate a floating point instruction.
52EmulateAll returns 1 if the emulation was successful, or 0 if not.
53
544) If an instruction has been emulated successfully, it looks ahead at
55the next instruction. If it is a floating point instruction, it
56executes the instruction, without returning to user space. In this
57way it repeatedly looks ahead and executes floating point instructions
58until it encounters a non floating point instruction, at which time it
59returns via _fpreturn.
60
61This is done to reduce the effect of the trap overhead on each
62floating point instructions. GCC attempts to group floating point
63instructions to allow the emulator to spread the cost of the trap over
64several floating point instructions. */
65
66 .globl nwfpe_enter
67nwfpe_enter:
68 mov sl, sp
69 bl FPA11_CheckInit @ check to see if we are initialised
70
71 ldr r5, [sp, #60] @ get contents of PC
72 bic r5, r5, #0xfc000003
73 ldr r0, [r5, #-4] @ get actual instruction into r0
74 bl EmulateAll @ emulate the instruction
751: cmp r0, #0 @ was emulation successful
76 beq fpundefinstr @ no, return failure
77
78next:
79.Lx1: ldrt r6, [r5], #4 @ get the next instruction and
80 @ increment PC
81
82 and r2, r6, #0x0F000000 @ test for FP insns
83 teq r2, #0x0C000000
84 teqne r2, #0x0D000000
85 teqne r2, #0x0E000000
86 bne ret_from_exception @ return ok if not a fp insn
87
88 ldr r9, [sp, #60] @ get new condition codes
89 and r9, r9, #0xfc000003
90 orr r7, r5, r9
91 str r7, [sp, #60] @ update PC copy in regs
92
93 mov r0, r6 @ save a copy
94 mov r1, r9 @ fetch the condition codes
95 bl checkCondition @ check the condition
96 cmp r0, #0 @ r0 = 0 ==> condition failed
97
98 @ if condition code failed to match, next insn
99 beq next @ get the next instruction;
100
101 mov r0, r6 @ prepare for EmulateAll()
102 adr lr, 1b
103 orr lr, lr, #3
104 b EmulateAll @ if r0 != 0, goto EmulateAll
105
106.Lret: b ret_from_exception @ let the user eat segfaults
107
108 @ We need to be prepared for the instruction at .Lx1 to fault.
109 @ Emit the appropriate exception gunk to fix things up.
110 .section __ex_table,"a"
111 .align 3
112 .long .Lx1
113 ldr lr, [lr, $(.Lret - .Lx1)/4]
114 .previous