aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/vfp/vfpdouble.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/vfp/vfpdouble.c')
-rw-r--r--arch/arm/vfp/vfpdouble.c1186
1 files changed, 1186 insertions, 0 deletions
diff --git a/arch/arm/vfp/vfpdouble.c b/arch/arm/vfp/vfpdouble.c
new file mode 100644
index 000000000000..fa3053e84db5
--- /dev/null
+++ b/arch/arm/vfp/vfpdouble.c
@@ -0,0 +1,1186 @@
1/*
2 * linux/arch/arm/vfp/vfpdouble.c
3 *
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
6 *
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
10 *
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
20 *
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 *
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
32 */
33#include <linux/kernel.h>
34#include <linux/bitops.h>
35#include <asm/ptrace.h>
36#include <asm/vfp.h>
37
38#include "vfpinstr.h"
39#include "vfp.h"
40
41static struct vfp_double vfp_double_default_qnan = {
42 .exponent = 2047,
43 .sign = 0,
44 .significand = VFP_DOUBLE_SIGNIFICAND_QNAN,
45};
46
47static void vfp_double_dump(const char *str, struct vfp_double *d)
48{
49 pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
50 str, d->sign != 0, d->exponent, d->significand);
51}
52
53static void vfp_double_normalise_denormal(struct vfp_double *vd)
54{
55 int bits = 31 - fls(vd->significand >> 32);
56 if (bits == 31)
57 bits = 62 - fls(vd->significand);
58
59 vfp_double_dump("normalise_denormal: in", vd);
60
61 if (bits) {
62 vd->exponent -= bits - 1;
63 vd->significand <<= bits;
64 }
65
66 vfp_double_dump("normalise_denormal: out", vd);
67}
68
69u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
70{
71 u64 significand, incr;
72 int exponent, shift, underflow;
73 u32 rmode;
74
75 vfp_double_dump("pack: in", vd);
76
77 /*
78 * Infinities and NaNs are a special case.
79 */
80 if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
81 goto pack;
82
83 /*
84 * Special-case zero.
85 */
86 if (vd->significand == 0) {
87 vd->exponent = 0;
88 goto pack;
89 }
90
91 exponent = vd->exponent;
92 significand = vd->significand;
93
94 shift = 32 - fls(significand >> 32);
95 if (shift == 32)
96 shift = 64 - fls(significand);
97 if (shift) {
98 exponent -= shift;
99 significand <<= shift;
100 }
101
102#ifdef DEBUG
103 vd->exponent = exponent;
104 vd->significand = significand;
105 vfp_double_dump("pack: normalised", vd);
106#endif
107
108 /*
109 * Tiny number?
110 */
111 underflow = exponent < 0;
112 if (underflow) {
113 significand = vfp_shiftright64jamming(significand, -exponent);
114 exponent = 0;
115#ifdef DEBUG
116 vd->exponent = exponent;
117 vd->significand = significand;
118 vfp_double_dump("pack: tiny number", vd);
119#endif
120 if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
121 underflow = 0;
122 }
123
124 /*
125 * Select rounding increment.
126 */
127 incr = 0;
128 rmode = fpscr & FPSCR_RMODE_MASK;
129
130 if (rmode == FPSCR_ROUND_NEAREST) {
131 incr = 1ULL << VFP_DOUBLE_LOW_BITS;
132 if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
133 incr -= 1;
134 } else if (rmode == FPSCR_ROUND_TOZERO) {
135 incr = 0;
136 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
137 incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
138
139 pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
140
141 /*
142 * Is our rounding going to overflow?
143 */
144 if ((significand + incr) < significand) {
145 exponent += 1;
146 significand = (significand >> 1) | (significand & 1);
147 incr >>= 1;
148#ifdef DEBUG
149 vd->exponent = exponent;
150 vd->significand = significand;
151 vfp_double_dump("pack: overflow", vd);
152#endif
153 }
154
155 /*
156 * If any of the low bits (which will be shifted out of the
157 * number) are non-zero, the result is inexact.
158 */
159 if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
160 exceptions |= FPSCR_IXC;
161
162 /*
163 * Do our rounding.
164 */
165 significand += incr;
166
167 /*
168 * Infinity?
169 */
170 if (exponent >= 2046) {
171 exceptions |= FPSCR_OFC | FPSCR_IXC;
172 if (incr == 0) {
173 vd->exponent = 2045;
174 vd->significand = 0x7fffffffffffffffULL;
175 } else {
176 vd->exponent = 2047; /* infinity */
177 vd->significand = 0;
178 }
179 } else {
180 if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
181 exponent = 0;
182 if (exponent || significand > 0x8000000000000000ULL)
183 underflow = 0;
184 if (underflow)
185 exceptions |= FPSCR_UFC;
186 vd->exponent = exponent;
187 vd->significand = significand >> 1;
188 }
189
190 pack:
191 vfp_double_dump("pack: final", vd);
192 {
193 s64 d = vfp_double_pack(vd);
194 pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
195 dd, d, exceptions);
196 vfp_put_double(dd, d);
197 }
198 return exceptions & ~VFP_NAN_FLAG;
199}
200
201/*
202 * Propagate the NaN, setting exceptions if it is signalling.
203 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
204 */
205static u32
206vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
207 struct vfp_double *vdm, u32 fpscr)
208{
209 struct vfp_double *nan;
210 int tn, tm = 0;
211
212 tn = vfp_double_type(vdn);
213
214 if (vdm)
215 tm = vfp_double_type(vdm);
216
217 if (fpscr & FPSCR_DEFAULT_NAN)
218 /*
219 * Default NaN mode - always returns a quiet NaN
220 */
221 nan = &vfp_double_default_qnan;
222 else {
223 /*
224 * Contemporary mode - select the first signalling
225 * NAN, or if neither are signalling, the first
226 * quiet NAN.
227 */
228 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
229 nan = vdn;
230 else
231 nan = vdm;
232 /*
233 * Make the NaN quiet.
234 */
235 nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
236 }
237
238 *vdd = *nan;
239
240 /*
241 * If one was a signalling NAN, raise invalid operation.
242 */
243 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
244}
245
246/*
247 * Extended operations
248 */
249static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
250{
251 vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
252 return 0;
253}
254
255static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
256{
257 vfp_put_double(dd, vfp_get_double(dm));
258 return 0;
259}
260
261static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
262{
263 vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
264 return 0;
265}
266
267static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
268{
269 struct vfp_double vdm, vdd;
270 int ret, tm;
271
272 vfp_double_unpack(&vdm, vfp_get_double(dm));
273 tm = vfp_double_type(&vdm);
274 if (tm & (VFP_NAN|VFP_INFINITY)) {
275 struct vfp_double *vdp = &vdd;
276
277 if (tm & VFP_NAN)
278 ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
279 else if (vdm.sign == 0) {
280 sqrt_copy:
281 vdp = &vdm;
282 ret = 0;
283 } else {
284 sqrt_invalid:
285 vdp = &vfp_double_default_qnan;
286 ret = FPSCR_IOC;
287 }
288 vfp_put_double(dd, vfp_double_pack(vdp));
289 return ret;
290 }
291
292 /*
293 * sqrt(+/- 0) == +/- 0
294 */
295 if (tm & VFP_ZERO)
296 goto sqrt_copy;
297
298 /*
299 * Normalise a denormalised number
300 */
301 if (tm & VFP_DENORMAL)
302 vfp_double_normalise_denormal(&vdm);
303
304 /*
305 * sqrt(<0) = invalid
306 */
307 if (vdm.sign)
308 goto sqrt_invalid;
309
310 vfp_double_dump("sqrt", &vdm);
311
312 /*
313 * Estimate the square root.
314 */
315 vdd.sign = 0;
316 vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
317 vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
318
319 vfp_double_dump("sqrt estimate1", &vdd);
320
321 vdm.significand >>= 1 + (vdm.exponent & 1);
322 vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
323
324 vfp_double_dump("sqrt estimate2", &vdd);
325
326 /*
327 * And now adjust.
328 */
329 if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
330 if (vdd.significand < 2) {
331 vdd.significand = ~0ULL;
332 } else {
333 u64 termh, terml, remh, reml;
334 vdm.significand <<= 2;
335 mul64to128(&termh, &terml, vdd.significand, vdd.significand);
336 sub128(&remh, &reml, vdm.significand, 0, termh, terml);
337 while ((s64)remh < 0) {
338 vdd.significand -= 1;
339 shift64left(&termh, &terml, vdd.significand);
340 terml |= 1;
341 add128(&remh, &reml, remh, reml, termh, terml);
342 }
343 vdd.significand |= (remh | reml) != 0;
344 }
345 }
346 vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
347
348 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
349}
350
351/*
352 * Equal := ZC
353 * Less than := N
354 * Greater than := C
355 * Unordered := CV
356 */
357static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
358{
359 s64 d, m;
360 u32 ret = 0;
361
362 m = vfp_get_double(dm);
363 if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
364 ret |= FPSCR_C | FPSCR_V;
365 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
366 /*
367 * Signalling NaN, or signalling on quiet NaN
368 */
369 ret |= FPSCR_IOC;
370 }
371
372 d = vfp_get_double(dd);
373 if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
374 ret |= FPSCR_C | FPSCR_V;
375 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
376 /*
377 * Signalling NaN, or signalling on quiet NaN
378 */
379 ret |= FPSCR_IOC;
380 }
381
382 if (ret == 0) {
383 if (d == m || vfp_double_packed_abs(d | m) == 0) {
384 /*
385 * equal
386 */
387 ret |= FPSCR_Z | FPSCR_C;
388 } else if (vfp_double_packed_sign(d ^ m)) {
389 /*
390 * different signs
391 */
392 if (vfp_double_packed_sign(d))
393 /*
394 * d is negative, so d < m
395 */
396 ret |= FPSCR_N;
397 else
398 /*
399 * d is positive, so d > m
400 */
401 ret |= FPSCR_C;
402 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
403 /*
404 * d < m
405 */
406 ret |= FPSCR_N;
407 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
408 /*
409 * d > m
410 */
411 ret |= FPSCR_C;
412 }
413 }
414
415 return ret;
416}
417
418static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
419{
420 return vfp_compare(dd, 0, dm, fpscr);
421}
422
423static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
424{
425 return vfp_compare(dd, 1, dm, fpscr);
426}
427
428static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
429{
430 return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
431}
432
433static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
434{
435 return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
436}
437
438static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
439{
440 struct vfp_double vdm;
441 struct vfp_single vsd;
442 int tm;
443 u32 exceptions = 0;
444
445 vfp_double_unpack(&vdm, vfp_get_double(dm));
446
447 tm = vfp_double_type(&vdm);
448
449 /*
450 * If we have a signalling NaN, signal invalid operation.
451 */
452 if (tm == VFP_SNAN)
453 exceptions = FPSCR_IOC;
454
455 if (tm & VFP_DENORMAL)
456 vfp_double_normalise_denormal(&vdm);
457
458 vsd.sign = vdm.sign;
459 vsd.significand = vfp_hi64to32jamming(vdm.significand);
460
461 /*
462 * If we have an infinity or a NaN, the exponent must be 255
463 */
464 if (tm & (VFP_INFINITY|VFP_NAN)) {
465 vsd.exponent = 255;
466 if (tm & VFP_NAN)
467 vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
468 goto pack_nan;
469 } else if (tm & VFP_ZERO)
470 vsd.exponent = 0;
471 else
472 vsd.exponent = vdm.exponent - (1023 - 127);
473
474 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
475
476 pack_nan:
477 vfp_put_float(sd, vfp_single_pack(&vsd));
478 return exceptions;
479}
480
481static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
482{
483 struct vfp_double vdm;
484 u32 m = vfp_get_float(dm);
485
486 vdm.sign = 0;
487 vdm.exponent = 1023 + 63 - 1;
488 vdm.significand = (u64)m;
489
490 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
491}
492
493static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
494{
495 struct vfp_double vdm;
496 u32 m = vfp_get_float(dm);
497
498 vdm.sign = (m & 0x80000000) >> 16;
499 vdm.exponent = 1023 + 63 - 1;
500 vdm.significand = vdm.sign ? -m : m;
501
502 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
503}
504
505static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
506{
507 struct vfp_double vdm;
508 u32 d, exceptions = 0;
509 int rmode = fpscr & FPSCR_RMODE_MASK;
510 int tm;
511
512 vfp_double_unpack(&vdm, vfp_get_double(dm));
513
514 /*
515 * Do we have a denormalised number?
516 */
517 tm = vfp_double_type(&vdm);
518 if (tm & VFP_DENORMAL)
519 exceptions |= FPSCR_IDC;
520
521 if (tm & VFP_NAN)
522 vdm.sign = 0;
523
524 if (vdm.exponent >= 1023 + 32) {
525 d = vdm.sign ? 0 : 0xffffffff;
526 exceptions = FPSCR_IOC;
527 } else if (vdm.exponent >= 1023 - 1) {
528 int shift = 1023 + 63 - vdm.exponent;
529 u64 rem, incr = 0;
530
531 /*
532 * 2^0 <= m < 2^32-2^8
533 */
534 d = (vdm.significand << 1) >> shift;
535 rem = vdm.significand << (65 - shift);
536
537 if (rmode == FPSCR_ROUND_NEAREST) {
538 incr = 0x8000000000000000ULL;
539 if ((d & 1) == 0)
540 incr -= 1;
541 } else if (rmode == FPSCR_ROUND_TOZERO) {
542 incr = 0;
543 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
544 incr = ~0ULL;
545 }
546
547 if ((rem + incr) < rem) {
548 if (d < 0xffffffff)
549 d += 1;
550 else
551 exceptions |= FPSCR_IOC;
552 }
553
554 if (d && vdm.sign) {
555 d = 0;
556 exceptions |= FPSCR_IOC;
557 } else if (rem)
558 exceptions |= FPSCR_IXC;
559 } else {
560 d = 0;
561 if (vdm.exponent | vdm.significand) {
562 exceptions |= FPSCR_IXC;
563 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
564 d = 1;
565 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
566 d = 0;
567 exceptions |= FPSCR_IOC;
568 }
569 }
570 }
571
572 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
573
574 vfp_put_float(sd, d);
575
576 return exceptions;
577}
578
579static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
580{
581 return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
582}
583
584static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
585{
586 struct vfp_double vdm;
587 u32 d, exceptions = 0;
588 int rmode = fpscr & FPSCR_RMODE_MASK;
589
590 vfp_double_unpack(&vdm, vfp_get_double(dm));
591 vfp_double_dump("VDM", &vdm);
592
593 /*
594 * Do we have denormalised number?
595 */
596 if (vfp_double_type(&vdm) & VFP_DENORMAL)
597 exceptions |= FPSCR_IDC;
598
599 if (vdm.exponent >= 1023 + 32) {
600 d = 0x7fffffff;
601 if (vdm.sign)
602 d = ~d;
603 exceptions |= FPSCR_IOC;
604 } else if (vdm.exponent >= 1023 - 1) {
605 int shift = 1023 + 63 - vdm.exponent; /* 58 */
606 u64 rem, incr = 0;
607
608 d = (vdm.significand << 1) >> shift;
609 rem = vdm.significand << (65 - shift);
610
611 if (rmode == FPSCR_ROUND_NEAREST) {
612 incr = 0x8000000000000000ULL;
613 if ((d & 1) == 0)
614 incr -= 1;
615 } else if (rmode == FPSCR_ROUND_TOZERO) {
616 incr = 0;
617 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
618 incr = ~0ULL;
619 }
620
621 if ((rem + incr) < rem && d < 0xffffffff)
622 d += 1;
623 if (d > 0x7fffffff + (vdm.sign != 0)) {
624 d = 0x7fffffff + (vdm.sign != 0);
625 exceptions |= FPSCR_IOC;
626 } else if (rem)
627 exceptions |= FPSCR_IXC;
628
629 if (vdm.sign)
630 d = -d;
631 } else {
632 d = 0;
633 if (vdm.exponent | vdm.significand) {
634 exceptions |= FPSCR_IXC;
635 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
636 d = 1;
637 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
638 d = -1;
639 }
640 }
641
642 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
643
644 vfp_put_float(sd, (s32)d);
645
646 return exceptions;
647}
648
649static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
650{
651 return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
652}
653
654
655static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
656 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy,
657 [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs,
658 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg,
659 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt,
660 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp,
661 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe,
662 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz,
663 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez,
664 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts,
665 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito,
666 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito,
667 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui,
668 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz,
669 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi,
670 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz,
671};
672
673
674
675
676static u32
677vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
678 struct vfp_double *vdm, u32 fpscr)
679{
680 struct vfp_double *vdp;
681 u32 exceptions = 0;
682 int tn, tm;
683
684 tn = vfp_double_type(vdn);
685 tm = vfp_double_type(vdm);
686
687 if (tn & tm & VFP_INFINITY) {
688 /*
689 * Two infinities. Are they different signs?
690 */
691 if (vdn->sign ^ vdm->sign) {
692 /*
693 * different signs -> invalid
694 */
695 exceptions = FPSCR_IOC;
696 vdp = &vfp_double_default_qnan;
697 } else {
698 /*
699 * same signs -> valid
700 */
701 vdp = vdn;
702 }
703 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
704 /*
705 * One infinity and one number -> infinity
706 */
707 vdp = vdn;
708 } else {
709 /*
710 * 'n' is a NaN of some type
711 */
712 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
713 }
714 *vdd = *vdp;
715 return exceptions;
716}
717
718static u32
719vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
720 struct vfp_double *vdm, u32 fpscr)
721{
722 u32 exp_diff;
723 u64 m_sig;
724
725 if (vdn->significand & (1ULL << 63) ||
726 vdm->significand & (1ULL << 63)) {
727 pr_info("VFP: bad FP values in %s\n", __func__);
728 vfp_double_dump("VDN", vdn);
729 vfp_double_dump("VDM", vdm);
730 }
731
732 /*
733 * Ensure that 'n' is the largest magnitude number. Note that
734 * if 'n' and 'm' have equal exponents, we do not swap them.
735 * This ensures that NaN propagation works correctly.
736 */
737 if (vdn->exponent < vdm->exponent) {
738 struct vfp_double *t = vdn;
739 vdn = vdm;
740 vdm = t;
741 }
742
743 /*
744 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
745 * infinity or a NaN here.
746 */
747 if (vdn->exponent == 2047)
748 return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
749
750 /*
751 * We have two proper numbers, where 'vdn' is the larger magnitude.
752 *
753 * Copy 'n' to 'd' before doing the arithmetic.
754 */
755 *vdd = *vdn;
756
757 /*
758 * Align 'm' with the result.
759 */
760 exp_diff = vdn->exponent - vdm->exponent;
761 m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
762
763 /*
764 * If the signs are different, we are really subtracting.
765 */
766 if (vdn->sign ^ vdm->sign) {
767 m_sig = vdn->significand - m_sig;
768 if ((s64)m_sig < 0) {
769 vdd->sign = vfp_sign_negate(vdd->sign);
770 m_sig = -m_sig;
771 }
772 } else {
773 m_sig += vdn->significand;
774 }
775 vdd->significand = m_sig;
776
777 return 0;
778}
779
780static u32
781vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
782 struct vfp_double *vdm, u32 fpscr)
783{
784 vfp_double_dump("VDN", vdn);
785 vfp_double_dump("VDM", vdm);
786
787 /*
788 * Ensure that 'n' is the largest magnitude number. Note that
789 * if 'n' and 'm' have equal exponents, we do not swap them.
790 * This ensures that NaN propagation works correctly.
791 */
792 if (vdn->exponent < vdm->exponent) {
793 struct vfp_double *t = vdn;
794 vdn = vdm;
795 vdm = t;
796 pr_debug("VFP: swapping M <-> N\n");
797 }
798
799 vdd->sign = vdn->sign ^ vdm->sign;
800
801 /*
802 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
803 */
804 if (vdn->exponent == 2047) {
805 if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
806 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
807 if ((vdm->exponent | vdm->significand) == 0) {
808 *vdd = vfp_double_default_qnan;
809 return FPSCR_IOC;
810 }
811 vdd->exponent = vdn->exponent;
812 vdd->significand = 0;
813 return 0;
814 }
815
816 /*
817 * If 'm' is zero, the result is always zero. In this case,
818 * 'n' may be zero or a number, but it doesn't matter which.
819 */
820 if ((vdm->exponent | vdm->significand) == 0) {
821 vdd->exponent = 0;
822 vdd->significand = 0;
823 return 0;
824 }
825
826 /*
827 * We add 2 to the destination exponent for the same reason
828 * as the addition case - though this time we have +1 from
829 * each input operand.
830 */
831 vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
832 vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
833
834 vfp_double_dump("VDD", vdd);
835 return 0;
836}
837
838#define NEG_MULTIPLY (1 << 0)
839#define NEG_SUBTRACT (1 << 1)
840
841static u32
842vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
843{
844 struct vfp_double vdd, vdp, vdn, vdm;
845 u32 exceptions;
846
847 vfp_double_unpack(&vdn, vfp_get_double(dn));
848 if (vdn.exponent == 0 && vdn.significand)
849 vfp_double_normalise_denormal(&vdn);
850
851 vfp_double_unpack(&vdm, vfp_get_double(dm));
852 if (vdm.exponent == 0 && vdm.significand)
853 vfp_double_normalise_denormal(&vdm);
854
855 exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
856 if (negate & NEG_MULTIPLY)
857 vdp.sign = vfp_sign_negate(vdp.sign);
858
859 vfp_double_unpack(&vdn, vfp_get_double(dd));
860 if (negate & NEG_SUBTRACT)
861 vdn.sign = vfp_sign_negate(vdn.sign);
862
863 exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
864
865 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
866}
867
868/*
869 * Standard operations
870 */
871
872/*
873 * sd = sd + (sn * sm)
874 */
875static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
876{
877 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
878}
879
880/*
881 * sd = sd - (sn * sm)
882 */
883static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
884{
885 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
886}
887
888/*
889 * sd = -sd + (sn * sm)
890 */
891static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
892{
893 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
894}
895
896/*
897 * sd = -sd - (sn * sm)
898 */
899static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
900{
901 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
902}
903
904/*
905 * sd = sn * sm
906 */
907static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
908{
909 struct vfp_double vdd, vdn, vdm;
910 u32 exceptions;
911
912 vfp_double_unpack(&vdn, vfp_get_double(dn));
913 if (vdn.exponent == 0 && vdn.significand)
914 vfp_double_normalise_denormal(&vdn);
915
916 vfp_double_unpack(&vdm, vfp_get_double(dm));
917 if (vdm.exponent == 0 && vdm.significand)
918 vfp_double_normalise_denormal(&vdm);
919
920 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
921 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
922}
923
924/*
925 * sd = -(sn * sm)
926 */
927static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
928{
929 struct vfp_double vdd, vdn, vdm;
930 u32 exceptions;
931
932 vfp_double_unpack(&vdn, vfp_get_double(dn));
933 if (vdn.exponent == 0 && vdn.significand)
934 vfp_double_normalise_denormal(&vdn);
935
936 vfp_double_unpack(&vdm, vfp_get_double(dm));
937 if (vdm.exponent == 0 && vdm.significand)
938 vfp_double_normalise_denormal(&vdm);
939
940 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
941 vdd.sign = vfp_sign_negate(vdd.sign);
942
943 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
944}
945
946/*
947 * sd = sn + sm
948 */
949static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
950{
951 struct vfp_double vdd, vdn, vdm;
952 u32 exceptions;
953
954 vfp_double_unpack(&vdn, vfp_get_double(dn));
955 if (vdn.exponent == 0 && vdn.significand)
956 vfp_double_normalise_denormal(&vdn);
957
958 vfp_double_unpack(&vdm, vfp_get_double(dm));
959 if (vdm.exponent == 0 && vdm.significand)
960 vfp_double_normalise_denormal(&vdm);
961
962 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
963
964 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
965}
966
967/*
968 * sd = sn - sm
969 */
970static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
971{
972 struct vfp_double vdd, vdn, vdm;
973 u32 exceptions;
974
975 vfp_double_unpack(&vdn, vfp_get_double(dn));
976 if (vdn.exponent == 0 && vdn.significand)
977 vfp_double_normalise_denormal(&vdn);
978
979 vfp_double_unpack(&vdm, vfp_get_double(dm));
980 if (vdm.exponent == 0 && vdm.significand)
981 vfp_double_normalise_denormal(&vdm);
982
983 /*
984 * Subtraction is like addition, but with a negated operand.
985 */
986 vdm.sign = vfp_sign_negate(vdm.sign);
987
988 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
989
990 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
991}
992
993/*
994 * sd = sn / sm
995 */
996static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
997{
998 struct vfp_double vdd, vdn, vdm;
999 u32 exceptions = 0;
1000 int tm, tn;
1001
1002 vfp_double_unpack(&vdn, vfp_get_double(dn));
1003 vfp_double_unpack(&vdm, vfp_get_double(dm));
1004
1005 vdd.sign = vdn.sign ^ vdm.sign;
1006
1007 tn = vfp_double_type(&vdn);
1008 tm = vfp_double_type(&vdm);
1009
1010 /*
1011 * Is n a NAN?
1012 */
1013 if (tn & VFP_NAN)
1014 goto vdn_nan;
1015
1016 /*
1017 * Is m a NAN?
1018 */
1019 if (tm & VFP_NAN)
1020 goto vdm_nan;
1021
1022 /*
1023 * If n and m are infinity, the result is invalid
1024 * If n and m are zero, the result is invalid
1025 */
1026 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1027 goto invalid;
1028
1029 /*
1030 * If n is infinity, the result is infinity
1031 */
1032 if (tn & VFP_INFINITY)
1033 goto infinity;
1034
1035 /*
1036 * If m is zero, raise div0 exceptions
1037 */
1038 if (tm & VFP_ZERO)
1039 goto divzero;
1040
1041 /*
1042 * If m is infinity, or n is zero, the result is zero
1043 */
1044 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1045 goto zero;
1046
1047 if (tn & VFP_DENORMAL)
1048 vfp_double_normalise_denormal(&vdn);
1049 if (tm & VFP_DENORMAL)
1050 vfp_double_normalise_denormal(&vdm);
1051
1052 /*
1053 * Ok, we have two numbers, we can perform division.
1054 */
1055 vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1056 vdm.significand <<= 1;
1057 if (vdm.significand <= (2 * vdn.significand)) {
1058 vdn.significand >>= 1;
1059 vdd.exponent++;
1060 }
1061 vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1062 if ((vdd.significand & 0x1ff) <= 2) {
1063 u64 termh, terml, remh, reml;
1064 mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1065 sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1066 while ((s64)remh < 0) {
1067 vdd.significand -= 1;
1068 add128(&remh, &reml, remh, reml, 0, vdm.significand);
1069 }
1070 vdd.significand |= (reml != 0);
1071 }
1072 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1073
1074 vdn_nan:
1075 exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1076 pack:
1077 vfp_put_double(dd, vfp_double_pack(&vdd));
1078 return exceptions;
1079
1080 vdm_nan:
1081 exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1082 goto pack;
1083
1084 zero:
1085 vdd.exponent = 0;
1086 vdd.significand = 0;
1087 goto pack;
1088
1089 divzero:
1090 exceptions = FPSCR_DZC;
1091 infinity:
1092 vdd.exponent = 2047;
1093 vdd.significand = 0;
1094 goto pack;
1095
1096 invalid:
1097 vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
1098 return FPSCR_IOC;
1099}
1100
1101static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
1102 [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac,
1103 [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
1104 [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc,
1105 [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
1106 [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul,
1107 [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
1108 [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd,
1109 [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub,
1110 [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv,
1111};
1112
1113#define FREG_BANK(x) ((x) & 0x0c)
1114#define FREG_IDX(x) ((x) & 3)
1115
1116u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1117{
1118 u32 op = inst & FOP_MASK;
1119 u32 exceptions = 0;
1120 unsigned int dd = vfp_get_sd(inst);
1121 unsigned int dn = vfp_get_sn(inst);
1122 unsigned int dm = vfp_get_sm(inst);
1123 unsigned int vecitr, veclen, vecstride;
1124 u32 (*fop)(int, int, s32, u32);
1125
1126 veclen = fpscr & FPSCR_LENGTH_MASK;
1127 vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
1128
1129 /*
1130 * If destination bank is zero, vector length is always '1'.
1131 * ARM DDI0100F C5.1.3, C5.3.2.
1132 */
1133 if (FREG_BANK(dd) == 0)
1134 veclen = 0;
1135
1136 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1137 (veclen >> FPSCR_LENGTH_BIT) + 1);
1138
1139 fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)];
1140 if (!fop)
1141 goto invalid;
1142
1143 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1144 u32 except;
1145
1146 if (op == FOP_EXT)
1147 pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n",
1148 vecitr >> FPSCR_LENGTH_BIT,
1149 dd >> 1, dd & 1, dn,
1150 dm >> 1, dm & 1);
1151 else
1152 pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n",
1153 vecitr >> FPSCR_LENGTH_BIT,
1154 dd >> 1, dd & 1,
1155 dn >> 1, dn & 1,
1156 FOP_TO_IDX(op),
1157 dm >> 1, dm & 1);
1158
1159 except = fop(dd, dn, dm, fpscr);
1160 pr_debug("VFP: itr%d: exceptions=%08x\n",
1161 vecitr >> FPSCR_LENGTH_BIT, except);
1162
1163 exceptions |= except;
1164
1165 /*
1166 * This ensures that comparisons only operate on scalars;
1167 * comparisons always return with one FPSCR status bit set.
1168 */
1169 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1170 break;
1171
1172 /*
1173 * CHECK: It appears to be undefined whether we stop when
1174 * we encounter an exception. We continue.
1175 */
1176
1177 dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
1178 dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
1179 if (FREG_BANK(dm) != 0)
1180 dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
1181 }
1182 return exceptions;
1183
1184 invalid:
1185 return ~0;
1186}